2017年阿坝、甘孜中考数学试卷(解析版)
2017年四川省阿坝州中考数学试卷(含答案解析)
2017年四川省阿坝州中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)﹣2的倒数是()A.﹣2 B.﹣ C.D.22.(4分)如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A. B. C. D.3.(4分)下列计算正确的是()A.a3+a2=2a5B.a3•a2=a6 C.a3÷a2=a D.(a3)2=a94.(4分)已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.115.(4分)对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大6.(4分)如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20°B.35°C.45°D.70°7.(4分)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.2cm D.2cm8.(4分)如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是()A.2 B.3 C.4 D.59.(4分)如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.msin35°B.mcos35° C.D.10.(4分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(共5小题,每小题4分,满分20分)11.(4分)因式分解:2x2﹣18=.12.(4分)数据1,2,3,0,﹣3,﹣2,﹣l的中位数是.13.(4分)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为.14.(4分)若一元二次方程x2+4x+c=0有两个相等的实数根,则c的值是.15.(4分)在函数y=中,自变量x的取值范围是.三、解答题(共5小题,满分40分)16.(10分)(1)计算:(﹣2)0+()﹣1+4sin60°﹣|﹣|.(2)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣1=0.17.(6分)如图,小明在A处测得风筝(C处)的仰角为30°,同时在A正对着风筝方向距A处30米的B处,小明测得风筝的仰角为60°,求风筝此时的高度.(结果保留根号)18.(6分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有名.19.(8分)如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1.(1)求直线l的表达式;(2)若反比例函数y=的图象经过点P,求m的值.20.(10分)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O 交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.四、填空题(每小题4分,共20分)21.(4分)在一个不透明的空袋子里,放入仅颜色不同的2个红球和1个白球,从中随机摸出1个球后不放回,再从中随机摸出1个球,两次都摸到红球的概率是.22.(4分)如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE=.23.(4分)如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y=的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=.24.(4分)如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为.25.(4分)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P2017的坐标是.五、解答题:(本大题共3小题,共30分)26.(8分)某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.(1)当每件商品的售价是多少元时,每个月的利润刚好是2250元?(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?27.(10分)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;28.(12分)如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.2017年四川省阿坝州中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)(2017•阿坝州)﹣2的倒数是()A.﹣2 B.﹣ C.D.2【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.【解答】解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.【点评】本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.2.(4分)(2017•阿坝州)如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A. B. C. D.【分析】解答此题首先要明确主视图是从物体正面看到的图形,然后根据几何体的主视图,判断出这个几何体可以是哪个图形即可.【解答】解:∵几何体的主视图由3个小正方形组成,下面两个,上面一个靠左,∴这个几何体可以是.故选:A.【点评】此题主要考查了三视图的概念,要熟练掌握,解答此题的关键是要明确:主视图是从物体正面看到的图形.3.(4分)(2017•阿坝州)下列计算正确的是()A.a3+a2=2a5B.a3•a2=a6 C.a3÷a2=a D.(a3)2=a9【分析】根据合并同类项法则、同底数幂的乘法法则、同底数幂的除法法则、积的乘方法则计算,判定即可.【解答】解:a3与a2不是同类项,不能合并,A错误;a3•a2=a5,B错误;a3÷a2=a,C正确;(a3)2=a6,D错误,故选:C.【点评】本题考查的是合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方,掌握相关的法则是解题的关键.4.(4分)(2017•阿坝州)已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.11【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【解答】解:360°÷36°=10,所以这个正多边形是正十边形.故选C.【点评】本题主要考查了多边形的外角和定理.是需要识记的内容.5.(4分)(2017•阿坝州)对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大【分析】根据概率的意义进行解答即可.【解答】解:“某市明天下雨的概率是75%”说明某市明天下雨的可能性较大,故选:D.【点评】本题考查的是概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.6.(4分)(2017•阿坝州)如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20°B.35°C.45°D.70°【分析】根据角平分线的定义可得∠AOC=∠BOC,再根据两直线平行,内错角相等即可得到结论.【解答】解:∵OC平分∠AOB,∴∠AOC=∠BOC=AOB=35°,∵CD∥OB,∴∠BOC=∠C=35°,故选B.【点评】本题考查了等腰三角形的判定与性质,角平分线的定义,平行线的性质,熟记各性质并准确识图是解题的关键.7.(4分)(2017•阿坝州)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.2cm D.2cm【分析】通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.【解答】解:过点O作OD⊥AB交AB于点D,连接OA,∵OA=2OD=2cm,∴AD===(cm),∵OD⊥AB,∴AB=2AD=2cm.故选:D.【点评】本题考查了垂径定理和勾股定理的运用,正确应用勾股定理是解题关键.8.(4分)(2017•阿坝州)如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O 的半径为5,AB=8,则CD的长是()A.2 B.3 C.4 D.5【分析】根据垂径定理由OC⊥AB得到AD=AB=4,再根据勾股定理开始出OD,然后用OC﹣OD即可得到DC.【解答】解:∵OC⊥AB,∴AD=BD=AB=×8=4,在Rt△OAD中,OA=5,AD=4,∴OD==3,∴CD=OC﹣OD=5﹣3=2.故选A.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.9.(4分)(2017•阿坝州)如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.msin35°B.mcos35° C.D.【分析】根据正弦定义:把锐角A的对边a与斜边c的比叫做∠A的正弦可得答案.【解答】解:sin∠A=,∵AB=m,∠A=35°,∴BC=msin35°,故选:A.【点评】此题主要考查了锐角三角函数,关键是掌握正弦定义.10.(4分)(2017•阿坝州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为0可得到3a+c=0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a ≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(共5小题,每小题4分,满分20分)11.(4分)(2017•阿坝州)因式分解:2x2﹣18=2(x+3)(x﹣3).【分析】提公因式2,再运用平方差公式因式分解.【解答】解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(4分)(2017•阿坝州)数据1,2,3,0,﹣3,﹣2,﹣l的中位数是0.【分析】先把数据按从小到大排列:﹣3,﹣2,﹣1,0,1,2,3,共有7个数,最中间一个数为0,根据中位数的定义求解.【解答】解:把数据按从小到大排列:﹣3,﹣2,﹣1,0,1,2,3,共有7个数,最中间一个数为0,所以这组数据的中位数为0.故答案为:0.【点评】本题考查了中位数的定义:把数据按从小到大排列,最中间那个数或最中间两个数的平均数叫这组数据的中位数.13.(4分)(2017•阿坝州)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为 6.9×10﹣7.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000069=6.9×10﹣7.故答案为:6.9×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(4分)(2017•阿坝州)若一元二次方程x2+4x+c=0有两个相等的实数根,则c的值是4.【分析】根据一元二次方程x2+4x+c=0有两个相等的实数根,得出△=16﹣4c=0,解方程即可求出c的值.【解答】解:∵一元二次方程x2+4x+c=0有两个相等的实数根,∴△=16﹣4c=0,解得c=4.故答案为4.【点评】本题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.15.(4分)(2017•阿坝州)在函数y=中,自变量x的取值范围是x≥﹣,且x≠2.【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得3x+1≥0且x﹣2≠0,解得x≥﹣,且x≠2,故答案为:x≥﹣,且x≠2.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数,分母不能为零得出不等式是解题关键.三、解答题(共5小题,满分40分)16.(10分)(2017•阿坝州)(1)计算:(﹣2)0+()﹣1+4sin60°﹣|﹣|.(2)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣1=0.【分析】(1)根据零指数幂、负指数幂、特殊角的三角函数值、绝对值的性质化简即可.(2)根据分式的混合运算法则,化简后整体代入即可解决问题;【解答】解:(1)原式=1+3+2﹣2=4.(2)原式=•﹣=﹣==当x(x+2)=1时,原式=4.【点评】本题考查零指数幂、负指数幂、特殊角的三角函数值、绝对值的性质、分式的混合运算法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(6分)(2017•阿坝州)如图,小明在A处测得风筝(C处)的仰角为30°,同时在A正对着风筝方向距A处30米的B处,小明测得风筝的仰角为60°,求风筝此时的高度.(结果保留根号)【分析】根据“等角对等边”求出BC的长,然后在Rt△BCD中,利用三角函数求出CD的长.【解答】解:∵∠A=30°,∠CBD=60°,∴∠ACB=30°,∴BC=AB=30米,在Rt△BCD中,∠CBD=60°,BC=30,∴sin∠CBD=,sin60°=,∴CD=15米,答:风筝此时的高度15米.【点评】本题考查了等腰三角形的应用﹣仰角俯角问题,构造合适的直角三角形是解题的关键.18.(6分)(2017•阿坝州)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了120名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是30%;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有450名.【分析】(1)根据安全意识一般的有18人,所占的百分比是15%,据此即可求得调查的总人数,然后利用百分比的意义求得安全意识为“很强”的学生占被调查学生总数的百分比;(2)利用总人数乘以对应的百分比即可求解;(3)利用总人数1800乘以对应的比例即可.【解答】解:(1)调查的总人数是:18÷15%=120(人),安全意识为“很强”的学生占被调查学生总数的百分比是:=30%.故答案是:120,30%;(2)安全意识“较强”的人数是:120×45%=54(人),;(3)估计全校需要强化安全教育的学生约1800×=450(人),故答案是:450.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.19.(8分)(2017•阿坝州)如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1.(1)求直线l的表达式;(2)若反比例函数y=的图象经过点P,求m的值.【分析】(1)由条件可先求得B点坐标,再利用待定系数法可求得直线l的表达式;(2)先求得P点坐标,再代入反比例函数解析式可求得m的值.【解答】解:(1)∵A(2,0),∴OA=2.∵tan∠OAB==,∴OB=1,∴B(0,1),设直线l的表达式为y=kx+b,则,解得,∴直线l的表达式为y=﹣x+1;(2)∵点P到y轴的距离为1,且点P在y轴左侧,∴点P的横坐标为﹣1,又∵点P在直线l上,∴点P的纵坐标为:﹣×(﹣1)+1=,∴点P的坐标是(﹣1,),∵反比例函数y=的图象经过点P,∴=,∴m=﹣1×=﹣.【点评】本题主要考查函数图象上点的坐标特征,掌握待定系数应用的关键是求得点的坐标,注意三角函数定义的应用.20.(10分)(2017•阿坝州)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.【分析】(1)直线DE与圆O相切,理由如下:连接OD,由OD=OA,利用等边对等角得到一对角相等,等量代换得到∠ODE为直角,即可得证;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,在直角三角形OCE中,利用勾股定理列出关于x的方程,求出方程的得到x的值,即可确定出DE的长.【解答】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.【点评】此题考查了直线与圆的位置关系,以及线段垂直平分线定理,熟练掌握直线与圆相切的性质是解本题的关键.四、填空题(每小题4分,共20分)21.(4分)(2017•阿坝州)在一个不透明的空袋子里,放入仅颜色不同的2个红球和1个白球,从中随机摸出1个球后不放回,再从中随机摸出1个球,两次都摸到红球的概率是.【分析】先画树状图展示所有6种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中两次都摸到红球的结果数为2,所以随机摸出1个球,两次都摸到红球的概率==.故答案为.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.(4分)(2017•阿坝州)如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE= 4.5.【分析】根据位似图形的性质得出AO,DO的长,进而得出==,求出DE 的长即可.【解答】解:∵△ABC与DEF是位似图形,它们的位似中心恰好为原点,已知A 点坐标为(1,0),D点坐标为(3,0),∴AO=1,DO=3,∴==,∵AB=1.5,∴DE=4.5.故答案为:4.5.【点评】此题主要考查了位似图形的性质以及坐标与图形的性质,根据已知点的坐标得出==是解题关键.23.(4分)(2017•阿坝州)如图,已知点P (6,3),过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数y=的图象交PM 于点A ,交PN 于点B .若四边形OAPB 的面积为12,则k= 6 .【分析】根据点P (6,3),可得点A 的横坐标为6,点B 的纵坐标为3,代入函数解析式分别求出点A 的纵坐标和点B 的横坐标,然后根据四边形OAPB 的面积为12,列出方程求出k 的值.【解答】解:∵点P (6,3),∴点A 的横坐标为6,点B 的纵坐标为3,代入反比例函数y=得,点A 的纵坐标为,点B 的横坐标为,即AM=,NB=,∵S 四边形OAPB =12,即S 矩形OMPN ﹣S △OAM ﹣S △NBO =12,6×3﹣×6×﹣×3×=12,解得:k=6.故答案为:6.【点评】本题考查了反比例函数系数k的几何意义,解答本题的关键是根据点A、B的纵横坐标,代入解析式表示出其坐标,然后根据面积公式求解.24.(4分)(2017•阿坝州)如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为12.【分析】根据平移的性质得出四边形APP′A′是平行四边形,进而得出AD,PP′的长,求出面积即可.【解答】解:连接AP,A′P′,过点A作AD⊥PP′于点D,由题意可得出:AP∥A′P′,AP=A′P′,∴四边形APP′A′是平行四边形,∵抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3),平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),∴PO==2,∠AOP=45°,又∵AD⊥OP,∴△ADO是等腰直角三角形,∴PP′=2×2=4,∴AD=DO=sin45°•OA=×3=,∴抛物线上PA段扫过的区域(阴影部分)的面积为:4×=12.故答案为:12.【点评】此题主要考查了二次函数图象与几何变换以及平行四边形面积求法和勾股定理等知识,根据已知得出AD,PP′是解题关键.25.(4分)(2017•阿坝州)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P2017的坐标是(672,1).(2n,1),【分析】先根据P6(2,0),P12(4,0),即可得到P6n(2n,0),P6n+1(2×336,0),可得P2016(672,0),进而得到P2017(672,1).再根据P6×336【解答】解:由图可得,P6(2,0),P12(4,0),…,P6n(2n,0),P6n(2n,+11),2016÷6=336,(2×336,0),即P2016(672,0),∴P6×336∴P2017(672,1),故答案为:(672,1).【点评】本题主要考查了点的坐标变化规律,解决问题的关键是根据图形的变化规律得到P6n(2n,0).五、解答题:(本大题共3小题,共30分)26.(8分)(2017•阿坝州)某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.(1)当每件商品的售价是多少元时,每个月的利润刚好是2250元?(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?【分析】(1)如果每件商品的售价每上涨1元,则每个月少卖2件,可得销售量为100﹣2(x﹣60),销售量乘以利润即可得到等式[100﹣2(x﹣60)](x﹣40)=2250,解答即可;(2)将(1)中的2250换成y即可解答.【解答】解:(1)[100﹣2(x﹣60)](x﹣40)=2250,解得:x1=65,x2=85.(2)由题意:y=[100﹣2(x﹣60)](x﹣40)=﹣2x2+300x﹣8800;y=﹣2(x﹣75)2+2450,当x=75时,y有最大值为2450元.【点评】本题考查了一元二次方程的应用和二次函数的应用,最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.27.(10分)(2017•阿坝州)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;【分析】(1)依据等腰三角形的性质得到AB=AC,AD=AE,依据同角的余角相等得到∠DAB=∠CAE,然后依据SAS可证明△ADB≌△AEC,最后,依据全等三角形的性质可得到BD=CE;(2)分为点E在AB上和点E在AB的延长线上两种情况画出图形,然后再证明△PEB∽△AEC,最后依据相似三角形的性质进行证明即可.【解答】解:(1)∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE.∴△ADB≌△AEC.∴BD=CE.(2)解:①当点E在AB上时,BE=AB﹣AE=1.∵∠EAC=90°,∴CE==.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=.∴=.∴PB=.②当点E在BA延长线上时,BE=3.∵∠EAC=90°,∴CE==.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC.∴=.∴=.∴PB=.综上所述,PB的长为或.【点评】本题主要考查的是旋转的性质、等腰三角形的性质、全等三角形的性质和判定、相似三角形的性质和判定,证明得△PEB∽△AEC是解题的关键.28.(12分)(2017•阿坝州)如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.【分析】方法一:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.=BC×h表示,若要它的面积最大,需要使h取(3)△MBC的面积可由S△MBC最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.方法二:(1)略.(2)通过求出A,B,C三点坐标,利用勾股定理或利用斜率垂直公式可求出AC ⊥BC,从而求出圆心坐标.(3)利用三角形面积公式,过M点作x轴垂线,水平底与铅垂高乘积的一半,得出△MBC的面积函数,从而求出M点.【解答】方法一:解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a﹣×4﹣2,即:a=;∴抛物线的解析式为:y=x2﹣x﹣2.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=4,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0).(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0;∴4﹣4×(﹣2﹣b)=0,即b=﹣4;∴直线l:y=x﹣4.所以点M即直线l和抛物线的唯一交点,有:,解得:即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.方法二:(1)略.(2)∵y=(x﹣4)(x+1),∴A(﹣1,0),B(4,0).C(0,﹣2),∴K AC==﹣2,K BC==,∴K AC×K BC=﹣1,∴AC⊥BC,∴△ABC是以AB为斜边的直角三角形,△ABC的外接圆的圆心是AB的中点,△ABC的外接圆的圆心坐标为(,0).(3)过点M作x轴的垂线交BC′于H,∵B(4,0),C(0,﹣2),∴l BC:y=x﹣2,设H(t,t﹣2),M(t,t2﹣t﹣2),∴S=×(H Y﹣M Y)(B X﹣C X)=×(t﹣2﹣t2+t+2)(4﹣0)=﹣t2+4t,△MBC∴当t=2时,S有最大值4,∴M(2,﹣3).【点评】考查了二次函数综合题,该题的难度不算太大,但用到的琐碎知识点较多,综合性很强.熟练掌握直角三角形的相关性质以及三角形的面积公式是理出思路的关键.。
近几年甘孜州阿坝州数学中考试卷真题
