测控电路

合集下载

测控电路考点整理

测控电路考点整理

红色字体是必须要掌握的时间来不及可以先看一、1.测控电路的主要要求:精度高、响应快、可靠性与经济性、转换灵活(填空选择)2.测控电路的组成(概念、流程框图等看课件)3.测量电路的组成模拟式与数字式AB卷4.开闭环控制流程图(重点)二、1.二极管三极管原理特性了解2.放大电路基本要求(背全文背诵必考)①低噪声;②低的输入失调电压和输入失调电流以及低的漂移;③高共模输入范围和高共模抑制比;④一定的放大倍数和稳定的增益;⑤线性好;⑥输入阻抗应与传感器输出阻抗相匹配;⑦足够的带宽和转换速率。

反相电路同相电路差动放大(有能力同学背原理图及特点)无时间也可以直接记结论3.高共模抑制比放大电路(必考全文背诵)CMRR公式必考考点可能分散在AB卷推导过程都很重要电路组成要看懂原理自动凋零放大电路各部分组成名称两个周期调零原理(不懂原理就背)5.电荷放大电路原理公式不懂原理就背公式截止频率Uo公式等找到规律很好记6.隔离电路好像没考7.失调电压调整外部内部二选一8.转换速率SR=u/t以及最大变换率(考了填空或者填空好像)9.转折频率10.写出三种噪声类型答:(热噪声、低频噪声、散弹噪声)其他略过不考11.基本加法电路、减法电路要看得出来背结构组成和计算公式12.对数指数我记得是没考了解吧知道长什么样就可以13.基本积分运算电路(重点要考的)电路结构+公式14.PID运算电路(重点要考的大题!!)我们当时考了并联PID电路公式推导这个图很复杂很难看不懂背也要背下来每一部分原理组成(非常重要)一定要弄明白(并联简单一点串联PID难一点求稳的话就都看明白原理自己会推导最好!)15.绝对值运算电路也就是半波整流和全波整理(重点考点)16.峰值、最值、平均值运算电路等了解即可三、1.调制信号、解调信号、载波信号、已调信号定义正弦信号三个特点:幅值、频率、相位(选择填空)2.调幅信号原理:用调制信号x去控制高频载波信号的幅值。

测控电路

测控电路

第一章!测控系统的组成:传感器测量控制电路和执行机构!!测控电路的功用:传感器的输出信号一般很微弱,还可能伴随着各种噪声,需要用测控电路将它放大,剔除噪声、选取有用信号,按照测量与控制功能的要求,进行所需演算、处理与变换,输出能控制执行机构动作的信号。

在整个测控系统中,电路是最灵活的部分,它具有便于放大、便于转换、便于传输、便于适应各种使用要求的特点。

测控电路在整个测控系统中起着十分关键的作用,测控系统、乃至整个机器和生产系统的性能在很大程度是取决于测控电路。

!!!测控电路的主要要求:1.精度高(1)低噪音和高抗干扰能力对信号进行调制,合理安排电路的通频带。

采用高共模抑制比的电路(2)低漂移、高稳定性首先选择温漂低觉得器件,其次应尽量减小电路的特别是关键部分的温度变化并保持电路工作稳定(3)线性与保真度好2.转换灵活(1)A/D转换灵活(2)电量参数转换(3)量程的变化3.有适合的输入电阻和输出电阻4.动态性能好响应快和动态失真小5.高的识别和分辨力6.可靠性高7.经济性好一:测量电路的输入信号类型对其电路组成有何影响?试述模拟式测量电路与增量码数字式测量电路的基本组成及各组成部分的作用。

随着传感器类型的不同,输入信号的类型也随之而异。

主要可分为模拟式信号与数字式信号。

随着输入信号的不同,测量电路的组成也不同。

图X1-1是模拟式测量电路的基本组成。

传感器包括它的基本转换电路,如电桥,传感器的输出已是电量(电压或电流)。

根据被测量的不同,可进行相应的量程切换。

传感器的输出一般较小,常需要放大。

图中所示各个组成部分不一定都需要。

例如,对于输出非调制信号的传感器,就无需用振荡器向它供电,也不用解调器。

在采用信号调制的场合,信号调制与解调用同一振荡器输出的信号作载波信号或参考信号。

利用信号分离电路(常为滤波器),将信号与噪声分离,将不同成分的信号分离,取出所需信号。

有的被测参数比较复杂,或者为了控制目的,还需要进行运算。

测控电路知识点总结

测控电路知识点总结

测控电路一.名词解释1.测量放大电路2.高共模抑制比电路:有抑制传感器输出共模电压(包括干扰电压)的放大电路称为高共模抑制比放大电路。

P263.有源驱动电路:将差动式传感器的两个输出经两个运算放大器构成的同相比例差动放大后,使其输入端的共模电压1:1地输出,并通过输出端各自电阻(阻值相等)加到传感器的两个电缆屏蔽层上,即两个输入电缆的屏蔽层由共模输入电压驱动,而不是接地,电缆输入芯线和屏蔽层之间的共模电压为零,这种电路就是有源屏蔽驱动电路。

