2018年全国各省高中数学竞赛预赛试题汇编(含答案) 精品
2018年全国高中数学联赛四川赛区预赛试题+答案
评阅,请严格按照评分标准规定的评分档次给分,不要再增加其它中间档次.
2、如果考生的解答题方法和本解答不同,只要思路合理,步骤正确,在评阅时可参
考本评分标准适当划分档次评分,5 分一个档次,不要再增加其它中间档次.
一、选择题(本大题共 6 个小题,每小题 5 分,共 30 分)
1、A
2、B
3、B
4、D
………………………………………………………密……………………封……………………线………………………………………………………
2018 年全国高中数学联合竞赛(四川预赛)
(5 月 20 日下午 14:30——16:30)
题目
一
二
13
得分
评卷人
复核人
三
14
15
总成绩 16
考生注意:1.本试卷共有三大题(16 个小题),全卷满分 140 分. 2.用黑(蓝)色圆珠笔或钢笔作答. 3.计算器、通讯工具不准带入考场. 4.解题书写不要超过密封线.
k 1
……5 分
若 m 2 ,注意到 n 时, (m 2)(n 1) ,
因此,存在充分大的 n ,使得1 (m 2)(n 1) 4 ,即 an 4 ,矛盾!
参考答案及评分标准 (第 3 页 共 5 页) 第7页
所以, m 2 . 又当 m 2 时,可证:对任意的正整数 n ,都有 0 an 4 .
……5 分
参考答案及评分标准 (第 4 页 共 5 页) 第8页
当 0<p<1 时,由 x[1,e],得 x 1 ≥0, x
故 f(x)p(x 1 )2lnx<x 1 2lnx<2,不合题意.
学校:
5. 已知方程1 x x2 x3 x4 x2018 0 的所有实数根都在区间[a, b] 内
2018年全国高中数学联赛辽宁赛区预赛试题+答案
a
9
8
7
6
5
4
3 21
4,3 4, 3 3, 2 3, 2
b
1,2 1, 2 1 1
2,1 2, 1 1
1
共 20 种情况。 同时,每个数码组 (a,b) 中的二个数码填上三个数位,有
C
2 3
种情况。
故 n2
C
2 3
(2
C
2 9
20) 156 . 综上, n n1 n2
165 .
【考点】 排列组合问题 .
,故
和
中必有一个小于
的距离最小值的二倍, 则 A 为平行于
的
直线与
的切点,解得
故答案为: 9.若正实数 x、y 满足
,故 的最小值为
.
,则 y 的最大值为 _____.
【答案】 【解析】【详解】
第3 页 共9 页
第5页
设
,则
.令
,则
故
,因此 y 的最大值为 .
故答案为 :
10.四面体 ABCD中,已知
第2 页 共9 页
第4页
二、填空题 6.设 、b 均为实数, 复数 为纯虚数,则 +b=_____. 【答案】 【解析】【详解】
与
的模长相等, 且
由题设知
,且
为纯虚数,故
.因此
或
解得
或
,故
.
故答案为:
7.在 △ ABC中,角 A、B、C的对边分别为 、b、c.若 【答案】 1009 【解析】【详解】
. ,求
的最大值和最小
.
当
时取等号,故 M 的最大值为 .
要使 M 取最小值,只需考虑
2018年全国高中数学联赛浙江赛区预赛试题+答案
|m|
l
O
O
l
1√
= 1.
5
1+ k2
y = kx + m
A(x1, y1), B(x2, y2)
x2 + 9y2 − 9 = 0
(1 + 9k2)x2 + 18kmx + (9m2 − 9) = 0
第3页
(
)
18km
9km m
x1 + x2 = − 1 + 9k2
AB
(
− 1 +)9k2 , 1 + 9k2 .
f (x) = −2
x = −1 f (x) = 0
1
x = −3, x =
3
3
9. x, y ∈ R
x
−
6√y
−
√ 4x
−
y
+
12
=
0
x
√
√
答案 14 − 2 13 ≤ x ≤ 14 + 2 13.
解析
x
−
6√y
−
√ 4x
−
y
+
12
=
0
⇒
√ (x
−
y
−
2)2
+
(√y
−
3)2
=
1
.
. . √ x − y − 2 = cos θ
1≤i≤n,1≤j≤n
1≤i<j≤n
证明
∑
∑
Tn =
|ai − bj| −
(|aj − ai| + |bj − bi|)
1≤i≤n,1≤j≤n
1≤i<j≤n
2018年全国高中数学联赛浙江省预赛高三数学试题(解析版)
2018年全国高中数学联赛浙江省预赛高三数学试题一、填空题1 1= 一-;—1 .已知a 为正实数,且 “1是奇函数,则⑷的值域为.1111 1 1 ― --- ----------- =- - + f (x )=--— 由小)为奇函数可知a - + 19「+ 1,解得a= 2,即 22、由此得f (x )的值域为। 2 2'.2018「2%1.3 ) 鼻二1 3- 5a +1£ 南满足]一 ,n*i- a (n=1, 2,…),则 n = 1520198077【答案】16 16 【解析】【详解】1 / 八■ +[二5皆十1小二1+『5阿+1=%由4" 4"56故答案为:.2.设数列所以 2018V Lu1<-2c201S=不5 +5 +... + S20185x c 2018 1t=—行 口-162018 S 2019£07 71616(3n \小 4风0 E —cos(a + p)=3.已知 '4",56I 4.J 13,则【解析】【详解】%£ E (彳再)孙3 +位二Mi 7Tcos\p + —I = cos (a + 所以 sin(a + B)——,得.J71 a—4亡叫cr 一: 6二 - 13, 5665【解析】【详解】加索-34.在八个数字2, 4, 6, 7, 8, 11, 12, 13中任取两个组成分数.这些分数中有个既约分数.【答案】36【解析】【详解】在7, 11, 13中任取一个整数与在2, 4, 6, 8, 12中任取一个整数构成既约分数,共有3 5 种;在7, 11, 13中任取两个整数也构成既约分数,共有A3,6中.合计有36种不同的既约分数./ 1 ^2018 + (1/01S _5,已知虚数z满足P+1=Q,则上』H .【答案】I【解析】【详解】1 2018 上r , 3^72 2.1 之上[/ 1 \2018 + ( 1 JOIS _ 工 ,1 _(Z)- _ . . I _ 1I? - 1 l z _ 1 _ t2,2018 - t3,1345 _ z-所以^ .6.设明=1。
2018年全国高中数学联赛陕西赛区预赛试题+答案
cos B
10.
|AB| = 3p
△F A′B′
答案
1 .
3
解析
(
π)
3
cos B = − cos(A + C) = − cos 2C + = sin 2C =
2
4
y2 = 2px(p > 0) AB l
F A′ B′
l
F
AA′B′B
.
A, B MM
=
S△A′ B ′ F S AA′B′B
=
|A′B′| · p |A′B′| · (|AA′| + |BB′|)
[
]
4
1
f (x) = x + − 1 ∈ 3, 15
x
4
11
n
3 + 3 + 3 + 3 + 3 = 15
n = 6.
44
√
12. n
n > 100
n2 + 3n + 1
.
答案 49.