阿坝、甘孜州二O 一O 年初中毕业会考暨高中阶段学校招生统一考试数学试卷2.全卷共10页,用蓝色或黑色钢笔、圆珠笔直接答在试卷上.3.本试卷由A 卷和B 卷组成.A 卷满分100分,B 卷满分50分.120分钟内完卷.A 卷(100分)一、选择题:(本大题共10小题,每小题4分,共40分):以下每小题给出代号为A 、B 、C 、D 的四个选项中,只有一项是符合题目要求的,把正确答案的代号填在括号内.1.(-3)2的结果是( ) A. 6 B. -6 C. 9 D. -9 2.下列计算正确的是( )A.(m+n )2=m 2+n 2B.m 2·m 3=m 5C. 2m +3n =5mnD.3.如图,已知直线AC ∥ED ,∠C =30°,∠BED =70°,则∠CBE 度数是 ( ) A.20° B.100° C. 55° D. 40°4.下列哪个不等式组的解集在数轴上表示如图所示 ( )5.某市统计局发布的统计公报显示,2006年到2010年,某市GDP 增长率分别为9.9%、10.1%、10.3%、10.5%、10.2%. 经济评论员说,这5年该的GDP 增长率相当平稳,从统计学的角度看,“增长率相当平稳”说明这组数据的 比较小. A.中位数 B. 方差 C.众数 D.平均数A.所有正方形都全等B. C.相等的圆周角所对的弧相等D. 顺次连结四边形各边中点所得到的四边形是平行四边形7.数学课外兴趣小组的同学每人制作一个面积为200cm 2的三角形学具进行展示. 设三角形的一边长为x cm ,该边上的高为y cm ,那么这些同学所制作的三角形的高y (cm )与边长x (cm )之间的函数关系的图象大致是 ( )8.如图,AB 是⊙O 的弦,OD ⊥AB 于D 交⊙O 于E ,则下列说法错误..的是 ( )A.∠ACB=∠AOEB.AD=BDC. 12AOB ABC S S ∆∆=D.AE BE=9.如图,为一个多面体的表面展开图,每个面内都标注了数字. 若数字为6的面是底面,则朝上一面所标注的数字为(A.5B.4C.3D.210.如图,OAB△绕点O 逆时针旋转80°得到OCD △,若110A ∠=°,40D ∠=°,则α∠的度数是( ) A .60° B .50° C .40° D .30°二、填空题:(本大题共4小题,每小题4分,共16分)11.分解因式:39x x -= .12.如图,已知在Rt ABC △中,90ACB ︒∠=,4AB =,分别以AC ,BC 为边向外作正方形,面积分别记为1S ,2S ,则1S +2S 的值等于 .(第9 B(第10题)中,菱形OACB 的顶点O 在原点,点C 的坐标为(40),,点B 的纵坐标是1-,则顶点A 的坐标是 _.14.如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO 为 .三、解答题:(本大题共5小题,共44分)15.(本小题满分6分)1012)4sin 60|3-⎛⎫++- ⎪⎝⎭°.16. (本小题满分6分)解方程:22333x x x -=---17.(本小题满分7分)某镇开展了党员干部“一帮一扶贫”活动.为了解贫困群众对帮扶情况的满意程度,有关部门在该镇所管辖的两个乡内,分别随机抽取了若干名贫困群众进行问卷调查.根据收集的信息进行了统计,并绘制了下面尚不完整的统计图.已知在甲区所调查的贫困群众中,非常满意的人数占甲区所调查的总人数的35%.根据统计图所提供的信息解答下列问题:(1)甲区参加问卷调查的贫困群众有多少人?(2)请将统计图补充完整;(3)小明说:“因为甲区有30人不满意,乙区有40人不满意,所以甲区的不满意率比乙18.(本小题满分7分)杨佳和杨靓是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,杨佳和杨靓都想先挑选.于是杨佳设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则杨佳先挑选;否则杨靓先挑选.(1)用树状图或列表法求出杨佳先挑选的概率;(2)你认为这个游戏公平吗?请说明理由.第17题图19、(本小题满分8分)如图一次函数y kx b =+的图象与反比例函数xmy =的图象相交于点A (1, 4-)、点B (3,n ). (1)求此一次函数和反比例函数的解析式; (2)求△AOB 的面积.20、(本小题满分10分)如图,△ABC 中,AB =AC ,AD 、AE 分别是∠BAC 和∠BAC 的外角的平分线,BE ⊥AE . (1)求证:AE ⊥DA ;(2)试判断AB 与DE 是否相等?并证明你的结论.B 卷(50分)四、填空题(每小题4分,共20分) 21.已知x 2+3x -3=0,那么4x 2+12x +2010的值为 . 22.a 、b 、c 、d 为实数,先规定一种新的运算:a c ad bcb d=-,那么3423(1)5x =-时,x = .23.如图,已知等腰三角形ABC 中,AB =AC ,∠A =36°,BD 为∠ABC 的平分线,则AD AC的值等于.第23题 第25题24.若点(-2, a ),(-1, b ),(1, c )在反比例函数1y x=的图象上,则a 、b 、c 的大小关系为 .(用“<”连接)25.如图AB 是半圆O 的直径,CB 是半圆O 的切线,B 是切点,AC 交半圆O 于点D ,已知CD =1,AD =4,则tan ∠CAB = .五、解答题:(本大题共3小题,共30分) 26.(本题共10分)某商店专销一种文具盒,进价12元/个,售价20元/个,为了促销,商店决定凡是买10只以上的,每多买一只,售价就降低0.10元(例如,某人买20个文具盒,于是每个降价0.10×(20-10)=1元,就可以按19元/个的价格购买),但是最低价为16元/个.(1)求顾客一次至少买多少个,才能以最低价购买?(2)有一天,一位甲顾客买了46个,另一位乙顾客买了50个,求商店在甲乙顾客的购买中分别赚了多少元?(3)写出当顾客一次购买x 个时(x >10),商店利润y (元)与购买量x (个)之间的函数关系式.27.(本题共10分) 如图,已知F 是以AC 为直径的半圆O 上任一点,过AC 上任一点(1)求证:DF是⊙O的切线;(2)若BF=AF,求证:AF2=EF·CF如图,在平面直角坐标系中,已知点A坐标为(-2, 4),直线x=-2与x轴相交于点B,连结OA,抛物线y=x2从点O沿OA方向平移,与(1)求线段OA所在直线的函数解析式;(2)设抛物线顶点M的横坐标为m,①用m的代数式表示点P的坐标;②当m为何值时,线段PB最短;③当线段PB最短时,在抛物线对称轴的右侧是否存在一点Q,使△PMQ为直角三角形.阿坝、甘孜州二O 一O 年初中毕业会考暨高中阶段学校招生统一考试数学试题参考答案及评分意见说明:1. 正式阅卷前务必认真阅读参考答案和评分意见,明确评分标准,不得随意拔高或降低标准.2. 全卷满分150分,参考答案和评分意见所给分数表示考生正确完成当前步骤时应得的累加分数.3. 参考答案和评分意见仅是解答的一种,如果考生的解答与参考答案不同,只要正确就应该参照评分意见给分.合理精简解答步骤,其简化部分不影响评分.4. 要坚持每题评阅到底.如果考生解答过程发生错误,只要不降低后继部分的难度且后继部分再无新的错误,可得不超过后继部分应得分数的一半,如果发生第二次错误,后面部分不予得分;若是相对独立的得分点,其中一处错误不影响其它得分点的评分.A 卷(100分)一、选择题:(本大题共10小题,每小题4分,共40分):以下每小题给出代号为A 、B 、C 、D 的四个选项中,只有一项是符合题目要求的,把正确答案的代号填在括号内.1.C2.B3.D4.D5.B6.A7.B8.C9.D 10.B 二、填空题:(本大题共4小题,每小题4分,共16分) 11. (3)(3)x x x +- 12. 16 13. (2,1) 14. 4 三、解答题:(本大题共6小题,共44分) 15. (本小题满分6分) 解:原式=1+3+4×2-………………………………4分 =4……………………………………………………6分16.(本小题满分6分) 解:17.(本小题满分7分)223133223(3)322394255526x x x x x x x x x x -=-----=----=--+==……………………………………分……………………………………分………………………………………分……………………………………………………分5经检验:=是原方程的根…………………………分2解:(1)1200 ························································································································ 2分 (2)图形正确(甲区满意人数有500人) ··········································································· 4分 (3)不正确. ························································································································ 5分 ∵甲区的不满意率是30 2.5%1200=,乙区的不满意率是402%70076050040=+++, ∴甲区的不满意率比乙区的不满意率高. ············································································ 7分18.(本小题满分7分).解:(1)根据题意可列表或树状图如下:第一次第二次1 2 3 41—— (1,2) (1,3) (1,4) 2(2,1) —— (2,3) (2,4) 3(3,1) (3,2) —— (3,4) 4(4,1) (4,2) (4,3) —— ··································································································· 4分···················································································································· 4分从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P (和为奇数)23=·········································································································· 5分 (2)不公平. ························································································································ 6分 ∵杨佳先挑选的概率是P (和为奇数)23=,杨靓先挑选的概率是P (和为偶数)13=,∵2133≠,∴不公平. ··········································································································· 7分19、(本小题满分8分)解:(1)将点A (1, 4-)代入x m y =中,41m -= ∴m =-4∴反比例函数解析式为4y x =-······································································ 2分 将B (3,n )代入4y x =-中,43n =-,∴B 点坐标为(3,43-)………………………………………… ················· 3分 (1,2) (1,3) (1,4) 2 3 4 1 (1,1) (2,3) (2,4) 1 3 4 2 (3,1) (3,2) (3,4) 1 2 4 3 (4,1) (4,2) (4,3) 1 2 3 4 第一次摸球第二次摸球将A (1, 4-)、B (3,43-)的坐标分别代入y kx b =+中,得4433k b k b +=-⎧⎪⎨+=-⎪⎩,解得43163k b ⎧=⎪⎪⎨⎪=-⎪⎩∴一次函数的解析式为41633y x =-………………………… ······················ 5分(2)设一次函数解析式图象与x 轴交与点C ,当y =0时,416033x -=, x =4,∴C 点坐标(4,0) ∴OC =4 …………………… 6分S △AOC =21·OC ·| y A | =21×4×4=8, S △BOC =21·OC ·| y B | =21×4×43=83S △AOB = S △AOC -S △BOC =883-=163······························································· 8分20、(本小题满分10分)解:(1)证明:1212 18011()18090422905AD BAC BAD BAC AE BAF BAE BAF BAC BAF BAD BAE BAC BAF DAE AE DA ⎫∠⇒∠∠⎪⎪⎪∠⇒∠∠⎬⎪⎪⎪∠+∠=︒⎭⇒∠+∠∠+∠=⨯︒=︒⇒∠=︒⇒⊥平分=平分==分分(2)AB =DE ,理由是:………………………………6分907 B 9 90 90810AB AC AD BC ADB AD BAC AE D BE AE AEB DAE AB DE=⎫⎫⇒⊥⇒∠=︒⎬⎪∠⎭⎪⎪⇒⎬⎪⊥⇒∠=︒⎪⎪∠=︒⎭⇒=分平分四边形是矩形分分分B 卷四、(每小题4分,共20分)21.∵x 2+3x -3=0,∴x 2+3x =3 4x 2+12x =12,4x 2+12x +2010=12+2012=202422.∵3×5-4(1-x )=23,∴15-4+4x =23 11+4x =23 4x =12 ∴x =3 23.AD AC =24.b <a <c25.12五、解答题:(本大题共3小题,共30分) 26.(本小题满分10分)解:(1)设至少购买a 个 20-16=40.10×(a -10)=4元a =50个 ………………………………………………2分 (2)甲顾客降0.10×(46-10)=3.6元 每个利润:20―12―3.6=4.4元/个4.4×46=202.4元 …………………………4分 乙顾客降:0.10×(50-10)=4元 每个利润:20―12―4=4元/个4×50=200元 ……………………………………6分 ∴商店在甲顾客处赚了202.4元,在乙顾客处赚了200元。
中考数学复习专题24:圆的有关计算(含中考真题解析)
专题24 圆的有关计算☞解读考点知识点名师点晴弧长和扇形面积弧长公式会求n°的圆心角所对的弧长扇形面积公式会求圆心角为n°的扇形面积圆锥侧面积计算公式能根据公式中的已知量求圆锥中的未知量☞2年中考【题组】1.(河池)如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.240πcm2 B.480πcm2 C.1200πcm2 D.2400πcm2【答案】A.【解析】试题分析:这张扇形纸板的面积=12×2π×10×24=240π(cm2).故选A.考点:圆锥的计算.2.(凉山州)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cm B.2cm C.3cm D.4cm【答案】A.考点:圆锥的计算.3.(德州)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A.288° B.144° C.216° D.120°【答案】A.【解析】试题分析:∵底面圆的半径与母线长的比是4:5,∴设底面圆的半径为4x,则母线长是5x,设圆心角为n°,则524180n xxππ⨯⨯=,解得:n=288,故选A .考点:圆锥的计算.4.(宁波)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5cm B.10cm C.20cm D.5πcm【答案】B.考点:圆锥的计算.5.(苏州)如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A .433π-B .4233π-C .3π-D .233π-【答案】A .【解析】试题分析:过O 点作OE ⊥CD 于E ,∵AB 为⊙O 的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O 的半径为2,∴OE=1,CE=DE=3,∴CD=23,∴图中阴影部分的面积为:2120211233602⋅π⋅-⨯⨯=433π-.故选A .考点:1.扇形面积的计算;2.切线的性质.6.(成都)如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 和BC 弧线的长分别为( )A .2,3πB .23,πC .3,23πD .23,43π【答案】D .考点:1.正多边形和圆;2.弧长的计算.7.(甘孜州)如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是()A.π﹣2 B.π﹣4 C.4π﹣2 D.4π﹣4【答案】A.【解析】试题分析:S阴影部分=S扇形OAB﹣S△OAB=29021223602π⨯-⨯⨯=π﹣2.故选A.考点:扇形面积的计算.8.(攀枝花)如图,已知⊙O的一条直径AB与弦CD相交于点E,且AC=2,AE=3,CE=1,则图中阴影部分的面积为()A 239π439πC.29πD.49π【答案】D.考点:1.扇形面积的计算;2.勾股定理的逆定理;3.圆周角定理;4.解直角三角形. 9.(自贡)如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =32,则阴影部分的面积为( )A .2πB .πC .3πD .32π【答案】D . 【解析】试题分析:连接OD .∵CD ⊥AB ,∴CE=DE=12CD=3(垂径定理),故S △OCE=S △ODE ,即可得阴影部分的面积等于扇形OBD 的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,故S 扇形OBD=2602360π⨯=32π,即阴影部分的面积为32π.故选D .考点:1.扇形面积的计算;2.垂径定理;3.圆周角定理;4.解直角三角形. 10.(达州)如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B′,则图中阴影部分的面积是( )A .12πB .24πC .6πD .36π 【答案】B .考点:1.扇形面积的计算;2.旋转的性质.11.(德阳)如图,已知⊙O 的周长为4π,AB 的长为π,则图中阴影部分的面积为( )A .2π-B .3π-C .πD .2 【答案】A .考点:1.扇形面积的计算;2.弧长的计算.12.(梧州)如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为()A.95 B.185 C.365 D.725【答案】B.【解析】试题分析:根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积﹣大半圆的面积.∵MN的半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积=大半圆的面积.∴阴影部分的面积=△DMN的面积.在Rt△AOD中,OD=22AD AO+=2263+=35,∴阴影部分的面积=△DMN的面积=12MN•AD=16562⨯⨯=185.故选B.考点:1.扇形面积的计算;2.勾股定理;3.综合题.13.(咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大 B.由大到小 C.不变 D.先由小到大,后由大到小【答案】C.考点:1.扇形面积的计算;2.定值问题;3.综合题.14.(常德)若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似.如图,如果扇形AOB 与扇形A1O1B1是相似扇形,且半径OA :O1A1=k (k 为不等于0的常数).那么下面四个结论:①∠AOB=∠A1O1B1;②△AOB ∽△A1O1B1;③11ABk A B ;④扇形AOB 与扇形A1O1B1的面积之比为2k . 成立的个数为( )A .1个B .2个C .3个D .4个【答案】D .考点:1.相似三角形的判定与性质;2.弧长的计算;3.扇形面积的计算;4.新定义;5.压轴题.15.(邵阳)如图,在矩形ABCD 中,已知AB=4,BC=3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转次后,顶点A 在整个旋转过程中所经过的路程之和是( )A .πB .3019.5πC .3018πD .3024π 【答案】D . 【解析】试题分析:转动一次A 的路线长是:90331802ππ⨯=,转动第二次的路线长是:90551802ππ⨯=,转动第三次的路线长是:9042180ππ⨯=,转动第四次的路线长是: 0,转动五次A 的路线长是:90331802ππ⨯=,以此类推,每四次循环,故顶点A 转动四次经过的路线长为:32π+52π+2π=6π,÷4=503余3,顶点A 转动四次经过的路线长为:6π×504=3024π.故选D .考点:1.旋转的性质;2.弧长的计算;3.规律型. 16.(北海)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是 . 【答案】2.考点:圆锥的计算.17.(贵港)如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.【答案】15π.【解析】试题分析:∵OB=12BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:12×6π×5=15π.故答案为:15π.考点:圆锥的计算.18.(庆阳)如图,Rt△ABC中,∠ACB=90°,AC=BC=22,若把Rt△ABC绕边AB 所在直线旋转一周,则所得几何体的表面积为(结果保留π).【答案】2π.【解析】试题分析:过点C作CD⊥AB于点D,Rt△ABC中,∠ACB=90°,AC=BC,∴2,∴CD=2,以CD为半径的圆的周长是:4π.故直线旋转一周则所得的几何体得表面积是:2×12×4π×2282π.故答案为:82π.考点:1.圆锥的计算;2.点、线、面、体.19.(贺州)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕点D顺时针旋转90°得到矩形A′B′C′D′,则点B经过的路径与BA,AC′,C′B′所围成封闭图形的面积是(结果保留π).【答案】2512 4π+.考点:1.扇形面积的计算;2.旋转的性质.20.(天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.【答案】4π.考点:1.弧长的计算;2.等边三角形的性质;3.综合题.21.(河南省)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交AB于点E,以点O为圆心,OC的长为半径作CD交OB于点D.若OA=2,则阴影部分的面积为.【答案】3 122π+.【解析】试题分析:连接OE、AE ,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=2602360π⨯=23π,S扇形ABO=2902360π⨯=π,S扇形CDO=2901360π⨯=14π,∴S阴影=S扇形ABO﹣S扇形CDO﹣(S扇形AOE﹣S△COE)=121(13)432πππ---⨯⨯=3122π+.故答案为:3122π+.考点:扇形面积的计算.22.(烟台)如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是.【答案】62.考点:圆锥的计算.23.(乐山)如图,已知A (23,2)、B (23,1),将△AOB 绕着点O 逆时针旋转,使点A 旋转到点A′(﹣2,23)的位置,则图中阴影部分的面积为 .【答案】34π.【解析】试题分析:∵A (232)、B (23,1),∴OA=4,13,∵由A (232)使点A 旋转到点A′(﹣2,23),∴∠A′OA=∠B′OB=90°,根据旋转的性质可得,''OB C OBC S S ∆∆=,∴阴影部分的面积等于S 扇形A'OA ﹣S 扇形C'OC=22114(13)44ππ⨯-⨯=34π,故答案为:34π.考点:1.扇形面积的计算;2.坐标与图形变化-旋转.24.(镇江)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【答案】(1)作图见试题解析;(2)15 8.试题解析:(1)如图所示,八边形ABCDEFGH即为所求;(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴AD的长=1355180π⨯=154π,设这个圆锥底面圆的半径为R,∴2πR=154π,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图—复杂作图.25.(宁德)图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).【答案】(1)答案见试题解析;(2)26.6°.(2)连接EO1,如图所示,∵EO1=6米,OO1=4米,∴EO=EO1﹣OO1=6﹣4=2米,∵AD=BC=8米,∴OA=OD=4米,在Rt△AOE中,tan∠EAO=2142EOOA==,则∠EAO≈26.6°.考点:1.圆锥的计算;2.圆柱的计算;3.作图-三视图.26.(玉林防城港)如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为AD的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.【答案】(1)证明见试题解析;(2)6.考点:1.切线的性质;2.平行四边形的判定;3.扇形面积的计算;4.综合题.27.(扬州)如图,已知⊙O的直径AB=12cm,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.(1)求证:∠PCA=∠B;(2)已知∠P=40°,点Q在优弧ABC上,从点A开始逆时针运动到点C停止(点Q与点C不重合),当△ABQ与△ABC的面积相等时,求动点Q所经过的弧长.【答案】(1)证明见试题解析;(2)53π或133π或233π.【解析】试题分析:(1)连接OC,由PC是⊙O的切线,得到∠1+∠PCA=90°,由AB是⊙O的直径,得到∠2+∠B=90°,从而得到结论;(2)△ABQ与△ABC的面积相等时,有三种情况,即:①当∠AOQ=∠AOC=50°时;②当∠BOQ=∠AOC=50°时;③当∠BOQ=50°时,即∠AOQ=230°时;分别求得点Q所经过的弧长即可.试题解析:(1)连接OC,∵PC是⊙O的切线,∴∠PCO=90°,∴∠1+∠PCA=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠B=90°,∵OC=OA,∴∠1=∠2,∴∠PCA=∠B;考点:1.切线的性质;2.弧长的计算;3.分类讨论;4.综合题;5.轨迹.【题组】1.(·扬州)如图,已知正方形边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()A.1.0 B.2.0 C.3.0 D.4.0【答案】B.【解析】试题分析:∵正方形的边长为1,圆与正方形的四条边都相切,∴22S S S10.510.250.215ππ=-=-⋅=-≈阴影正方形圆.∵0.215最接近0.2,∴阴影部分的面积与下列各数最接近的是0.2故选B.考点:1.圆和正方形的面积;2.无理数的大小估计;3.转换思想的应用.2.(·金华)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C52 D52【答案】A.故选A.考点:1.等腰直角三角形的判定和性质;2.勾股定理;3.扇形面积和圆面积的计算.3.(·辽宁省本溪市)底面半径为4,高为3的圆锥的侧面积是()A.12π B.15π C.20π D.36π【答案】B.【解析】试题分析:∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的侧面积为:πrl=π×3×5=15π,故选B.考点:圆锥的计算.4.(·山东省莱芜市)一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.12R C3R D.32R【答案】D.【解析】试题分析:圆锥的底面周长是:πR;设圆锥的底面半径是r,则2πr=πR.解得:r=12R2213()22R R-=.故选D.考点:圆锥的计算.5.(·贵州安顺市)已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的圆心角是()A . 30°B . 60°C .90°D .180°【答案】D .考点:圆锥的计算.6.(湖南衡阳市)圆心角为120,弧长为12π的扇形半径为 ( ) A .6 B .9 C .18 D .36 【答案】C .【解析】试卷分析:12012180rππ=,解得:r=18.故选C .考点:圆的计算.7. (南京) 如图,沿一条母线将圆锥侧面剪开并展开,得到一个扇形,若圆锥底面圆半径r=2cm ,扇形圆心角120θ=︒,则该圆锥母线长l 为 cm .【答案】6. 【解析】试题分析:∵圆锥底面圆半径r=2cm , ∴根据圆的周长公式,得圆的周长为2r 4ππ=,∵侧面展开后所得扇形弧长等于圆的周长,∴扇形弧长4π=.又∵侧面展开后所得扇形的圆心角为120°,∴根据扇形的弧长公式,侧面展开后所得扇形的弧长为()120l4l 6180cm ππ⋅⋅=⇒=.考点:圆锥和扇形的计算. 8.(·呼和浩特)一个底面直径是80cm ,母线长为90cm 的圆锥的侧面展开图的圆心角的度数为 . 【答案】1600.考点:圆锥的计算.9.(·潍坊)如图,两个半径均为3的⊙O1与⊙O2相交于A 、B 两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为 .(结果保留π)【答案】233π-.【解析】试题分析:如图,连接O1O2,过点O1作O1H ⊥AO2于点H ,由题意可得:AO1=O1O2=AO2=3,∴△AO1O2是等边三角形.∴11233HO O O sin60322=︒=⋅=.∴()12122AO O AO O 6031333S 3S 223,2460ππ∆⨯=⨯⨯===扇形.∴12212AO O AO AO O 33S S S 24π∆=-=-弓形扇形.∴图中阴影部分的面积为:33423324ππ⎛⎫-=- ⎪ ⎪⎝⎭ .考点:1.扇形面积的计算;2.等边三角形的判定和性质;3.相交两圆的性质;4. 锐角三角函数定义;5.特殊角的三角函数值;6.转换思想的应用. 10.(·重庆A )如图,△OAB 中,OA=OB=4,∠A=30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积为 .(结果保留π)【答案】4433π-.考点:1.切线的性质;2.等腰三角形的性质;3.含30度角的直角三角形的性质;4.勾股定理;5.扇形面积的计算;6.转换思想的应用.☞考点归纳归纳 1:弧长公式 基础知识归纳:n °的圆心角所对的弧长l 的计算公式为180n r l π=注意问题归纳:①在弧长的计算公式中,n 是表示1°的圆心角的倍数,n 和180都不要带单位.②若圆心角的单位不全是度,则需要先化为度后再计算弧长. ③题设未标明精确度的,可以将弧长用π表示.④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一. 【例1】在半径为2的圆中,弦AB 的长为2,则AB 的长等于( )A .3πB .2πC .23πD .32π【答案】C .考点:弧长的计算. 归纳 2:扇形面积 基础知识归纳:扇形面积公式:lR R n S 213602==π扇注意问题归纳:其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长.【例2】如图,将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,则S 扇形= cm²【答案】4. 【解析】试题分析:设围成扇形的角度为n ,∵将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,∴围成扇形的弧长为4cm .∴根据弧长公式,得n 23604n 180ππ⋅⋅=⇒=,∴根据扇形面积公式,得()223602S 4cm 360π⋅⋅==.考点:扇形的计算. 归纳 3:圆锥的侧面积 基础知识归纳:圆锥的侧面积:122S l r rlππ=•=,其中l 是圆锥的母线长,r 是圆锥的地面半径.注意问题归纳:①圆锥的母线与展开后所得扇形的半径相等.②圆锥的底面周长与展开后所得扇形的弧长相等.【例3】一个圆锥的高为4cm ,底面圆的半径为3cm ,则这个圆锥的侧面积为( ) A . 12πcm2 B .15πcm2 C .20πcm2 D .30πcm2考点:圆锥的计算.归纳 4:阴影部分面积基本方法归纳:求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.注意问题归纳:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.【例4】如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在AB上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为.π-.【答案】24考点:扇形面积的计算.☞1年模拟1.(湖北省宜昌市兴山县校级模拟)劳技课上,小颖将一顶自制的圆锥形纸帽戴在头上,已知纸帽底面圆半径为10cm,母线长50cm,则这顶纸帽的侧面积为()cm2.A.250π B.500π C.750π D.1000π【解析】试题分析:底面圆的半径为10cm ,则底面周长=20πcm ,侧面面积=π×10×50=500πcm2.故选B .考点:圆锥的计算.2.(湖北省广水市校级模拟)如图,圆锥体的高h=2cm ,底面半径r=2cm ,则圆锥体的全面积为( )cm2.A .4π B .8π C .12π D .(4+4)π【答案】C . 