P284.电桥放大电路:由传感器电桥和运算放大器组成的放大电路或由传感器和运算放大器构成的电桥都称为电桥放大电路。

P295.自举电路:自举电路是利用反馈使输入电阻的两端近似为等电位,减小向输入回路索取电流,从而提高输入阻抗的电路。

P366.可编程增益放大电路:放大电路的增益通过数字逻辑电路由确定的程序来控制,7.隔离放大电路:隔离放大电路的输入、输出和电源电路之间没有直接的电路耦合,即信号在传输过程中没有公共的接地端。

P458.信号调制及解调:调制就是用一个信号(称为调制信号)去控制另一作为载体的信号(称为载波信号),让后者的某一特征参数按前者变化。

在将测量信号调制,并将它和噪声分离,放大等处理后,还要从已经调制的信号中提取反映被测量值的测量信号,这一过程称为解调。

P559•调幅、调频、调相、脉冲调宽:调幅就是用调制信号x去控制高频载波信号的幅值。

(P55)10.包络检波:从已调信号中检出调制信号的过程称为解调或检波。

幅值调制就是让已调信号的幅值随调制信号的值变化,因此调幅信号的包络线形状与调制信号一致。

只要能检出调幅信号的包络线即能实现解调。

这种方法称为包络检波。

P60二.简答题1.测控电路在整个测控系统中起着什么样的作用?答:传感器的输出信号一般很微弱,还可能伴随着各种噪声,需要用测控电路将它放大,剔除噪声、选取有用信号,按照测量与控制功能的要求,进行所需演算、处理与变换,输出能控制执行机构动作的信号。

测控电路

测控电路

测控电路介绍测控系统主要由传感器、测量控制电路(简称测控电路)和执行机构三部分组成。

在测控系统中电路是最灵活的部分,它具有便于放大、便于转换、便于传输、便于适应各种使用要求的特点。

测控系统乃至整个机器和生成系统的性能在很大程度上取决于测控电路。

测控电路主要包括信号放大电路、信号调制解调电路、信号分离电路、信号运算电路、信号转换电路、信号细分与辨向电路、电量测量电路、连续信号控制电路、逻辑与数字控制电路等。

实际上,测控电路是模拟电子技术和数字电子技术的进一步延伸与扩展,主要讨论一些典型常见的电路。

因此学好模电和数电是基础,其中运算放大器是测控电路的一个核心部件。

网址:从50年代的“尺寸自动检测仪器”,到80年代的“精密仪器电路”,再到今天的“测控电路”,“测控电路”课程经历了半个世纪的发展历程。

测控技术是现代生产和高科技中的一项必不可少的基础技术。

“测控电路”课程主要介绍工业生产和科学研究中常用的测量与控制电路。

包括测控电路的功用和对它的主要要求、测控电路的类型与组成、信号放大电路、信号调制解调电路、信号分离电路、信号运算电路、信号转换电路、信号细分与辨向电路、逻辑控制与连续信号控制电路、测控电路中的抗干扰技术,最后通过若干典型测控电路对电路进行分析。

本课程不是一般意义上电子技术课程的深化与提高,而要着重讲清如何在电子技术与测量、控制之间架起一座桥梁,使学员熟悉怎样运用电子技术来解决测量与控制中的任务,实现测控的总体思想,围绕精、快、灵和测控任务的其它要求来选用和设计电路。

本课程选用的教材是由天津大学精仪学院张国雄教授主编的《测控电路》。

该书是根据1996年10月全国高等学校仪器仪表类教学指导委员会第一次会议的决定,作为测控技术及仪器专业的规划教材,并根据随后拟定的教学大纲编写的。

该教材可供测控技术及仪器专业各专业方向和机械工程类其它专业选用。

2002年,该书获全国优秀教材二等奖,并被列为国家“十五”规划教材。

测控电路课后习题答案

测控电路课后习题答案

实例三:液位测控电路
0 电路组成:由传感器、放大器、比较器和执行机构等组成
1 0
实例应用:可用于化工、石油、食品等行业的液位测控
3
பைடு நூலகம்工作原理:传感器将液位信号转换为电信号,放大
0
器将信号放大后送至比较器与设定值进行比较,根
2
据比较结果控制执行机构动作,实现液位的自动控

0 电路特点:结构简单、可靠性强、易于实现自动化控制
习题二答案
• 题目:简述测控电路的基本组成。 答案:测控电路的基本组成包括传感器、信号调理电路、转换电路和执行机构。传感器负责采集 被测量的信息,信号调理电路对传感器输出的信号进行放大、滤波等处理,转换电路将模拟信号转换为数字信号,执行机构则根据 控制信号对被控对象进行控制。
• 答案:测控电路的基本组成包括传感器、信号调理电路、转换电路和执行机构。传感器负责采集被测量的信息,信号调理电路对传感器输出的信号进 行放大、滤波等处理,转换电路将模拟信号转换为数字信号,执行机构则根据控制信号对被控对象进行控制。
采集电路:放大器、滤波器、模 数转换器等
添加标题
添加标题
添加标题
添加标题
采集方法:直接采集和间接采集
采集注意事项:保证信号的准确 性和可靠性
信号的放大与滤波
信号放大:通过电子元件将微弱信号进行放大,以便于测量和控制 滤波:利用滤波器对信号进行筛选,去除噪声干扰,提取有用信号
信号的转换与输出
信号的转换:将输入的模拟信号转换为数字信号,便于计算机处理