解析
√
√
1
n2 + 3n + 1 + n + 1
13
1
√
−2=
n2 + 3n + 1 − n − 1
n
− 2 = n2 + n + 1 − 1 + n > 0
√ B: 2
12
π 5. 0 < x <
2
sin4 x cos4 x 1
+
=
9
4 13
tan x
A: 1 2
B: 2 3
6. x, y ∈ R
各省高中数学竞赛试题汇编——函数小题目
各省数学竞赛试题汇编——函数小题目1.【2018年湖南预赛】函数的定义城为_________.【答案】【解析】由得,所以函数的定义城为.故答案为2.【2018年湖南预赛】已知函数对任意的实数满足:,且当时,,当时,,则象与的图象的交点个数为___________。
【答案】10【解析】由题意知,f(x)=且周期是6,,且此函数是偶函数,在同一个直角坐标系中画出两个函数的图象如下图所示:由图可得,两个函数图象的交点个数是10个.3.【2018年陕西预赛】已知函数,若存在,使得,则正整数的最大值是________.【答案】6【解析】由题意得.故尽可能大时的情形为,此时. 4.【2018年陕西预赛】已知函数,若存在,使得,则正整数的最大值是________.【答案】6【解析】由题意得.故尽可能大时的情形为,此时. 5.【2018年陕西预赛】已知函数,若存在,使得,则正整数的最大值是________.【答案】6【解析】由题意得.故尽可能大时的情形为,此时. 6.【2018年贵州预赛】若方程有两个不等实根,则实数的取值范围是_____________. 【答案】【解析】由知x>0,故.令,则.当时,;当时,.所以在(0,e)上递增,在(e,+)上递减.故,即.7.【2018年安徽预赛】设点P、Q分别在函数的图象上,则的最小值=_________. 【答案】【解析】设P(),Q()使最小.由互为反函数,知点P、Q处的切线斜率都是1,直线PQ的斜率都是-1.故.故答案为:8.【2018年广东预赛】函数的值域为_____________.【答案】当时,的值域为();当时,的值域为().【解析】,因为,所以当时,的值域为();当时,的值域为().故答案为:当时,的值域为();当时,的值域为().9.【2018年广东预赛】已知方程在区间(-2,2)内恰有两个实根,则k的取值范围是__________. 【答案】【解析】记,令,得.当时,在()上为增函数.当时,在()上为减函数.所以在点处取得最大值,当且仅当时,在区间(-2,2)内恰有两个实根,故k的取值范围是.故答案为:10.【2018年贵州预赛】方程组的实数解为___________.【答案】【解析】因为,所以,即,代入,得.由.11.【2018年湖北预赛】设是定义在上的单调函数,若对任意的,都有,则不等式的解集为______.【答案】【解析】由题设,存在正常数,使得,且对任意的,有.当时,有,由单调性知此方程只有唯一解.所以.不等式,即,解得.故不等式的解集为.12.【2018年甘肃预赛】关于的方程有唯一实数解,则实数的取值范围是______.【答案】【解析】解法一原方程化为.(1).(2)时,的两根分别为1、3,不符合题意.(3)时,的两根分别为2,.因此,符合题意要求.(4),即时,若,不符合要求;若,因此,符合要求.解法二,因为,所以.上单调递增,在上单调递减.又,所以的取值范围是.13.【2018年吉林预赛】函数的定义域为__________.【答案】(1,2)(4,5)【解析】由题得,解之得x∈(1,2)(4,5).故答案为:(1,2)(4,5)14.【2018年山东预赛】对任意的实数的最小值为______.【答案】【解析】设,则①+②+③得.解得.又当时,有解.故当时,取到最小值.15.【2018年山东预赛】已知,且为方程的一个根,则的最大可能值为______.【答案】9【解析】由题设,则.因为,则必为完全平方数.设,则.所以.解得,8,,0.所以的最大可能值为9.16.【2018年山东预赛】设为最接近的整数,则______.【答案】【解析】设,则,即.而,因此满足个.注意到,从而或7.由于,所以.因此.17.【2018年天津预赛】已知函数的定义域都是,它们的图象围成的区域面积是_____________【答案】【解析】将的图象补充为完整的圆,则由中心对称性易知答案是圆面积的一半,为.故答案为:18.【2018年天津预赛】若为正实数,且是奇函数,则不等式的解集是_____________【答案】【解析】由可得即也即,所以.由于在(0,+)上递增,所以在(0,+)上是增函数,结合是奇函数可知在R上是增函数.解不等式,只需找到的解.方程等价于也即两边平方,解得.因此,不等式的解集是.故答案为:19.【2018年河南预赛】已知函数,若的定义域为,值域为,则的值为______.【答案】0【解析】因为,所以有,得,故上是增函数,进而.解得(舍)或.故填0.20.【2018年河北预赛】若,且满足那么. 【答案】1【解析】把已知条件变形为函数上为增函数且是奇函数,另,故,所以.21.【2018年四川预赛】设函数上的最大值为,最小值为,那么的值为______. 【答案】4【解析】因为上单调递减,在上单调递增,所以的最小值为.又的最大值为故故答案为:422.【2018年四川预赛】的值为______.【答案】1【解析】令,则从而,化简为.所以,原式故答案为:123.【2018年浙江预赛】已知a为正实数,且是奇函数,则的值域为________.【答案】【解析】由为奇函数可知,解得a= 2,即,由此得的值域为.24.【2018年浙江预赛】设,则有________个不同的解. 【答案】3【解析】因为由得到,或.由,得一个解;由得两个解,共3个解.25.【2018年浙江预赛】设满足,则x的取值范围为________. 【答案】【解析】由.令,,所以.26.【2018年江西预赛】函数的值域是区间______.【答案】【解析】显然函数定义域为,在此区间内,由于,即,故有角使得.于是,因为,则.在此范围内,则有.因此.(当时,;当时,)故答案为:27.【2018年山西预赛】函数的值域为________.【答案】【解析】由条件知.令.则,,,因为,所以,.28.【2018年湖南预赛】如图,A与P分别是单位圆O上的定点与动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数,则=__________.【答案】【解析】对角度x进行简单的分类,然后根据三角函数的定义得到利用函数的周期性得到.故答案为:29.【2018年湖南预赛】如图放置的边长为1的正方形ABCD沿x轴正向滚动,即先以A为中心顺时针旋转,当B落在x轴上时,再以B为中心顺时针旋转,如此继续,设顶点C滚动时的轨迹方程为,则上的表达式为__________.【答案】【解析】①由于是以4为周期的周期函数,所以当时此时由周期性及①式的结果得到故答案为:30.【2018年湖南预赛】设,函数(其中表示对于,当时表达式的最大值),则的最小值为_____.【答案】【解析】对于每一个,函数是线性函数.因此,在任意有限闭区间上,函数的最大值与最小值均在区间端点处达到,从而有由于函数图像交点的横坐标c满足,得到其图像为两条折线组成,且故答案为:31.【2018年福建预赛】已知定义在上的奇函数,它的图象关于直线对称.当时,,则______.【答案】2【解析】由为奇函数,且其图象关于直线对称,知,且,所以.是以8为周期的周期函数.又,所以.32.【2018年福建预赛】已知整系数多项式,若,则______.【答案】24【解析】设,则,于是.所以.所以是多项式的一个根.又不可能是三次整系数多项式、二次整系数多项式的零点.所以整除.故为整数.所以.由,得.所以.33.【2018年福建预赛】已知函数满足:对任意实数,都有成立,且,则______.【答案】【解析】在中,令,得.令,得.又,所以,即.又,,所以.故.34.【2016年上海预赛】若x∈(-1,1)时,恒为正值,则实数a的取值范围是____________。
2018年高中数学联赛四川预赛试题(含答案)
为
.
8.
在 ABC 中, cos B
1
,则
1
1
的最小值为
.
4 tan A tan C
9.
log6
5
1 2 log6 5 log10 3 log15 2 log10 3 log10 3 log15 2 log15
2
log6
5
的值为
.
10. 在三棱锥 P ABC 中,三条棱 PA 、 PB 、 PC 两两垂直,且 PA 1, PB 2 ,
考本评分标准适当划分档次评分,5 分一个档次,不要再增加其它中间档次.
一、选择题(本大题共 6 个小题,每小题 5 分,共 30 分)
1、A
2、B
3、B
4、D
k
2018 年全国高中数学联赛(四川预赛) 第 4 页 (共 4 页)
2018 年全国高中数学联赛(四川预赛)试题
参考答案及评分标准
说明:
1、评阅试卷时,请依据评分标准.选择题和填空题只设 5 分和 0 分两档;其它各题的
评阅,请严格按照评分标准规定的评分档次给分,不要再增加其它中间档次.
2、如果考生的解答题方法和本解答不同,只要思路合理,步骤正确,在评阅时可参
(1)若 f (x) 在其定义域内为单调递增函数,求实数 p 的取值范围;
(2)设
g(x)
2e x
,且
p
0 ,若在[1,
e] 上至少存在一点
x0
,使得
f
( x0
)
g ( x0
)
成
立, 求实数 p 的取值范围;
(3)求证:对任意的正整数 n ,都有 n ln2 (1 2) 3 成立.