【解析】试题分析:底面圆的半径为2,则底面周长=4π,因为底面半径为2cm 、高为23cm ,所以圆锥的母线长为4cm ,即可求得侧面面积=12×4π×4=8π;底面积为=4π,所以全面积为:8π+4π=12πcm2.故选C . 考点:圆锥的有关计算.3.(山东省高密市模拟考试)如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积是( )A .210cmB .210cm π C .220cm D .220cm π 【答案】B .考点:1.圆锥的侧面展开图;2.扇形的面积计算.4.(山东省新泰市模拟考试)如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( )A .77π338-B .47π338+C .πD .4π33+【答案】C .【解析】试题分析:连接BH ,BH1,∵O 、H 分别为边AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°到△A1BC1的位置,∴△OBH ≌△O1BH1,利用勾股定理可求得BH=437+=,所以利用扇形面积公式可得()()22360132********BH BC πππ=⨯-=-.故选C .考点:扇形面积的计算.5.(江苏省兴化顾庄等三校校级模拟)若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m2.【答案】154π.考点:圆锥的计算.6.(河南省三门峡市模拟考试)如图,在Rt △ABC 中,∠ABC =90°,AB =8,BC =6,分别以A 、C 为圆心,以2AC的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分的面积为 .【答案】24-254πcm2.【解析】试题分析:如图:∵Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC=2286+=10cm,△ABC的面积是:12AB•BC=12×8×6=24cm2.∴S阴影部分=12×6×8-2905360π⨯=24-254πcm2,故阴影部分的面积是:24-254πcm2.考点:扇形面积的计算.7.(湖北省武汉市校级模拟)如图,在边长为1的正方形组成的网格中,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(-2,3)、B(-1,2)、C(-3,1),△ABC 绕点O顺时针旋转90°后得到△A1B1C1.(1)在正方形网格中作出△A1B1C1;(2)求点A经过的路径弧AA1的长度;(结果保留π)(3)在y轴上找一点D,使DB+DB1的值最小,并直接写出D点坐标.【答案】(1)图形详见解析;(2132;(3)(0,53).试题解析:解:(1)如图如下:考点:作图—旋转变换;待定系数法求解析式;弧长公式.8.(广东省中山市校级模拟)如图,AB是的直径,点D在上,∠DAB=45°,BC∥AD,CD∥AB.(1)、判断直线CD 与的位置关系,并说明理由;(2)、若的半径为1,求图中阴影部分的面积(结果保留π).【答案】(1)、相切;(2)、324.【解析】试题分析:(1)、连接OD,根据OA=OD,∠ODA=45°得出∠AOD=90°,根据CD∥AB 得出∠ODC=90°,从而说明切线;(2)、首先求出梯形OBCD的面积,然后利用梯形的面积减去扇形OBD的面积求出阴影部分的面积.考点:切线的判定、扇形的面积计算.9.(山东省博兴县校级模拟)如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.【答案】(1)见解析;(2)3;(3)6π.【解析】试题分析:(1)连接OC交BD于点E,根据∠CDB=∠OBD=30°得出∠COB=60°,∠OEB=90°,根据AC∥BD得到∠OCA=90°;(2)根据OB=6,OE⊥BD,∠OEB=30°,求出OE和BE的长度,然后计算出BD的长度;(3)根据△OBE和△CDE全等,将阴影部分的面积转化成扇形OBC的面积,然后根据扇形的面积计算公式进行求解.试题解析:(1)证明:连接OC,交BD于点E.∵∠CDB=∠OBD=30°∴∠COB=60°,∠OEB=90°∵AC∥BD ∴∠OCA=∠OEB=90°∴OC⊥AC ∴AC是⊙O的切线.(2)∵∠OEB=90°,∠OBD=30°∴OC⊥BD,321==OB OE∴BE=DE=33273622==-∴362==DEBD(3)∵OE=CE,∠OEB=∠CED=90°,BE=DE,∴△OEB≌△CED∴ππ63606602=⋅==OBCSS扇形阴影考点:切线的判定、垂径定理、扇形的面积计算.10.(山东省高密市模拟考试)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线.(2)若⊙O的半径是4,AP=43,求图中阴影部分的面积.【答案】(1)见解析(2)16433π-.考点:1.切线的证明;2.勾股定理;3.特殊角的三角函数值;4.扇形的面积计算.。
2017年青海省中考数学试卷(含详细答案解析)中考真题
2017年青海省中考数学试卷一、填空题(本大题共12小题15空,每空2分,共30分)1.(4分)﹣7×2的绝对值是;的平方根是.2.(4分)分解因式:ax2﹣2ax+a=;计算:=.3.(2分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为.4.(2分)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.5.(2分)如图,△ABC中,∠ABC与∠ACB的平分线相交于D,若∠A=50°,则∠BDC=度.6.(2分)如图,直线a∥b,Rt△ABC的顶点B在直线a上,∠C=90°,∠β=55°,则∠α的度数为.7.(2分)若单项式2x2y m与可以合并成一项,则n m=.8.(2分)有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其它都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为.9.(2分)已知扇形的圆心角为240°,所对的弧长为,则此扇形的面积是.10.(2分)如图,在一个4×4的网格中,每个小正方形的边长为1,每个小正方形的顶点叫做格点.点A在格点上,动点P从A点出发,先向右移动2个单位长度到达P1,P1绕点A逆时针旋转90°到达P2,P2再向下移动2个单位长度回到A点,P点所经过的路径围成的图形是图形(填“轴对称”或“中心对称”.)11.(2分)如图所示,小芳在中心广场放风筝,已知风筝拉线长100米(假设拉线是直的),且拉线与水平地面的夹角为60°,若小芳的身高忽略不计,则风筝离水平地面的高度是米(结果保留根号).12.(4分)观察下列各式的规律:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…可得到(x﹣1)(x7+x6+x5+x4+x3+x2+x+1)=;一般地(x﹣1)(x n+x n﹣1+x5+…+x2+x+1)=.二、选择题(本大题共8小题,每小题3分,共24分,每小题给出的四个选项中,只有一个选项符合要求,请把你认为正确的选项序号填入下面相应题号的表格内).13.(3分)估计2+的值()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间14.(3分)在某次测试后,班里有两位同学议论他们小组的数学成绩,小明说:“我们组考87分的人最多”,小华说:“我们组7位同学成绩排在最中间的恰好也是87分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数15.(3分)某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为()A.54+x=80%×108 B.54+x=80%(108﹣x)C.54﹣x=80%(108+x)D.108﹣x=80%(54+x)16.(3分)已知AB,CD是⊙O的两条平行弦,AB=8,CD=6,⊙O的半径为5,则弦AB与CD的距离为()A.1 B.7 C.4或3 D.7或117.(3分)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交DB于点F,则△DEF的面积与△BAF的面积之比为()A.1:3 B.3:4 C.1:9 D.9:1618.(3分)如图,正方形ABCD的对角线相交于点O,Rt△OEF绕点O旋转,在旋转过程中,两个图形重叠部分的面积是正方形面积的()A.B.C.D.19.(3分)如图,已知A(﹣4,),B(﹣1,2)是一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0,x<0)图象的两个交点,AC⊥x轴于点C,BD⊥y 轴于点D,若y1>y2,则x的取值范围是()A.x<﹣4 B.﹣4<x<﹣1 C.x<﹣4或x>﹣1 D.x<﹣120.(3分)如图,在矩形ABCD中,点P从点A出发,沿着矩形的边顺时针方向运动一周回到点A,则点A、P、D围成的图形面积y与点P运动路程x之间形成的函数关系式的大致图象是()A.B.C.D.三、(本大题共3小题,第21题5分,第22题5分,第23题7分,共17分).21.(5分)计算:(3﹣π)0﹣6cos30°+.22.(5分)解分式方程:.23.(7分)如图,在四边形ABCD中,AB=AD,AD∥BC.(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)(2)连接DF,证明四边形ABFD为菱形.四、(本大题共3小题,第24题9分,第25题9分,第26题8分,共26分)24.(9分)某地图书馆为了满足群众多样化阅读的需求,决定购买甲、乙两种品牌的电脑若干组建电子阅览室.经了解,甲、乙两种品牌的电脑单价分别3100元和4600元.(1)若购买甲、乙两种品牌的电脑共50台,恰好支出200000元,求甲、乙两种品牌的电脑各购买了多少台?(2)若购买甲、乙两种品牌的电脑共50台,每种品牌至少购买一台,且支出不超过160000元,共有几种购买方案?并说明哪种方案最省钱.25.(9分)如图,在△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,点E在BC边上,且满足EB=ED.(1)求证:DE是⊙O的切线;(2)连接AE,若∠C=45°,AB=10,求sin∠CAE的值.26.(8分)某批彩色弹力球的质量检验结果如下表:(1)请在图中完成这批彩色弹力球“优等品”频率的折线统计图(2)这批彩色弹力球“优等品”概率的估计值大约是多少?(精确到0.01)(3)从这批彩色弹力球中选择5个黄球、13个黑球、22个红球,它们除了颜色外都相同,将它们放入一个不透明的袋子中,求从袋子中摸出一个球是黄球的概率.(4)现从第(3)问所说的袋子中取出若干个黑球,并放入相同数量的黄球,搅拌均匀,使从袋子中摸出一个黄球的概率为,求取出了多少个黑球?五、(本大题共2小题,第27题11分,第28题12分,共23分)27.(11分)请完成如下探究系列的有关问题:探究1:如图1,△ABC是等腰直角三角形,∠BAC=90°,点D为BC上一动点,连接AD,以AD为边在AD的右侧作正方形ADEF,连接CF,则线段CF,BD之间的位置关系为,数量关系为.探究2:如图2,当点D运动到线段BC的延长线上,其余条件不变,探究1中的两条结论是否仍然成立?为什么?(请写出证明过程)探究3:如图3,如果AB≠AC,∠BAC≠90°,∠BCA仍然保留为45°,点D在线段BC上运动,请你判断线段CF,BD之间的位置关系,并说明理由.28.(12分)如图,抛物线y=x﹣2与x轴交于A,B两点,与y轴交于点C,点D与点C关于x轴对称.(1)求点A、B、C的坐标.(2)求直线BD的解析式.(3)在直线BD下方的抛物线上是否存在一点P,使△PBD的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.2017年青海省中考数学试卷参考答案与试题解析一、填空题(本大题共12小题15空,每空2分,共30分)1.(4分)﹣7×2的绝对值是14;的平方根是±.【分析】直接利用绝对值以及平方根的性质分析得出答案.【解答】解:﹣7×2=﹣14的绝对值是:14;的平方根是:±.故答案为:14;±.【点评】此题主要考查了实数的性质,正确掌握相关定义是解题关键.2.(4分)分解因式:ax2﹣2ax+a=a(x﹣1)2;计算:=.【分析】直接提取公因式a,再利用完全平方公式分解因式得出答案,再利用分式的乘除运算法则计算得出答案.【解答】解:ax2﹣2ax+a=a(x2﹣2x+1)=a(x﹣1)2;=×=.故答案为:a(x﹣1)2;.【点评】此题主要考查了公式法以及提取公因式法分解因式和分式的乘除运算,正确分解因式是解题关键.3.(2分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为 4.4×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将4400000000用科学记数法表示为4.4×109.故答案为:4.4×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2分)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.【分析】首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出∠3、∠1、∠2的度数是多少,进而求出∠3+∠1﹣∠2的度数即可.【解答】解:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.【点评】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.5.(2分)如图,△ABC中,∠ABC与∠ACB的平分线相交于D,若∠A=50°,则∠BDC=115度.【分析】根据角平分线的性质和三角形的内角和定理求解.【解答】解:∵∠A=50°,∴∠ABC+∠ACB=130°.∵∠ABC与∠ACB的平分线相交于D,∴∠DBC+∠DCB=65°,∴∠BDC=115°.【点评】本题主要利用了角平分线的性质和三角形的内角和是180度.6.(2分)如图,直线a∥b,Rt△ABC的顶点B在直线a上,∠C=90°,∠β=55°,则∠α的度数为35°.【分析】先过点C作CE∥a,可得CE∥a∥b,然后根据两直线平行,内错角相等,即可求得答案.【解答】解:过点C作CE∥a,∵a∥b,∴CE∥a∥b,∴∠BCE=∠α,∠ACE=∠β=55°,∵∠C=90°,∴∠α=∠BCE=∠ABC﹣∠ACE=35°.故答案为:35°.【点评】此题考查了平行线的性质.此题注意掌握辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.7.(2分)若单项式2x2y m与可以合并成一项,则n m=16.【分析】根据同类项的定义计算.【解答】解:由题意得,n=2,m=4,则n m=16,故答案为:16.【点评】本题考查的是合并同类项,要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数.8.(2分)有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其它都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为.【分析】分别求得第一个盒子抽到卡片数字是2的概率为,从第二个盒子抽到卡片数字是2的概率为,于是得到结论.【解答】解:从第一个盒子抽到卡片数字是2的概率为,从第二个盒子抽到卡片数字是2的概率为,所以从每个盒子中各抽出一张,都抽到卡片数字是2的概率为×=.故答案为:.【点评】此题考查了概率公式.准确的求出概率是解题的关键.9.(2分)已知扇形的圆心角为240°,所对的弧长为,则此扇形的面积是.【分析】利用弧长公式列出关系式,把圆心角与弧长代入求出扇形的半径,即可确定出扇形的面积.【解答】解:设扇形所在圆的半径为r,∵扇形的圆心角为240°,所对的弧长为,∴l==,解得:r=4,则扇形面积为rl=,故答案为:.【点评】此题考查了扇形面积的计算,以及弧长公式,熟练掌握公式是解本题的关键.10.(2分)如图,在一个4×4的网格中,每个小正方形的边长为1,每个小正方形的顶点叫做格点.点A在格点上,动点P从A点出发,先向右移动2个单位长度到达P1,P1绕点A逆时针旋转90°到达P2,P2再向下移动2个单位长度回到A点,P点所经过的路径围成的图形是轴对称图形(填“轴对称”或“中心对称”.)【分析】先依据题意画出图形,然后再依据轴对称图形的性质即可做出判断.【解答】解:如图所示:该图形是轴对称图形.故答案为:轴对称.【点评】本题主要考查的是轴对称图形和中心对称图形的性质,熟练掌握相关知识是解题的关键.11.(2分)如图所示,小芳在中心广场放风筝,已知风筝拉线长100米(假设拉线是直的),且拉线与水平地面的夹角为60°,若小芳的身高忽略不计,则风筝离水平地面的高度是50米(结果保留根号).【分析】根据解直角三角形的方法即可得到结论.【解答】解:如图,作AC⊥OB于点C,∵AO=100米,∠AOC=60°,∴AC=OA•sin60°=100×=米.故答案为:50.【点评】本题考查了解直角三角形的应用,熟练掌握直角三角形的边角关系是解题的关键.12.(4分)观察下列各式的规律:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…可得到(x﹣1)(x7+x6+x5+x4+x3+x2+x+1)=x8﹣1;一般地(x﹣1)(x n+x n﹣1+x5+…+x2+x+1)=x n+1﹣1.【分析】直接利用已知中的基本形式进而得出变化规律求出答案即可.【解答】解:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1则(x﹣1)(x7+x6+x5+x4+x3+x2+x+1)=x8﹣1.(x﹣1)(x n+x n﹣1+x5+…+x2+x+1)=x n+1﹣1.故答案是:x8﹣1;x n+1﹣1.【点评】此题主要考查了平方差公式,正确得出式子变化规律是解题关键.二、选择题(本大题共8小题,每小题3分,共24分,每小题给出的四个选项中,只有一个选项符合要求,请把你认为正确的选项序号填入下面相应题号的表格内).13.(3分)估计2+的值()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间【分析】直接得出2<<3,进而得出2+的取值范围.【解答】解:∵2<<3,∴4<2+<5,∴2+的值在4和5之间,故选:C.【点评】此题主要考查了估算无理数的大小,正确得出的范围是解题关键.14.(3分)在某次测试后,班里有两位同学议论他们小组的数学成绩,小明说:“我们组考87分的人最多”,小华说:“我们组7位同学成绩排在最中间的恰好也是87分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数【分析】根据中位数和众数的定义回答即可.【解答】解:一组数据中出现次数最多的数为众数,所以87分是众数;一组数据中最中间一个数或中间两个数的平均数是这组数据的中位数,所以小华说的87分是中位数故选:D.【点评】本题主要考查统计量的选择,解题的关键是熟练掌握众数和中位数的定义.15.(3分)某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x公顷沙漠改造为绿洲,则可列方程为()A.54+x=80%×108 B.54+x=80%(108﹣x)C.54﹣x=80%(108+x)D.108﹣x=80%(54+x)【分析】直接利用已知表示出绿洲面积和沙漠面积,进而绿洲面积占沙漠面积的80%得出等式求出答案.【解答】解:把x公顷沙漠改造为绿洲后,绿洲面积变为(54+x)公顷,沙漠面积变为(108﹣x)公顷,根据“绿洲面积占沙漠面积的80%”,可得方程:54+x=80%(108﹣x),故选:B.【点评】本题考查了由实际问题抽象出一元一次方程,关键是设出未知数以及改造后的绿洲与沙漠的关系为等量关系列出方程.16.(3分)已知AB,CD是⊙O的两条平行弦,AB=8,CD=6,⊙O的半径为5,则弦AB与CD的距离为()A.1 B.7 C.4或3 D.7或1【分析】连接OC、OA,作直线OF⊥AB于E,交CD于F,则EF⊥CD,根据垂径定理求出CF,AE,根据勾股定理求出OE、OF,即可得出答案.【解答】解:如图所示,连接OA,OC.作直线OF⊥AB于E,交CD于F,则EF ⊥CD,∵OE⊥AB,OF⊥CD,∴AE=AB=4,CF=CD=3,根据勾股定理,得OE==3,OF==4,所以当AB和CD在圆心的同侧时,则EF=OF﹣OE=1,当AB和CD在圆心的异侧时,则EF=OF+OE=7.故选:D.【点评】本题考查了垂径定理的知识,此题综合运用了垂径定理和勾股定理,特别注意有时要考虑两种情况.17.(3分)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交DB于点F,则△DEF的面积与△BAF的面积之比为()A.1:3 B.3:4 C.1:9 D.9:16【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE :S△BFA=9:16.故选:D.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.18.(3分)如图,正方形ABCD的对角线相交于点O,Rt△OEF绕点O旋转,在旋转过程中,两个图形重叠部分的面积是正方形面积的()A.B.C.D.【分析】根据旋转的性质可知两个图形重叠部分的面积是正方形面积的,【解答】解:∵四边形ABCD是正方形,OF⊥OE,∴OB=OC,∠OBA=∠OCB=45°,∠BOC=∠EOF=90°,∴∠AFB=∠COE,在△OBM与△OCN中,,∴△OBM≌△OCN(ASA),∴四边形OMBN的面积等于三角形BOC的面积,即重叠部分面积不变,总是等于正方形面积的.故选:A.【点评】本题主要考查对正方形的性质,全等三角形的性质和判定等知识点的理解和掌握,能推出四边形OMBN的面积等于三角形BOC的面积是解此题的关键.19.(3分)如图,已知A(﹣4,),B(﹣1,2)是一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0,x<0)图象的两个交点,AC⊥x轴于点C,BD⊥y 轴于点D,若y1>y2,则x的取值范围是()A.x<﹣4 B.﹣4<x<﹣1 C.x<﹣4或x>﹣1 D.x<﹣1【分析】观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;【解答】解:y1>y2在图象上表示一次函数图象在反比例函数图象上方的部分,故应在A与B之间的部分,此时x的取值范围是﹣4<x<﹣1,故选:B.【点评】题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.20.(3分)如图,在矩形ABCD中,点P从点A出发,沿着矩形的边顺时针方向运动一周回到点A,则点A、P、D围成的图形面积y与点P运动路程x之间形成的函数关系式的大致图象是()A.B.C.D.【分析】分三种情形讨论即可.【解答】解:由题意可知,点A、P、D围成的图形均为三角形.①点P从点A运动到点B的过程,其面积为y=•AD•x,函数为一次函数,②点P从点B运动到点C的过程,其面积为y=•AD•AB=常数,函数图象平行x 轴;③点P从点B运动到点C的过程,其面积为y=•AD•(AB+BC+CD﹣x),函数为一次函数,故选:A.【点评】本题考查动点问题的函数图象、矩形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、(本大题共3小题,第21题5分,第22题5分,第23题7分,共17分).21.(5分)计算:(3﹣π)0﹣6cos30°+.【分析】直接利用零指数幂的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.【解答】解:原式=1﹣6×+3﹣2=﹣1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.22.(5分)解分式方程:.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同乘(x2﹣4),得2+x(x+2)=x2﹣4,整理得2+x2+2x=x2﹣4,2x=﹣6,x=﹣3,检验:当x=﹣3时,x2﹣4=5≠0,∴原方程的解为x=﹣3.【点评】此题考查了解分式方程,解分式方程注意要检验.23.(7分)如图,在四边形ABCD中,AB=AD,AD∥BC.(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD、BC于点E、F.(保留作图痕迹,不写作法)(2)连接DF,证明四边形ABFD为菱形.【分析】(1)直接利用线段垂直平分线的作法得出答案;(2)结合垂直平分线的性质得出△ADE≌△FBE,即可得出AE=EF,进而利用菱形的判定方法得出答案.【解答】解:(1)如图:(2)证明:如图,连接DF,∵AD∥BC,∴∠ADE=∠EBF,∵AF垂直平分BD,∴BE=DE.在△ADE和△FBE中,∴△ADE≌△FBE(AAS),∴AE=EF,∴BD与AF互相垂直且平分,∴四边形ABFD为菱形.【点评】此题主要考查了菱形的判定以及线段垂直平分线的性质与作法,正确应用线段垂直平分线的性质是解题关键.四、(本大题共3小题,第24题9分,第25题9分,第26题8分,共26分)24.(9分)某地图书馆为了满足群众多样化阅读的需求,决定购买甲、乙两种品牌的电脑若干组建电子阅览室.经了解,甲、乙两种品牌的电脑单价分别3100元和4600元.(1)若购买甲、乙两种品牌的电脑共50台,恰好支出200000元,求甲、乙两种品牌的电脑各购买了多少台?(2)若购买甲、乙两种品牌的电脑共50台,每种品牌至少购买一台,且支出不超过160000元,共有几种购买方案?并说明哪种方案最省钱.【分析】(1)设甲种品牌的电脑购买了x台,乙种品牌的电脑购买了y台,根据题意建立二元一次方程组,求出其解即可;(2)设甲种品牌的电脑购买了x台,乙种品牌的电脑购买了(50﹣x)台,根据题意建立不等式组求出其解即可.【解答】解:(1)设甲种品牌的电脑购买了x台,乙种品牌的电脑购买了y台,则,解得,答:甲种品牌的电脑购买了20台,乙种品牌的电脑购买了30台.(2)设甲种品牌的电脑购买了x台,乙种品牌的电脑购买了(50﹣x)台,则,解得,∴x的整数值为47,48、49,当x=47时,50﹣x=3;当x=48时,50﹣x=2;当x=49时,50﹣x=1.∴一共有三种购买方案:甲种品牌的电脑购买47台,乙种品牌的电脑购买3台;甲种品牌的电脑购买48台,乙种品牌的电脑购买2台;甲种品牌的电脑购买49台,乙种品牌的电脑购买1台.∵甲、乙两种品牌的电脑单价分别3100元和4600元.∴甲种品牌的电脑购买49台,乙种品牌的电脑购买1台比较省钱.【点评】本题考查了二元一次方程组的运用,一元一次不等式组的运用,方案设计题型的运用,解答时找到等量关系建立方程或者方程组和建立不等式是关键.25.(9分)如图,在△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,点E在BC边上,且满足EB=ED.(1)求证:DE是⊙O的切线;(2)连接AE,若∠C=45°,AB=10,求sin∠CAE的值.【分析】(1)连接OD,OE,由圆周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根据E为BC的中点可以得出DE=BE,就有∠EDB=∠EBD,OD=OB可以得出∠ODB=∠OBD,由的等式的性质就可以得出∠ODE=90°就可以得出结论;(2)连接BD,作EF⊥AC于点F.根据已知条件得到△ABC为等腰直角三角形.根据平行线的性质得到∠BOD=90°.得到四边形OBED为正方形.求得AC=20.解直角三角形即可得到结论.【解答】(1)证明:如图,连接OD、OE.在△ODE和△OBE中∵,∴△ODE≌△OBE(SSS),∴∠ODE=∠ABC=90°,∴DE是⊙O的切线.(2)解:如图,连接BD,作EF⊥AC于点F.∵AB为⊙O的直径,∴BD⊥AC,∵∠C=45°,∠ABC=90°,∴△ABC为等腰直角三角形.∴D点为AC的中点,∴OD∥BC,∴∠BOD=90°.∴四边形OBED为正方形.∵AB=10,∴AC=20.∴CD=10,DE=5,∵EF⊥AC,∴EF=DF=5,∴AF=15,∴AE=,∴sin∠CAE=.【点评】本题主要考查了切线的判定、圆周角定理及其推论、三角函数的应用等几何知识点及其应用问题;熟练掌握切线的判定方法是解本题的关键.26.(8分)某批彩色弹力球的质量检验结果如下表:(1)请在图中完成这批彩色弹力球“优等品”频率的折线统计图(2)这批彩色弹力球“优等品”概率的估计值大约是多少?(精确到0.01)(3)从这批彩色弹力球中选择5个黄球、13个黑球、22个红球,它们除了颜色外都相同,将它们放入一个不透明的袋子中,求从袋子中摸出一个球是黄球的概率.(4)现从第(3)问所说的袋子中取出若干个黑球,并放入相同数量的黄球,搅拌均匀,使从袋子中摸出一个黄球的概率为,求取出了多少个黑球?【分析】(1)利用表格或者折线图即可;(2)求出五种情形下的平均数即可解决问题;(3)根据概率公式计算即可;(4)构建方程即可解决问题;【解答】解:(1)如图,(2)==0.9472≈0.95.(3)P(摸出一个球是黄球)==.(4)设取出了x个黑球,则放入了x个黄球,则,解得x=5.答:取出了5个黑球.【点评】本题考查频数分布表、频数分布折线图、样本估计总体的思想等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.五、(本大题共2小题,第27题11分,第28题12分,共23分)27.(11分)请完成如下探究系列的有关问题:探究1:如图1,△ABC是等腰直角三角形,∠BAC=90°,点D为BC上一动点,连接AD,以AD为边在AD的右侧作正方形ADEF,连接CF,则线段CF,BD之间的位置关系为CF⊥BD,数量关系为CF=BD.探究2:如图2,当点D运动到线段BC的延长线上,其余条件不变,探究1中的两条结论是否仍然成立?为什么?(请写出证明过程)探究3:如图3,如果AB≠AC,∠BAC≠90°,∠BCA仍然保留为45°,点D在线段BC上运动,请你判断线段CF,BD之间的位置关系,并说明理由.【分析】探究1:(1)只要证明△BAD≌△CAF(SAS),推出CF=BD,推出∠B=∠ACF,推出∠B+∠BCA=90°,推出∠BCA+∠ACF=90°即可;探究2:结论不变.证明方法与探究1类似;探究3:当∠ACB=45°时,过点A作AG⊥AC交CB或CB的延长线于点G,则∠GAC=90°,可推出∠ACB=∠AGC,所以AC=AG,于是得到CF⊥BD.【解答】解:探究1:∵∠BAC=90°,∴∠BAD+∠CAD=90°,∵四边形ADEF为正方形,∴∠DAF=90°,∴∠CAD+∠CAF=90°,∴∠BAD=∠CAF.∴在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),∴CF=BD,∠ACF=∠B=45°,∴∠BCF=90°,∴CF⊥BD;故答案为:CF⊥BD,CF=BD;探究2:探究1中的两条结论是否仍然成立.理由如下:∵∠BAC=90°,∴∠BAD=90°+∠CAD,∵四边形ADEF为正方形,∴∠DAF=90°+∠CAD,∴∠BAD=∠CAF.∴在△ABD和△ACF中,,∴△ABD≌△CAF(SAS),∴CF=BD,∠ACF=∠B=45°,∴∠BCF=90°,∴CF⊥BD.探究3:线段CF,BD之间的位置关系是CF⊥BD.理由如下:如图,过点A作AP⊥AC,交BC于点P.∵∠BCA=45°,∴∠APD=45°,AP=AC.∵四边形ADEF为正方形,∴AD=AC.∴△APD≌△ACF(SAS),∴∠ACF=45°,∴∠BCF=∠BCA+∠ACF=90°,∴线段CF,BD之间的位置关系是CF⊥BD.【点评】本题考查了正方形的性质,全等三角形的判定和性质,余角的性质,正确的作出辅助线是解题的关键.28.(12分)如图,抛物线y=x﹣2与x轴交于A,B两点,与y轴交于点C,点D与点C关于x轴对称.(1)求点A、B、C的坐标.(2)求直线BD的解析式.(3)在直线BD下方的抛物线上是否存在一点P,使△PBD的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)由待定系数法即可解决问题;(2)求出点D、B坐标,理由待定系数法可解;(3)如图,作PE∥y轴交BD于E,设P(m,m2﹣m﹣2),则E(m,﹣m+2),构建二次函数,了也重合时的性质即可解决问题;【解答】解:(1)解方程,得x1=﹣1,x2=4,∴A点坐标为(﹣1,0),B点坐标为(4,0).当x=0时,y=﹣2,∴C点坐标为(0,﹣2).(2)∵点D与点C关于x轴对称,∴D点坐标为(0,2).设直线BD的解析式为y=kx+b,则,解得,∴直线BD的解析式为.(3)如图,作PE∥y轴交BD于E,设P(m,m2﹣m﹣2),则E(m,﹣m+2)∴PE=﹣m+2﹣(m2﹣m﹣2)=﹣m2+m+4,=•PE•(x B﹣x D)=×(﹣m2+m+4)×4=﹣m2+2m+8=﹣(m﹣1)2+9,∴S△PBD∵﹣1<0,∴m=1时,△PBD的面积最大,面积的最大值为9.∴P(1,﹣3).【点评】本题考查二次函数的应用、一次函数的应用、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数解决最值问题,属于中考压轴题.。
