人教版九级上册旋转作图公开课-PPT

合集下载

人教版数学九年级上册23.1.2 旋转作图课件(共19张PPT)

人教版数学九年级上册23.1.2  旋转作图课件(共19张PPT)
分析:
①将正方形ABCD绕点C顺时针旋转90°后能与正方形CDFE重合; ②将正方形ABCD绕点D逆时针旋转90°后能与正方形CDFE重合; ③将正方形ABCD绕CD的中点旋转180°后能与正方形CDFE重合,
4.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以 格点(网格线的交点)为端点的线段AB.将线段AB向右平移2个单位长度, 再向下平移1个单位长度,得到线段A1B1;
温馨提示
为了避免作图混乱,应先对一个关键点连、转、截,找到其对应 点后再进行下一个关键点的旋转.
问题2:旋转三要素对游戏有什么影响? 下面有两种情况:
第一组:
B′ A′
A
D
C
B
O C′ D′
A
D
C
B
O
B′
C′
D′
A′
_旋_转__中__心___不变,旋__转__角__改变,产生不同的旋转效果.
第二组:
A2 A1
A3 B1
B2
课堂小结
旋转图形步骤
旋 转 作 图
旋转中心的确定
1.连:连接图形中每一个关键点与旋转中心; 2.转:把连线绕旋转中心按旋转方向旋转相 同的角度(作旋转角); 3.截:把角的另一边上截取与关键点到旋转 中心的距离相等的线段,得到各点的对应点; 4.连:连接所得到的各对应点; 5.写:写出结论,说明作出的图形.
A1 B1
(1)将线段AB绕点B1逆时针旋转90°得到线段A2B2,画出旋转后的线段
A2B2,并说明线段A1B1通过怎样的变化可以得到线段A2B2.
解:如图,线段A2B2即为所
求.线段A1B1绕点B1逆时针旋转
A1
90°,再向下平移2个单位长度,

人教版初中九年级上册数学《旋转作图》精品课件

人教版初中九年级上册数学《旋转作图》精品课件

教学研讨
感谢你的参与 期待下次再见

还可以用 什么方法把甲 图案变成乙图 案?
可以先将甲图案绕图上的
A点旋转,使得图案被
B 乙
A
“扶直”,然后,再沿AB
方向将所得图案平移到B
甲 点位置,即可得到乙图案
B
A
二、旋转设计作图
合作探究
1.选择不同的___旋__转__中__心_、不同的_旋__转__角_旋转同一个图案,会出 现不同的效果. (1)两个旋转中,旋转中心不变, 旋__转__角__ 改变了,产生了 __不__同___的旋转效果.
方法归纳 旋转作图的基本步骤:
(1)明确旋转三要素: 旋转中心、旋转方向和旋转角度. (2)找出关键点; (3)作出关键点的对应点; (4)作出新图形; (5)写出结论.
A E
F
B
D
考考你:
C
借助上图,如何确定它们的旋转中心位置?
答:找到两条对应点连线段的垂直平分线的交点.
例2. 怎样将甲图案变成乙图案? 乙
∴∠ABE′=∠ADE= 90 ° ,
BE′= DE ,
E′
B
C
因此在CB的延长线上截取点E′,使BE. ′=DE
则△ABE′为旋转后的图形.
想一想:
A
D
还有其他方法确定点E的
对应点E′吗?
E
答:延长CB,以点A为圆心,AE 的
长为半径画弧,交CB的延长线于E', B
C
连接AE',则△ABE'为旋转后的图形.
旋转角都为 60°的旋转图形.
A' D'
D B'
A
C
C'