2018年全国高中数学联赛黑龙江省预赛试题及答案
,得
,即 a2=4b2,∴椭圆 C 的方程可化为 x2+4y2=4b2.又椭圆
.................. ;
C 过点 P (2, ﹣ 1) , ∴4+4=4b2, 得 b2=2, 则 a2=8. ∴椭圆 C 的方程为
4分
(2)证明:由题意,直线 PA 斜率存在,设直线 PA 的方程为 y+1=k(x﹣2) ,
即
=
,.................. 10 分
∴直线 AB 的斜率为
...................12 分
22.(1)由 f ' ( x )
nx n2 ' , f (2) ,由于函数 f ( x ) 在 (2, f (2)) 处的切线与直线 x y 0 平行, 2 x 4
故 故 f ( x ) 在 [1, ) 上的最大值为 f (1) m n ; ②当 n 1 , f ( x ) 在 [1, n) 上单调递增,在 ( n, ) 上单调递减, 故 f ( x ) 在 [1, ) 上的最大值为 f ( n) m 1 ln n ; 综上①当 n 1时, f ( x ) 在 [1, ) 上的最大值为 f (1) m n ; ②当 n 1 , f ( x ) 在 [1, ) 上的最大值为 f ( n) m 1 ln n ;.................. 6 分
(3)函数 f ( x ) 恰有两个零点 x1 , x2 (0 x1 x2 ) ,
则 f ( x1 ) 可得 m 令t
mx1 1 mx 1 ln x1 0, f ( x2 ) 2 ln x2 0 , x1 x2
2018年全国高中数学联赛安徽省预赛及解析
2018年全国高中数学联赛安徽省预赛注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明第II 卷(非选择题)一、填空题|z |=5,则z=_________. 2.设n 是正整数,且满足n 5=438427732293,则n=__________.3.函数f (x )=|sin2x +sin3x +sin4x |的最小正周期=_________.4.设点P 、Q 分别在函数y=2x 和y =log 2x 的图象上,则|PQ |的最小值=_________.5.从1,2,…,10中随机抽取三个各不相同的数字,其样本方差s 2≤1的概率=_________.6.在边长为1的长方体ABCD−A 1B 1C 1D 1内部有一小球,该小球与正方体的对角线段AC 1相切,则小球半径的最大值=___________. 7.设H 是△ABC 的垂心,且3HA⃑⃑⃑⃑⃑⃑ +4HB ⃑⃑⃑⃑⃑⃑ +5HC⃑⃑⃑⃑⃑ =0,则cos∠AHB =_____________. 8.把1,2,…,n 2按照顺时针螺旋方式排成n 行n 列的表格T n ,第一行是1,2,…,n.例如:T 3=[123894765].设2018在T 100的第i 行第j 列,则(i ,j )=___________.二、解答题是矩形,点E 、F 分别是线段AD 、BC 的中点,点G 在线段EF 上,点D 、H 关于线段AG 的垂直平分线l 对称.求证:∠HAB=3∠GAB.10.设O 是坐标原点,双曲线C :x 2a 2−y 2b2=1上动点M 处的切线,交C 的两条渐近线于A 、B 两点.⑴求证:△AOB 的面积S 是定值;⑵求△AOB的外心P的轨迹方程.11.⑴求证:对于任意实数x、y、z都有x2+2y2+3z2≥√3(xy+yz+zx).⑵是否存在实数k>√3,使得对于任意实数x、y、z有x2+2y2+3z2≥k(xy+ yz+zx)恒成立?试证明你的结论.12.在正2018边形的每两个顶点之间均连一条线段,并把每条线段染成红色或蓝色.求此图形中三边颜色都相同的三角形的最小个数.参考答案1.4-3i 或-3+4i【解析】1. 设z=x +yi ,由题设得x +y =1且x 2+y 2=25.故(x,y )=(4,-3)或(-3,4).所以z=4-3i 或-3+4i . 故答案为:4-3i 或-3+4i 2.213【解析】2.由n 5 ≈<44×1010,得200<n <300.设n =200(1+x ).由(1+x )5=1+5x +10x 2+10x 3+5x 4+x 5 ≈<4432=1.375,得x ≈<0.075,n ≈<215.再由n 5≡n (mod10),得n=213.(注:“≈<”表示“小于约等于”.)故答案为:213 3.2π【解析】3.f (x )=|1+2cosx |⋅|sin3x |,其中|1+2cosx |的最小正周期是2π,|sin3x |的最小正周期是π3. 故答案为:2π4.1+ln (ln2)ln2√2【解析】4.设P (a,2a ),Q (b,log 2b )使|PQ |最小.由y=2x 与y =log 2x 互为反函数,知点P 、Q 处的切线斜率都是1,直线PQ 的斜率都是-1.故2a=b =1ln2,|PQ |=|a −b |√2=1+ln (ln2)ln2√2. 故答案为:1+ln (ln2)ln2√2 5.115【解析】5.x 1<x 2<x 3的样本方差s 2=13∑(x i −x )23i=1≤1,当且仅当x 1、x 2、x 3是连续的正整数. 故P (s 2≤1)=8C 103=115.故答案为:115 6.4−√65【解析】6.当半径最大时,小球与正方体的三个面相切.不妨设小球与过点D 1的三个面相切.以D 1为原点,D 1C 1⃑⃑⃑⃑⃑⃑⃑⃑⃑⃑⃑⃑ 、D 1A 1⃑⃑⃑⃑⃑⃑⃑⃑⃑⃑⃑⃑ 、D 1D ⃑⃑⃑⃑⃑⃑⃑⃑⃑⃑ 分别为x 、y 、z 轴正方向,建立空间直角坐标系.设A (0,1,1),C 1(1,0,0),小球圆心P (r ,r ,r ),则P 到AC 1的距离|AP ⃑⃑⃑⃑⃑⃑ ×AC 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ ||AC 1|=√23|1−2r |=r . 再由r<12,得r =4−√65.故答案为:4−√65 7.−√66【解析】7. 由题设得tanA3=tanB 4=tanC5=λ.再由tanA +tanB +tanC =tanAtanBtanC ,得λ=√5,tanC=√5.故cos∠AHC =−cosC =−√66.故答案为:−√668.(34,95)【解析】8. 设1≤k ≤50,则T 100的第k 行第k 列元素是1+4∑(101−2i )k−1i=1=1+4(101−k )(k −1).因此,1901在第6行第6列,1900在第6行第95列,2018在第34行第95列. 故答案为:(34,95) 9.见解析【解析】9.由E 、F 分别是AD 、BC 的中点,得EF//AB ⊥AD.如图,设P 是E 关于l 的对称点,则EP//AG ⊥l ,故四边形AEPG 是等腰梯形.进而∠PAG=∠EGA =∠GAB ,∠APG =∠GEA ,从而AP ⊥HG.再由HP=DE=EA=PG ,得∠HAP =∠PAG =∠GAB .因此∠HAB=3∠GAB.10.(1)见解析(2)a 2x 2−b 2y 2=14(a 2+b 2)2【解析】10.⑴双曲线在M (x 0,y 0)处的切线方程为x 0xa 2−y 00b2=1,与渐近线方程联立,得A (x 1,y 1)=(ax 0a +y 0b ,bx 0a +y 0b),B (x 2,y 2)=(a x 0a−y 0b,−b x 0a−y 0b).从而S=12|x 1y 2−x 2y 1|=|ab |是定值.⑵由⑴可设A (λa,λb ),B (aλ,−bλ),P (x ,y ),λ为非零常数. 由|AP |=|OP |=|BP |,得(x −λa )2+(y −λb )2=x 2+y 2=(x −a λ)2+(y +b λ)2.从而有ax+by =λ2(a 2+b 2),ax −by =12λ(a 2+b 2).上述两式相乘,得P 的轨迹方程为a 2x 2−b 2y 2=14(a 2+b 2)2.11.(1)见解析 (2)见解析.【解析】11.⑴由均值不等式,可知x 22+3y 22≥√3xy ,x22+3z 22≥√3xz ,y22+3z 22≥√3yz .故有x 2+2y 2+3z 2≥√3(xy +yz +zx ).⑵x 2+2y 2+3z 2−k (xy +yz +zx )=(x −k 2y −k 2z )2+(2−k 24)y 2+(3−k24)z 2−(k22+k )yz .上式≥0恒成立,当且仅当2−k 24≥0且(k22+k )2≤4(2−k 24)(3−k24). 化简得|k |≤2√2且k 3+6k 2≤24.故存在k >√3满足要求.12.N =2C 10093【解析】12.设N 是此图形中三边颜色都相同的三角形数目,M 是此图形中三边颜色不全相同的三角形数目,x i 是以第i 个顶点为端点的红色线段数目,则有M +N =C 20183,∑x i (2017−x i )2018i=1=2M .当且仅当每个x i =1008或1009时,N 取得最小值C 20183−10092×1008=2C 10093.N =2C 10093是可以取到的,例如:把线段i →i ±jmod2018(1≤i ≤2018,1≤j ≤504)染成红色,其他线段染成蓝色.。
2018 年全国高中数学联赛(吉林赛区)预赛
2 3 sin x cos x 2cos2 x 1 1 a 3 sin 2 x cos 2 x 1 a
p d2 p ,所以 an (常数),即 {an } 为常数列. d 2d
三、解答题
13.【解析】(Ⅰ) f x 4cos x sin x
3 1 sin x cos x a 4cos x a 6 2 2
1
二、填空题
7. 1, 2 8.