添加标题
工作原理:压力传感 器将压力信号转换为 电信号,经过信号调 理电路处理后,再通 过A/D转换器转换为 数字信号,最后由微 控制器进行数据处理

测控电路 (2)

测控电路 (2)

测控电路1. 引言测控电路是一种应用广泛的电子电路,用于测量和控制各种物理量。

在现代工业、科研和仪器仪表中,测控电路扮演着重要的角色。

本文将介绍测控电路的基本原理、常见元件和设计考虑因素。

2. 测量电路测量电路是测控电路中的核心部分,它用于测量各种物理量,如电压、电流、温度、压力等。

常见的测量电路包括电压分压电路、电流测量电路、电桥电路等。

2.1 电压分压电路电压分压电路是一种常见的测量电路,它通过使用电阻器将被测电压降低到适合测量范围内。

电压分压电路可以使用电阻分压原理或者电容分压原理实现。

电阻分压原理是使用串联电阻来实现电压分压,根据欧姆定律,电阻与电压成正比关系。

电阻分压电路可以灵活调整分压比例,适用于各种电压范围的测量。

电容分压原理是利用电容器的电压分压特性实现电压分压。

通过选择合适的电容比例,可以实现不同范围的电压测量。

电容分压电路对输入阻抗要求较高,适用于高阻抗源测量。

2.2 电流测量电路电流测量电路用于测量电路中的电流大小。

电流测量电路采用电阻器、电流互感器等元件来实现电流的测量。

电阻器法是最常见的电流测量方法之一。

通过串联电阻器,将待测电流转化为电压信号进行测量。

根据欧姆定律,电流与电压成反比关系,因此可以根据电压信号求出电流大小。

电流互感器是一种特殊的电流测量元件,通过互感原理实现电流的测量。

电流互感器主要由铁芯和线圈组成,当被测电流通过线圈时,会在铁芯中产生磁感应强度变化,通过测量磁感应强度的变化来求解电流大小。

2.3 电桥电路电桥电路是一种精密测量电路,常用于测量阻抗、电容和电感等物理量。

电桥电路的核心是利用电阻和电压的平衡关系来实现测量。

常见的电桥电路包括维尔斯顿电桥、韦斯通电桥和麦克斯韦电桥等。

电桥电路通过调整电桥上的元件值,使得电桥平衡,从而测量待测物理量。

3. 控制电路控制电路是测控电路中的另一个重要组成部分,它用于控制各种设备和系统的操作。

常见的控制电路包括开关电路、比较器电路和放大器电路等。

测控电路基础概念总结

测控电路基础概念总结

第一章绪论1、测控系统主要由传感器(测量装置)、测量控制电路(测控电路)、执行机构组成2、测控电路的主要要求:精、快、灵、可靠3、测控电路的特点:精度高、动态性能好、高的识别和分析能力、可靠性高、经济性好4、为了提高信号的抗干扰能力,往往需要对信号进行调制。

在紧密测量中希望从信号一形成就成为已调制信号,因此常在传感器中进行调制。

5用电感传感器测量工件轮廓形状时—这是一个幅值按被测轮廓调制的已调制信号---称为调幅信号6、用应变片测量梁的变形,并将应变片接入交流电桥。

这时电桥的输出也是调幅信号,载波信号的频率为电桥供电频率,电桥输出信号的幅值为应变片的变形所调制。

7、采用光栅、激光干涉法等测量位移时时传感器的输出为增量码信号。

8、增量码信号是一种反映过程的信号,或者说是一种反映变化增量的信号。

它与被测对象的状态并无一一对应的关系。

9、绝对码信号是一种与状态相对应的信号。

10、开关信号可视为绝对码信号的特例,当绝对码信号只有一位编码时,就成了开关信号。

开关信号只有0和1两个状态。

11、控制方式可分为开环控制与闭环控制。

12、闭环控制的特点:它的主要特点是用传感器直接测量输出量,将它反馈到输入端与设定电路的输出相比较,当发现他们之间有差异时,进行调节补充:1、信息时代的标志——高性能计算机的发展,速度和容量为其主要标志2、影响测控电路精度的主要因素有哪些?其中那几个因素是最基本的?(1)、噪声与干扰★(2)、失调与漂移,主要是温漂★(3)、线性度与保真度(4)、输入与输出阻抗的影响第二章信号放大电路1、输入失调电压u0s:对于理想运算放大器,输入电压为零,输出电压也必然为零。

然而,实际运算放大器中,前置级的差动放大器并不一定完全对称,必须在输入端加上某一直流电压后才能使输出为零,这一直流电压称之。

2、零点漂移:失调电压随时间和温度而变化,即零点在变动,称之3、输出失调电压u0=(1+R2/R1)u0s4、输出端产生的失调电压u02=-R2I b1+(1+R2/R1)R3I b2若取R3=R1//R2,则u02=R2(I b2-I b1)=R2I0s I0s称为输入失调电流5、绝大部分的运算放大器都是用于反馈状态6、由于运算放大器通常使用在负反馈状态,本来就有1800的相位差,再加上外接和内部电路的RC网络,有可能出现3600的相位差,使电路振荡。