2017年阿坝、甘孜中考数学试卷(解析版)
2017年阿坝、甘孜中考数学试卷(解析版)一、选择题(共10小题,每小题4分,满分40分)1.﹣2的倒数是()A.﹣2 B.﹣12C.12D.2【答案】B.【解析】试题分析:∵﹣2×(﹣12)=1,∴﹣2的倒数是﹣12,故选B.考点:倒数.2.如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A.B.C.D.【答案】A.考点:由三视图判断几何体.3.下列计算正确的是()A.3252a a a+=B.326a a a⋅=C.32a a a÷= D.329()a a=【答案】C.【解析】试题分析:3a与2a不是同类项,不能合并,A错误;325⋅=,B错误;a a a32÷=,C正确;a a a326=,D错误.a a()故选C.考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.4.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.11【答案】C.考点:多边形内角与外角.[5.对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大【答案】D.【解析】试题分析:“某市明天下雨的概率是75%”说明某市明天下雨的可能性较大,故选D.考点:概率的意义.6.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20°B.35°C.45°D.70°【答案】B.【解析】∠AOB=35°,∵CD∥OB,∴∠BOC=∠C=35°,试题分析:∵OC平分∠AOB,∴∠AOC=∠BOC=12故选B.考点:平行线的性质.7.如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.3cm C.25cm D.23cm【答案】D.考点:垂径定理;翻折变换(折叠问题).8.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为5,AB =8,则CD 的长是( )A .2B .3C .4D .5【答案】A .【解析】试题分析:∵OC ⊥AB ,∴AD =BD =12AB =12×8=4,在Rt △OAD 中,OA =5,AD =4,∴OD =22OA AD - =3,∴CD =OC ﹣OD =5﹣3=2.故选A .考点:垂径定理;勾股定理.9.如图,在Rt △ABC 中,斜边AB 的长为m ,∠A =35°,则直角边BC 的长是( )A .m sin35°B .m cos35°C .sin 35m o D .cos35m o 【答案】A .考点:锐角三角函数的定义.10.如图,抛物线2y ax bx c =++ (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:11.①4ac<b2;②方程20++=的两个根是x1=﹣1,x2=3;ax bx c③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个【答案】B.考点:二次函数图象与系数的关系;数形结合.二、填空题(共5小题,每小题4分,满分20分)11.因式分解:2218x -= .【答案】2(x +3)(x ﹣3).【解析】试题分析:2218x -=22(9)x -=2(x +3)(x ﹣3),故答案为:2(x +3)(x ﹣3). 考点:提公因式法与公式法的综合运用.12.数据1,2,3, 0,﹣3,﹣2,﹣1的中位数是 .【答案】0.【解析】试题分析:把数据按从小到大排列:﹣3,﹣2,﹣1,0,1,2,3,共有7个数,最中间一个数为0,所以这组数据的中位数为0.故答案为:0.考点:中位数.13.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为 .【答案】6.9×10﹣7.【解析】试题分析:0.00000069=6.9×10﹣7.故答案为:6.9×10﹣7.考点:科学记数法—表示较小的数.14.若一元二次方程240x x c ++=有两个相等的实数根,则c 的值是 .【答案】4.【解析】试题分析:∵一元二次方程240x x c ++=有两个相等的实数根,∴△=16﹣4c =0,解得c =4.故答案为:4.考点:根的判别式.15.在函数312x y x +=-中,自变量x 的取值范围是 . 【答案】x ≥﹣13,且x ≠2. 【解析】试题分析:由题意,得:3x +1≥0且x ﹣2≠0,解得x ≥﹣13,且x ≠2,故答案为:x ≥﹣13,且x ≠2.考点:函数自变量的取值范围.三、解答题(共5小题,满分40分)16.(1)计算:011(32)()4sin 60123--++--o . (2)先化简,再求值:222444(1)42x x x x x x -++-÷--+,其中2210x x +-=. 【答案】(1)4;(2)242x x+ ,4.考点:分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.17.如图,小明在A 处测得风筝(C 处)的仰角为30°,同时在A 正对着风筝方向距A 处30米的B 处,小明测得风筝的仰角为60°,求风筝此时的高度.(结果保留根号)18.【答案】153.考点:解直角三角形的应用﹣仰角俯角问题.18.某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是;(2)(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有名.(4)【答案】(1)120,30%;(2)作图见解析;(3)450.试题解析:(1)调查的总人数是:18÷15%=120(人),安全意识为“很强”的学生占被调=30%.查学生总数的百分比是:36120故答案为:120,30%;(2)安全意识“较强”的人数是:120×45%=54(人);+=450(人),故答案为:450.(3)估计全校需要强化安全教育的学生约1800×1218120考点:条形统计图;用样本估计总体;扇形统计图.,19.如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=12直线l上的点P位于y轴左侧,且到y轴的距离为1.(1)求直线l的表达式;(2)若反比例函数my=的图象经过点P,求m的值.x【答案】(1)112y x =-+;(2)32-. (2)∵点P 到y 轴的距离为1,且点P 在y 轴左侧,∴点P 的横坐标为﹣1,又∵点P 在直线l 上,∴点P 的纵坐标为:﹣12×(﹣1)+1=32,∴点P 的坐标是(﹣1,32),∵反比例函数m y x =的图象经过点P ,∴32 =1m -,∴m =﹣1×32=32-. 考点:反比例函数与一次函数的交点问题.20.如图,在△ABC 中,∠C =90°,点O 在AC 上,以OA 为半径的⊙O 交AB 于点D ,BD 的垂直平分线交BC 于点E ,交BD 于点F ,连接DE .(1)判断直线DE 与⊙O 的位置关系,并说明理由;(2)若AC =6,BC =8,OA =2,求线段DE 的长.【答案】(1)直线DE与⊙O相切;(2)4.75.【解析】试题分析:(1)直线DE与圆O相切,理由如下:连接OD,由OD=OA,利用等边对等角得到一对角相等,等量代换得到∠ODE为直角,即可得证;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,在直角三角形OCE中,利用勾股定理列出关于x的方程,求出方程的得到x的值,即可确定出DE的长.试题解析:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE 与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.(3)考点:直线与圆的位置关系;线段垂直平分线的性质;与圆有关的位置关系;探究型.四、填空题(每小题4分,共20分)21.在一个不透明的空袋子里,放入仅颜色不同的2个红球和1个白球,从中随机摸出1个球后不放回,再从中随机摸出1个球,两次都摸到红球的概率是..【答案】13考点:列表法与树状图法.22.如图,在平面直角坐标系中,已知A (1,0),D (3,0),△ABC 与△DEF 位似,原点O 是位似中心.若AB =1.5,则DE = .【答案】4.5.【解析】试题分析:∵△ABC 与DEF 是位似图形,它们的位似中心恰好为原点,已知A 点坐标为(1,0),D 点坐标为(3,0),∴AO =1,DO =3,∴13AO AB DO DE ==,∵AB =1.5,∴DE =4.5.故答案为:4.5.考点:位似变换;坐标与图形性质.23.如图,已知点P (6,3),过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数k y x=的图象交PM 于点A ,交PN 于点B .若四边形OAPB 的面积为12,则k = .24.【答案】6.考点:反比例函数系数k的几何意义.24.如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为.【答案】12.【解析】试题分析:连接AP,A′P′,过点A作AD⊥PP′于点D,由题意可得出:AP∥A′P′,AP=A′P′,∴四边形APP′A′是平行四边形,∵抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3),平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),∴PO=22=22∠AOP=45°,22又∵AD⊥OP,∴△ADO是等腰直角三角形,∴PP′=22×2=42,∴AD=DO=sin45°•OA=22×3=322,∴抛物线上PA段扫过的区域(阴影部分)的面积为:42×322=12.故答案为:12.考点:二次函数图象与几何变换.25.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P2017的坐标是.26.【答案】(672,1).考点:规律型:点的坐标;综合题.五、解答题:(本大题共3小题,共30分)26.某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.(1)当每件商品的售价是多少元时,每个月的利润刚好是2250元?(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?【答案】(1)65或85;(2)当售价定为75时,每个月可获得最大利润,最大的月利润是2450元.[考点:二次函数的应用;一元二次方程的应用;二次函数的最值;最值问题.27.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;【答案】(1)证明见解析;(2)PB2565.【解析】试题分析:(1)依据等腰三角形的性质得到AB =AC ,AD =AE ,依据同角的余角相等得到∠DAB =∠CAE ,然后依据SAS 可证明△ADB ≌△AEC ,最后,依据全等三角形的性质可得到BD =CE ;(2)分为点E 在AB 上和点E 在AB 的延长线上两种情况画出图形,然后再证明△PEB ∽△AEC ,最后依据相似三角形的性质进行证明即可.试题解析:(1)∵△ABC 和△ADE 是等腰直角三角形,∠BAC =∠DAE =90°,∴AB =AC ,AD =AE ,∠DAB =∠CAE ,∴△ADB ≌△AEC ,∴BD =CE .(2)解:①当点E 在AB 上时,BE =AB ﹣AE =1.∵∠EAC =90°,∴CE 22AE AC +5同(1)可证△ADB ≌△AEC ,∴∠DBA =∠ECA .∵∠PEB =∠AEC ,∴△PEB ∽△AEC ,∴PB BE AC CE =,∴25PB =PB =255.∵∠BEP =∠CEA ,∴△PEB ∽△AEC ,∴PB BE AC CE =,∴25PB =,∴PB =655. 综上所述,PB 的长为255或655. 考点:相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形;旋转的性质;分类讨论.28.如图,抛物线2322y ax x =--(a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,已知B 点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC 的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 下方的抛物线上一点,求△MBC 的面积的最大值,并求出此时M 点的坐标.【答案】(1)213222y x x =--;(2)(32,0);(3)4,M (2,﹣3). 【解析】 试题分析:方法一:(1)该函数解析式只有一个待定系数,只需将B 点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定A 点坐标,然后通过证明△ABC 是直角三角形来推导出直径AB 和圆心的位置,由此确定圆心坐标.(3)△MBC 的面积可由S △MBC =12BC ×h 表示,若要它的面积最大,需要使h 取最大值,即点M 到直线BC 的距离最大,若设一条平行于BC 的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M .方法二:(1)略.(2)通过求出A ,B ,C 三点坐标,利用勾股定理或利用斜率垂直公式可求出AC ⊥BC ,从而求出圆心坐标.(3)利用三角形面积公式,过M 点作x 轴垂线,水平底与铅垂高乘积的一半,得出△MBC 的面积函数,从而求出M 点.(3)已求得:B (4,0)、C (0,﹣2),可得直线BC 的解析式为:y =12x ﹣2; 设直线l ∥BC ,则该直线的解析式可表示为:y =12x +b ,当直线l 与抛物线只有一个交点时,可列方程:12x +b =213222x x --,即:212202x x b ---=,且△=0; ∴4﹣4×12(﹣2﹣b )=0,即b =﹣4; ∴直线l :y =12x ﹣4. 所以点M 即直线l 和抛物线的唯一交点,有:213222142y x x y x ⎧=--⎪⎪⎨⎪=-⎪⎩,解得:23x y =⎧⎨=-⎩ 即 M (2,﹣3).过M 点作MN ⊥x 轴于N ,S △BMC =S 梯形OCMN +S △MNB ﹣S △OCB =12×2×(2+3)+12×2×3﹣12×2×4=4.(3)过点M 作x 轴的垂线交BC ′于H ,∵B (4,0),C (0,﹣2),∴l BC :y =12x ﹣2,设H (t ,12t ﹣2),M (t ,213222t t --),∴S △MBC =12×(H Y ﹣M Y )(B X ﹣C X )=12×(12t ﹣2﹣213222t t ++)(4﹣0)=﹣t 2+4t ,∴当t =2时,S 有最大值4,∴M (2,﹣3).考点:二次函数综合题;最值问题;二次函数的最值;压轴题;转化思想.。
2009-2017最新历年甘孜州中考数学真题及答案汇总(中考直通车)
- 1 -2009-2017年甘孜州中考数学历年真题分类甘孜州历年真题分为A 、B 两卷,A 卷100分,B 卷50分,共计150分A 卷选择题部分1.(2009.甘孜州)计算1|3|+--结果正确的是 ( )A .4B .2C .-2D .-42.(2009.甘孜州)下列运算正确的是 ( )A .4222x x x =+B .422x x x =+C .632x x x =⋅D .523x x x =⋅ 3.(2009.甘孜州)函数xx y --=2的自变量x 的取值范围是 ( ) A .2>x B .2≤x 且0≠x C .2≤x D .2<x 且0≠x4.(2009.甘孜州)三峡大坝是世界上最大的水利枢纽工程.据报道,三峡水电站年平均发电量为89.846亿度,用科学记数法记作(保留三位有效数字) ( )A .111047.8⨯度B .101046.8⨯C .91047.8⨯度D .101047.8⨯度 5.(2009.甘孜州)下列图案都由字母“m ”经过变形、组合而成的,其中不是..中心对称图形是( )6.(2009.甘孜州)下列命题中,真命题是 ( )A .两条对角线相等的四边形是矩形B .两条对角线垂直的四边形是菱形C .两条对角线垂直且相等的四边形是正方形D .两条对角线相等的平行四边形是矩形7.(2009.甘孜州)若关于x 的一元二次方程022=--m x x 有实数根,则m 的取值范围是 ( )A .m ≥-lB .m<1C .m ≤-lD .m ≤1 8.(2009.甘孜州)如图是一个正方体纸盒的展开图,每个面内都标注了字母或数字,则面a 在展开前所对的面的数字是 ( )A .2B .3C .4D .5- 2 - 9.(2009.甘孜州)如图,⊙I 是△ABC 内切圆,D ,E ,F 为三个切点,若∠DEF=52°,则∠A 度数( )A .76°B .68°C .52°D .38°10.(2009.甘孜州)一辆汽车由A 地匀速驶往相距300千米的B 地,汽车的速度是100千米/小时,那么汽车距离A 地的路程s (千米)与行驶时间t (小时)的函数关系用图象表示为 ( )11.(2010.甘孜州)()23-的结果是 ( ) A. 6 B. -6 C. 9D. -9 12.(2010.甘孜州)下列计算正确的是( )A.()222n m n m +=+B.532m m m =⋅C. mn n m 532=+D. 322-25=13.(2010.甘孜州)如图,已知直线DE AC //, 30=∠C , 70=∠BED ,则CBE ∠度数是 ( )A.20°B.100°C. 55°D. 40°14.(2010.甘孜州)下列哪个不等式组的解集在数轴上表示如图所示 ( )A.{21≥-<x xB.{21≤->x xC.{21>-≤x xD.{21<-≥x x第13题图 第14题图15.(2010.甘孜州)某市统计局发布的统计公报显示,2006年到2010年,某市GDP 增长率分别为%9.9、%1.10、%3.10、%5.10、%2.10. 经济评论员说,这5年该的GDP 增长率相当平稳,从统计学的角度看,“增长率相当平稳”说明这组数据的 比较小.A.中位数B. 方差C.众数D.平均数16.(2010.甘孜州)下列命题,正确的是( )A.所有正方形都全等B.等腰梯形的对角线互相平分C.相等的圆周角所对的弧相等D.顺次连结四边形各边中点所得到的四边形是平行四边形17.(2010.甘孜州)数学课外兴趣小组的同学每人制作一个面积为200cm 2的三角形学具进行展示.设三角形的一边长为xcm ,该边上的高为ycm ,那么这些同学所制作的三角形的高y (cm )与边长x (cm )之间的函数关系的图象大致是( )- 3 -18.(2010.甘孜州)如图,AB 是⊙O 的弦,OD ⊥AB 于D 交⊙O 于E ,则下列说法错误..的是 ( ) A.AOE ACB ∠=∠ B.BD AD = C.ABC AOB S S ∆∆=21 D. AE BE = 19.(2010.甘孜州)如图,为一个多面体的表面展开图,每个面内都标注了数字.若数字为6的面是底面,则朝上一面所标注的数字为( ) A.5 B.4 C.3 D.2 20.(2010.甘孜州)如图,OAB △绕点O 逆时针旋转80°得到OCD △,若110A ∠=°,40D ∠=°,则α∠的度数是( )A .60°B .50°C .40°D .30°21.(2011.甘孜州)计算﹣2﹣3的结果是( )A .5B .﹣5C .﹣1D .122.(2011.甘孜州)今年4至6月份,某省旅游业一直保持良好的发展势头,旅游收入累计达6168000000元,用科学记数法表示是( )A.6616810⨯元 B.86.16810⨯元 C.96.16810⨯元 D.106.16810⨯元23.(2011.甘孜州)下面四个几何体中,主视图与其它几何体的主视图不同的是( ) A . B . C . D .24.(2011.甘孜州)函数2y x =+x 的取值范围是( )A.x ≥﹣2 B.2x >- C.0x > D.2x ≠-25.(2011.甘孜州)下列四个多边形:①等边三角形;②正方形;③平行四边形;④矩形.其中,既是轴对称图形又是中心对称图形的是( )A .①②B .②③C .②④D .①④26.(2011.甘孜州)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:跳高成绩(m )1.50 1.55 1.60 1.65 1.70 1.75 跳高人数1 323 5 1534 2 15 6OB A D α- 4 - 27.(2011.甘孜州)如图,四边形ABCD 的对角线AC .BD 互相垂直,则下列条件能判定四边形ABCD为菱形的是( )A .AC 、BD 互相平分B .BA =BC C .AC =BD D .AB ∥CD28.(2011.甘孜州)三角形在正方形网格纸中的位置如图所示,则αcos 的值是( )A.43 B.45 C.34D.3529.(2011.甘孜州)如图,⊙O 的直径CD ⊥AB ,∠AOC =64°,则∠CDB 大小为( )A .32°B .37°C .42°D .64°30.(2011.甘孜州)小明爷爷每天坚持体育锻炼,某天他慢步到离家较远公园,打了一会儿太极拳后跑步回家。
2017年四川省各市中考数学试题汇编(1)(含参考答案与解析)
2017年四川省各市中考数学试题汇编(1)(含参考答案)(word版,9份)目录1.四川省成都市中考数学试题及参考答案 (2)2.四川省攀枝花市中考数学试题及参考答案 (15)3.四川省自贡市中考数学试题及参考答案 (36)4.四川省泸州市中考数学试题及参考答案 (53)5.四川省宜宾市中考数学试题及参考答案 (70)6.四川省绵阳市中考数学试题及参考答案 (87)7.四川省眉山市中考数学试题及参考答案 (109)8.四川省南充市中考数学试题及参考答案 (125)9.四川省达州市中考数学试题及参考答案 (136)2017年四川省成都市中考数学试题及参考答案A 卷(共100分)一、选择题(本大题共10 个小题,每小题3 分,共30 分).1. 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若气温为零上010C 记作010C +,则03C -表示气温为 ( ) A.零上03C B.零下03C C.零上07C D.零下07C2. 如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )A. B. C. D.3. 总投资647 亿元的西域高铁预计2017 年11月竣工,届时成都到西安只需3 小时,上午游武侯区,晚上看大雁塔将成为现实.用科学计数法表示647 亿元为( )A.864710⨯B.96.4710⨯C.106.4710⨯D. 116.4710⨯4. x 的取值范围是( )A.1x ≥B. 1x >C. 1x ≤D.1x < 5. 下列图标中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.6. 下列计算正确的是 ( )A.5510a a a +=B. 76a a a ÷=C. 326a a a =D.()236aa -=-7. 学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:则得分的众数和中位数分别为( )A.70 分,70 分B.80 分,80 分C. 70 分,80 分D.80 分,70 分 8. 如图,四边形ABCD 和A B C D '''' 是以点O 为位似中心的位似图形,若:2:3OA OA '= ,则四边形ABCD 与四边形A B C D ''''的面积比为( )A. 4:9B. 2:5C. 2:3 9. 已知3x =是分式方程2121kx k x x--=-的解,那么实数k 的值为( ) A.-1 B. 0 C. 1 D.210. 在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像如图所示,下列说法正确的是 ( )A. 20,40abc b ac <-> B.20,40abc b ac >-> C. 20,40abc b ac <-< D.20,40abc b ac >-< 二、填空题(本大题共4 个小题,每小题4 分,共16 分).11.)1=________________.12. 在ABC ∆中,::2:3:4A B C ∠∠∠=,则A ∠的度数为______________.13.如图,正比例函数11y k x =和一次函数22y k x b =+的图像相交于点()2,1A .当2x <时,1y2y .(填“>”或“<”)14.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交,AB AD 于点,M N ;②分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作AP 射线,交边CD 于点Q ,若2,3DQ QC BC ==,则平行四边形ABCD 周长为 .三、解答题(本大题共6 个小题,共54 分)15.(12112sin 452-⎛⎫+ ⎪⎝⎭.(2)解不等式组:()2731423133x x x x ⎧-<-⎪⎨+≤-⎪⎩①② . 16.化简求值:2121211x x x x -⎛⎫÷- ⎪+++⎝⎭,其中1x = .17. 随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类, 并将检查结果绘制成下面两个统计图.(1)本次调查的学生共有__________人,估计该校1200 名学生中“不了解”的人数是__________人. (2)“非常了解”的4 人有12,A A 两名男生,12,B B 两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18. 科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶4 千米至B 地,再沿北偏东45°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,求,B C 两地的距离.19. 如图,在平面直角坐标系xOy 中,已知正比例函数12y x =的图象与反比例函数ky x=的图象交于(),2,A a B -两点.(1)求反比例函数的表达式和点B 的坐标;(2)P 是第一象限内反比例函数图像上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连接PO ,若POC ∆的面积为3,求点P 的坐标.20. 如图,在ABC ∆中,AB AC =,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH AC ⊥于点H ,连接DE 交线段OA 于点F . (1)求证:DH 是圆O 的切线;(2)若AE 为H 的中点,求EFFD的值; (3)若1EA EF ==,求圆O 的半径.B 卷(共50分)一、填空题(本大题共5 个小题,每小题4 分,共20 分) 21. 