人教版九年级数学上册《图形的旋转》旋转PPT精品课件

人教版九年级数学上册《图形的旋转》旋转PPT精品课件

巩固练习
解: (1)如图所示,A1B1C1所求作三角形。 (2)如图所示,△A2B2C2所求作三角形。
课堂小结
旋转作图的步骤: (1)明确旋转的三个要素:旋转中心、旋转方向、旋转角度; (2)确定关键点,并且找出旋转后的对应点; (3)顺次连接对应点。
人教版九年级数学上册
谢谢
因此在CB的延长线上取点F,使BF=DE,
则△ABF为旋转后的图形。
课堂检测
如图,△ABC是等边三角形,D是BC边上一点,△ABD经过旋转后到达 △ACE的位置。
① 试说出旋转中心、旋转方向及旋转角度? 点A、逆时针、60°
② ∠DAE等于多少度? 60°
A
③ △DAE是什么三角形? 等边三角形
M
旋转中心相同,旋转角度不同 所得图形位置不同
A2
C1
0
A1
B1
A
B
C
假设网格内的方格是正方形
探索新知
选择不同的旋转中心, 不同的旋转角 旋转同一图案 会出现不同的效果。
C1
A2
0
A1
B1
A
B
C
假设网格内的方格是正方形
探索新知
示例一
探索新知
示例二
巩固练习
1.下列图形中,绕某个点旋转180°后能与自身重合的有( A )
E
(4)∠B的对应角是____∠__A_C_E_; (5)旋转角度为____6_0_°___;
B
D
C
(6)△ACE的形状为__直__角__三__角__形___;
课堂检测
如图,D是等边△ABC内一点,将△ADC绕C点逆时针旋转,使得A、D两点
的对应点分别为B、E,则旋转角为多少度?图中除△ABC外,还有别的等边

第2课时旋转作图课件(共18张PPT)人教版数学九年级上册

第2课时旋转作图课件(共18张PPT)人教版数学九年级上册
人教版九年级上册
第2课时 旋转作图
学习目标
1.能根据旋转三要素与旋转性质作出简单平面图形旋转后的图形, 进一步培养学生作图的能力.
2.通过动手操作理解选择不同的旋转中心、不同的旋转角度,会出 现不同的效果,培养学生的几何直观能力.
3.经历对具有旋转特征的图形进行观察、分析、画图等过程,会用 旋转图形的思想思考生活中的图形问题,体会将图形旋转作图转 化为旋转关键点作图的化归思想.
新知导入
请同学们在硬纸板上挖一个三角形洞,再令挖一个小洞O 作为旋
转中心,硬纸板下面放一张白纸,先在纸上描出挖掉的这个三角 形的图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个 挖掉的三角形(△A'B'C'),观察这两个三角形.
你能得到什么结论?
这些图形有什么特点? 它们是如何设计出来的呢?
自主探究
1.请同学们阅读课本60页例题 回答问题:
①旋转中心是哪个点? (点A) ②如何作出△ADE旋转后的图形? (在CB的延长线上取点E',使BE'=DE,连接AE',则△ABE'为旋转后的图形) ③还有其他方法可以作出△ADE旋转后的图形吗? (答案不唯一,如:在CB的延长线上取点E',使∠AE'B=∠AED,则△ABE'为旋转 后的图形)
自主探究
2.请同学们阅读课本61页并回答下列问题: ①分别观察图23.1-7和图23.1-8中的两个旋转,你能得到什么?
(图23.1-7中的两个旋转,旋转中心不变,旋转角改变, 旋转效果不同; 图23.1-8中的两个旋转,旋转角不变,旋 转中心改变,旋转效果不同) ②请你通过改变旋转中心或旋转角设计出与图23.1-9中不同的图案

人教版九年级上册数学:旋转作图(公开课课件)