测控电路 (2)

测控电路 (2)

测控电路1. 引言测控电路是指用于测量和控制系统中的信号调理、数据采集、信号传输和控制执行等功能的电路。

在现代工业控制、仪器仪表和自动化等领域中,测控电路发挥着重要的作用。

本文将介绍测控电路的基本原理、常见组成部分和设计要点等内容。

2. 测控电路的基本原理测控电路的基本原理包括信号调理、数据采集、信号传输和控制执行等方面。

信号调理是指将传感器、信号源等产生的信号进行放大、滤波、线性化等处理,以便更好地适应后续的数据采集和控制操作。

数据采集是指将经过信号调理的信号转换为数字信号,并进行采样、量化等操作。

信号传输是指将采集到的数字信号进行传输,常用的方式包括串行通信、并行通信、以太网等。

控制执行是指根据传输的数字信号控制执行器进行动作控制,例如电机的启动、停止等操作。

3. 测控电路的组成部分测控电路的组成部分主要包括传感器、信号调理电路、数据采集器、数据传输模块和执行控制器等。

3.1 传感器传感器是将被测量的物理量转换为电信号的装置,常见的传感器包括温度传感器、压力传感器、光电传感器等。

传感器的选择应根据被测量的物理量和测量要求进行,例如在温度测量中可以选择热电偶传感器或者热敏电阻传感器。

3.2 信号调理电路信号调理电路用于对传感器输出的信号进行放大、滤波、线性化等处理,以适应后续的数据采集和控制操作。

常见的信号调理电路包括放大电路、滤波电路和线性化电路等。

放大电路可以根据传感器输出的信号进行放大,以增加测量的精度。

滤波电路可以通过滤除高频噪声和杂散信号,提高测量的稳定性。

线性化电路可以将非线性的传感器输出信号转换为线性信号,以便后续的处理和分析。

3.3 数据采集器数据采集器用于将经过信号调理的信号转换为数字信号,并进行采样和量化等操作。

数据采集器可以根据采集的信号类型选择合适的转换方式,常见的转换方式包括模数转换和频率转换等。

模数转换器可以将连续变化的模拟信号转换为离散的数字信号,频率转换器可以将频率变化的信号转换为数字信号。

测控电路课程设计论文

测控电路课程设计论文

测控电路课程设计论文一、教学目标本课程的教学目标是让学生掌握测控电路的基本原理、基本知识和基本技能,能够运用测控电路解决实际问题。

具体来说,知识目标包括:掌握测控电路的基本概念、基本原理和基本方法;了解测控电路在工程中的应用和前景。

技能目标包括:能够使用常见的测控电路仪器和设备,具备分析和解决测控电路问题的能力。

情感态度价值观目标包括:培养学生对测控电路的兴趣和热情,提高学生的问题解决能力和创新意识。

二、教学内容根据课程目标,本课程的教学内容主要包括测控电路的基本原理、基本知识和基本技能。

具体来说,教学大纲如下:第一章:测控电路概述1.1 测控电路的定义和发展1.2 测控电路的基本原理1.3 测控电路的应用和前景第二章:测控电路的基本元件2.1 电阻元件2.2 电容元件2.3 电感元件2.4 运算放大器第三章:测控电路的基本电路3.1 测量电路3.2 控制电路3.3 信号处理电路第四章:测控电路的实验与调试4.1 测控电路的实验方法4.2 测控电路的调试技巧4.3 测控电路的实验案例三、教学方法为了实现课程目标,本课程将采用多种教学方法,如讲授法、讨论法、案例分析法和实验法等。

讲授法用于传授基本原理和基本知识,讨论法用于探讨和解决实际问题,案例分析法用于分析和理解测控电路的应用,实验法用于锻炼学生的实践能力。

通过多样化的教学方法,激发学生的学习兴趣和主动性,提高学生的学习效果。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备适当的教学资源。

教学资源包括教材、参考书、多媒体资料和实验设备等。

教材将作为学生学习的基础,参考书提供更多的学习材料,多媒体资料用于辅助理解和记忆,实验设备用于实践和验证。

通过合理利用教学资源,提高学生的学习效果和问题解决能力。

五、教学评估本课程的教学评估将采用多元化的评估方式,以全面、客观、公正地评价学生的学习成果。

评估方式包括平时表现、作业、考试等。

测控电路绪论实验报告

测控电路绪论实验报告

一、实验目的1. 理解测控电路的基本概念和组成。

2. 掌握测控电路的基本原理和常用测量方法。

3. 学习使用测控仪器和设备。

4. 培养实验操作能力和数据分析能力。

二、实验原理测控电路是一种用于测量和控制的电子电路,其主要功能是对各种物理量进行精确测量,并将其转换为电信号输出。

测控电路通常由传感器、信号调理电路、显示电路和执行电路等组成。

传感器将各种物理量(如温度、压力、流量等)转换为电信号;信号调理电路对传感器输出的信号进行放大、滤波、转换等处理;显示电路将处理后的信号以图形、数字等形式显示出来;执行电路根据显示的信号控制相应的执行机构,实现对物理量的调节。