4,5
4
2 2
【解析】因为圆 C 的方程可化为 x 4 y 1 ,所以圆 C 的圆心为 4, 0 ,半径为 1 . 若 y kx 2 上至少存在一点 A x0 , kx0 2 ,以该点为圆心,1 为半径的圆与圆 C 有公共点, 则存在 x0 R ,使得 AC 1 1 2 成立,即 AC min 2 .又因为 AC min 为点 C 到直线 y kx 2 的距离
1 . 2
| sin x | | sin x | | x | | 2 cos x |
x x x x y x2 1 【解析】由已知 y ,所以 z , 2 x 1 2 x x 1 xy 1 x x 1 1 1 1 1 x x2 x 1 1 3 1 1 4 因为 x 1 ,即 0 1 ,所以 1 2 1 ,故 1 z . x 4 x x 3
8 4 4. 3 3
1 1 , 2 5
【解析】注意到两直线是平行的,故点 M 的轨迹为与两直线距离相等,且平行于两直线的直线,其方程 为 x 2 y 1 0 ,即 M x0 , y0 满足 x0 2 y0 1 0 . 而满足不等式 y0 x0 2 的点在直线 y x 2 的左上方. 问题转化为求射线 x0 2 y0 1 0 ( x0 而
2018年全国高中数学联赛河北省预赛高二数学试题(解析版)
2018年全国高中数学联赛河北省预赛高二数学试题一、填空题1.已知集合,且A=B,那么_______.【答案】2【解析】【详解】由B中有三个元素知,且,故A中,即有,又若,则.此时.若,则,或,或,不满足互异性,舍去.故,,所以.2.规定:对任意,当且仅当时,,则的解集为__________.【答案】【解析】【详解】由已知得,那么,所以,故所求解集为.3.在平面直角坐标系中,若与点A(2,2)的距离为1,且与点B(m,0)的距离为3的直线恰有三条,则实数m的取值集合是________.【答案】【解析】【详解】以A为圆心,1为半径的圆,和以B为圆心,3为半径的圆相外切时,恰有三条公切线.利用AB=1+3,可得,即实数m的取值集合是.4.在矩形ABCD中,已知AB=3,BC=1,动点P在边CD上.设,,则的最大值为________.【答案】-3【解析】【详解】因为,所以问题转化为求的最小值.由等面积法可得.所以.当,即时,所求最大值为-3.5.已知且,则的最大值为________.【答案】【解析】【详解】由已知得.所以.因为,所以,设,则有点(s,t)在以(1,1)为圆心,2为半径的圆弧(第一象限及坐标轴)上.由线性规划知识直线与圆弧相切于点时,.6.若的三边长分别为8、10、12,三条边的中点分别是B、C、D,将三个中点两两连结得到三条中位线,此时所得图形是三棱锥A-BCD的平面展开图,则此三棱锥的外接球的表面积是________.【答案】【解析】【详解】由已知,四面体A-BCD的三组对棱的长分别是4、5、6.构造长方体使其面对角线长分别为4、5、6,设长方体的长、宽、高分别为x、y、z,外接球半径为R,则,得,故,所以.7.已知.则的取值范围是________.【答案】【解析】【详解】由条件知点表示单位圆上的动点与点连线的斜率大于.作图可得点P在圆弧与上运动,含点和点,不含点和点.如图:而表示原点与点P连线的斜率,由图计算得.故答案为:8.在△ABC中,,,则△ABC的面积最大值为_____.【答案】3【解析】【详解】由正弦定理将变形为,其中.以线段AC所在直线为x轴,以AC的中点O为坐标原点建立平面直角坐标系,则,,由得两边平方整理得因为,所以上述方程可化为为由此可知点B的轨迹是以为圆心,以为半径的圆.所以当点B在圆上运动时,点B到x轴的最大距离为半径,所以的面积在上单调递减,所以.二、解答题9.已知O是的外心,且,求的值.【答案】【解析】【详解】设的外接圆半径r=1,由已知得,两边平方得同理可得,所以故有所以10.设,证明:【答案】见解析【解析】【详解】因为当且仅当,即时等号成立,故原不等式得证.11.若a、b、c为正数且a+6+c=3,证明:【答案】见解析【解析】【详解】因为,同理三式相加得所以故又,所以综上可得.12.若函数的定义域为且满足条件:①存在实数,使得;②当且时,有恒成立.(1)证明:(其中);(2)判断在上的单调性,并证明你的结论;(3)当时,不等式恒成立,求实数a的取值范围.【答案】(1)见解析(2)见解析(3)【解析】【详解】因均为正数,故总存在实数使得,,所以又,所以(2)设,且,则,故可令则由(1)知即,所以在上单调递增.因为,故原不等式可化为,又在上单调递增,所以对于恒成立.因为(当且仅当时等号成立),所以,又,故.13.已知数列中,(1)求数列的通项公式;(2)求数列的前n项和.【答案】(1)(2)【解析】【详解】(1)由知令,则且由得.(2)由题意知所以两式相减得设,再利用错位相减法求得所以.14.如图,设的外接圆为,的角平分线与BC交于点D,M为BC的中点.若的外接圆分别与AB、AC交于P、Q、N为PQ的中点.证明:(1)BP=CQ;(2).【答案】(1)见解析(2)见解析【解析】【详解】(1)设在中,为的平分线,所以,故有,因此有,所以,又,由得由,得因此.(2)连结BQ、PC,并设X、Y分别为BQ、PC的中点,易证XN平行且等于MY,所以四边形为NXMY平行四边形,由CQ=BP知NX=NY,所以四边形为NXMY菱形,从而MN平分,又AD平分,,,所以.。
2018年全国高中数学联赛河北预赛试题及详解
2018年全国高中数学联赛河北预赛试题及详解2018年全国高中数学联赛河北(高二)预赛试题及详解一、填空题:共8道小题,每小题8分,共64分.1.已知集合A={x,xy,x+y},B={0,x,y}且A=B,则x2018+y2018=(解析:由A=B可知x=0或x=1,若x=0,则y=0,不符合题意,故x=1,代入A=B中得y=-1,故x2018+y2018=2)2.规定:对于任意实数x,当且仅当n≤x<n+1(n∈N*)时,[x]=n,则4[x]-28[x]+45≤2的解集为[9/4,11/4)。
解析:当n≤x<n+1时,[x]=n,所以4[x]-28[x]+45=4n-28n+45=17-24n,要使得17-24n≤2成立,则n=1或n=0,代入解得[9/4,11/4))3.在平面直角坐标系中,若与点A(2,2)的距离为1,且与点B(m,0)的距离为3的直线恰有三条,则实数m的取值集合是{1,5}。
解析:由于与点A的距离为1,所以直线必须过点(2,2)的两个垂直平分线上,即x=2或y=2,又因为与点B的距离为3,所以直线必须与以点B为圆心,以3为半径的圆相交于两点,这两点分别在点B的左侧和右侧,故m=1或m=5)4.在矩形ABCD中,已知AB=3,BC=1.动点P在边CD 上,设∠PAB=α,∠PBA=β,则PA·PB·cos(α+β)的最大值为3/4.解析:由于PA+PB=4,所以PA·PB=4(2-PA-PB),又因为cos(α+β)=sinα·sinβ+cosα·cosβ,所以PA·PB·cos(α+β)=4sinα·sinβ+4cosα·cosβ-4PA-4PB,将PA+PB=4代入,得PA·PB·cos(α+β)=3-4cosα·cosβ,由于-1≤cosα·cosβ≤1,所以PA·PB·cos(α+β)的最大值为3/4,当且仅当cosα·cosβ=-1时取到)5.已知x≥1,y≥1且lg2x+lg2y=lg10x2+lg10y2,则u=lgxy的最大值为1/2.解析:由已知得x·y=10,所以XXX(1/x)-XXX(1/y),又因为XXX(1/x)+lg(1/y)=XXX[(1/x)(1/y)]=lg(1/xy)=lg0.1,所以u=lg10-lg0.1=1,又因为x≥1,y≥1,所以u≤1/2)6.若△A1A2A3的三边长分别为8、10、12,三条边的中点分别是B、C、D,将三个中点两两连接得到三条中位线,此时所得图形是三棱锥A-BCD的表面展开图,则此三棱锥的外接球的表面积是40π。
2018陕西高中数学竞赛预赛试题(含答案).docx
文档来源为:从网络收集整理.word版本从网络收集整理.word版本可编辑.欢迎下载支持.