如图,数轴上点A 表示的实数是_____________.22.已知12,x x 是关于x 的一元二次方程250x x a -+=的两个实数根,且221210x x -=,则a =___________. 23.已知O 的两条直径,AC BD 互相垂直,分别以,,,AB BC CD DA 为直径向外作半圆得到如图所示的图形.现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为1P ,针尖落在O 内的概率为2P ,则12P P =______________.24.在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点(),P x y ,我们把点11,P x y ⎛⎫'⎪⎝⎭称为点P 的 “倒影点”.直线1y x =-+上有两点,A B ,它们的倒影点,A B ''均在反比例函数ky x=的图像上.若AB =k =____________.25.如图1,把一张正方形纸片对折得到长方形ABCD ,再沿ADC ∠的平分线DE 折叠,如图2,点C 落在点C '处,最后按图3所示方式折叠,使点A 落在DE 的中点A '处,折痕是FG .若原正方形纸片的边长为6cm ,则FG =_____________cm .二、解答题(共3个小题 ,共30分)26. 随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的,,,,A B C D E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x ,(单位:千米),乘坐地铁的时间1y 单位:分钟)是关于x 的一次函数, 其关系如下表:(1)求1y 关于x 的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用22111782y x x =-+来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家里所需的时间最短?并求出最短时间. 27.问题背景:如图1,等腰ABC ∆中,0,120AB AC BAC =∠=,作AD BC ⊥于点D ,则D 为BC的中点,01602BAD BAC ∠=∠=,于是2BC BD AB AB== 迁移应用:如图2,ABC ∆和ADE ∆都是等腰三角形,0120BAC ADE ∠=∠=,,,D E C 三点在同一条直线上,连接BD .① 求证:ADB AEC ∆≅∆;② 请直接写出线段,,AD BD CD 之间的等量关系式;拓展延伸:如图3,在菱形ABCD 中,0120BAC ∠=,在ABC ∠内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接,CE CF . ① 证明:CEF ∆是等边三角形; ② 若5,2AE CE ==,求BF 的长.28.如图1,在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,4D ,AB =(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C '.(1)求抛物线C 的函数表达式;(2)若抛物线C '与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围;(3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C '上的对应点为P ',设M 是C 上的动点,N 是C '上的动点,试探究四边形PMP N '能否成为正方形,若能,求出m 的值;若不能,请说明理由.试卷答案A 卷一、选择题1-5:BCCAD 6-10: BCADB. 二、填空题11. 1; 12. 40°; 13. <; 14. 15. 三、解答题15.(1)解:原式1241432-⨯+=-= (2)解:①可化简为:2733x x -<-,4x -<,∴4x >-; ②可化简为:213x ≤-,∴1x ≤- ∴ 不等式的解集为41x -<≤-. 16.解:原式=()()2211211111111x x x x x x x x x -+--+÷==+-+++,当1x =时,原式=. 17.解:(1)50,360;(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为1112212212112122A B A B A B A B B A B A B A B A 、、、、、、、 共8种.∴82123P ==. 18.解:过点B 作BD AC ⊥,由题060,4BAD AB ∠==,∴0cos602AD AB ==,∵0145∠=, ∴045CBD ∠=,∴BD CD =,∵0sin 60BD AB ==∴CD =∴0cos 45BC BD ==19.解:(1)把(),2A a -代入12y x =,4a ⇒=-, ∴()4,2A --, 把()4,2A --代入ky x=,8k ⇒=, ∴8y x=, 联立812y x y x ⎧=⎪⎪⎨⎪=⎪⎩4x ⇒=-或4x =,∴()4,2B ;(2)如图,过点P 作//PE y 轴,设8,P m m ⎛⎫⎪⎝⎭,AB y kx b =+,代入A B 、两点, 12AB y x ⇒=, ∴1,2C m m ⎛⎫ ⎪⎝⎭, 118322POCS m m m ∆=-=,1862m m m -=,2862m m -=⇒=,218622m m -=⇒=,∴P ⎛ ⎝⎭或()2,4P . 20.(1)证明: 连接OD ,∵OB OD =,∴OBD ∆是等腰三角形, OBD ODB ∠=∠ ①,又在ABC ∆中, ∵AB AC =, ∴ABC ACB ∠=∠ ②,则由①②得,ODB OBD ACB ∠=∠=∠, ∴//OD AC , ∵DH AC ⊥, ∴DH OD ⊥,∴DH 是O 的切线;(2)在O 中, ∵E B ∠=∠, ∵由O 中可知,E B C ∠=∠=∠,EDC ∆是等腰三角形,又∵DH AC ⊥且点A 是EH 中点,∴设,4AE x EC x ==,则3AC x =, 连接AD ,则在O 中,090ADB ∠=,即AD BD ⊥,又∵ABC ∆是等腰三角形,∴D 是BC 中点, 则在ABC ∆中,OD 是中位线, ∴13//,22OD AC OD x =, ∵//OD AC , ∴E ODF ∠=∠,在AEF ∆和ODF ∆中,E ODFOFD AFE ∠=∠⎧⎨∠=∠⎩, ∴AEFODF ∆∆,∴2,332EF AE AE x FD OD OD x ===, ∴23EF FD =. (3)设O 半径为r ,即OD OB r ==, ∵EF EA =, ∴EFA EAF ∠=∠, 又∵//OD EC , ∴FOD EAF ∠=∠,则FOD EAF EFA OFD ∠=∠=∠=∠, ∴OF OD r ==, ∴1DE DF EF r =+=+, ∴1BD CD DE r ===+,在O 中, ∵BDE EAB ∠=∠,∴BFD EFA EAB BDE ∠=∠=∠=∠, ∵BF BD =,BDF ∆是等腰三角形, ∴1BF BD r ==+,∴()2211AF AB BF OB BF r r r =-=-=-+=-, 在BFD ∆与EFA ∆中BFD EFAB E ∠=∠⎧⎨∠=∠⎩,∵BFD EFA ∆∆,∴11,1EF BF r FA DF r r+==-,解得12r r ==(舍) ∴综上,O.B 卷一、填空题21.; 22.752; 23.2π; 24.43-;二、解答题26. 解:(1)设y 1=kx+b ,将(8,18),(9,20),代入得:818920k b k b +=⎧⎨+=⎩,解得:22k b =⎧⎨=⎩, 故y 1关于x 的函数表达式为:y 1=2x+2;(2)设李华从文化宫回到家所需的时间为y ,则y=y 1+y 2=2x+2+12x 2﹣11x+78=12x 2﹣9x+80, ∴当x=9时,y 有最小值,y min =2148092142⨯⨯-⨯=39.5, 答:李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟. 27. 迁移应用:①证明:如图2,∵∠BAC=∠ADE=120°, ∴∠DAB=∠CAE , 在△DAE 和△EAC 中,DA EA DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩, ∴△DAB ≌△EAC ,②解:结论:理由:如图2﹣1中,作AH ⊥CD 于H.∵△DAB ≌△EAC , ∴BD=CE ,在Rt △ADH 中,, ∵AD=AE ,AH ⊥DE , ∴DH=HE ,∵AD+BD.拓展延伸:①证明:如图3中,作BH ⊥AE 于H ,连接BE.∵四边形ABCD 是菱形,∠ABC=120°, ∴△ABD ,△BDC 是等边三角形, ∴BA=BD=BC ,∵E 、C 关于BM 对称,∴BC=BE=BD=BA ,FE=FC , ∴A 、D 、E 、C 四点共圆, ∴∠ADC=∠AEC=120°, ∴∠FEC=60°,∴△EFC 是等边三角形, ②解:∵AE=5,EC=EF=2, ∴AH=HE=2.5,FH=4.5,在Rt △BHF 中,∵∠BHF=30°, ∴HFBF=cos30°,∴BF ==28.解:(1)由题意抛物线的顶点C (0,4),A(0),设抛物线的解析式为y=ax 2+4,把A(0)代入可得a=12-, ∴抛物线C 的函数表达式为y=12-x 2+4.(2)由题意抛物线C′的顶点坐标为(2m ,﹣4),设抛物线C′的解析式为y=12(x ﹣m )2﹣4, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到x 2﹣2mx+2m 2﹣8=0, 由题意,抛物线C′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()()2222428020280m m m m ⎧--⎪⎪⎨⎪-⎪⎩>>>,解得2<m<∴满足条件的m 的取值范围为2<m<(3)结论:四边形PMP′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H.由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP′N 是正方形, ∴PF=FM ,∠PFM=90°,易证△PFE ≌△FMH ,可得PE=FH=2,EF=HM=2﹣m , ∴M (m+2,m ﹣2), ∵点M 在y=﹣12x 2+4上, ∴m ﹣2=﹣12(m+2)2+4,解得﹣3﹣3(舍弃), ∴﹣3时,四边形PMP′N 是正方形. 情形2,如图,四边形PMP′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M(m﹣2,2﹣m)代入y=﹣12x2+4中,2﹣m=﹣12(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.2017年四川省攀枝花市中考数学试题及参考答案一、选择题(本大题共l0小题,每小题3分,共30分)1.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×1072.下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a63.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°4.某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是()年龄(岁)18 19 20 21人数 2 4 3 1 A.19,19 B.19,19.5 C.20,19 D.20,19.55.如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是()A.花B.是C.攀D.家6.关于x的一元二次方程(m﹣1)x2﹣2x﹣1=0有两个实数根,则实数m的取值范围是()A.m≥0B.m>0 C.m≥0且m≠1D.m>0且m≠17.下列说法正确的是()A.真命题的逆命题都是真命题B.在同圆或等圆中,同弦或等弦所对的圆周角相等C.等腰三角形的高线、中线、角平分线互相重合D.对角线相等且互相平分的四边形是矩形8.如图,△ABC内接于⊙O,∠A=60°,BC=6√3,则BĈ的长为()A .2πB .4πC .8πD .12π9.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列命题中正确的是( )A .a >b >cB .一次函数y=ax+c 的图象不经第四象限C .m (am+b )+b <a ( m 是任意实数)D .3b+2c >010.如图,正方形ABCD 中.点E ,F 分别在BC ,CD 上,△AEF 是等边三角形.连接AC 交EF 于点G .过点G 作GH ⊥CE 于点H ,若S △EGH =3,则S △ADF =( )A .6B .4C .3D .2二、填空题(本大题共6小题,每小题4分,共24分)11.在函数y =中,自变量x 的取值范围是 .12.一个不透明的袋中装有除颜色外均相同的5个红球和n 个黄球,从中随机摸出一个,摸到红球的概率是58,则n .13.计算:()113|12π-⎛⎫-+= ⎪⎝⎭.14.若关于x 的分式方程7311mxx x +=--无解,则实数m= . 15.如图,D 是等边△ABC 边AB 上的点,AD=2,DB=4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则CFCE= .16.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE﹣ED﹣DC运动到点C 停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③当14<t<22时,y=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是.三、解答题(本大题共8小题,共66分)17.(本题满分6分)先化简,再求值:222111xx x x-⎛⎫-÷⎪++⎝⎭,其中x=2.18.(本题满分6分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有名;(2)在扇形统计图中,m的值为,表示“D等级”的扇形的圆心角为度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.19.(本题满分6分)如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E,F,AE,CF分别与BD交于点G和H,且AB=(1)若tan∠ABE=2,求CF的长;(2)求证:BG=DH.20.(本题满分8分)攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了1箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.21.(本题满分8分)如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB与x轴平行,点B(1,﹣2),反比例函数kyx(k≠0)的图象经过A,C两点.(1)求点C的坐标及反比例函数的解析式.(2)直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.22.(本题满分8分)如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC 于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=43DC,求DFCF的值.23.(本题满分12分)如图1,在平面直角坐标系中,直线MN分别与x轴、y轴交于点M(6,0),N(0,2√3),等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边△ABC从图l的位置沿x轴正方向以每秒l个单位长度的速度平移,边AB,AC分别与线段MN交于点E,F(如图2所示),设△ABC平移的时间为t(s).(1)等边△ABC的边长为;(2)在运动过程中,当t=时,MN垂直平分AB;(3)若在△ABC开始平移的同时.点P从△ABC的顶点B出发.以每秒2个单位长度的速度沿折线BA﹣AC运动.当点P运动到C时即停止运动.△ABC也随之停止平移.①当点P在线段BA上运动时,若△PEF与△MNO相似.求t的值;②当点P在线段AC上运动时,设S△PEF=S,求S与t的函数关系式,并求出S的最大值及此时点P 的坐标.24.(本题满分12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0).与y 轴交于点C(0,3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.参考答案与解析一、选择题1.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a6【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【分析】直接利用完全平方公式以及幂的乘方运算法则和同底数幂的乘法运算法则计算得出答案.【解答】解:A、33=27,故此选项错误;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、(a3)4=a12,正确;D、a2•a3=a5,故此选项错误;故选:C.【点评】此题主要考查了完全平方公式以及幂的乘方运算和同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.3.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°【考点】平行线的性质.【分析】由题意可求得∠3的度数,然后由两直线平行,同位角相等,求得∠2的度数.【解答】解:如图,∵把一块直角三角板的直角顶点放在直尺的一边上,∴∠3=90°﹣∠1=90°﹣33°=57°,∵a∥b,∴∠2=∠3=57°.故选:B.【点评】此题考查了平行线的性质.注意运用:两直线平行,同位角相等.4.某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是()年龄(岁)18 19 20 21人数 2 4 3 1 A.19,19 B.19,19.5 C.20,19 D.20,19.5【考点】众数;中位数.【分析】由表格中的数据可以直接看出众数,然后将这十个数据按照从小到大的顺序排列即可得到中位数,本题得以解决.【解答】解:由表格可知,一共有2+4+3+1=10个数据,其中19出现的次数最多,故这组数据的众数是19,按从小到大的数据排列是:18、19、19、19、19、19、20、20、20、21,故中位数是19.故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义.5.如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是()。
2017年四川省达州市中考数学试卷(解析版)
2017年四川省达州市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2的倒数是()A.2 B.﹣2 C.D.﹣【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.如图,几何体是由3个完全一样的正方体组成,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是一个小正方形,第二层是一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.下列计算正确的是()A.2a+3b=5ab B.C.a3b÷2ab=a2D.2a与3b不是同类项,故A不正确;(B)原式=6,故B不正确;(D)原式=8a3b6,故D不正确;故选(C)【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.4.已知直线a∥b,一块含30°角的直角三角尺如图放置.若∠1=25°,则∠2等于()A.50°B.55°C.60°D.65°【分析】由三角形的外角性质求出∠3=55°,再由平行线的性质即可得出∠2的度数.【解答】解:如图所示:由三角形的外角性质得:∠3=∠1+30°=55°,∵a∥b,∴∠2=∠3=55°;故选:B.【点评】该题主要考查了平行线的性质、三角形的外角性质;牢固掌握平行线的性质是解决问题的关键.5.某市从今年1月1日起调整居民用水价格,每立方米水费上涨.小丽家去年12月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5cm3.求该市今年居民用水的价格.设去年居民用水价格为x元/cm3,根据题意列方程,正确的是()A. B.C.D.【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5cm3,进而得出等式即可.【解答】解:设去年居民用水价格为x元/cm3,根据题意列方程:﹣=5,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键.6.下列命题是真命题的是()A.若一组数据是1,2,3,4,5,则它的方差是3B.若分式方程有增根,则它的增根是1C.对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形D.若一个角的两边分别与另一个角的两边平行,则这两个角相等【分析】利用方差的定义、分式方程的增根、菱形的判定及平行的性质分别判断后即可确定正确的选项.【解答】解:A、若一组数据是1,2,3,4,5,则它的中位数是3,故错误,是假命题;B、若分式方程有增根,则它的增根是1或﹣1,故错误,是假命题;C、对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形,正确,是真命题;D、若一个角的两边分别与另一个角的两边平行,则这两个角相等或互补,故错误,是假命题,故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解方差的定义、分式方程的增根、菱形的判定及平行的性质等知识,难度不大.7.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.【解答】解:如图1,∵OC=2,∴OD=2×sin30°=1;如图2,∵OB=2,∴OE=2×sin45°=;如图3,∵OA=2,∴OD=2×cos30°=,则该三角形的三边分别为:1,,,∵(1)2+()2=()2,∴该三角形是直角三角形,∴该三角形的面积是:×1×=.故选:A.【点评】本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答是解题的关键.8.已知二次函数y=ax2+bx+c的图象如下,则一次函数y=ax﹣2b与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【分析】先根据二次函数的图象开口向下可知a<0,再由函数图象经过y轴正半可知c>0,利用排除法即可得出正确答案.【解答】解:二次函数y=ax2+bx+c的图象开口向下可知a<0,对称轴位于y轴左侧,a、b异号,即b>0.图象经过y轴正半可知c>0,由a<0,b>0可知,直线y=ax﹣2b经过一、二、四象限,由c>0可知,反比例函数y=的图象经过第一、三象限,故选:C.【点评】本题考查的是二次函数的图象与系数的关系,反比例函数及一次函数的性质,熟知以上知识是解答此题的关键.9.如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为()A.2017πB.2034πC.3024πD.3026π【分析】首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.【解答】解:∵AB=4,BC=3,∴AC=BD=5,转动一次A的路线长是:=2π,转动第二次的路线长是:=π,转动第三次的路线长是:=π,转动第四次的路线长是:0,以此类推,每四次循环,故顶点A转动四次经过的路线长为:π+π+2π=6π,∵2017÷4=504…1,∴顶点A转动四次经过的路线长为:6π×504+2π=3026π,故选D.【点评】本题主要考查了探索规律问题和弧长公式的运用,掌握旋转变换的性质、灵活运用弧长的计算公式、发现规律是解决问题的关键.10.已知函数y=的图象如图所示,点P是y轴负半轴上一动点,过点P作y轴的垂线交图象于A,B两点,连接OA、OB.下列结论:①若点M1(x1,y1),M2(x2,y2)在图象上,且x1<x2<0,则y1<y2;②当点P坐标为(0,﹣3)时,△AOB是等腰三角形;=7.5,AP=4BP;③无论点P在什么位置,始终有S△AOB④当点P移动到使∠AOB=90°时,点A的坐标为(2,﹣).其中正确的结论个数为()A.1 B.2 C.3 D.4【分析】①错误.因为x1<x2<0,函数y随x是增大而减小,所以y1>y2;②正确.求出A、B两点坐标即可解决问题;③正确.设P(0,m),则B(,m),A(﹣,m),可得PB=﹣,PA=﹣,推出PA=4PB,S AOB=S△OPB+S△OPA=+=7.5;④正确.设P(0,m),则B(,m),A(﹣,m),推出PB=﹣,PA=﹣,OP=﹣m,由△OPB∽△APO,可得OP2=PBPA,列出方程即可解决问题;【解答】解:①错误.∵x1<x2<0,函数y随x是增大而减小,∴y1>y2,故①错误.②正确.∵P(0,﹣3),∴B(﹣1,﹣3),A(4,﹣3),∴AB=5,OA==5,∴AB=AO,∴△AOB是等腰三角形,故②正确.③正确.设P(0,m),则B(,m),A(﹣,m),∴PB=﹣,PA=﹣,∴PA=4PB,∵S AOB=S△OPB+S△OPA=+=7.5,故③正确.④正确.设P(0,m),则B(,m),A(﹣,m),∴PB=﹣,PA=﹣,OP=﹣m,∵∠AOB=90°,∠OPB=∠OPA=90°,∴∠BOP+∠AOP=90°,∠AOP+∠OPA=90°,∴∠BOP=∠OAP,∴△OPB∽△APO,∴=,∴OP2=PBPA,∴m2=﹣(﹣),∴m4=36,∵m<0,∴m=﹣,∴A(2,﹣),故④正确.∴②③④正确,故选C.【点评】本题考查反比例函数综合题、等腰三角形的判定、两点间距离公式、相似三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数,构建方程解决问题,属于中考选择题中的压轴题.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.达州市莲花湖湿地公园占地面积用科学记数法表示为7.92×106平方米.则原数为7920000平方米.【分析】根据科学记数法,可得答案.【解答】解:7.92×106平方米.则原数为7920000平方米,故答案为:7920000.【点评】本题考查了科学记数法,n是几小数点向右移动几位.12.因式分解:2a3﹣8ab2=2a(a+2b)(a﹣2b).【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用平方差公式继续分解.【解答】解:2a3﹣8ab2=2a(a2﹣4b2)=2a(a+2b)(a﹣2b).故答案为:2a(a+2b)(a﹣2b).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y=图象上的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(m,n)恰好在反比例函数y=图象上的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,点(m,n)恰好在反比例函数y=图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n)在函数y=图象上的概率是:=.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是1<m<4.【分析】作辅助线,构建△AEC,根据三角形三边关系得:EC﹣AC<AE<AC+EC,即5﹣3<2m<5+3,所以1<m<4.【解答】解:延长AD至E,使AD=DE,连接CE,则AE=2m,∵AD是△ABC的中线,∴BD=CD,在△ADB和△EDC中,∵,∴△ADB≌△EDC,∴EC=AB=5,在△AEC中,EC﹣AC<AE<AC+EC,即5﹣3<2m<5+3,∴1<m<4,故答案为:1<m<4.【点评】本题考查了三角形三边关系、三角形全等的性质和判定,属于基础题,辅助线的作法是关键.15.甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B 运动,乙从点B出发,向终点A运动.已知线段AB长为90cm,甲的速度为2.5cm/s.设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中线段DE所表示的函数关系式为y=4.5x﹣90(20≤x ≤36).(并写出自变量取值范围)【分析】图中线段DE所表示的函数关系式,实际上表示甲乙两人相遇后的路程之和与时间的关系.【解答】解:观察图象可知,乙的速度==2cm/s,相遇时间==20,∴图中线段DE所表示的函数关系式:y=(2.5+2)(x﹣20)=4.5x﹣90(20≤x ≤36).故答案为y=4.5x﹣90(20≤x≤36).【点评】本题考查一次函数的应用、路程、速度、时间的关系等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考填空题中的压轴题.16.如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B 落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=3,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=CE;④S阴影=.其中正确结论的序号是①②④.