三、实验仪器与设备1. 传感器:温度传感器、压力传感器、流量传感器等。

2. 信号调理电路:放大器、滤波器、转换器等。

3. 显示电路:示波器、数字万用表、记录仪等。

4. 执行电路:继电器、电机、电磁阀等。

5. 实验平台:测控实验台。

四、实验内容1. 传感器性能测试- 测试传感器的灵敏度、线性度、稳定性等参数。

- 分析传感器在不同工作条件下的性能变化。

2. 信号调理电路设计- 设计放大器、滤波器、转换器等信号调理电路。

- 测试电路的性能指标,如增益、带宽、失真等。

3. 测控系统搭建- 搭建测控系统,将传感器、信号调理电路、显示电路和执行电路连接起来。

- 调整系统参数,使系统达到最佳工作状态。

4. 测控系统性能测试- 测试测控系统的精度、响应速度、稳定性等性能指标。

- 分析系统在不同工作条件下的性能变化。

5. 数据分析与处理- 对实验数据进行采集、处理和分析。

- 根据实验结果,优化测控系统设计和参数。

五、实验步骤1. 准备工作- 熟悉实验原理和实验仪器。

- 检查实验设备是否完好。

2. 传感器性能测试- 根据实验要求,选择合适的传感器。

- 测试传感器的各项参数,记录实验数据。

3. 信号调理电路设计- 设计信号调理电路,确定电路参数。

- 搭建电路,测试电路性能。

测控电路-简答总结

测控电路-简答总结

1-4测控电路在整个测控系统中起着什么样的作用?传感器的输出信号一般很微弱,还可能伴随着各种噪声,需要用测控电路将它放大,剔除噪声、选取有用信号,按照测量与控制功能的要求,进行所需演算、处理与变换,输出能控制执行机构动作的信号。

在整个测控系统中,电路是最灵活的部分,它具有便于放大、便于转换、便于传输、便于适应各种使用要求的特点。

测控电路在整个测控系统中起着十分关键的作用,测控系统、乃至整个机器和生产系统的性能在很大程度是取决于测控电路。

1-5影响测控电路(仪用电子线路)精度的主要因素有哪些,而其中哪几个因素又是最基本的,需要特别注意?影响测控电路精度的主要因素有:①噪声与干扰;②失调与漂移,主要是温漂;③线性度与保真度;④输入与输出阻抗的影响。

其中噪声与干扰,失调与漂移(含温漂)是最主要的,需要特别注意。

1-7为什么说测控电路是测控系统中最灵活的环节,它体现在哪些方面?为了适应在各种情况下测量与控制的需要,要求测控系统具有选取所需的信号、灵活地进行各种变换和对信号进行各种处理与运算的能力,这些工作通常由测控电路完成。

它包括:①模数转换与数模转换;②直流与交流、电压与电流信号之间的转换。

幅值、相位、频率与脉宽信号等之间的转换;③量程的变换;④选取所需的信号的能力,信号与噪声的分离,不同频率信号的分离等;⑤对信号进行处理与运算,如求平均值、差值、峰值、绝对值,求导数、积分等、非线性环节的线性化处理、逻辑判断等。

2-10何谓电桥放大电路?应用于何种场合?由传感器电桥和运算放大器组成的放大电路或由传感器和运算放大器构成的电桥都称为电桥放大电路。

应用于电参量式传感器,如电感式、电阻应变式、电容式传感器等,经常通过电桥转换电路输出电压或电流信号,并用运算放大器作进一步放大,或由传感器和运算放大器直接构成电桥放大电路,输出放大了的电压信号。

2-1 何谓测量放大电路?对其基本要求是什么?在测量控制系统中,用来放大传感器输出的微弱电压,电流或电荷信号的放大电路称为测量放大电路,亦称仪用放大电路。

测控电路

测控电路

Dennis Gabor The Nobel Prize in Physics 1971 "for his invention and development of the holographic method"
9
部分因从事仪器科学与技术研究获得诺贝尔物理学奖 的科学家
Ernst Ruska The Nobel Prize in Physics 1986 "for his fundamental work in electron optics, and for the design of the first electron microscope"
Frits Zernike The Nobel Prize in Physics 1953 "for his demonstration of the phase contrast method, especially for his invention of the phase contrast microscope"
11
第一节 测控电路的功用


当今时代是信息时代。 信息技术包括:信息获取、处理、传输、 存储、执行(控制)。 测量是信息的源头。 信息时代的标志:高性能计算机,速度、 容量,大规模集成电路,离不开测控。
第一节 测控电路的功用



现代战争离不开测控。 仪器仪表的测量控制精度决定了武器的 打击精度,测试速度、控制反应速度决 定了武器的反应能力。 载人飞船成功发射,测控也有至关重要 作用。 生产、生活、科技、国防都离不开测控。
第一节 测控电路的功用
传感器
测量控 制电路
图1-1 测控系统的组成

测控电路课件(完整)