7
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
8
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
9
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
2018年全国高中数学联赛
陕西赛区预赛试题
1
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
2
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
3
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
4
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
最新-2018年全国高中数学联赛试题及参考答案精品
最新-2018年全国⾼中数学联赛试题及参考答案精品2018年全国⾼中数学联赛试题及参考答案试题⼀、选择题(本题满分36分,每⼩题6分)1、函数f (x)=log1/2(x2-2x-3)的单调递增区间是()。
(A)(-∞,-1)(B)(-∞,1)(C)(1,+∞)(D)(3, +∞)2、若实数x,y满⾜(x+5)2+(y-12)2=142,则x2+y2的最⼩值为()。
(A)2 (B)1 (C)√3(D)√23、函数f(x)=x/1-2x-x/2()(A)是偶函数但不是奇函数(B)是奇函数但不是偶函数(C)既是偶函数⼜是奇函数(D)既不是偶函数也不是奇函数4、直线x/4+y/3=1与椭圆x2/16+y2/9=1相交于A,B两点,该椭圆上点P,使得ΔPAB⾯积等于3,这样的点P共有()。
(A)1个(B)2个(C)3个(D)4个5、已知两个实数集合A={a1,a2,…,a100}与B={b1,b2,…,b50},若从A到B的映射f使得B中每个元素都有原象,且f(a1)≤f(a2)≤…≤f(a100)则这样的映射共有()。
(A)C50100(B)C4899(C)C49100(D)C49996、由曲线x2=4y,x2=-4y,x=4,x=-4围成的图形绕y轴旋转⼀周所得旋转体的体积为V1;满⾜x2+y2≤16,x2+(y-2)2≥4,x2+(y+2)2≥4的点(x,y)组成的图形绕y轴旋转⼀周所得旋转体的体积为V2,则()。
(A)V1=(1/2)V2 (B)V1=(2/3)V2 (C)V1=V2 (D)V1=2V2⼆、填空题(本题满分54分,每⼩题9分)7、已知复数Z1,Z2满⾜∣Z1∣=2,∣Z2∣=3,若它们所对应向量的夹⾓为60°,则∣(Z1+Z2)/(Z1+Z2)∣=。
8、将⼆项式(√x+1/(24√x))n的展开式按x的降幂排列,若前三项系数成等差数列,则该展开式中x的幂指数是整数的项共有个。
2018年全国高中数学联赛
2018年全国高中数学联赛山东预赛试题解析一、填空题(每小题8分,共80分)1.若复数z 满足|z -1|+|z -3-2i|=22,则|z |的最小值为 . 【解析】答案:1.设z =x +y i ,则|z -1|+|z -3-2i|=22的几何意义为点P (x ,y )到点A (1,0),B (3,2)的距离之和为22,因为|AB |=22,从而点P 在线段AB 上,从而:|OP |≥1.即当z =1时有最小值|z |=1. 2.在正三棱锥S —ABCD 中,已知二面角A —SB —D 的正弦值为63,则异面直线SA 与BC 所成的角为 . 【解析】答案:60°.A —SB —D 的二面角等于A —SD —B 的二面角,设底面的中心为O ,取AD 的中点M ,连接SO 、SM 、OM ,过点O 作OE ⊥SM 于E ,易证OE ⊥平面SAD ,过点E 作EP ⊥SD 于点P ,连接OP ,从而:A —SD —B 的二面角为∠EPO .设底面边长为2a ,侧棱长为2b ,于是:OM =a ,SO =4b 2-2a 2,OD =2a , 所以:OE =a 4b 2-2a 24b 2-a 2,OP =2a ·4b 2-2a 22b ,所以:sin ∠OPE =OE OP =2b 4b 2-a 2=63,解得:a =b .于是:△SAD 为正三角形,从而:直线SA 与BC 所成的角为60°.OP MDEC SA3.函数f (x )=[2sin x ·cos x ]+[sin x +cos x ]的值域为 (其中[x ]表示不超过x 的最大整数). 答案:{-1,0,1,2}.【解析】 f (x )=[sin2x ]+⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4,当x ∈⎣⎡⎭⎫0,π4时,[sin2x ]=0,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=1,此时f (x )=1; 当x =π4时,[sin2x ]=1,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=1,此时f (x )=2; 当x ∈⎝⎛⎭⎫π4,π2,[sin2x ]=0,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=1,此时f (x )=1; 当x =π2时,[sin2x ]=0,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=1,此时f (x )=1; 当x ∈⎝⎛⎭⎫π2,3π4,[sin2x ]=0,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=0,此时f (x )=0; 当x =3π4时,[sin2x ]=-1,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=0,此时f (x )=-1; 当x ∈⎝⎛⎭⎫3π4,π时,[sin2x ]=0,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=0,此时f (x )=0; 当x =π时,[sin2x ]=0,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=-1;此时f (x )=-1; 其他区间按此方法讨论.4.在△ABC 中,∠BAC =60°,∠BAC 的平分线AD 交BC 于D ,且有AD →=14AC →+tAB →,若AB =8,则AD = . 答案:6 3.【解析】易知t =34,从而:AC =24,AD 2=116×242+916×82+316×8×24=108,从而:AD =6 3.5.甲、乙两人轮流掷一枚硬币至正面朝上或者朝下,规定谁先掷出正面朝上为赢:前一场输者,则下一场先掷,若第一场甲先掷,则甲赢得第n 场的概率为 . 【解析】答案:P n =12⎣⎡⎦⎤1-⎝⎛⎭⎫-13n . 设甲赢得第n 场的概率为P n ,则P n +1=23(1-P n )+13P n ,P 1=23,解得:P n =12⎣⎡⎦⎤1-⎝⎛⎭⎫-13n . 6.若直线6x -5y -28=0交椭圆x 2a 2+y 2b 2=1(a >b >0,且a ,b 为整数)于A 、C ,设B (0,b )为椭圆的上顶点,而△ABC 的重心为椭圆的右焦点F 2,则椭圆的方程为 . 【解析】设A (x 1,y 1),C (x 2,y 2),依题意知:⎩⎨⎧x 1+x 2=3c ,y 1+y 2+b =0,联立椭圆方程和直线方程:⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,6x -5y -28=0,得:⎩⎨⎧x 1+x 2=336a 236a 2+25b 2=3c ①,y 1+y 2=-280b 236a 2+25b 2=-b ②,①÷②可得:2a 25b 2=c b, 即:2a 2=5bc ,两边平方,并有c 2=a 2-b 2可得:4a 4-25a 2b 2+25b 4=0,解得:a 2=5b 2或者a 2=54b 2,7.设a 、b ∈R ,则max{|a +b |,|a -b |,|1-b |}的最小值为 . 【解析】答案:12.max{|a +b |,|a -b |,|1-b |}=max{|a |+|b |,|1-b |}≥|a |+|b |+|1-b |2≥|a |+12≥12. 当且仅当a =0,b =12时等号成立.8.已知a 、b ∈Z ,且a +b 是方程x 2+ax +b =0的一个根,则b 的最大可能值为 . 【解析】答案:9.将a +b 代入方程可得:(a +b )2+a (a +b )+b =0,整理可得:b 2+(3a +1)b +2a 2=0,显然a 、b 中至少有一个为负数,欲求b 的最大值,则a <0,b >0. 视b 为主元,解得:b =-(3a +1)-(3a +1)2-8a 22=-(3a +1)-a 2+6a +12,其中:a ≥22-3或者a ≤-(22+3),因为b ∈Z ,从而:a 2+6a +1=m 2,m ∈Z , 即:a 2+6a +1-m 2=0有整数解.=36-4(1-m 2)=4(m 2+8)为完全平方数,令m 2+8=n 2,其中:n ∈Z ,所以:(n +m )(n -m )=8=2×4=(-2)×(-4),解得:⎩⎨⎧n =±3,m =±1,a =0或-6,b =-1或9,于是b max = 9,此时a =-6.9.