【分析】①易求得DF长度,即可判定;②连接OP,易证OP∥CD,根据平行线性质即可判定;③易证AE=2EF,EF=2EC即可判定;即可解题;④连接OG,作OH⊥FG,易证△OFG为等边△,即可求得S阴影【解答】解:①∵AF是AB翻折而来,∴AF=AB=6,∵AD=BC=3,∴DF==3,∴F是CD中点;∴①正确;②连接OP,∵⊙O与AD相切于点P,∴OP⊥AD,∵AD⊥DC,∴OP∥CD,∴=,设OP=OF=x,则=,解得:x=2,∴②正确;③∵RT△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF;∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,∴③错误;④连接OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG为等边△;同理△OPG为等边△;=S扇形OGF,∴∠POG=∠FOG=60°,OH=OG=,S扇形OPGS矩形OPDH﹣S扇形OPG﹣S△OGH)+(S扇形OGF﹣S△OFG)∴S阴影=(=S矩形OPDH﹣S△OFG=2×﹣(×2×)=.∴④正确;故答案为①②④.【点评】本题考查了矩形面积的计算,正三角形的性质,平行线平分线段的性质,勾股定理的运用,本题中熟练运用上述考点是解题的关键.三、解答题(本大题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.计算:20170﹣|1﹣|+()﹣1+2cos45°.【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:20170﹣|1﹣|+()﹣1+2cos45°=1﹣+1+3+2×=5﹣+=5【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.国家规定,中、小学生每天在校体育活动时间不低于1h.为此,某区就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图如图所示,其中A组为t<0.5h,B组为0.5h≤t<1h,C组为1h≤t<1.5h,D组为t≥1.5h.请根据上述信息解答下列问题:(1)本次调查数据的众数落在B组内,中位数落在C组内;(2)该辖区约有18000名初中学生,请你估计其中达到国家规定体育活动时间的人数.【分析】(1)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得答案;(2)首先计算样本中达到国家规定体育活动时间的频率,再进一步估计总体达到国家规定体育活动时间的人数.【解答】解:(1)众数在B组.根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,故本次调查数据的中位数落在C组.故答案是:B,C;(2)达国家规定体育活动时间的人数约1800×=960(人).答:达国家规定体育活动时间的人约有960人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.设A=÷(a﹣).(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:﹣≤f(3)+f(4)+…+f(11),并将解集在数轴上表示出来.【分析】(1)根据分式的除法和减法可以解答本题;(2)根据(1)中的结果可以解答题目中的不等式并在数轴上表示出不等式的解集.【解答】解:(1)A=÷(a﹣)=====;(2)∵a=3时,f(3)=,a=4时,f(4)=,a=5时,f(5)=,…∴﹣≤f(3)+f(4)+…+f(11),即﹣≤++…+∴﹣≤+…+,∴﹣≤,∴﹣≤,解得,x≤4,∴原不等式的解集是x≤4,在数轴上表示如下所示,.【点评】本题考查分式的混合运算、在数轴表示不等式的解集、解一元一次不等式,解答本题的关键是明确分式的混合运算的计算方法和解不等式的方法.20.如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【分析】(1)根据平行线的性质以及角平分线的性质得出∠OEC=∠OCE,∠OFC=∠OCF,证出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;(2)根据平行四边形的判定以及矩形的判定得出即可.【解答】(1)证明:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠OCE=∠BCE,∠OCF=∠DCF,∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,∴∠OEC=∠OCE,∠OFC=∠OCF,∴OE=OC,OF=OC,∴OE=OF;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF=90°,在Rt△CEF中,由勾股定理得:EF==10,∴OC=OE=EF=5;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:连接AE、AF,如图所示:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.【点评】此题主要考查了矩形的判定、平行线的性质、等腰三角形的判定、勾股定理、平行四边形的判定和直角三角形的判定等知识,根据已知得出∠ECF=90°是解题关键.21.如图,信号塔PQ座落在坡度i=1:2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ落在斜坡上的影子QN长为2米,落在警示牌上的影子MN长为3米,求信号塔PQ的高.(结果不取近似值)【分析】如图作MF⊥PQ于F,QE⊥MN于E,则四边形EMFQ是矩形.分别在Rt△EQN、Rt△PFM中解直角三角形即可解决问题.【解答】解:如图作MF⊥PQ于F,QE⊥MN于E,则四边形EMFQ是矩形.在Rt△QEN中,设EN=x,则EQ=2x,∵QN2=EN2+QE2,∴20=5x2,∵x>0,∴x=2,∴EN=2,EQ=MF=4,∵MN=3,∴FQ=EM=1,在Rt△PFM中,PF=FMtan60°=4,∴PQ=PF+FQ=4+1.【点评】本题考查了解直角三角形的应用﹣坡度问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(8分)宏兴企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系:y=.(1)工人甲第几天生产的产品数量为70件?(2)设第x天生产的产品成本为P元/件,P与x的函数图象如图.工人甲第x 天创造的利润为W元,求W与x的函数关系式,并求出第几天时,利润最大,最大利润是多少?【分析】(1)根据y=70求得x即可;(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润×销售量”列出函数解析式,由二次函数的性质求得最值即可.【解答】解:(1)根据题意,得:∵若7.5x=70,得:x=>4,不符合题意;∴5x+10=70,解得:x=12,答:工人甲第12天生产的产品数量为70件;(2)由函数图象知,当0≤x≤4时,P=40,当4<x≤14时,设P=kx+b,将(4,40)、(14,50)代入,得:,解得:,∴P=x+36;①当0≤x≤4时,W=(60﹣40)7.5x=150x,∵W随x的增大而增大,∴当x=4时,W最大=600元;②当4<x≤14时,W=(60﹣x﹣36)(5x+10)=﹣5x2+110x+240=﹣5(x﹣11)2+845,∴当x=11时,W最大=845,∵845>600,∴当x=11时,W取得最大值,845元,答:第11天时,利润最大,最大利润是845元.【点评】本题考查一次函数的应用、二次函数的应用,解题的关键是理解题意,记住利润=出厂价﹣成本,学会利用函数的性质解决最值问题.23.(8分)如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ ∥AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=ACBQ;(3)若AC、BQ的长是关于x的方程x+=m的两实根,且tan∠PCD=,求⊙O的半径.【分析】(1)根据平行线的性质和圆周角定理得到∠ABD=∠BDQ=∠ACD,连接OB,OD,交AB于E,根据圆周角定理得到∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,根据三角形的内角和得到2∠ODB+2∠O=180°,于是得到∠ODB+∠O=90°,根据切线的判定定理即可得到结论;(2)证明:连接AD,根据等腰三角形的判定得到AD=BD,根据相似三角形的性质即可得到结论;(3)根据题意得到ACBQ=4,得到BD=2,由(1)知PQ是⊙O的切线,由切线的性质得到OD⊥PQ,根据平行线的性质得到OD⊥AB,根据三角函数的定义得到BE=3DE,根据勾股定理得到BE=,设OB=OD=R,根据勾股定理即可得到结论.【解答】(1)证明:∵PQ∥AB,∴∠ABD=∠BDQ=∠ACD,∵∠ACD=∠BCD,∴∠BDQ=∠ACD,如图1,连接OB,OD,交AB于E,则∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,在△OBD中,∠OBD+∠ODB+∠O=180°,∴2∠ODB+2∠O=180°,∴∠ODB+∠O=90°,∴PQ是⊙O的切线;(2)证明:如图2,连接AD,由(1)知PQ是⊙O的切线,∴∠BDQ=∠DCB=∠ACD=∠BCD=∠BAD,∴AD=BD,∵∠DBQ=∠ACD,∴△BDQ∽△ACD,∴=,∴BD2=ACBQ;(3)解:方程x+=m可化为x2﹣mx+4=0,∵AC、BQ的长是关于x的方程x+=m的两实根,∴ACBQ=4,由(2)得BD2=ACBQ,∴BD2=4,∴BD=2,由(1)知PQ是⊙O的切线,∴OD⊥PQ,∵PQ∥AB,∴OD⊥AB,由(1)得∠PCD=∠ABD,∵tan∠PCD=,∴tan∠ABD=,∴BE=3DE,∴DE2+(3DE)2=BD2=4,∴DE=,∴BE=,设OB=OD=R,∴OE=R﹣,∵OB2=OE2+BE2,∴R2=(R﹣)2+()2,解得:R=2,∴⊙O的半径为2.【点评】本题考查了相似三角形的判定和性质,一元二次方程根与系数的关系,圆周角定理,平行线的判定和性质,勾股定理,角平分线的定义,正确的作出辅助线是解题的关键.24.(11分)探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2=他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x=,y=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:(﹣3,3)或(7,1)或(﹣1,﹣3);拓展:(3)如图3,点P(2,n)在函数y=x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.【分析】(1)用P1、P2的坐标分别表示出OQ和PQ的长即可证得结论;(2)①直接利用两点间距离公式可求得MN的长;②分AB、AC、BC为对角线,可求得其中心的坐标,再利用中点坐标公式可求得D点坐标;(3)设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,则可知OR=OS=2,利用两点间距离公式可求得R的坐标,再由PR=PS=n,可求得n的值,可求得P点坐标,利用中点坐标公式可求得M点坐标,由对称性可求得N点坐标,连接MN交直线OL于点E,交x轴于点S,此时EP=EM,FP=FN,此时满足△PEF的周长最小,利用两点间距离公式可求得其周长的最小值.【解答】解:(1)∵P1(x1,y1),P2(x2,y2),∴Q1Q2=OQ2﹣OQ1=x2﹣x1,∴Q1Q=,∴OQ=OQ1+Q1Q=x1+=,∵PQ为梯形P1Q1Q2P2的中位线,∴PQ==,即线段P1P2的中点P(x,y)P的坐标公式为x=,y=;(2)①∵M(2,﹣1),N(﹣3,5),∴MN==,故答案为:;②∵A(2,2),B(﹣2,0),C(3,﹣1),∴当AB为平行四边形的对角线时,其对称中心坐标为(0,1),设D(x,y),则x+3=0,y+(﹣1)=2,解得x=﹣3,y=3,∴此时D点坐标为(﹣3,3),当AC为对角线时,同理可求得D点坐标为(7,1),当BC为对角线时,同理可求得D点坐标为(﹣1,﹣3),综上可知D点坐标为(﹣3,3)或(7,1)或(﹣1,﹣3),故答案为:(﹣3,3)或(7,1)或(﹣1,﹣3);(3)如图,设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM 交直线OL于点R,连接PN交x轴于点S,连接MN交直线OL于点E,交x轴于点F,又对称性可知EP=EM,FP=FN,∴PE+PF+EF=ME+EF+NF=MN,∴此时△PEF的周长即为MN的长,为最小,设R(x,x),由题意可知OR=OS=2,PR=PS=n,∴=2,解得x=﹣(舍去)或x=,∴R(,),∴=n,解得n=1,∴P(2,1),∴N(2,﹣1),设M(x,y),则=,=,解得x=,y=,∴M(,),∴MN==,即△PEF的周长的最小值为.【点评】本题为一次函数的综合应用,涉及中位线定理、中点坐标公式、两点间距离公式、轴对称的性质、角平分线的性质、平行四边形的性质等知识.在(1)中求得OQ和PQ的长是解题的关键,在(2)中注意中点坐标公式的应用,在(3)中确定出E、F的位置,求得P点的坐标是解题的关键.本题考查知识点较多,综合性较强,计算量较大,难度较大.25.(12分)如图1,点A坐标为(2,0),以OA为边在第一象限内作等边△OAB,点C为x轴上一动点,且在点A右侧,连接BC,以BC为边在第一象限内作等边△BCD,连接AD交BC于E.(1)①直接回答:△OBC与△ABD全等吗?②试说明:无论点C如何移动,AD始终与OB平行;(2)当点C运动到使AC2=AEAD时,如图2,经过O、B、C三点的抛物线为y1.试问:y1上是否存在动点P,使△BEP为直角三角形且BE为直角边?若存在,求出点P坐标;若不存在,说明理由;(3)在(2)的条件下,将y1沿x轴翻折得y2,设y1与y2组成的图形为M,函数y=x+m的图象l与M有公共点.试写出:l与M的公共点为3个时,m 的取值.【分析】(1)①利用等边三角形的性质证明△OBC≌△ABD;②证明∠OBA=∠BAD=60°,可得OB∥AD;(2)首先证明DE⊥BC,再求直线AE与抛物线的交点就是点P,所以分别求直线AE和抛物线y1的解析式组成方程组,求解即可;(3)先画出如图3,根据图形画出直线与图形M有个公共点时,两个边界的直线,上方到y=x,将y=x向下平移即可满足l与图形M有3个公共点,一直到直线l与y2相切为止,主要计算相切时,列方程组,确定△≥0时,m的值即可.【解答】解:(1)①△OBC与△ABD全等,理由是:如图1,∵△OAB和△BCD是等边三角形,∴∠OBA=∠CBD=60°,OB=AB,BC=BD,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,∴△OBC≌△ABD(SAS);②∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∴∠OBA=∠BAD,∴OB∥AD,∴无论点C如何移动,AD始终与OB平行;(2)如图2,∵AC2=AEAD,∴,∵∠EAC=∠DAC,∴△AEC∽△ACD,∴∠ECA=∠ADC,∵∠BAD=∠BAO=60°,∴∠DAC=60°,∵∠BED=∠AEC,∴∠ACB=∠ADB,∴∠ADB=∠ADC,∵BD=CD,∴DE⊥BC,Rt△ABE中,∠BAE=60°,∴∠ABE=30°,∴AE=AB=×2=1,Rt△AEC中,∠EAC=60°,∴∠ECA=30°,∴AC=2AE=2,∴C(4,0),等边△OAB中,过B作BH⊥x轴于H,∴BH==,∴B(1,),设y1的解析式为:y=ax(x﹣4),把B(1,)代入得:=a(1﹣4),a=﹣,∴设y1的解析式为:y1=﹣x(x﹣4)=﹣x2+x,过E作EG⊥x轴于G,Rt△AGE中,AE=1,∴AG=AE=,EG==,∴E(,),设直线AE的解析式为:y=kx+b,把A(2,0)和E(,)代入得:,解得:,∴直线AE的解析式为:y=x﹣2,则,解得:,,∴P(3,)或(﹣2,﹣4);(3)如图3,y1=﹣x2+x=﹣(x﹣2)2+,顶点(2,),∴抛物线y2的顶点为(2,﹣),∴y2=(x﹣2)2﹣,当m=0时,y=x与图形M两公共点,当y2与l相切时,即有一个公共点,l与图形M有3个公共点,则,=﹣,x2﹣7x﹣3m=0,△=(﹣7)2﹣4×1×(﹣3m)≥0,m≥﹣,∴当l与M的公共点为3个时,m的取值是:﹣≤m<0.【点评】本题是二次函数与三角形的综合题,考查了等边三角形的性质、三角形全等和相似的性质和判定、平行线的判定、两函数的交点问题、翻折变换、利用待定系数法求函数的解析式等知识,比较复杂,计算量大,尤其是第三问,利用数形结合的思想有助于理解题意,解决问题.。
人教版数学九年级上册课件31-第二十五章25.3用频率估计概率
典例剖析
例 (2017江苏南京江宁期中)某批足球的质量检测结果如下:
抽取足球数
100
200
400
600
800
n
合格的频数
93
m
192
384
564
759
合格的频率
0.93
0.96
0.96
0.94
m n
1 000 950
(1)填写表中的空格;(精确到0.01) (2)在图25-3-3中画出合格的频率折线统计图; (3)从这批足球中任意抽取的一只足球是合格品的概率估计值是多少?并说明理由.
当试验的所有可能结果不是有限个,或各种结果发生的可能性不相等时,可通过统计频 率来估计概率
计算方法
一般地,在大量重复试验中,如果事件A发生的频率 m稳定于某个常数p,那么事件A发生
n
的概率P(A)=P
例1 (2019陕西渭南韩城期末)在一个不透明的盒子里装有黑、白两种颜色的球
共50个,这些球除颜色外其余完全相同.王颖做摸球试验,搅匀后,她从盒子里随机
25.3 用频率估计概率
全解版
教材知识全解
知识点一 用频率估计概率
用频率 估计概率
在随机事件中,一个随机事件发生与否事先无法预测,表面上看似无规律可循,但当我们 做大量重复试验时,这个事件发生的频率就呈现出稳定性.因此,做了大量试验后,可以用 一个事件发生的频率作为这个事件发生的概率的估计值
适用对象
摸出一个球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是试验中的一
组统计数据:
摸球的 次数n
100
200
300
500
800
1 000
3 000
中考数学《一元二次方程及应用》一轮专题复习2含答案解析
中考一轮数学专题复习:一元二次方程及应用测试题1.(来宾)已知实数,满足,,则以,为根的一元二次方程是()A.B.C.D.【答案】A.试题分析:以,为根的一元二次方程,故选A.2.(贵港)若关于x的一元二次方程有实数根,则整数a的最大值为()A.﹣1 B.0 C.1 D.2【答案】B.试题分析:∵关于x的一元二次方程有实数根,∴△==且,∴且,∴整数a的最大值为0.故选B.3.(钦州)用配方法解方程,配方后可得()A.B.C.D.【答案】A.试题分析:方程,整理得:,配方得:,即,故选A.4.(成都)关于x的一元二次方程有两个不相等的实数根,则的取值范围是()A.B.C.D.且【答案】D.试题分析:∵是一元二次方程,∴,∵有两个不想等的实数根,则,则有,∴,∴且,故选D.5.(雅安)已知等腰三角形的腰和底的长分别是一元二次方程的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.10【答案】B.试题分析:解方程,(x﹣1)(x﹣3)=0,解得,;∵当底为3,腰为1时,由于3>1+1,不符合三角形三边关系,不能构成三角形;∴等腰三角形的底为1,腰为3;∴三角形的周长为1+3+3=7.故选B.6.(达州)方程有两个实数根,则m的取值范围()A.B.且C.D.且【答案】B.试题分析:根据题意得:,解得且.故选B.7.(南充)关于x的一元二次方程有两个整数根且乘积为正,关于y的一元二次方程同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;②;③.其中正确结论的个数是()A.0个B.1个C.2个D.3个【答案】C.8.(佛山)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A.7m B.8m C.9m D.10m【答案】A.试题分析:设原正方形的边长为xm,依题意有:(x﹣3)(x﹣2)=20,解得:x=7或x=﹣2(不合题意,舍去),即:原正方形的边长7m.故选A.9.(安顺)若一元二次方程无实数根,则一次函数的图象不经过第()象限.A.四B.三C.二D.一【答案】D.试题分析:∵一元二次方程无实数根,∴△<0,∴△=4﹣4(﹣m)=4+4m <0,∴m<﹣1,∴m+1<1﹣1,即m+1<0,m﹣1<﹣1﹣1,即m﹣1<﹣2,∴一次函数的图象不经过第一象限,故选D.10.(山西省)我们解一元二次方程时,可以运用因式分解法,将此方程化为,从而得到两个一元一次方程:或,进而得道原方程的解为,.这种解法体现的数学思想是()A.转化思想B.函数思想C.数形结合思想D.公理化思想【答案】A.试题分析:我们解一元二次方程时,可以运用因式分解法,将此方程化为,从而得到两个一元一次方程:或,进而得道原方程的解为,.这种解法体现的数学思想是转化思想,故选A.11.(枣庄)已知关于x的一元二次方程的两个实数根分别为,,则m+n的值是()A.﹣10 B.10 C.﹣6 D.2【答案】A.12.(烟台)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程的两根,则n的值为()A.9 B.10 C.9或10 D.8或10【答案】B.13.(甘孜州)若矩形ABCD的两邻边长分别为一元二次方程的两个实数根,则矩形ABCD的对角线长为.【答案】5.试题分析:方程,即,解得:,,则矩形ABCD的对角线长是:=5.故答案为:5.14.(达州)新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x元,可列方程为.【答案】(40﹣x)(20+2x)=1200.15.(广元)从3,0,-1,-2,-3这五个数中抽取一个敖,作为函数和关于x的一元二次方程中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是________.【答案】.试题分析:∵所得函数的图象经过第一、三象限,∴,∴,∴3,0,﹣1,﹣2,﹣3中,3和﹣3均不符合题意,将m=0代入中得,,△=﹣4<0,无实数根;将代入中得,,,有实数根,但不是一元二次方程;将代入中得,,△=4+4=8>0,有实数根.故m=.故答案为:.16.(毕节)一个容器盛满纯药液40L,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L,则每次倒出的液体是L.【答案】20.试题分析:设每次倒出液体xL,由题意得:,解得:x=60(舍去)或x=20.故答案为:20.17.(日照)如果m,n是两个不相等的实数,且满足,,那么代数式= .【答案】.考点:根与系数的关系.18.(自贡)利用一面墙(墙的长度不限),另三边用58m长的篱笆围成一个面积为200m2的矩形场地,求矩形的长和宽.【答案】当矩形长为25米时宽为8米,当矩形长为50米时宽为4米.试题分析:设垂直于墙的一边为x米,则邻边长为(58﹣2x),利用矩形的面积公式列出方程并解答.试题解析:设垂直于墙的一边为x米,得:x(58﹣2x)=200,解得:,,∴另一边为8米或50米.答:当矩形长为25米时宽为8米,当矩形长为50米时宽为4米.19.(崇左)为落实国务院房地产调控政策,使“居者有其屋”.某市加快了廉租房的建设力度,市政府共投资3亿元人民币建设了廉租房12万平方米,投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问建设了多少万平方米廉租房?【答案】(1)50%;(2)18.试题分析:(1)设每年市政府投资的增长率为x.根据投资6.75亿元人民币建设廉租房,列方程求解;(2)先求出单位面积所需钱数,再用累计投资÷单位面积所需钱数可得结果.试题解析:(1)设投资平均增长率为x,根据题意得:,解得,(不符合题意舍去)答:政府投资平均增长率为50%;(2)(万平方米)答:建设了18万平方米廉租房.对应练习1.一元二次方程x2=2x的根是( C )A.x=2B.x=0C.x1=0, x2=2D.x1=0, x2=-22.方程x2-4=0的根是( C )A.x=2 B.x=-2C.x1=2,x2=-2 D.x=43.方程(x-3)(x+1)=x-3的解是( D )A.x=0 B.x=3C.x=3或x=-1 D.x=3或x=04.用配方法解方程3x2-6x+1=0,则方程可变形为( D )A .(x -3)2=13B .3(x -1)2=13C .(3x -1)2=1D .(x -1)2=235.一元二次方程x (x -2)=0根的情况是( A ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根 D .没有实数根6.已知方程x 2-5x +2=0的两个解分别为x 1、x 2,则x 1+x 2-x 1·x 2的值为( D ) A .-7 B .-3 C .7 D .37.当m 满足m <4.5时,关于x 的方程x 2-4x +m -12=0有两个不相等的实数根.8.方程2x 2+5x -3=0的解是x 1=-3,x 2=12.9.已知关于x 的方程x 2+mx -6=0的一个根为2,则m =1,另一根是-3.10.(四川宜宾)某城市居民每月最低生活保障在是240元,经过连续两年的增加,到提高到345.6元,则该城市两年来最低生活保障的平均年增长率是20%.11.(山东滨州)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x, 可列方程为289(1-x )2=256.12.解方程: (x -3)2+4x (x -3)=0. 解:(x -3)2+4x (x -3)=0, (x -3)(x -3+4x )=0, (x -3)(5x -3)=0.于是得x -3=0或5x -3=0,x 1=3,x 2=35.13.一元二次方程x (x -2)=2-x 的根是( D ) A .-1 B .2C .1和2D .-1和214.如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p 、q 的值分别是( A )A .-3,2B .3,-2C .2,-3D .2,315.关于x 的方程x 2+2kx +k -1=0的根的情况描述正确的是( B ) A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种16.已知a 、b 是一元二次方程x 2-2x -1=0的两个实数根,则代数式(a -b )(a +b -2)+ab 的值等于-1.17.已知一元二次方程x 2-6x -5=0的两根为a 、b ,则1a +1b的值是-65. 18.如图X2-1-4,邻边不等的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是6 m .若矩形的面积为4 m 2,则AB 的长度是 1或2m(可利用的围墙长度超过6 m).图X2-1-4 C 级 拔尖题19.三角形的每条边的长都是方程x 2-6x +8=0的根,且该三角形不是等边三角形,求三角形的周长.解:解方程x 2-6x +8=0得x =2,x =4, ∴三角形的三条边的长只能是4,4,2, ∴周长是10.20.在国家政策的宏观调控下,某市的商品房成交均价由今年3月份的14 000元/m 2下降到5月份的12 600元/m 2.(1)问4、5两月平均每月降价的百分率约是多少?(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10 000元/m 2?请说明理由.(参考数据:0.9≈0.95)解:(1)设4,5月份平均每月降价的百分率为x ,根据题意得14 000(1-x )2=12 600, 化简得(1-x )2=0.9,解得x 1≈0.05,x 2≈1.95(不合题意,舍去). 因此4,5月份平均每月降低的百分率约为5%.(2)如果按此降价的百分率继续回落,估计7月份的商品房成交均价为12 600(1-x )2=12 600×0.9=11 340>10 000,因此可知,7月份该市的商品房成交均价不会跌破10 000元/m 2. 21.关于x 的一元二次方程x 2-3x -k =0有两个不相等的实数根. (1)求k 的取值范围;(2)请选择一个k 的负整数值,并求出方程的根. 解:(1)方程有两个不相等的实数根,∴(-3)2-4(-k )>0,即4k >-9,解得k >-94.(2)若k 是负整数,k 只能为-1或-2. 如果k =-1,原方程为x 2-3x +1=0, 解得x 1=3+52,x 2=3-52.如果k =-2,原方程为x 2-3x +2=0,解得x 1=1,x 2=2.22.如图X2-1-5,A 、B 、C 、D 为矩形的四个顶点,AB =16 cm ,AD =6 cm.动点P 、Q 分别从点A 、C 同时出发,点P 以3 cm/s 的速度向B 移动,一直到点B 为止,点Q 以2 cm/s 的速度向点D 移动.(1)P 、Q 两点从出发开始多长时间,四边形PBCQ 的面积是33 cm 2;(2)P、Q两点从出发开始多长时间,点P与点Q间的距离是10 cm.图X2-1-5解:(1)设P、Q两点从出发开始x s时,四边形PBCQ的面积是33 cm2,则AP=3x cm,PB=(16-3x) cm,CQ=2x cm,由梯形的面积公式,得[2x+(16-3x)]×6÷2=33,解得x=5.所以P、Q两点从出发开始5 s时,四边形PBCQ的面积是33 cm2.(2)过点Q作QH⊥AB,则HB=BC=6,HB=QC=2x,所以PH=16-5x,在Rt△PHQ中,PQ2=PH2+HQ2=(16-5x)2+62=102,即(16-5x)2=64,解得x1=1.6,x2=4.8.当x=4.8时,16-5x=-8,不符题意,舍去.所以P、Q两点从出发1.6s时,点P与点Q间的距离是10 cm.。