测控电路课件(完整)

(三)、开关信号
开关信号可视为绝对码信号的特例,当绝 对码信号只有一位编码时,就成了开关信号。 只有0和1两个状态。
与行程开关、光电开关、触发式测头相连 接的测控电路,其输入信号为开关信号。
当执行机构只有两种状态时,如电磁铁、 开关等,要求测控电路输出开关信号。
第四节 测控电路的类型与组成
一、测量电路的基本组成 (一)模拟式测量电路的基本组成 (二)数字式测量电路的基本组成
二、控制电路的基本组成 (一)开环控制 (二)闭环控制
传 感 器
量 程 切 换
放 大 器
解 调 器


振荡器
信 号 分 离
运 算 电
模 数 转 换
计 算 机
电路 电


电源
显 示 执 行 机 构 电路
图1-6 模拟式测量电路的基本组成
传 感 器
细 脉转 分 冲换 电 当电 路 量路 辨向电路
(二)、绝对码信号
1111 0000
1110
0001
1101
0010
1100
0011
1011
0100
1010
0101
1001
0110
1000 0111
绝对码信号是一种与状态相对应的信号。
绝对码信号在显示与打印机机构中有广泛的 应用。显示与打印机构根据测控电路的译码器输 出的编码,显示或打印相应的数字或符号。在一 些随动系统中,执行机构根据测控电路输出的编 码,使受控对象进入相应状态。
以磁电式电表、示波器、笔式记录器作为显示 机构,以直流电动机为执行机构时,要求测控电路 的输出信号为非调制模拟信号。
第三节 测控电路的输入信号与输出信号

测控电路文档

测控电路文档

测控电路简介测控电路是一种用于测量和控制系统的电路设计。

它具有广泛的应用,常见于各类工业生产设备和科学研究实验中。

在测控电路中,通过使用传感器和执行器,可以对待测对象进行测量和控制操作,以实现对系统状态的监测和调节。

测控电路的组成一个典型的测控电路包含以下几个主要组成部分:1.传感器(Sensor):传感器是测控电路中的输入设备,用于将待测物理量转换为电信号。

常见的传感器有温度传感器、压力传感器、光敏传感器等。

传感器的选择取决于需要测量的物理量类型和精度要求。

2.信号调理电路(Signal Conditioning Circuit):信号调理电路用于对传感器输出的电信号进行放大、滤波、线性化等处理。

这些处理可使信号满足控制系统输入端的要求,并提高测量的准确性。

3.AD转换器(Analog-to-Digital Converter):AD转换器将传感器输出的模拟电信号转换为数字信号,以便控制系统对信号进行处理和运算。

AD转换器的精度和采样率决定了对待测信号的准确度和响应速度。

4.控制算法(Control Algorithm):控制算法根据经过信号处理的数据,计算出控制器对待控制对象的控制命令。

常见的控制算法有PID控制、模糊控制、自适应控制等。

5.控制器(Controller):控制器通过接收控制算法计算出的控制命令,驱动执行器对待控制对象进行控制操作。

控制器可采用模拟电路或数字电路实现,常见的控制器有比例控制器、PID控制器、PLC控制器等。

6.执行器(Actuator):执行器是测控电路中的输出设备,通过接收控制器的控制信号,对待控制对象进行控制。

常见的执行器有电动阀门、电动马达、液压缸等。

测控电路的应用测控电路在工业生产和科学研究中有着广泛的应用。

在工业上,测控电路常被应用于自动化生产线上。

通过对生产线上的关键参数进行实时监测和调节,可以提高生产效率和产品质量。

例如,在液体灌装生产线中,通过使用流量传感器测量液体的流量,控制阀门的开关,可以确保每个容器中的液体量精确达到设定值。

《测控电路》课件

《测控电路》课件

频率和周期测量电路
总结词
实现频率和周期测量的电路
详细描述
频率和周期测量电路是用来测量电路中信号的频率和周期的电路,通常由示波器和频率计组成。通过测量信号的 波形和周期,可以计算出信号的频率和周期。
电阻、电容、电感测量电路
总结词
实现电阻、电容、电感测量的电路
详细描述
电阻、电容、电感测量电路是用来测量电子元件的电阻、电容和电感值的电路,通常由测试信号源和 测量仪表组成。通过测量电子元件的阻抗值和频率响应,可以计算出其电阻、电容和电感值。
了更多可能性。
医疗物联网
测控电路在医疗仪器中还起到校准作用,确保仪器测 量结果的准确性。同时,通过对仪器运行状态的监测 ,可及时发现潜在故障,便于维护保养。
07
总结与展望
本课程的主要内容总结
01
02
03
04
信号的测量与处理
介绍了信号的采集、调理和变 换技术,以及信号的频域和时
域分析方法。
控制系统基础
提高测控电路精度的措施
选择高精度元件和设备
使用高质量的元件和设备是提高测控 电路精度的基本措施。
优化电路设计
通过合理的电路设计和布局,减小信 号传输过程中的损失和干扰,从而提 高测量精度。
实施温度补偿
对于受温度影响较大的元件,采取温 度补偿措施可以减小温度变化对测量 结果的影响。
加强数据处理和校准
对测量数据进行合理的数据处理和校 准,可以减小随机误差和系统误差的 影响。
06
实际应用案例分析
工业自动化生产线控制系统
自动化生产线控制
测控电路在工业自动化生产线控制系统中发挥着关键作用 。通过测控电路,可以实时监测生产线上各设备的状态, 确保生产流程的顺利进行。