人教版九年级上册数学:旋转作图(公开课课件)
变式:若BC为2cm,求五边形AP′BCP的面积为 ___________.
创建幸福教育 享受教育幸福
针对训练
2.如图,E是正方形ABCD中CD边上任意一点, 以点A为中心,把△ADE顺时针旋转90°,画出旋 转后的图形.
A
D
E
B
C
创建幸福教育 享受教育幸福
方法1:
A
D
E
C
F
B
图中 △ABF 为所求图形.
创建幸福教育 享受教育幸福
追问:
(5)若∠AOA ' =90°,∠COA ' =60°,求∠A 'OC '的度数.
(6)如果仅知△ABC与其旋转后得到 的△A'B'C',你能确定其旋转 中心吗?说说你的方法.
创建幸福教育 享受教育幸福
针对训练
1.如图,△ABC 是等边三角形,P 是△ABC 内一 点.△APC 沿顺时针方向旋转后与△AP′B重合, 最小旋转角等于________度.
(2)EF2=BE2+DF2.
创建幸福教育 享受教育幸福
创建幸福教育 享受教育幸福
方法2:
A
D
E
C
F
B
图中 △ABF 为所求图形.
创建幸福教育 享受教育幸福
方法3:
A
F
B
图中 △ABF 为所求图形.
D
变式1:连接EF,已知AE=2cm,则 EF=_______,∠AEF=_______.
E
变式2:如果E为正方形ABCD内 任意一点,上述结论还成立吗?
创建幸福教育 享受教育幸福
思考:旋转与平移的区别和联系?
相同之处:
1.都是图形变化的方法之一;
2.变化前后,图形的形状大小不发生改变,只是

人教版九年级数学上册《图形的旋转》旋转PPT课件

人教版九年级数学上册《图形的旋转》旋转PPT课件

又由∠CAC′=90°可知△CAC′为等腰直角三角形,所
以∠ CC′ A= 45°.又由∠ AC′ B′ =∠ACB=90°-60°
=30°,可得∠ CC′ B′ =15°.
新课讲解
知识点3 用旋转的知识画图
• 简单旋转作图的一般步骤: • (1)找出图形的关键点; • (2)确定旋转中心,旋转方向和旋转角; • (3)将关键点与旋转中心连接起来,然 后按旋转方向 • 分别将它们旋转一个角,得到关键点的对应点; • (4)按照原图形的顺序连接这些对应点,所得到的图 • 形就是旋转后的图形.
新课讲解
练一练
如图,A,B,C三点共线,△ACD和△BCE都是等边三角形,
△ACE旋转后到达△DCB的位置. (1) 旋转中心是哪一点? (2) 旋转角是多少度?
(1) 点C是在△ACE旋转过程中不动的点,所以点C是旋转中心. (2) △ACE旋转后到达△DCB的位置,AC绕点C转过的角即∠ACD就 是旋转角.因为△ACD是等边三角形,所以∠ACD =60°,即旋转角是
新课讲解
例 2 如图(1),E是正方形ABCD中CD边上任意一点,以点A为中 心,把△ADE顺时针旋转90°,画出旋转后的图形.
图(1) 分析:关键是确定△ADE三个顶点的对应点,
即它们旋转后的位置.
新课讲解
解:因为点A是旋转中心,
所以它知的识对点应点是它本身. 正方形ABCD中,AD=AB,∠DAB=90°,
所以旋转后点D与点B重合.
设点E的对应点为点E′.因为旋转后的图形
图(2)
与旋转前的图形全等,所以∠ABE′=∠ADE
=90°,BE′=DE.
因此,在CB的延长线上取点E′,使BE′=DE,则

人教版九年级上册_第二十三章 旋转作图 (共19张PPT)

人教版九年级上册_第二十三章 旋转作图 (共19张PPT)

对应点到旋转中心的距离相等
A' B’
旋转中心
O
旋转方向 旋转角
旋转角度
A
对应点 B 需要上面三个信息来刻画旋转
将点A绕点O逆时针旋转60°
旋转中心 点O 旋转方向 逆时针 旋转角度 60°
A
先定角度,再定长度
O 60°A'9、要学生 做的事 ,教职 员躬亲 共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。21 .8.102 1.8.10 Tuesda y, Aug ust 10 , 2021
10、阅读 一切好 书如同 和过去 最杰出 的人谈 话。17: 26:141 7:26:1 417:26 8/10/2 021 5: 26:14 PM
11、一个 好的教 师,是 一个懂 得心理 学和教 育学的 人。21. 8.1017 :26:14 17:26A ug-211 0-Aug- 21
12、要记 住,你 不仅是 教课的 教师, 也是学 生的教 育者, 生活的 导师和 道德的 引路人 。17:26 :1417: 26:141 7:26Tu esday, Augus t 10, 2021
4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19
3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021