初中数学四川省甘孜州、阿坝州中考模拟数学考试题考试卷及答案Word.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:计算2﹣3的结果是()A.﹣5 B.﹣1 C.1 D.5试题2:如图所示的几何体的主视图是()A.B.C.D.试题3:下列图形中,是中心对称图形的为()A.B.C.D.试题4:使二次根式的有意义的x的取值范围是()评卷人得分A.x>0 B.x>1 C.x≥1 D.x≠1试题5:如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为()A.110°B.80°C.70°D.60°试题6:下列运算正确的是()A.(x﹣2)2=x2﹣4 B.x3•x4=x12C.x6÷x3=x2D.(x2)3=x6试题7:函数y=x﹣2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限试题8:某校篮球队五名主力队员的身高分别是174,179,180,174,178(单位:cm),则这五名队员身高的中位数是()A.174cm B.177cm C.178cm D.180cm试题9:二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣2试题10:如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是()A.π﹣2 B.π﹣4 C.4π﹣2 D.4π﹣4试题11:因式分解:x2﹣1=试题12:将除颜色外其余均相同的4个红球和2个白球放入一个不透明足够大的盒子内,摇匀后随机摸出一球,则摸出红球的概率为试题13:边长为2的正三角形的面积是试题14:若矩形ABCD的两邻边长分别为一元二次方程x2﹣7x+12=0的两个实数根,则矩形ABCD的对角线长为试题15:计算:﹣(π﹣1)0﹣4sin45°;试题16:解不等式x>x﹣2,并将其解集表示在数轴上.试题17:解分式方程:+=1.试题18:某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试75 80 90面试93 70 68根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率(没有弃权,每位同学只能推荐1人)如扇形统计图所示,每得一票记1分.(1)分别计算三人民主评议的得分;(2)根据实际需要,学校将笔试、面试、民主评议三项得分按4:3:3的比例确定个人成绩,三人中谁的得分最高?试题19:如图,某中学九年级数学兴趣小组测量校内旗杆AB的高度,在C点测得旗杆顶端A的仰角∠BCA=30°,向前走了20米到达D点,在D点测得旗杆顶端A的仰角∠BDA=60°,求旗杆AB的高度.(结果保留根号)试题20:如图,一次函数y=﹣x+5的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式;(2)在第一象限内,当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,写出自变量x的取值范围.试题21:如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC分别交于D,F两点,过点D作DE⊥AC,垂足为点E.(1)判断DF与⊙O的位置关系,并证明你的结论;(2)过点F作FH⊥BC,垂足为点H,若AB=4,求FH的长(结果保留根号).试题22:若二次函数y=2x2的图象向左平移2个单位长度后,得到函数y=2(x+h)2的图象,则h= .试题23:已知关于x的方程3a﹣x=+3的解为2,则代数式a2﹣2a+1的值是试题24:如图,AB是⊙O的直径,弦CD垂直平分半径OA,则∠ABC的大小为度.试题25:若函数y=﹣kx+2k+2与y=(k≠0)的图象有两个不同的交点,则k的取值范围是试题26:如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为.试题27:一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?试题28:已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.试题29:如图,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x轴交于点A(1,0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H为顶点的三角形是否能够与△OBC相似?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.试题1答案:B试题2答案:A试题3答案:B试题4答案:C试题5答案:CD试题7答案:B试题8答案:C试题9答案:D试题10答案:A试题11答案:(x+1)(x﹣1).试题12答案:试题13答案:.试题14答案:5 .试题15答案:﹣(π﹣1)0﹣4sin45°=2﹣1﹣4×=﹣1;解x>x﹣2得x>﹣3,把解集在数轴上表示:试题17答案:解:方程两边同乘(x﹣3),得:2﹣x﹣1=x﹣3,整理解得:x=2,经检验:x=2是原方程的解试题18答案:解:(1)甲民主评议的得分是:200×25%=50(分);乙民主评议的得分是:200×40%=80(分);丙民主评议的得分是:200×35%=70(分).(2)甲的成绩是:(75×4+93×3+50×3)÷(4+3+3)=729÷10=72.9(分)乙的成绩是:(80×4+70×3+80×3)÷(4+3+3)=770÷10=77(分)丙的成绩是:(90×4+68×3+70×3)÷(4+3+3)=774÷10=77.4(分)∵77.4>77>72.9,∴丙的得分最高.试题19答案:解:∵∠C=30°,∠ADB=60°,∴∠DAC=30°,∴AD=CD,∵CD=20米,∴AD=20米,在Rt△ADB中,=sin∠ADB,∴AB=AD×sin60°=20×=10米试题20答案:解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),∴n=﹣1+5,∴n=4,∴点A坐标为(1,4),∵反比例函数y=(k≠0)过点A(1,4),∴k=4,∴反比例函数的解析式为y=;(2)联立,解得或,即点B的坐标(4,1),若一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值,则1<x<4.试题21答案:解:(1)DE是⊙O的切线;理由如下:连接OD,如图1所示:∵△ABC是等边三角形,∴AB=BC=AC,∠B=∠C=60°,∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∴∠BOD=∠C,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线;(2)连接OF,如图2所示:∵OC=OF,∠C=60°,∴△OCF是等边三角形,∴CF=OC=BC=AB=2,∵FH⊥BC,∴∠FHC=90°,∴FH=CF•sin∠C=2×=.试题22答案:2试题23答案:1 .试题24答案:30试题25答案:k>﹣且k≠0 .试题26答案:(5,﹣5)试题27答案:解:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.∵9×(10﹣x)+13x≥100,∴x≥2,经销商盈利为w=11x+17•(10﹣x)+9•(10﹣x)+13x=﹣2x+260.∵﹣2<0,∴w随x增大而减小,∴当x=3时,w值最大.甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+260=254(元).试题28答案:解:(1)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠E=∠F,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(3)四边形MNPQ是正方形.理由为:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴四边形MNPQ是正方形.试题29答案:解:(1)∵点A(1,0)在抛物线y=ax2﹣5ax+2(a≠0)上,∴a﹣5a+2=0,∴a=,∴抛物线的解析式为y=x2﹣x+2;(2)抛物线的对称轴为直线x=,∴点B(4,0),C(0,2),设直线BC的解析式为y=kx+b,∴把B、C两点坐标代入线BC的解析式为y=kx+b,得,解得k=﹣,b=2,∴直线BC的解析式y=﹣x+2;(3)设N(x,x2﹣x+2),分两种情况讨论:①当△OBC∽△HNB时,如图1,=,即=,解得x1=5,x2=4(不合题意,舍去),∴点N坐标(5,2);②当△OBC∽△HBN时,如图2,=,即=﹣,解得x1=2,x2=4(不合题意舍去),∴点N坐标(2,﹣1);综上所述点N坐标(5,2)或(2,﹣1).。
2017年四川省成都市中考数学试卷解析版
2017年四川省成都市中考数学试卷解析版(A卷)一、选择题(本大题共10小题,每小题3分,共30分)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.2.如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.解:从上边看一层三个小正方形,故选:C.3.总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×1011解:647亿=647 0000 0000=6.47×1010,故选:C.4.二次根式√x−1中,x的取值范围是()A.x≥1B.x>1C.x≤1D.x<1解:由题意可知:x﹣1≥0,∴x≥1,故选:A.5.下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选:D.6.下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6D.(﹣a3)2=﹣a6解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选:B.7.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.8.如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A .4:9B .2:5C .2:3D .√2:√3解:∵四边形ABCD 和A ′B ′C ′D ′是以点O 为位似中心的位似图形,OA :OA ′=2:3,∴DA :D ′A ′=OA :OA ′=2:3,∴四边形ABCD 与四边形A ′B ′C ′D ′的面积比为:(23)2=49,故选:A .9.已知x =3是分式方程kx x−1−2k−1x=2的解,那么实数k 的值为( )A .﹣1B .0C .1D .2解:将x =3代入kx x−1−2k−1x=2,∴3k 2−2k−13=2解得:k =2, 故选:D .10.在平面直角坐标系xOy 中,二次函数y =ax 2+bx +c 的图象如图所示,下列说法正确的是( )A .abc <0,b 2﹣4ac >0B .abc >0,b 2﹣4ac >0C .abc <0,b 2﹣4ac <0D .abc >0,b 2﹣4ac <0解:根据二次函数的图象知: 抛物线开口向上,则a >0;抛物线的对称轴在y 轴右侧,则x =−b2a >0,即b <0;抛物线交y 轴于负半轴,则c <0; ∴abc >0,∵抛物线与x 轴有两个不同的交点, ∴△=b 2﹣4ac >0, 故选:B .二、填空题(本大题共4小题,每小题4分,共16分) 11.(4分)(√2017−1)0= 1 . 解:(√2017−1)0=1. 故答案为:1.12.(4分)在△ABC 中,∠A :∠B :∠C =2:3:4,则∠A 的度数为 40° . 解:∵∠A :∠B :∠C =2:3:4, ∴设∠A =2x ,∠B =3x ,∠C =4x , ∵∠A +∠B +∠C =180°, ∴2x +3x +4x =180°, 解得:x =20°, ∴∠A 的度数为:40°. 故答案为:40°.13.(4分)如图,正比例函数y 1=k 1x 和一次函数y 2=k 2x +b 的图象相交于点A (2,1),当x <2时,y 1 < y 2.(填“>”或“<”).解:由图象知,当x <2时,y 2的图象在y 1上方, ∴y 1<y 2. 故答案为:<.14.(4分)如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB ,AD 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作AP 射线,交边CD 于点Q ,若DQ =2QC ,BC =3,则平行四边形ABCD 周长为 15 .解:∵由题意可知,AQ 是∠DAB 的平分线, ∴∠DAQ =∠BAQ .∵四边形ABCD 是平行四边形,∴CD ∥AB ,BC =AD =3,∠BAQ =∠DQA , ∴∠DAQ =∠DQA , ∴△AQD 是等腰三角形, ∴DQ =AD =3. ∵DQ =2QC , ∴QC =12DQ =32,∴CD =DQ +CQ =3+32=92,∴平行四边形ABCD 周长=2(DC +AD )=2×(92+3)=15.故答案为:15.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|√2−1|−√8+2sin45°+(12)﹣2;(2)解不等式组:{2x −7<3(x −1)①43x +3≤1−23x②. 解:(1)原式=√2−1﹣2√2+2×√22+4=√2−1﹣2√2+√2+4 =3;(2){2x −7<3(x −1)①43x +3≤1−23x②, ①可化简为2x ﹣7<3x ﹣3,﹣x<4,x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.16.(6分)化简求值:x−1x+2x+1÷(1−2x+1),其中x=√3−1.解:x−1x+2x+1÷(1−2x+1)=x−1(x+1)2•x+1x−1=1x+1,∵x=√3−1,∴原式=3−1+1=√33.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有50人,估计该校1200名学生中“不了解”的人数是360人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12种可能的结果,恰好抽到一男一女的结果有8个,∴P(恰好抽到一男一女的)=812=23.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C 两地的距离.解:过B作BD⊥AC于点D.在Rt△ABD中,BD=AB•sin∠BAD=4×√32=2√3(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2√3(千米),∴BC=√2BD=2√6(千米).答:B,C两地的距离是2√6千米.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=12x的图象与反比例函数y=kx的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.解:(1)把A (a ,﹣2)代入y =12x ,可得a =﹣4, ∴A (﹣4,﹣2),把A (﹣4,﹣2)代入y =kx ,可得k =8, ∴反比例函数的表达式为y =8x , ∵点B 与点A 关于原点对称, ∴B (4,2);(2)如图所示,过P 作PE ⊥x 轴于E ,交AB 于C , 设P (m ,8m),则C (m ,12m ),∵△POC 的面积为3, ∴12m ×|12m −8m|=3,解得m =2√7或2, ∴P (2√7,47√7)或(2,4).20.(12分)如图,在△ABC 中,AB =AC ,以AB 为直径作圆O ,分别交BC 于点D ,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求EFFD的值;(3)若EA=EF=1,求圆O的半径.证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD ∥AC ,OD =12AC =12×3x =3x 2, ∵OD ∥AC , ∴∠E =∠ODF , 在△AEF 和△ODF 中,∵∠E =∠ODF ,∠OFD =∠AFE , ∴△AEF ∽△ODF , ∴EF FD =AE OD , ∴AE OD =x32x =23,∴EF FD=23;(3)如图2,设⊙O 的半径为r ,即OD =OB =r , ∵EF =EA , ∴∠EF A =∠EAF , ∵OD ∥EC , ∴∠FOD =∠EAF ,则∠FOD =∠EAF =∠EF A =∠OFD , ∴DF =OD =r , ∴DE =DF +EF =r +1, ∴BD =CD =DE =r +1, 在⊙O 中,∵∠BDE =∠EAB , ∴∠BFD =∠EF A =∠EAB =∠BDE , ∴BF =BD ,△BDF 是等腰三角形, ∴BF =BD =r +1,∴AF =AB ﹣BF =2OB ﹣BF =2r ﹣(1+r )=r ﹣1, 在△BFD 和△EF A 中, ∵{∠BFD =∠EFA∠B =∠E , ∴△BFD ∽△EF A ,∴EF FA =BF DF, ∴1r−1=1+r r,解得:r 1=1+√52,r 2=1−√52(舍), 综上所述,⊙O 的半径为1+√52.四、填空题(本大题共5小题,每小题4分,共20分) 21.(4分)如图,数轴上点A 表示的实数是 √5−1 .解:由图形可得:﹣1到A 的距离为√12+22=√5, 则数轴上点A 表示的实数是:√5−1. 故答案为:√5−1.22.(4分)已知x 1,x 2是关于x 的一元二次方程x 2﹣5x +a =0的两个实数根,且x 12﹣x 22=10,则a =214.解:由两根关系,得根x 1+x 2=5,x 1•x 2=a , 由x 12﹣x 22=10得(x 1+x 2)(x 1﹣x 2)=10, 若x 1+x 2=5,即x 1﹣x 2=2,∴(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1•x 2=25﹣4a =4,∴a =214, 故答案为:214.23.(4分)已知⊙O 的两条直径AC ,BD 互相垂直,分别以AB ,BC ,CD ,DA 为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P 1,针尖落在⊙O 内的概率为P 2,则P 1P 2=2π.解:设⊙O 的半径为1,则AD =√2, 故S 圆O =π,阴影部分面积为:π(√22)2×2+√2×√2−π=2, 则P 1=2π+2,P 2=ππ+2, 故P 1P 2=2π.故答案为:2π.24.(4分)在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P ′(1x ,1y )称为点P 的“倒影点”,直线y =﹣x +1上有两点A ,B ,它们的倒影点A ′,B ′均在反比例函数y =kx 的图象上.若AB =2√2,则k = −43. 解:(方法一)设点A (a ,﹣a +1),B (b ,﹣b +1)(a <b ),则A ′(1a ,11−a),B ′(1b,11−b),∵AB =√(b −a)2+[(−b +1)−(−a +1)]2=√2(b −a)2=√2(b ﹣a )=2√2, ∴b ﹣a =2,即b =a +2.∵点A ′,B ′均在反比例函数y =kx 的图象上,∴{b =a +2k =1a(1−a)=1b(1−b),解得:k =−43.(方法二)∵直线y =﹣x +1上有两点A 、B ,且AB =2√2,∴设点A 的坐标为(a ,﹣a +1),则点B 的坐标为(a +2,﹣a ﹣1),点A ′的坐标为(1a,11−a),点B ′的坐标为(1a+2,−1a+1). ∵点A ′,B ′均在反比例函数y =k x的图象上,∴{11−a =ak−1a+1=k(a +2), 解得:{a =−12k =−43. 故答案为:−43.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD ,再沿∠ADC 的平分线DE 折叠,如图2,点C 落在点C ′处,最后按图3所示方式折叠,使点A 落在DE 的中点A ′处,折痕是FG ,若原正方形纸片的边长为6cm ,则FG = √10 cm .解:作GM ⊥AC ′于M ,A ′N ⊥AD 于N ,AA ′交EC ′于K .易知MG =AB =AC ′, ∵GF ⊥AA ′,∴∠AFG +∠F AK =90°,∠MGF +∠MFG =90°, ∴∠MGF =∠KAC ′, ∴△AKC ′≌△GFM , ∴GF =AK ,∵AN =4.5cm ,A ′N =1.5cm ,C ′K ∥A ′N , ∴KC′A′N =AC′AN ,∴KC′1.5=34.5,∴C ′K =1cm ,在Rt △AC ′K 中,AK =√AC′2+C′K 2=√10cm , ∴FG =AK =√10cm , 故答案为√10.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间y 1(单位:分钟)是关于x 的一次函数,其关系如下表:地铁站 A B C D E x (千米) 8 9 10 11.5 13 y 1(分钟)1820222528(1)求y 1关于x 的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用y 2=12x 2﹣11x +78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.解:(1)设y 1=kx +b ,将(8,18),(9,20),代入得: {8k +b =189k +b =20, 解得:{k =2b =2,故y 1关于x 的函数表达式为:y 1=2x +2;(2)设李华从文化宫回到家所需的时间为y ,则 y =y 1+y 2=2x +2+12x 2﹣11x +78=12x 2﹣9x +80, ∴当x =9时,y 有最小值,y min =4×12×80−924×12=39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=12∠BAC=60°,于是BCAB=2BDAB=√3;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C 关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAB和△EAC中,{DA =EA∠DAB =∠EAC AB =AC, ∴△DAB ≌△EAC ,②解:结论:CD =√3AD +BD . 理由:如图2﹣1中,作AH ⊥CD 于H .∵△DAB ≌△EAC , ∴BD =CE ,在Rt △ADH 中,DH =AD •cos30°=√32AD ,∵AD =AE ,AH ⊥DE , ∴DH =HE ,∵CD =DE +EC =2DH +BD =√3AD +BD .拓展延伸:①证明:如图3中,作BH ⊥AE 于H ,连接BE .∵四边形ABCD 是菱形,∠ABC =120°, ∴△ABD ,△BDC 是等边三角形, ∴BA =BD =BC , ∵E 、C 关于BM 对称,∴BC =BE =BD =BA ,FE =FC , ∴A 、D 、E 、C 四点共圆, ∴∠ADC =∠AEC =120°, ∴∠FEC =60°, ∴△EFC 是等边三角形,②解:∵AE =5,EC =EF =2, ∴AH =HE =2.5,FH =4.5, 在Rt △BHF 中,∵∠BFH =30°, ∴HF BF=cos30°,∴BF =√32=3√3.28.(10分)如图1,在平面直角坐标系xOy 中,抛物线C :y =ax 2+bx +c 与x 轴相交于A ,B 两点,顶点为D (0,4),AB =4√2,设点F (m ,0)是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C ′. (1)求抛物线C 的函数表达式;(2)若抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. (3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C ′上的对应点P ′,设M 是C 上的动点,N 是C ′上的动点,试探究四边形PMP ′N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.解:(1)由题意抛物线的顶点D (0,4),A (﹣2√2,0),设抛物线的解析式为y =ax 2+4, 把A (﹣2√2,0)代入可得a =−12, ∴抛物线C 的函数表达式为y =−12x 2+4.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为y =12(x ﹣2m )2﹣4,由{y =−12x 2+4y =12(x −2m)2−4,消去y 得到x 2﹣2mx +2m 2﹣8=0, 由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有{(2m)2−4(2m 2−8)>02m >02m 2−8>0,解得2<m <2√2,∴满足条件的m 的取值范围为2<m <2√2.(3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形, ∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m , ∴M (m +2,m ﹣2), ∵点M 在y =−12x 2+4上,∴m ﹣2=−12(m +2)2+4,解得m =√13−3或−√13−3(舍弃), ∴m =√13−3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入y=−12x2+4中,2﹣m=−12(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.综上,四边形PMP′N能成为正方形,m=√17−3或6.。
公式法试卷(含答案)
拓展训练 2020年 人教版 九年级 上册 数学 21. 2.2公式法基础闯关全练1.(2018青海中考)关于一元二次方程x2-2x -l=0根的情况,下列说法正确的是( )A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根2.(2017云南昆明官渡一模)下列关于x 的一元二次方程中,有两个相等实数根的是( )A.x2+1=0B.x ²+x -1=0C.x ²+2x -3=0D.4x ²-4x+1=03.(2017内蒙古赤峰中考)如果关于x 的方程x ²-4x+2m=0有两个不相等的实数根,则m 的取值范围是_________.4.(2017江苏南通中考)若关于x 的方程x ²-6x+c=0有两个相等的实数根,则c 的值为_________.5.(2018四川甘孜州中考)已知关于x 的方程x ²-2x+m=0有两个不相等的实数根,求实数m 的取值范围.6.用公式法解方程:(1)x ²-7x -18=0; (2)4x ²-+4x -1= -10-8x; (3) 2x ²-7x+7=0.能力提升全练1.(2018内蒙古包头中考)已知关于x 的一元二次方程x ²+2x+m -2=0有两个实数根,m 为正整数,且该方程的根都是整数,则符合条件的所有正整数m 的和为( )A.6B.5C.4D.32.(2015山东淄博中考)若a 满足不等式组,则关于x 的方程(a -2)x -(2a -1)x+a+=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.以上三种情况都有可能 3.(2019江苏镇江句容月考)关于x 的一元二次方程(k+l )x ²-x+1=0有两个实数根,则整数k 的最大值是( )A.1B.0C.-1D.-24.(2018河南南阳新野三模)若关于x 的方程X ²-mx +m=0有两个相等实数根,则代数式2m ²-8m +3的值为______.5.若实数a 、b 满足lb -1l+=0,且一元二次方程kx ²+ax+b=0有两个实数根,则k 的210a 28=-取值范围是________.三年模拟全练1.(2019江苏泰州泰兴月考,3,★☆☆)下列方程没有实数根的是( )A.3x ²-2x=0B.3x ²+2= 4xC.(1-2x)²-2=0D.2.(2019湖南张家界慈利期中,12,★☆☆)已知关于x 的一元二次方程x ²+2kx+k+2=0有两个相等的实数根,则k 的值是____________.3.(2018江苏苏州太仓二中期中,13,★☆☆)关于x 的一元二次方程x ²-(2k+1)x+k ²-2=0有实数根,则后的取值范围是____.4.(2019四川广安月考,17,★★☆)解方程:2x ²- 4x -5=0.(用公式法)五年中考全练一、选择题。
2016年四川省甘孜州、阿坝州中考数学试卷(含详细答案)
34
12
____
为 (0, 1),(2,0),则点 P 的坐标为
.
4
号
考生
_ __
卷
_ --------------------
__
__
___ __
24.在平面直角坐标系 xOy 中, P 为反比例函数 y 2 (x>0)的图象上的动点,则线段 OP
__
x
___ _
_ _ _名 姓
___ ___ __
B.3
C. 4
D .5
10.如图,在 5 5 的正方形网格中,每个小正方形的边长都为 1,若
将△ AOB 绕点 O 顺时针旋转 90 得到△ A OB ,则 A 点运动的
路径 AA 的长为
()
A. π
B . 2π
C . 4π
D .8π
第Ⅱ卷(非选择题 共 60 分)
数学试卷 第 2 页(共 28 页)
(1)在这次调查中,一共抽取了
名学生;
(2)请补全条形统计图;
(3)如果全校有 1 200 名学生,请你估计其中喜欢 D 套餐的学生的人数.
三、解答题(本大题共 6 小题,共 44 分.解答应写出必要的文字说明、证明过程或演算步 骤)
15.(本小题满分 8 分,每题 4 分) (1)计算: 8+(1 2)0 4cos45 .