测控电路

测控电路
1、开环控制
2、闭环控制
测量电路
传感器
扰动量
给定 机构
设定 电路
放大 电路
转换 电路
执行 机构
被控 对象
输 出
控制电路
开环控制系统的基本组成
扰动
给定 机构
设定 电路
比较 电路
放大 电路
校正 转换 电路 电路
执行 机构
被控 对象
输出
控制电路 传感器
闭环控制系统的基本组成
第五节 测控电路的发展趋势
3 2 uc
x
O
t
a)
x uc
O
x us 1 x 4 us
O
t
b)
t
c)
图 用电感传感器测量 工件轮廓形状
图 调幅信号
第三节 测控电路的输入信号与输出信号
1、载波频率(carrying frequency)

信号的频率由传感器供电频率确定,这一频率 称为载波频率
2、载波信号(carrying signal)
为了适应在各种情况下测量与控制的需要, 要求测控电路有灵活地进行各种转换的能力。 它包括:
第二节 对测控电路的主要要求
1、模数转换与数模转换 2、信号形式的转换 3、量程的变换 4、信号的选取 5、信号处理与运算
第二节 对测控电路的主要要求
1、模数转换与数模转换

自然界客观存在的物理量多为模拟量 计算机:数字信号 控制执行机构动作:多模拟信号
第一节 测控电路的功用

生产自动化也离不开测量与控制 产品的质量离不开测量与控制 现代的生活、办公器械

微波炉、照相机、复印机等也都装有不同数 量的传感器,
第一节 测控电路的功器, 对点火时间、燃油喷射、空气燃料比、 防滑、防碰撞等进行控制。 航天发射与飞行,都需要靠精密测量与 控制保证它们轨道准确性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测控电路课程设计测控电路课程设计题目名称:倒车防撞报警装置专业班级:学生姓名:学号:指导教师:成绩:评语:指导老师签名:测控电路课程设计课程设计名称:倒车防撞报警装置专业班级:学生姓名:学号:指导教师:课程设计地点:课程设计时间:同组人员:目录引言 (4)1系统设计的目标和任务 (4)1.1系统设计的基本要求 (4)1.2系统设计的思路 (4)1.3方案论证 (5)1.3.1发送模块 (5)1.3.2接收模块 (5)2 AT89S51单片机与超声波简介 (5)2.2 AT89S51单片机的特点 (6)2.3 超声波简介 (7)2.4 超声波测距原理 (7)2.5 超声波测距误差分析 (9)2.5.1 温度误差 (9)2.5.2 时间误差 (9)2.6 影响超声波探测的因素 (10)2.7 如何提醒车主 (12)2.8 基于CX20106A超声波测距的调试 (12)3.1 倒车雷达的工作原理图 (12)3.2超声波系统主流程图 (13)3.3超声波硬件设计与软件编程 (14)3.3.1复位电路 (14)3.3.2显示电路 (15)3.3.3超声波发送与接收模块 (15)3.3.4 报警模块 (16)4 调试及性能分析 (17)4.1 硬件调试 (17)4.2 软件调试 (17)4.3测试结果与分析 (17)5设计总结 (18)致谢 (18)附录1电路原理图 (19)附录2程序 (19)参考文献 (28)引言随着我国经济的快速发展,交通运输车辆及私家用车的不断增加,不可避免的交通问题瞬时成为人们关注的问题。

其中由于倒车事故发生的频率高,已引起了社会和交通部门的高度重视。

倒车事故发生的原因是多方面的,造成倒车时的事故率远大于汽车前进时的事故率,尤其是非职业驾驶员以及女性更为突出。

而倒车事故给车主带来许多麻烦,不仅经济上,更有人身伤害,例如撞上别人的车,如果伤及儿童更是不堪设想,所以倒车雷达应运而生,倒车雷达的加装可以解决司机的不少麻烦,大大降低了倒车事故的频率。

由于存在视觉盲区,无法看清车后状况,司机在倒车时很容易发生事故。

为了减少带来的损失,需要有一种专门帮助司机安全倒车的装置。

因此,设计一个小车防撞系统也就变得很有必要。

目前测量距离一般都采用波在介质中的传播速度和时间关系进行测量。

常用的技术主要有激光测距、微波雷达测距和超声波测距三种。

超声波具有指向性强、能量消耗缓慢且在介质中传播的距离较远的优点,因此经常用于距离的测量。

超声波测距主要用于建筑工地以及一些工业现场和移动机器人研制上,可在潮湿,多尘等环境下工作。

相对于其他技术而言,超声波定位技术成本低、工作稳定、精度高、操作简单等优点,非常适用于距离测量定位。

AT89S51为小车防撞控制系统提供了稳定、可靠的解决办法,充分利用它的片内资源,实现了超声波测距和报警。

1系统设计的目标和任务1.1系统设计的基本要求本次设计的主要内容是设计一种基于单片机汽车防撞报警系统的硬件电路,主要利用单片机对超声波传感器采集的模拟数据的处理及存储。