设集合A 、B 满足A ∪B ={1,2,…,10},若A ∩B = ,若集合A 的元素个数不是集合A 的元素,集合B 元素个数不是集合B 的元素,则满足条件的所有集合A 的个数为 . 【解析】令|A |=k ,则|B |=10-k ,k ≠5,否则5∈A ∩B ,从而由题意可知:k ∈B ,10-k ∈A ,此时A 中剩余的k -1个元素有C k -18种选择,且剩余的9-k 个元素必定属于集合B .于是,满足题意的集合A 的个数为m =∑k =19C k -18-C 5-18=28-70=256-70=186个.10.设f (n )为最接近4n 的整数,则∑k =120181f (k )= . 【解析】答案:28867.用[n ]表示与4n 最接近的整数,则:当n ∈[1,8]时,[n ]=1,f (n )=1,其中n =1,2,…,8;故∑k =181f (k )=8, 当n ∈[9,48]时,[n ]=2,f (n )=2,其中n =9,10,…,48,故∑k =9481f (k )=20;当n ∈[49,168]时,[n ]=3,f (n )=3,其中:n =49,50,…,168,故∑k =491681f (k )=40; 当n ∈[169,440]时,[n ]=4,f (n )=4,其中n =169,170,…,440,故∑k =1694401f (k )=68; 当n ∈[441,960]时,[n ]=5,f (n )=5,其中:n =441,…,960,故∑k =4419601f (k )=104; 当n ∈[961,1848]时,[n ]=6,f (n )=6,其中n =961,…,1848,故∑k =96118481f (k )=148. 当n ∈[1849,2018]时,[n ]=7,其中n =1849,…,2018,故∑k =184920181f (k )=1707, 综上:∑k =120181f (k )=8+20+40+68+104+148+1707=28867. 事实上,当k ≤4n ≤k +1时,若n 4∈[k 4,k 4+2k 3+3k 2+2k ]时,[n ]=k ,当n 4∈[k 4+2k 3+3k 2+2k +1,(k +1)4]时,[n ]=k +1. 因为当n 4∈[k 4,k 4+2k 3+3k 2+2k ],则n 4-k 4∈[0,2k 3+3k 2+2k ]<(k +1)4-n 4∈[2k 3+3k 2+2k +1,4k 3+6k 2+4k +1]; 而当n 4∈[k 4+2k 3+3k 2+2k +1,(k +1)4]时,(k +1)4-n 4∈[0,2k 3+3k 2+2k ]<n 4-k 4∈[2k 3+3k 2+2k +1,4k 3+6k 2+4k +1]; 于是:当n 4∈[k 4+2k 3+3k 2+2k +1,(k +1)4]时,[n ]=k +1; 当n 4∈[(k +1)4,(k +1)4+2(k +1)3+3(k +1)2+2(k +1)]时,[n ]=k +1,即当n 4∈[k 4+2k 3+3k 2+2k +1,(k +1)4+2(k +1)3+3(k +1)2+2(k +1)]时,[n ]=k +1,此时共有(k +1)4+2(k +1)3+3(k +1)2+2(k +1)-(k 4+2k 3+3k 2+2k )=4k 3+12k 2+16k +8=4(k +1)(k 2+2k +2)个数,于是:∑k 4-2k 3+3k 2-2k +1k 4+2k 3+3k +2+2k1f (k )=4(k 2+1), 所以:∑k =120181f (k )=∑k =164(k 2+1)+∑i =184920181f (i )=388+1707=28867. 二、解答题(本大题共4小题,共70分)11.已知圆O :x 2+y 2=4与曲线C :y =3|x -t |,A (m ,n ),B (s ,p )(m ,n ,s ,p ∈N*)为曲线C 上的两点,使得圆O 上的任意一点到点A 的距离与到点B 的距离之比为定值k (k >1),求t 的值.【解析】答案:t =43.取圆上的点C (2,0),D (-2,0),E (0,2),F (0,-2),依题意有:⎩⎨⎧(2-m )2+n 2(2-s )2+p 2=(2+m )2+n 2(2+s )2+p 2=ms,m 2+(2-n )2s 2+(p -2)2=m 2+(2+n )2s 2+(2+p )2=np,于是:OA →=tOB →,所以,点A 、B 、O 三点共线.由阿波罗尼斯圆的性质:OA ·OB =R 2=4,且OA =Rλ,OB =Rλ,其中λ>1,则OA <OB ,所以:OA <2;因为:m 2+n 2=OA 2=4λ2,又m 、n ∈N*,从而:OA 2=4λ2∈N*,(1)若OA 2=4λ2=1,则λ=2,此时:m 2+n 2=1,必有mn =0,因为m 、n ∈N*,不符合题意;(2)若OA 2=4λ2=2,则λ=2,此时:m 2+n 2=2,得:m =n =1,s =p =2,直线AB 的方程为y=x ,则点A (1,1),B (2,2)在曲线C 上,代入解得:t =43.(3)若OA 2=4λ2=3,此时:m 2+n 2=3,无正整数解,不合题意.综上:t =43.12.已知数列{a n }满足:a 1=π3,0<a n <π3,sin a n +1≤13sin3a n (n ≥2), 求证:sin a n <1n. 证明:由于0<a n <π3,于是:sin a n ∈⎝⎛⎭⎫0,12, 当n =1时,有sin a 1=12<1;当n =2时,sin a 2∈⎝⎛⎭⎫0,12<12成立; 设当n =k 时,有sin a k <1k, 则当n =k +1时,sin a k +1≤13sin3a k =13(3sin a k -4sin 3a k ),令f (x )=3x -4x 3,x ∈⎝⎛⎭⎫0,12, 则f ′(x )=3-12x 2>0,即f (x )在⎝⎛⎭⎫0,12单调递增, 于是:sin a k +1≤13sin3a k =13(3sin a k -4sin 3a k )≤1k -43k k,所以只需证明:1k -43k k <1k +1(k ≥2) 即可. 即证明:3k -43k<k k +1, 平分后整理可得:15k 2+8k -16>0,即证明对任意k ≥2有:(3k +4)(5k -4)>0,显然成立.于是:对任意n ∈N*,有sin a n <1n. 13.实数a 、b 、c 满足a 2+b 2+c 2=λ(λ>0),试求f =min{(a -b )2,(b -c )2,(c -a )2}的最大值.【解析】由i 对称性,不妨设a ≥b ≥c , 从而:a -b >a -c >0,于是有:f =min{(a -b )2,(b -c )2,(c -a )2}=min{(a -b )2,(b -c )2}≤(a -b )(b -c )≤⎣⎡⎦⎤(a -b )+(b -c )22=(a -c )24≤λ2.当且仅当b =0,a =-c =2λ2时等号成立. 14.证明对所有的正整数n ≥4,存在一个集合S ,满足如下条件: (1)S 由都小于2n-1的n 个正整数组成;(2)对S 的任意两个不同非空子集A 、B ,集合A 中所有元素之和不等于集合B 中所有元素之和.【解析】当S ={20,21,22,…,2n -1}时满足题意.法一、证明:用|T |表示集合T 中的元素个数,M (A )表示集合A 中的元素之和. 当n =4时,若|A |=1,则M (A )={1,2,4,8}; 若|A |=2,则M (A )={3,5,9,6,10,12}, 若|A |=3,则M (A )={7,11,13,14}, 若|A |=4,则M (A )={15},即集合S 的15个子集,其和值也有15个,每个子集的和值各不相同, 所以:当A ≠B 时,总有M (A )≠M (B ). 故:当n =4时,S ={1,2,4,8}满足题意;假设当n =k 时,集合S ={20,21,22,…,2k -1}满足题意, 此时集合S 的2k -1个非空子集有2k -1个不同的值,其集合为{1,2,…,2k -1},则当n =k +1时,集合S 的2k 个子集的和值组成的集合为{1,2,3,…,2k -1,2k ,2k +1,…,2k +2k -1},即:{1,2,3,…,2k -1,2k ,…,2k +1-1},所以当n =k +1时,集合S 的2k +1-1个子集有2k +1-1个不同的值. 综上:集合S ={20,21,22,…,2n -1}总是满足题意.法二、不妨假设a 1<a 2<…<a m ,b 1<b 2<…<b t ,且对任意的i ,j ,a i ≠b j ,b t <a m , 根据题意只需证明:∑i =1m 2a i≠∑j =1t2b j即可.若不然,设∑i =1m2a i=∑j =1t2bj ,则:2a m<∑i =1m2a i=∑j =1t 2bj ,所以:1<2b 1-a m+2b 2-a m+…+2b t -a m≤12+122+…+12t -m =1-12t -m +1<1,矛盾. 从而:集合S ={20,21,…,2n -1}的任意的两个子集之和不同. 所以:存在满足题意的集合S ={20,21,…,2n -1}.。
2018年全国高中数学联赛贵州预赛试题及详解