人教版数学九级上册旋转作图课件

人教版数学九级上册旋转作图课件

C
A
OC____OC`. ∠ AOA`=___,
∠ BOB`=___,∠COC`=___.
下图由四部分组成,每部分都包括两个小“十字”。
红色部分能经过适当的旋转得到其他三部分吗?能经过 平移吗?能经过轴对称吗?还有其他的方式吗?
自学检测(一)
1、钟表的指针在不停地转动,从3时动到5时,时 针旋转了多少度? 时针旋转了60°。
关键:确定△ADE三个顶点的对应点,
A
即它们旋转后的位置.
D
E
E′ B
C
还有别的办 法吗?
人教版数学九年级上册23.1旋转作图 课件
旋转角度是30°
3. 如图,杠杆绕支点转动撬起重物,杠杆的旋转 中心在哪里?旋转角是哪个角?
A
B/ O
B
A/
旋转中心在支点O 旋转角为∠AOA/ 或∠BOB/
人教版数学九年级上册23.1旋转作图 课件
实践探究
在硬纸板上,挖一个三角形洞,再挖一个小 洞O作为旋转中心,硬纸板下面放一张白纸. 先在纸上描出这个挖掉的三角形图案 (△ABC),然后围绕旋转中心转动硬纸板, 再描出这个挖掉的三角形(△A′B′C′) ,移 开硬纸板.
人教版数学九年级上册23.1旋转作图 课件
人教版数学九年级上册23.1旋转作图 课件
随堂练习
4.如图,杠杆绕支点转动撬起重物,杠杆的旋转中心在 哪里?旋转角是哪个角?
人教版数学九年级上册23.1旋转作图 课件
人教版数学九年级上册23.1旋转作图 课件
例题赏析
如图,E是正方形ABCD中CD边上任意一点,以点A为中 心,把△ADE顺时针旋转90°,画出旋转后的图形。
23.1 图形的旋转
情境问题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


6.在物质极大富足的今天,人们 逢节必过,过节必吃。大快朵颐之后, 很少有 人在意 节日的 内涵。 我不禁 大声疾 呼:批 判地继 承传统 风俗习 惯,让 我们自 身变得 更有品 位,让我们的生活更加丰富多彩。

7.书信体写作大家都比较熟悉,我也 另外安 排了书 信体考 场作文 写作讲 座。对 于怎样 撰写书 信,这 里就不 具体展 开。我 们就直 接看两 篇优秀 范文.
第2课时 旋转作图
一、教学目标
1.运用旋转的有关概念及旋转的基本性质作旋转后 的图形及计算. 2.经历对生活中旋转现象的观察、推理和分析过程 ,学会用数学的眼光看待生活中的有关问题,体验数 学与现实生活的密切关系.
二、教学重难点 重点
作旋转后的图形由旋转的三个条件确定.
难点 旋转的性质与几何性质的综合运用.

2. 项羽不 屑小计 谋是真 诚的, 他梦想 用他所 崇尚的 武力去 解决一 切问题 ,最终 ,项羽 用性格 的笔为 世人书 写下了 只属于 他的人 生篇章 ,算是 一种对 自己的 薄奠。