8.将抛物线 y x2 向上平移 2 个单位后,所得的抛物线的函数表达式为
()
A . y x2 2 C . y (x 2)2
B. y x2 2 D . y (x 2)2
9.如图,在 △ ABC 中, BD 平分 ABC , ED ∥BC .已知 AB 3 ,
AD 1,则△ AED 的周长为
四川省甘孜州中考数学试卷及答案(含解析)
四川省甘孜州中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(•甘孜州)﹣的倒数是()A.B.﹣C.﹣5 D.5考点:倒数.分析:根据倒数的定义即若两个数的乘积是1,我们就称这两个数互为倒数,即可得出答案.解答:解:﹣的倒数是﹣5;故选C.点评:此题考查了倒数,掌握倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数是本题的关键.2.(4分)(•甘孜州)使代数式有意义的x的取值范围是()A.x≥0 B.﹣5≤x<5 C.x≥5 D.x≥﹣5考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x+5≥0,解得x≥﹣5.故选D.点评:本题考查的知识点为:二次根式的被开方数是非负数.3.(4分)(•甘孜州)下列图形一定是轴对称图形的是()A.平行四边形B.正方形C.三角形D.梯形考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、不一定是轴对称图形.故本选项错误;B、是轴对称图形.故本选项正确;C、不一定是轴对称图形.故本选项错误;D、不一定是轴对称图形.故本选项错误.故选B.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.(4分)(•甘孜州)将数据37000用科学记数法表示为3.7×10n,则n的值为()A.3B.4C.5D.6考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于37000有5位,所以可以确定n=5﹣1=4.解答:解:37 000=3.7×104,所以,n的值为4.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(4分)(•甘孜州)如图,一个简单几何体的三视图的主视图与左视图都为正三角形,其俯视图为正方形,则这个几何体是()A.四棱锥B.正方体C.四棱柱D.三棱锥考点:由三视图判断几何体.分析:由图可以得出此几何体的几何特征,是一个四棱锥.解答:解:由题意一个简单空间几何体的三视图其主视图与侧视图都是正三角形,俯视图轮廓为正方形,即此几何体是一个四棱锥,故选A.点评:本题考查了由三视图判断几何体,解题的关键是熟练掌握三视图的作图规则,由三视图还原出实物图的几何特征.6.(4分)(•甘孜州)下列运算结果正确的是()A.a2•a3=a6B.(a2)3=a5C.x6÷x2=x4D.a2+a5=2a3考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法,可判断A;根据幂的乘方,可判断B;根据同底数幂的除法,可判断C;根据合并同类项,可判断D.解答:解:A、底数不变指数相加,故A错误;B、底数不变指数相乘,故B错误;C、底数不变指数相减,故C正确;D、不是同类项不能合并,故D错误;故选:C.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.7.(4分)(•甘孜州)在平面直角坐标系中,反比例函数y=的图象的两支分别在()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限考点:反比例函数的性质.分析:根据反比例函数的性质作答.解答:解:因为反比例函数y=中的2>0,所以在平面直角坐标系中,反比例函数y=的图象的两支分别在第一、三象限.故选:A.点评:本题考查了反比例函数的性质.对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.8.(4分)(•甘孜州)一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1B.2C.﹣1 D.﹣2考点:一元二次方程的解.分析:把x=2代入已知方程,列出关于p的一元一次方程,通过解该方程来求p的值.解答:解:∵一元二次方程x2+px﹣2=0的一个根为2,∴22+2p﹣2=0,解得 p=﹣1.故选:C.点评:本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.9.(4分)(•甘孜州)如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A 恰好与点C重合,若BC=5,CD=3,则BD的长为()A.1B.2C.3D.4考点:翻折变换(折叠问题).分析:由翻折的性质可得:△ABD≌△CBD,得出∠ADB=∠CDB=90°,进一步在Rt△BCD中利用勾股定理求得BD的长即可.解答:解:∵将△ABC沿BD翻折后,点A恰好与点C重合,∴△ABD≌△CBD,∴∠ADB=∠CDB=90°,在Rt△BCD中,BD===4.故选:D.点评:本题考查了翻折的性质:翻折是一种对称变换,它属于轴对称,根据轴对称的性质,翻折前后图形的形状和大小不变,位置变化,对应边和对应角相等;以及勾股定理的运用.10.(4分)(•甘孜州)如图,圆锥模具的母线长为10cm,底面半径为5cm,则这个圆锥模具的侧面积是()A.10πcm2B.50πcm2C.100πcm2D.150πcm2考点:圆锥的计算.分析:圆锥的侧面积=底面周长×母线长÷2.解答:解:底面圆的底面半径为5cm,则底面周长=10πcm,侧面面积=×10π×10=50πcm2.故选B.点评:本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解题的关键,难度一般.二、填空题(共4小题,每小题4分,共16分)11.(4分)(•甘孜州)不等式3x﹣2>4的解是x>2.考点:解一元一次不等式.分析:先移项,再合并同类项,把x的系数化为1即可.解答:解:移项得,3x>4+2,合并同类项得,3x>6,把x的系数化为1得,x>2.故答案为:x>2.点评:本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.12.(4分)(•甘孜州)如图,点A,B,C在圆O上,OC⊥AB,垂足为D,若⊙O的半径是10cm,AB=12cm,则CD=2cm.考点:垂径定理;勾股定理.分析:先根据垂径定理求出AD的长,在Rt△AOD中由勾股定理求出OD的长,进而L利用CD=OC﹣OD可得出结论.解答:解:∵⊙O的半径是10cm,弦AB的长是12cm,OC是⊙O的半径且OC⊥AB,垂足为D,∴OA=OC=10cm,AD=AB=×12=6cm,∵在Rt△AOD中,OA=10cm,AD=6cm,∴OD===8cm,∴CD=OC﹣OD=10﹣8=2cm.故答案为:2.点评:本题考查的是垂径定理及勾股定理,在解答此类问题时往往先构造出直角三角形,再利用勾股定理求解.13.(4分)(•甘孜州)已知一组数据1,2,x,2,3,3,5,7的众数是2,则这组数据的中位数是 2.5.考点:中位数;众数.分析:根据众数的定义求出x的值,再根据中位数的定义即可得出答案.解答:解:∵一组数据1,2,x,2,3,3,5,7的众数是2,∴x=2,∴这组数据的中位数是(2+3)÷2=2.5;故答案为:2.5.点评:此题考查了众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.14.(4分)(•甘孜州)从0,1,2这三个数中任取一个数作为点P的横坐标,再从剩下的两个数中任取一个数作为点P的纵坐标,则点P落在抛物线y=﹣x2+x+2上的概率为.考点:列表法与树状图法;二次函数图象上点的坐标特征.专题:计算题.分析:列表得出所有等可能的情况数,找出点P落在抛物线y=﹣x2+x+2上的情况数,即可求出所求的概率.解答:解:列表得:0 1 20 ﹣﹣﹣(0,1)(0,2)1 (1,0)﹣﹣﹣(1,2)2 (2,0)(2,1)﹣﹣﹣所有等可能的情况有6种,其中落在抛物线y=﹣x2+x+2上的情况有(2,0),(0,2),(1,2)共3种,则P==.故答案为:点评:此题考查了列表法与树状图法,以及二次函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(本大题共6小题,共44分)15.(6分)(•甘孜州)(1)计算:+|﹣1|+()﹣1﹣2sin45°;(2)解方程组:.考点:实数的运算;负整数指数幂;解二元一次方程组;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项利用平方根定义化简,第二项利用绝对值的代数意义化简,第三项利用负指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果;(2)方程组利用加减消元法求出解即可.解答:解:(1)原式=2+﹣1+2﹣2×=3;(2)②﹣①得:5y=5,即y=1,将y=1代入①得:x=4,则方程组的解为.点评:此题考查了实数的运算,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.16.(6分)(•甘孜州)先化简,再求值:﹣,其中a=+1,b=﹣1.考点:分式的化简求值.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分得到最简结果,将a与b的值代入计算即可求出值.解答:解:原式===a+b,当a=+1,b=﹣1时,原式=+1+﹣1=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(7分)(•甘孜州)为了了解某地初中三年级学生参加消防知识竞赛成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数分布直方图,请结合图形解答下列问题:(1)指出这个问题中的总体;(2)求竞赛成绩在84.5﹣89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可以获得奖励,请估计该地初三年级约有多少人获得奖励.考点:频数(率)分布直方图;用样本估计总体.分析:(1)根据总体的概念:所要考查的对象的全体即总体进行回答;(2)根据频率=频数÷总数进行计算即可;(3)根据题意先求出初中三年级学生总数,再用样本估计整体让整体×样本的百分比即可得出答案.解答:解:(1)了解某地初中三年级学生参加消防知识竞赛成绩是这个问题中的总体;(2)根据题意得:=0.32,答:竞赛成绩在84.5﹣89.5这一小组的频率为0.32.(3)根据题意得:初中三年级学生总数是;(4+10+16+13+7)÷1%=5000(人),(13+7)÷(6+12+18+15+9)×5000=2000(人),答:该地初三年级约有2000人获得奖励.点评:此题考查了频率分布直方图,掌握频率=频数÷总数的计算方法,渗透用样本估计总体的思想是本题的关键.18.(7分)(•甘孜州)如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)考点:解直角三角形.专题:计算题.分析:由题意得到三角形BCD为等腰直角三角形,得到BD=BC,在直角三角形ABC中,利用锐角三角函数定义求出BC的长即可.解答:解:∵∠B=90°,∠BDC=45°,∴△BCD为等腰直角三角形,∴BD=BC,在Rt△ABC中,tanA=tan30°=,即=,解得:BC=2(+1).点评:此题考查了解直角三角形,涉及的知识有:等腰直角三角形的性质,锐角三角函数定义,熟练掌握直角三角形的性质是解本题的关键.19.(8分)(•甘孜州)如图,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=4.(1)求反比例函数解析式;(2)求点C的坐标.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)根据反比例函数k的几何意义得到×k=4,解得k=8,所以反比例函数解析式为y=;(2)先确定A点坐标,再利用待定系数法求出直线AB的解析式为y=2x,然后解方程组即可得到C点坐标.解答:解:(1)∵∠ABO=90°,S△BOD=4,∴×k=4,解得k=8,∴反比例函数解析式为y=;(2)∵∠ABO=90°,OB=4,AB=8,∴A点坐标为(4,8),设直线OA的解析式为y=kx,把A(4,8)代入得4k=8,解得k=2,∴直线AB的解析式为y=2x,解方程组得或,∴C点坐标为(2,4).点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.20.(10分)(•甘孜州)如图,在▱ABCD中,E,F分别为BC,AB中点,连接FC,AE,且AE与FC交于点G,AE的延长线与DC的延长线交于点N.(1)求证:△ABE≌△NCE;(2)若AB=3n,FB=GE,试用含n的式子表示线段AN的长.考点:平行四边形的性质;全等三角形的判定与性质;相似三角形的判定与性质.分析:(1)根据平行四边形的性质可得AB∥CN,由此可知∠B=∠ECN,再根据全等三角形的判定方法ASA即可证明△ABE≌△NCE;(2)因为AB∥CN,所以△AFG∽△CNG,利用相似三角形的性质和已知条件即可得到含n的式子表示线段AN的长.解答:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CN,∴∠B=∠ECN,∵E是BC中点,∴BE=CE,在△ABE和△NCE中,,(2)∵AB∥CN,∴△AFG∽△CNG,∴AF:CN=AG:GN,∵AB=CN,∴AF:AB=AG:GN,∵AB=3n,FB=GE,∴AN=AG+GE+EN=n.点评:本题考查了平行四边形的性质、全等三角形的判定和性质以及相似三角形的平和性质,题目的综合性较强,难度中等.四、填空题(每小题4分,共20分)21.(4分)(•甘孜州)已知a+b=3,ab=2,则代数式(a﹣2)(b﹣2)的值是0.考点:整式的混合运算—化简求值.专题:计算题.分析:原式利用多项式乘以多项式法则计算,将已知等式代入计算即可求出值.解答:解:原式=ab﹣2a﹣2b+4=ab﹣2(a+b)+4,当a+b=3,ab=2时,原式=2﹣6+4=0.故答案为:0点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.(4分)(•甘孜州)设a,b,c,d为实数,现规定一种新的运算=ad﹣bc,则满足等式=1的x的值为﹣10.考点:解一元一次方程.专题:新定义.分析:根据题中的新定义化简已知方程,求出方程的解即可得到x的值.解答:解:根据题中的新定义得:﹣=1,去分母得:3x﹣4x﹣4=6,移项合并得:﹣x=10,解得:x=﹣10,故答案为:﹣10.点此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系评:数化为1,求出解.23.(4分)(•甘孜州)给出下列函数:①y=2x﹣1;②y=;③y=﹣x2.从中任取一个函数,取出的函数符合条件“当x>1时,函数值y随x增大而减小”的概率是.考点:概率公式;一次函数的性质;反比例函数的性质;二次函数的性质.分析:首先利用一次函数、反比例函数及二次函数的性质确定当x>1时,函数值y随x增大而减小的个数,然后利用概率公式求解即可.解答:解:∵函数:①y=2x﹣1;②y=;③y=﹣x2中当x>1时,函数值y随x增大而减小的有y=、y=﹣x2,∴从中任取一个函数,取出的函数符合条件“当x>1时,函数值y随x增大而减小”的概率是,故答案为:.点评:本题考查的是用列举法求概率的知识.注意概率=所求情况数与总情况数之比.24.(4分)(•甘孜州)已知抛物线y=x2﹣k的顶点为P,与x轴交于点A,B,且△ABP 是正三角形,则k的值是3.考点:抛物线与x轴的交点.分析:根据抛物线y=x2﹣k的顶点为P,可直接求出P点的坐标,进而得出OP的长度,又因为△ABP是正三角形,得出∠OPB=30°,利用锐角三角函数即可求出OB的长度,得出B点的坐标,代入二次函数解析式即可求出k的值.解答:解:∵抛物线y=x2﹣k的顶点为P,∴P点的坐标为:(0,﹣k),∴PO=K,∵抛物线y=x2﹣k与x轴交于A、B两点,且△ABP是正三角形,∴OA=OB,∠OPB=30°,∴tan30°==,∴OB=k,∴点B的坐标为:(k,0),点B在抛物线y=x2﹣k上,∴将B点代入y=x2﹣k,得:0=(k)2﹣k,整理得:﹣k=0,解得:k1=0(不合题意舍去),k2=3.故答案为:3.点评:此题主要考查了二次函数顶点坐标的求法,以及正三角形的性质和锐角三角函数求值问题等知识,求出A或B点的坐标进而代入二次函数解析式是解决问题的关键.25.(4分)(•甘孜州)如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a与较长的直角边b的比值为2:3.考点:勾股定理的证明.分析:根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a+b)2=a2+2ab+b2即可求得(a+b)的值;则易求b:a..解答:解:∵小正方形与大正方形的面积之比为1:13,∴设大正方形的面积是13,∴c2=13,∴a2+b2=c2=13,∵直角三角形的面积是=3,又∵直角三角形的面积是ab=3,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25,∴a+b=5.则a、b是方程x2﹣5x+6=0的两个根,故b=3,a=2,∴=.故答案是:2:3.点评:本题考查了勾股定理以及完全平方公式,正确表示出直角三角形的面积是解题的关键.五、解答题(共3小题,共30分)26.(8分)(•甘孜州)已知某工厂计划用库存的302m3木料为某学校生产500套桌椅,供该校1250名学生使用,该厂生产的桌椅分为A,B两种型号,有关数据如下:桌椅型号一套桌椅所坐学生人数(单位:人)生产一套桌椅所需木材(单位:m3)一套桌椅的生产成本(单位:元)一套桌椅的运费(单位:元)A 2 0.5 100 2B 3 0.7 120 4设生产A型桌椅x(套),生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y元.(1)求y与x之间的关系式,并指出x的取值范围;(2)当总费用y最小时,求相应的x值及此时y的值.考点:一次函数的应用.分析:(1)利用总费用y=生产桌椅的费用+运费列出函数关系,根据需用的木料不大于302列出一个不等式,两种桌椅的椅子数不小于学生数1250列出一个不等式,两个不等式组成不等式组得出x的取值范围;(2)利用一次函数的增减性即可确定费用最少的方案以及费用.解答:解:(1)设生产甲型桌椅x套,则生产乙型桌椅的套数(500﹣x)套,根据题意得,,解这个不等式组得,240≤x≤250;总费用y=(100+2)x+(120+4)(500﹣x)=102x+62000﹣124x=﹣22x+62000,即y=﹣22x+62000,(240≤x≤250);(2)∵y=﹣22x+62000,﹣22<0,∴y随x的增大而减小,∴当x=250时,总费用y取得最小值,此时,生产甲型桌椅250套,乙型桌椅250套,最少总费用y=﹣22×250+62000=56500元.点评:本题考查了一次函数的应用,一元一次不等式组的应用,此类题目难点在于从题目的熟练关系确定出两个不等关系,从而列出不等式组求解得出x的取值范围.27.(10分)(•甘孜州)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA 为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若cos∠BAD=,BE=,求OE的长.考切线的判定;相似三角形的判定与性质.点:分析:(1)连接OD,BD,由AB为圆O的直径,得到∠ADB为直角,可得出三角形BCD为直角三角形,E为斜边BC的中点,利用斜边上的中线等于斜边的一半,得到CE=DE,利用等边对等角得到一对角相等,再由OA=OD,利用等边对等角得到一对角相等,由直角三角形ABC中两锐角互余,利用等角的余角相等得到∠ADO 与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为圆O 的切线;(2)证明OE是△ABC的中位线,则AC=2OE,然后证明△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.解答:(1)证明:连接OD,BD,∵AB为圆O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,即∠C+∠A=90°,∴∠ADO+∠CDE=90°,即∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为圆O的切线;(2)证明:∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC==,又∵BE=,E是BC的中点,即BC=,∴AC=.又∵AC=2OE,∴OE=AC=.点评:本题考查了切线的判定,垂径定理以及相似三角形的判定与性质等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.28.(12分)(•甘孜州)在平面直角坐标系x Oy中(O为坐标原点),已知抛物线y=x2+bx+c过点A(4,0),B(1,﹣3).(1)求b,c的值,并写出该抛物线的对称轴和顶点坐标;(2)设抛物线的对称轴为直线l,点P(m,n)是抛物线上在第一象限的点,点E与点P 关于直线l对称,点E与点F关于y轴对称,若四边形OAPF的面积为48,求点P的坐标;(3)在(2)的条件下,设M是直线l上任意一点,试判断MP+MA是否存在最小值?若存在,求出这个最小值及相应的点M的坐标;若不存在,请说明理由.考点:二次函数综合题;解一元二次方程-因式分解法;待定系数法求二次函数解析式;线段的性质:两点之间线段最短;勾股定理;关于x轴、y轴对称的点的坐标.专题:综合题.分析:(1)用待定系数法就可求出b和c,再将抛物线的解析式配成顶点式,就可解决问题.(2)由条件可得E(4﹣m,n)、F(m﹣4,n),从而得到PF=4,由四边形OAPF的面积为48可求出点P的纵坐标,然后代入抛物线的解析式就可求出点P的坐标.(3)由点E与点P关于直线l对称可得MP=ME,则有MP+MA=ME+MA,根据“两点之间线段最短”可得AE的长就是MP+MA的最小值,只需运用勾股定理就可解决问题.解答:解:(1)∵抛物线y=x2+bx+c过点A(4,0),B(1,﹣3),∴.解得:.∴y=x2﹣4x=(x﹣2)2﹣4.∴抛物线的对称轴为x=2,顶点为(2,﹣4).(2)如图1,∵点P(m,n)与点E关于直线x=2对称,∴点E的坐标为(4﹣m,n).∵点E与点F关于y轴对称,∴点F的坐标为(m﹣4,n).∴PF=m﹣(m﹣4)=4.∴PF=OA=4.∵PF∥OA,∴四边形OAPF是平行四边形.∵S▱OAPF=OA•=4n=48,∴n=12.∴m2﹣4m=n=12.解得:m1=6,m2=﹣2.∵点P是抛物线上在第一象限的点,∴m=6.∴点P的坐标为(6,12).(3)过点E作EH⊥x轴,垂足为H,如图2,在(2)的条件下,有P(6,12),E(﹣2,12),则AH=4﹣(﹣2)=6,EH=12.∵EH⊥x轴,即∠EHA=90°,∴EA2=EH2+AH2=122+62=180.∴EA=6.∵点E与点P关于直线l对称,∴MP=ME.∴MP+MA=ME+MA.根据“两点之间线段最短”可得:当点E、M、A共线时,MP+MA最小,最小值等于EA的长,即6.点评:本题考查了用待定系数法求二次函数的解析式、两点之间线段最短、勾股定理、解一元二次方程、平行四边形的判定与性质、关于抛物线对称轴对称及关于y轴对称点的坐标特征等知识,有一定的综合性.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年阿坝、甘孜中考数学试卷(解析版)一、选择题(共10小题,每小题4分,满分40分)1.﹣2的倒数是()A.﹣2 B.﹣12C.12D.2【答案】B.【解析】试题分析:∵﹣2×(﹣12)=1,∴﹣2的倒数是﹣12,故选B.考点:倒数.2.如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A.B.C.D.【答案】A.考点:由三视图判断几何体.3.下列计算正确的是()A.3252a a a+=B.326a a a⋅=C.32a a a÷= D.329()a a=【答案】C.【解析】试题分析:3a与2a不是同类项,不能合并,A错误;325⋅=,B错误;a a a32÷=,C正确;a a a326=,D错误.a a()故选C.考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.4.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.11【答案】C.考点:多边形内角与外角.[5.对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大【答案】D.【解析】试题分析:“某市明天下雨的概率是75%”说明某市明天下雨的可能性较大,故选D.考点:概率的意义.6.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20°B.35°C.45°D.70°【答案】B.【解析】∠AOB=35°,∵CD∥OB,∴∠BOC=∠C=35°,试题分析:∵OC平分∠AOB,∴∠AOC=∠BOC=12故选B.考点:平行线的性质.7.如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.3cm C.25cm D.23cm【答案】D.考点:垂径定理;翻折变换(折叠问题).8.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为5,AB =8,则CD 的长是( )A .2B .3C .4D .5【答案】A .【解析】试题分析:∵OC ⊥AB ,∴AD =BD =12AB =12×8=4,在Rt △OAD 中,OA =5,AD =4,∴OD =22OA AD - =3,∴CD =OC ﹣OD =5﹣3=2.故选A .考点:垂径定理;勾股定理.9.如图,在Rt △ABC 中,斜边AB 的长为m ,∠A =35°,则直角边BC 的长是( )A .m sin35°B .m cos35°C .sin 35m o D .cos35m o 【答案】A .考点:锐角三角函数的定义.10.如图,抛物线2y ax bx c =++ (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:11.①4ac<b2;②方程20++=的两个根是x1=﹣1,x2=3;ax bx c③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个【答案】B.考点:二次函数图象与系数的关系;数形结合.二、填空题(共5小题,每小题4分,满分20分)11.因式分解:2218x -= .【答案】2(x +3)(x ﹣3).【解析】试题分析:2218x -=22(9)x -=2(x +3)(x ﹣3),故答案为:2(x +3)(x ﹣3). 考点:提公因式法与公式法的综合运用.12.数据1,2,3, 0,﹣3,﹣2,﹣1的中位数是 .【答案】0.【解析】试题分析:把数据按从小到大排列:﹣3,﹣2,﹣1,0,1,2,3,共有7个数,最中间一个数为0,所以这组数据的中位数为0.故答案为:0.考点:中位数.13.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为 .【答案】6.9×10﹣7.【解析】试题分析:0.00000069=6.9×10﹣7.故答案为:6.9×10﹣7.考点:科学记数法—表示较小的数.14.若一元二次方程240x x c ++=有两个相等的实数根,则c 的值是 .【答案】4.【解析】试题分析:∵一元二次方程240x x c ++=有两个相等的实数根,∴△=16﹣4c =0,解得c =4.故答案为:4.考点:根的判别式.15.在函数312x y x +=-中,自变量x 的取值范围是 . 【答案】x ≥﹣13,且x ≠2. 【解析】试题分析:由题意,得:3x +1≥0且x ﹣2≠0,解得x ≥﹣13,且x ≠2,故答案为:x ≥﹣13,且x ≠2.考点:函数自变量的取值范围.三、解答题(共5小题,满分40分)16.(1)计算:011(32)()4sin 60123--++--o . (2)先化简,再求值:222444(1)42x x x x x x -++-÷--+,其中2210x x +-=. 【答案】(1)4;(2)242x x+ ,4.考点:分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.17.如图,小明在A 处测得风筝(C 处)的仰角为30°,同时在A 正对着风筝方向距A 处30米的B 处,小明测得风筝的仰角为60°,求风筝此时的高度.(结果保留根号)18.【答案】153.考点:解直角三角形的应用﹣仰角俯角问题.18.某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是;(2)(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有名.(4)【答案】(1)120,30%;(2)作图见解析;(3)450.试题解析:(1)调查的总人数是:18÷15%=120(人),安全意识为“很强”的学生占被调=30%.查学生总数的百分比是:36120故答案为:120,30%;(2)安全意识“较强”的人数是:120×45%=54(人);+=450(人),故答案为:450.(3)估计全校需要强化安全教育的学生约1800×1218120考点:条形统计图;用样本估计总体;扇形统计图.,19.如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=12直线l上的点P位于y轴左侧,且到y轴的距离为1.(1)求直线l的表达式;(2)若反比例函数my=的图象经过点P,求m的值.x【答案】(1)112y x =-+;(2)32-. (2)∵点P 到y 轴的距离为1,且点P 在y 轴左侧,∴点P 的横坐标为﹣1,又∵点P 在直线l 上,∴点P 的纵坐标为:﹣12×(﹣1)+1=32,∴点P 的坐标是(﹣1,32),∵反比例函数m y x =的图象经过点P ,∴32 =1m -,∴m =﹣1×32=32-. 考点:反比例函数与一次函数的交点问题.20.如图,在△ABC 中,∠C =90°,点O 在AC 上,以OA 为半径的⊙O 交AB 于点D ,BD 的垂直平分线交BC 于点E ,交BD 于点F ,连接DE .(1)判断直线DE 与⊙O 的位置关系,并说明理由;(2)若AC =6,BC =8,OA =2,求线段DE 的长.【答案】(1)直线DE与⊙O相切;(2)4.75.【解析】试题分析:(1)直线DE与圆O相切,理由如下:连接OD,由OD=OA,利用等边对等角得到一对角相等,等量代换得到∠ODE为直角,即可得证;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,在直角三角形OCE中,利用勾股定理列出关于x的方程,求出方程的得到x的值,即可确定出DE的长.试题解析:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE 与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.(3)考点:直线与圆的位置关系;线段垂直平分线的性质;与圆有关的位置关系;探究型.四、填空题(每小题4分,共20分)21.在一个不透明的空袋子里,放入仅颜色不同的2个红球和1个白球,从中随机摸出1个球后不放回,再从中随机摸出1个球,两次都摸到红球的概率是..【答案】13考点:列表法与树状图法.22.如图,在平面直角坐标系中,已知A (1,0),D (3,0),△ABC 与△DEF 位似,原点O 是位似中心.若AB =1.5,则DE = .【答案】4.5.【解析】试题分析:∵△ABC 与DEF 是位似图形,它们的位似中心恰好为原点,已知A 点坐标为(1,0),D 点坐标为(3,0),∴AO =1,DO =3,∴13AO AB DO DE ==,∵AB =1.5,∴DE =4.5.故答案为:4.5.考点:位似变换;坐标与图形性质.23.如图,已知点P (6,3),过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数k y x=的图象交PM 于点A ,交PN 于点B .若四边形OAPB 的面积为12,则k = .24.【答案】6.考点:反比例函数系数k的几何意义.24.如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为.【答案】12.【解析】试题分析:连接AP,A′P′,过点A作AD⊥PP′于点D,由题意可得出:AP∥A′P′,AP=A′P′,∴四边形APP′A′是平行四边形,∵抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3),平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),∴PO=22=22∠AOP=45°,22又∵AD⊥OP,∴△ADO是等腰直角三角形,∴PP′=22×2=42,∴AD=DO=sin45°•OA=22×3=322,∴抛物线上PA段扫过的区域(阴影部分)的面积为:42×322=12.故答案为:12.考点:二次函数图象与几何变换.25.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P2017的坐标是.26.【答案】(672,1).考点:规律型:点的坐标;综合题.五、解答题:(本大题共3小题,共30分)26.某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.(1)当每件商品的售价是多少元时,每个月的利润刚好是2250元?(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?【答案】(1)65或85;(2)当售价定为75时,每个月可获得最大利润,最大的月利润是2450元.[考点:二次函数的应用;一元二次方程的应用;二次函数的最值;最值问题.27.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;【答案】(1)证明见解析;(2)PB2565.【解析】试题分析:(1)依据等腰三角形的性质得到AB =AC ,AD =AE ,依据同角的余角相等得到∠DAB =∠CAE ,然后依据SAS 可证明△ADB ≌△AEC ,最后,依据全等三角形的性质可得到BD =CE ;(2)分为点E 在AB 上和点E 在AB 的延长线上两种情况画出图形,然后再证明△PEB ∽△AEC ,最后依据相似三角形的性质进行证明即可.试题解析:(1)∵△ABC 和△ADE 是等腰直角三角形,∠BAC =∠DAE =90°,∴AB =AC ,AD =AE ,∠DAB =∠CAE ,∴△ADB ≌△AEC ,∴BD =CE .(2)解:①当点E 在AB 上时,BE =AB ﹣AE =1.∵∠EAC =90°,∴CE 22AE AC +5同(1)可证△ADB ≌△AEC ,∴∠DBA =∠ECA .∵∠PEB =∠AEC ,∴△PEB ∽△AEC ,∴PB BE AC CE =,∴25PB =PB =255.∵∠BEP =∠CEA ,∴△PEB ∽△AEC ,∴PB BE AC CE =,∴25PB =,∴PB =655. 综上所述,PB 的长为255或655. 考点:相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形;旋转的性质;分类讨论.28.如图,抛物线2322y ax x =--(a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,已知B 点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC 的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 下方的抛物线上一点,求△MBC 的面积的最大值,并求出此时M 点的坐标.【答案】(1)213222y x x =--;(2)(32,0);(3)4,M (2,﹣3). 【解析】 试题分析:方法一:(1)该函数解析式只有一个待定系数,只需将B 点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定A 点坐标,然后通过证明△ABC 是直角三角形来推导出直径AB 和圆心的位置,由此确定圆心坐标.(3)△MBC 的面积可由S △MBC =12BC ×h 表示,若要它的面积最大,需要使h 取最大值,即点M 到直线BC 的距离最大,若设一条平行于BC 的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M .方法二:(1)略.(2)通过求出A ,B ,C 三点坐标,利用勾股定理或利用斜率垂直公式可求出AC ⊥BC ,从而求出圆心坐标.(3)利用三角形面积公式,过M 点作x 轴垂线,水平底与铅垂高乘积的一半,得出△MBC 的面积函数,从而求出M 点.(3)已求得:B (4,0)、C (0,﹣2),可得直线BC 的解析式为:y =12x ﹣2; 设直线l ∥BC ,则该直线的解析式可表示为:y =12x +b ,当直线l 与抛物线只有一个交点时,可列方程:12x +b =213222x x --,即:212202x x b ---=,且△=0; ∴4﹣4×12(﹣2﹣b )=0,即b =﹣4; ∴直线l :y =12x ﹣4. 所以点M 即直线l 和抛物线的唯一交点,有:213222142y x x y x ⎧=--⎪⎪⎨⎪=-⎪⎩,解得:23x y =⎧⎨=-⎩ 即 M (2,﹣3).过M 点作MN ⊥x 轴于N ,S △BMC =S 梯形OCMN +S △MNB ﹣S △OCB =12×2×(2+3)+12×2×3﹣12×2×4=4.(3)过点M 作x 轴的垂线交BC ′于H ,∵B (4,0),C (0,﹣2),∴l BC :y =12x ﹣2,设H (t ,12t ﹣2),M (t ,213222t t --),∴S △MBC =12×(H Y ﹣M Y )(B X ﹣C X )=12×(12t ﹣2﹣213222t t ++)(4﹣0)=﹣t 2+4t ,∴当t =2时,S 有最大值4,∴M (2,﹣3).考点:二次函数综合题;最值问题;二次函数的最值;压轴题;转化思想.。