绝密★启用前2018年贵州省高中数学联赛试题2018年5月6日 8:30-11:00一、选择题:每小题6分,本大题共30分.1.小王在word 文档中设计好一张4A 规格的表格,根据要求,这种规格的表格需要设计1000张,小王欲使用“复制——粘贴”(用鼠标选中表格,右键点击“复制”,然后在本word 文档中“粘贴”)的办法满足要求.请问:小王需要使用“复制——粘贴”的次数至少为( )A .9次B .10次C .11次D .12次2.已知一双曲线的两条渐近线方程为0x =0y +=,则它的离心率是( )A.13.在空间直角坐标系中,已知(0,0,0)O ,(1,0,0)A ,(0,1,0)B ,(0,0,1)C ,则到面OAB 、面OB C 、面O A C 、面ABC 的距离相等的点的个数是( )A .1B .4C .5D .无穷多4.若圆柱被一平面所截,其截面椭圆的离心率为3,则此截面与圆柱底面所成的锐二面角是( ) A .1arcsin 3 B .1arccos 3 C .2arcsin 3 D .2arccos 35.已知等差数列{}n a 及{}n b ,设12n n A a a a =++⋅⋅⋅+,12n n B b b b =++⋅⋅⋅+,若对*n N ∀∈,有3553n n A n B n +=+,则106a b =( ) A .3533B .3129C .17599D .15587 二、填空题(每小题6分,本大题共60分)6.已知O 为ABC ∆所在平面上一定点,动点P 满足()AB AC OP OA AB AC λ=++,其[0,)λ∈+∞,则P 点的轨迹为 .7.牛得亨先生、他的妹妹、他的儿子,还有他的女儿都是网球选手.这四人中有以下情况:①最佳选手的孪生同胞与最差选手性别不同;②最佳选手与最差选手年龄相同.则这四人中最佳选手是 .8.方程组2226()6x y xy x y ⎧+=⎨+=-⎩的实数解为 .9.如图,在ABD ∆中,点C 在AD 上,2ABC π∠=,6DBC π∠=,1AB CD ==,则AC = .10.函数z 的最小值是 .11.若边长为6的正ABC ∆的三个顶点到平面α的距离分别为1,2,3,则ABC ∆的重心G 到平面α的距离为 .12.若实数a 使得不等式222x a x a a -+-≥对任意实数x 恒成立,则实数a 的取值范围 .13.若方程(0,1)xa x a a =>≠有两个不等实根,则实数a 的取值范围是 .14.顺次连结圆229x y +=与双曲线3xy =的交点,得到一个凸四边形.则此凸四边形的面积为 .15.函数2(5)sin 1(010)y x x x π=--≤≤的所有零点之和等于 . 三、解答题(每小题15分,本大题共60分)16.已知函数3y x =.17.已知椭圆C :22221(0)x y a b a b +=>>的离心率e =21y x =-与C 交于A 、B两点,且AB =(1)求椭圆C 的方程;(2)过点(2,0)M 的直线l (斜率不为零)与椭圆C 交于不同的两点E 、F (E 在点F 、M 之间),记OME OMFS S λ∆∆=,求λ的取值范围.18.证明:(1)1111112212221k k k k ++++⋅⋅⋅+<++-(2,)n n N ≥∈; (2)分别以1,12,13,…,1n ,…为边长的正方形能互不重叠地全部放入一个边长为32的正方形内.19.已知梯形ABCD ,边CD 、AB 分别为上、下底,且90ADC ∠=,对角线AC BD ⊥,过D 作DE BC ⊥于点E .(1)证明:22AC CD AB CD =+⋅;(2)证明:22AE AC CD BE AC CD ⋅=-.。
2018年全国高中数学联赛河北省预赛高三数学试题(解析版)
2018年全国高中数学联赛河北省预赛高三数学试题一、填空题 1.若,且,则的最小值为______________.【答案】3【解析】试题分析:设Z=a+bi (a ,b ∈R ),满足|Z-2-2i|=1的点均在以C 1(2,2)为圆心,1为半径的圆上,所以|Z+2-2i|的最小值是C 1,C 2连线的长为4与1的差,即为3.【考点】复数模的几何意义及数形结合的思想方法,2.若,,且满足那么.【答案】1 【解析】【详解】 把已知条件变形为函数在上为增函数且是奇函数,另,故即,所以.3.设点O 为三角形ABC 内一点,且满足关系式: _____.【答案】【解析】【详解】 将化为,.设M 、N 分别是AB 、AC 的中点,则.设△ABC 的面积为S ,由几何关系知,,,所以.4.过动点M 作圆: ()()22221x y -+-=的切线MN ,其中N 为切点,若MN MO=(O为坐标原点),则MN的最小值是__________.【答案】8【解析】解答:由圆的方程可得圆心C的坐标为(2,2),半径等于1.由M(a,b),则|MN|2=(a−2)2+(b−2)2−12=a2+b2−4a−4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2−4a−4b+7=a2+b2.整理得:4a+4b−7=0.∴a,b满足的关系为:4a+4b−7=0.求|MN|的最小值,就是求|MO|的最小值。
在直线4a+4b−7=0上取一点到原点距离最小,由“垂线段最短”得,直线OM垂直直线4a+4b−7=0,由点到直线的距离公式得:MN的最小值为:=5.欲登上7阶楼梯,某人可以每步跨上两阶楼梯,也可以每步跨上一阶楼梯,则共有_____种上楼梯的方法.【答案】21【解析】【详解】本题采用分步计数原理.第一类:0次一步跨上2阶楼梯,即每步跨上一阶楼梯,跨7次楼梯,只有1种上楼梯的方法;第二类,1次一步跨上2阶楼梯,5次每步跨上一阶楼梯,跨6次楼梯,有种方法;第三类:2次一步跨上2阶楼梯,3次每步跨上一阶楼梯,跨5次楼梯,有种方法;第四类:3次一步跨上2阶楼梯,1次每步跨上一阶楼梯,跨4次楼梯,有种方法;共计21种上楼梯的方法.6.已知棱长的正方体内部有一圆柱,此圆柱恰好以直线为轴,则该圆柱体积的最大值为_____.【答案】【解析】【详解】由题意知只需考虑圆柱的底面与正方体的表面相切的情况.由图形的对称性可知,圆柱的上底面必与过A点的三个面相切,且切点分别在、AC、上.设线段上的切点为E,圆柱上底面中心为,半径.由得,则圆柱的高为,,由导数法或均值不等式得. 7.若实数x、y、z满足,,则_____.【答案】【解析】【详解】由柯西不等式得,由已知得,,所以有,化简得,即、为方程的两根,由韦达定理得.8.在△ABC中,,,则△ABC的面积最大值为_____.【答案】3【解析】【详解】由正弦定理将变形为,其中.以线段AC所在直线为x轴,以AC的中点O为坐标原点建立平面直角坐标系,则,,由得两边平方整理得因为,所以上述方程可化为为由此可知点B的轨迹是以为圆心,以为半径的圆.所以当点B在圆上运动时,点B到x轴的最大距离为半径,所以的面积在上单调递减,所以.二、解答题9.已知将函数的图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图象向右平移个单位长度得到函数的图象,且关于x的方程在内有两个不同的解、.(1)求满足题意的实数m的取值范围;(2)求(用含m的式子表示).【答案】(1)(2)【解析】【详解】(1)将的图象上所有点的纵坐标伸长为原来的2倍(横坐标不变),得到的图象.再将的图象向右平移个单位长度后,得到的图象.故,..依题意在区间内有两个不同的解,当且仅当.故m的取值范围是.(2)因为是方程在内的两个不同的解,所以,.当时,,即.当,,即.所以.10.已知数列满足:,.记,求的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018各省数学竞赛汇集2018高中数学联赛江苏赛区初赛试卷一、填空题(70分) 1、当[3,3]x ∈-时,函数3()|3|f x x x =-的最大值为__18___.2、在ABC ∆中,已知12,4,AC BC AC BA ⋅=⋅=-则AC =___4____.3、从集合{}3,4,5,6,7,8中随机选取3个不同的数,这3个数可以构成等差数列的概率为_____310_______. 4、已知a 是实数,方程2(4)40x i x ai ++++=的一个实根是b (i 是虚部单位),则||a bi +的值为_____5、在平面直角坐标系xOy 中,双曲线:C 221124x y -=的右焦点为F ,一条过原点O 且倾斜角为锐角的直线l 与双曲线C 交于,A B 两点.若FAB ∆的面积为,则直线的斜率为___12____.6、已知a 是正实数,lg a ka =的取值范围是___[1,)+∞_____.7、在四面体ABCD 中,5AB AC AD DB ====,3BC =,4CD =该四面体的体积为____________.8、已知等差数列{}n a 和等比数列{}n b 满足:11223,7,a b a b +=+=334415,35,a b a b +=+=则n n a b +=___132n n -+___.(*n N ∈)9、将27,37,47,48,557175,,这7个数排成一列,使任意连续4个数的和为3的倍数,则这样的排列有___144_____种.10、三角形的周长为31,三边,,a b c 均为整数,且a b c ≤≤,则满足条件的三元数组(,,)a b c 的个数为__24___.二、解答题(本题80分,每题20分)11、在ABC ∆中,角,,A B C 对应的边分别为,,a b c ,证明: (1)cos cos b C c B a +=(2)22sin cos cos 2C A Ba bc+=+12、已知,a b为实数,2a >,函数()|ln |(0)af x x b x x=-+>.若(1)1,(2)ln 212ef e f =+=-+. (1)求实数,a b ; (2)求函数()f x 的单调区间;(3)若实数,c d 满足,1c d cd >=,求证:()()f c f d <13、如图,半径为1的圆O 上有一定点M 为圆O 上的动点.在射线OM上有一动点B ,1,1AB OB =>.线段AB 交圆O 于另一点C ,D 为线段的OB 中点.求线段CD 长的取值范围.14、设是,,,a b c d 正整数,,a b 是方程2()0x d c x cd --+=的两个根.证明:存在边长是整数且面积为ab 的直角三角形.2018年全国高中数学联合竞赛湖北省预赛试题参考答案(高一年级)说明:评阅试卷时,请依据本评分标准。