3.爱心公益提高自己的道德品位。一 个人是 否受人 拥戴, 不在于 地位的 高低, 金钱的 多寡, 而在于 是否有 一颗仁 爱之心 。
人教版九年级上册23.1第2课时 旋转作图
人教版九年级上册23.1第2课时 旋转作图
提出问题: (1)旋转中心是哪个点?点A,B的对应点分别是什么? (2)如何确定点E的对应点的位置? (3)讨论是否还有其他方法能画出旋转后的图形.
人教版九年级上册23.1第2课时 旋转作图
人教版九年级上册23.1第2课时 旋转作图
人教版九年级上册23.1第2课时 旋转作图
人教版九年级上册23.1第2课时 旋转作图
活动3 知识归纳 1.旋转变换作图步骤: (1)确定_旋__转__中__心_、_旋__转__角_和_旋__转__方__向_; (2)找出能确定图形的_关__键__点_; (3)连接图形的各关键点与旋转中心,并按旋转方向分 别将它们旋转一定的角度,得到各关键点的_对__应__点_; (4)按原图形的顺序连接这些对应点,得到旋转后的图 形. 2.选择不同的旋转中心、不同的旋转角旋转同一个图 案,会出现不同的效果.
2.教材P61. 提出问题: (1)由例题的作图过程可以知道旋转作图应满足哪三个要素 ?如果选择不同的旋转中心、不同的旋转角旋转同一个图 案,出现的效果会一样吗? (2)观察图23.1-7中的两个旋转,它们的旋转中心-样吗? 旋转角呢?产生的效果一样吗?图23.1-8中的两个旋转, 它们的旋转中心一样吗?旋转角呢?产生的效果一样吗? (3)我们可以利用旋转设计出许多美丽的图案,你能通过改 变旋转中心或旋转角设计出与图23.1-9中不同的图案吗?
人教版九年级上册23.1第2课时 旋转作图
3.在如图所示的网格中,画出“小旗”绕点O按顺时针 方向旋转90°后得到的图案. 解:如图所示.
人教版九年级上册23.1第2课时 旋转作图

1.历史上无数英雄随着时光流逝而一 去不返 ,可是 他们却 给后人 留下了 耐人寻 味的故 事,让 后人代 代咀嚼 和品味 ,一个 个故事 凝成了 厚重隽 永的华 夏文化 ,哺育 着后人 。
人教版九年级上册23.1第2课时 旋转作图
人教版九年级上册23.1第2课时 旋转作图
练习
1.教材P62 练习. 2.在旋转过程中,确定一个三角形旋转的位置所需的
条件是( A )
①三角形原来的位置;②旋转中心; ③三角形的形状;④旋转角及旋转方向. A.①②④ B.①②③ C.②③④ D.①③④
人教版九年级上册23.1第2课时 旋转作图
人教版九年级上册23.1第2课时 旋转作图
人教版九年级上册23.1第2课时 旋转作图
活动4 例题与练习 例 如图,四边形ABCD绕点O旋转后,顶点A的对应 点为E,试确定B,C,D的对应点的位置以及旋转后 的四边形. 解:如图,B,C,D的对应 点分别是F,G,H,四边形 EFGH是四边形ABCD旋转后 E是正方形ABCD中CD边上任意一点 ,以点A为中心,把△ADE顺时针旋转90°,画出旋转 后的图形。 分析:关键是确定△ADE三个顶点的对应点,即它们 旋转后的位置。
人教版九年级上册23.1第2课时 旋转作图
人教版九年级上册23.1第2课时 旋转作图
解:因为点A是旋转中心,所以它的对应点是它本身. 正方形ABCD中,AD=AB,∠DAB=90°,所以旋转后 点D与点B重合。 设点E的对应点为点E’。因为旋转后的图形与旋转前的 图形全等,所以 ∠ABE’=∠ADE=90°,BE’=DE. 因此,在CB的延长线上取点E’, 使BE’=DE,则△ABE’为旋转后的图形。
三、教学设计
活动1 新课导入 如图,将△ABO绕点O旋转得到△EFO,指出图中
的旋转中心、旋转角、对应线段及对应角. 解:旋转中心是点O;旋转角是∠AOE或∠BOF; 对应线段:OA与OE,OB与OF,AB与EF; 对应角:∠AOB与∠EOF,∠A与∠E,∠B与∠F.
人教版九年级上册23.1第2课时 旋转作图

4.互联网可以让全世界同处一个地球 村,拉 近人与 人之间 的距离 ,使天 涯咫尺 变成现 实,也可 以为高 智能犯 罪提供 更加隐 蔽的场 所,甚 至将人 送上不 归路,可 谓瑕瑜 互见, 利弊共 存。
感谢观看,欢迎指导! •
5.如何正确利用好互联网,让它更加方 便 我们的生活,提高我们的生活质量 和幸福指数,这是人们必须冷静思考、慎 重对待 的问题 。
相关文档
最新文档