填空题只设8分和0分两档;解答题的评阅,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分。
一、填空题(本题满分64分,每小题8分。
直接将答案写在横线上。
)1.已知集合∈>=≤=b a b x x B a x x A ,},|{},|{N ,且 B A N }1{=,则=+b a 1 . 2.已知正项等比数列}{n a 的公比1≠q ,且542,,a a a 成等差数列,则=++++963741a a a a a a 352-. 3.函数741)(2+++=x x x x f 的值域为6[0,6. 4.已知1sin 2sin 322=+βα,1)cos (sin 2)cos (sin 322=+-+ββαα,则=+)(2cos βα13-. 5.已知数列}{n a 满足:1a 为正整数,⎪⎩⎪⎨⎧+=+,,13,,21为奇数为偶数n n n n n a a a a a 如果29321=++a a a ,则=1a 5 .6.在△ABC 中,角C B A ,,的对边长c b a ,,满足b c a 2=+,且A C 2=,则=A sin 7.7.在△ABC 中,2==BC AB ,3=AC .设O 是△ABC 的内心,若AC q AB p AO +=,则q p的值为32. 8.设321,,x x x 是方程013=+-x x 的三个根,则535251x x x ++的值为 -5 .二、解答题(本大题满分56分,第9题16分,第10题20分,第11题20分)9.已知正项数列}{n a=11a =,28a =,求}{n a 的通项公式.解 在已知等式两边同时除以1+n n a a ,得3141112++=++++nn n n a aa a , 所以11)=. ------------------------------------------4分令111++=+nn n a a b ,则n n b b b 4,411==+,即数列}{n b 是以1b =4为首项,4为公比的等比数列,所以nn n b b 4411=⋅=-.------------------------------------------8分所以n nn a a 4111=+++,即nn n a a ]1)14[(21--=+.------------------------------------------12分于是,当1>n 时,22221121]1)14[(]1)14[(]1)14[(-------⋅--=--=n n n n n n a a a∏∏-=--=---=--==112111121]1)14[(]1)14[(n k k n k k a ,因此,⎪⎩⎪⎨⎧≥--==∏-=-.2,]1)14[(,1,11121n n a n k k n ------------------------------------------16分10.已知正实数b a ,满足122=+b a ,且333)1(1++=++b a m b a ,求m 的最小值. 解 令cos ,sin a b θθ==,02πθ<<,则322333)1sin (cos 1)sin sin cos )(cos sin (cos )1sin (cos 1sin cos ++++-+=++++=θθθθθθθθθθθθm .----------------------------------------5分令θθsin cos +=x ,则 ]2,1()4sin(2∈+=πθx ,且21sin cos 2-=x θθ.------------------------------10分 于是21)1(23)1(22)1(22)1(232)1(1)211(223332-+=+-=+-+=+-+=++--=x x x x x x x x x x x x m . ------------------------------15分因为函数21)1(23)(-+=x x f 在]2,1(上单调递减,所以)1()2(f m f <≤.因此,m 的最小值为2423)2(-=f . ------------------------------------------20分11.设)3(log )2(log )(a x a x x f a a -+-=,其中0>a 且1≠a .若在区间]4,3[++a a 上1)(≤x f 恒成立,求a 的取值范围.解 22225()log (56)log [()]24a a a a f x x ax a x =-+=--. 由⎩⎨⎧>->-,03,02a x a x 得a x 3>,由题意知a a 33>+,故23<a ,从而53(3)(2)022a a a +-=->,故函数225()()24a a g x x =--在区间]4,3[++a a 上单调递增.------------------------------------------5分(1)若10<<a ,则)(x f 在区间]4,3[++a a 上单调递减,所以)(x f 在区间]4,3[++a a 上的最大值为)992(log )3(2+-=+a a a f a .在区间]4,3[++a a 上不等式1)(≤x f 恒成立,等价于不等式1)992(log 2≤+-a a a 成立,从而a a a ≥+-9922,解得275+≥a 或275-≤a . 结合10<<a 得10<<a . ------------------------------------------10分(2)若231<<a ,则)(x f 在区间]4,3[++a a 上单调递增,所以)(x f 在区间]4,3[++a a 上的最大值为)16122(log )4(2+-=+a a a f a .在区间]4,3[++a a 上不等式1)(≤x f 恒成立,等价于不等式1)16122(log 2≤+-a a a 成立,从而a a a ≤+-161222,即0161322≤+-a a ,解得4411344113+≤≤-a . 易知2344113>-,所以不符合. ------------------------------------------15分综上可知:a 的取值范围为(0,1). ------------------------------------------20分2018年全国高中数学联合竞赛湖北省预赛试题(高二年级)说明:评阅试卷时,请依据本评分标准。
填空题只设8分和0分两档;解答题的评阅,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分。
一、填空题(本题满分64分,每小题8分。
直接将答案写在横线上。
)1.函数741)(2+++=x x x x f 的值域为________________.2.已知1sin 2sin 322=+βα,1)cos (sin 2)cos (sin 322=+-+ββαα,则=+)(2cos βα_______________.3.已知数列}{n a 满足:1a 为正整数,⎪⎩⎪⎨⎧+=+,,13,,21为奇数为偶数n n n n n a a a a a 如果29321=++a a a ,则=1a .4.设集合}12,,3,2,1{ =S ,},,{321a a a A =是S 的子集,且满足321a a a <<,523≤-a a ,那么满足条件的子集A 的个数为 .5.过原点O 的直线l 与椭圆C :)0(12222>>=+b a by a x 交于N M ,两点,P 是椭圆C 上异于N M ,的任一点.若直线PN PM ,的斜率之积为31-,则椭圆C 的离心率为_______________.6.在△ABC 中,2==BC AB ,3=AC .设O 是△ABC 的内心,若AC q AB p AO +=,则qp的值为_______________. 7.在长方体1111D C B A ABCD -中,已知p AB C B AC ===11,2,1,则长方体的体积最大时,p 为_______________.8.设][x 表示不超过x 的最大整数,则2012120122[]2kk k +=+=∑ . 二、解答题(本大题满分56分,第9题16分,第10题20分,第11题20分)9.已知正项数列}{n a=11a =,28a =,求}{n a 的通项公式.10.已知正实数b a ,满足122=+b a ,且333)1(1++=++b a m b a ,求m 的取值范围.11.已知点),(n m E 为抛物线)0(22>=p px y 内一定点,过E 作斜率分别为21,k k 的两条直线交抛物线于D C B A ,,,,且N M ,分别是线段CD AB ,的中点.(1)当0=n 且121-=⋅k k 时,求△EMN 的面积的最小值; (2)若λ=+21k k (λλ,0≠为常数),证明:直线MN 过定点.2018年全国高中数学联合竞赛湖北省预赛试题参考答案(高二年级)说明:评阅试卷时,请依据本评分标准。