设计的基本要求:1.快速自动报警功能:当超声波传感器检测到汽车后方障碍物与汽车的距离小于安全值时,系统能快速进行声光报警。

2.准确地向终端报警:能够及时并准确地向司机进行报警,快速地实现安全检测。

3.实时检测功能:监测模块能实时采集汽车与后方障碍物距离的变化,将这些数据定时传送给单片机,有利于及时了解当前所处情况是否处于安全环境之下。

1.2系统设计的思路该系统分为监测部分与终端接收部分。

监测部分,通过超声波系统对碰到的障碍物进行检测,再通过单片机系统对接收到的数据进行处理,保证在终端能准确地接收信息,蜂鸣器同时工作;终端接收部分,终端通过单片机分析接收的相关信息,在LED上显示与障碍物的距离。

1.3方案论证1.3.1发送模块方案1:采用压电式超声波换能器。

压电式超声波换能器是利用压电晶体的谐振来工作的。

方案2:采用反向器74LS04和超声波发射换能器T构成震荡器。

这种电路可以提高超声波发射强度,且电路简单,稳定性高。

方案3:单电源乙类互补对称功率放大电路和UCM—40T发射器。

利用单电源乙类互补对称功率放大大路驱动发射器[5]。

经论证比较,三种方案差距不大,但鉴于用74LS04电路简单。

故选择方案2。

1.3.2接收模块方案1:采用集成电路CX20106A。

它是一款红外线检波接收的专用芯片,考虑到红外常用的载波频率38KHZ与测距的超声波40KHZ较为接近,可以利用它制作超声波检测接受电路,且电路简单,灵敏度高,还有较强的抗干扰能力。

方案2:采用uA741构成两级放大电路,这是专用运算放大器,高增益,增益带宽积大,抗干扰能力强,可测距离远,精度高[6]。

经论证比较,虽然方案2相对方案1可测的更远,但方案1已可满足项目功能的要求,且方案1电路结构简单,方便调试,故采用方案1。

2 AT89S51单片机与超声波简介AT89S51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器。

该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89S51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

AT89S51单片机引脚图2.2 AT89S51单片机的特点AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。

AT89S51具有如下特点:40个引脚,4k Bytes Flash片内程序存储器,128 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器[8]。

此外,AT89S51设计配置了振荡频率可为0Hz并可通过软件设置省电模式。

空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。

同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。

主要特性:· 8031 CPU与MCS-51 兼容· 4K字节可编程FLASH存储器(寿命:1000写/擦循环)·全静态工作:0Hz-33MHz·三级程序存储器保密锁定· 128*8位内部RAM· 32条可编程I/O线·两个16位定时器/计数器· 6个中断源·可编程串行通道·低功耗的闲置和掉电模式·片内振荡器和时钟电路.2.3 超声波简介我们知道,当物体振动时会发出声音。

科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。

人类耳朵能听到的声波频率为20~20,000HZ。

当声波的振动频率大于20000HZ或小于20HZ时,我们便听不见了。

因此,我们把频率高于20000HZ的声波称为“超声波”。

超声波广泛地应用在多种技术中。

超声波有两个特点,一个是能量大,一个是沿直线传播。

由于超声波也是一种声波,超声波在媒质中传播的速度和媒质的特性有关。

声波是物体机械振动状态(或能量)的传播形式。

所谓振动是指物质的质点在其平衡位置附近进行的往返运动。

超声和可闻声本质上是一致的,它们的共同点都是一种机械振动,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性。

超声波具有以下的特点:1)超声波可在气体、液体、固体、固熔体等介质中有效传播。

2)超声波可传递很强的能量。

3)超声波会产生反射、干涉、叠加和共振现象。

4)超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。

2.4 超声波测距原理在超声波探测电路中, 发射端输出一系列脉冲方波, 其宽度为发射超声波与接收超声波的时间间隔, 被测物距越远, 脉冲宽度越大, 输出脉冲个数与被测距离成正比。

超声波测距的方法有多种, 如相位检测法、声波幅值检测法和往返时间检测法等。

相位检测法虽然精度高, 但检测范围有限可检测到汽车倒车中, 其障碍物与汽车的距离;声波幅值检测法易受反射波的影响。

本文硬件设计采用超声波往返时间检测法, 其测量原理图如图2所示。

图2 超声波测距原理图其原理为: 在超声波发射器两端输入40KHZ 脉冲串, 脉冲信号经过超声波内部振子, 振荡产生机械波, 并通过空气介质传播到被测面, 由被测面反射到超声波接收器接收, 在超声波接收器两端, 信号是毫伏级的正弦波信号, 超声波经气体介质的传播到接收器的时间, 即为往返时间。

超声测距有脉冲回波法、共振法和频差法,其中常用脉冲回波法测距。

超声波测距的原理一般采用渡越时间法 ,其原理是超声传感器发射超声波, 超声波在空气中传播至障碍物, 经反射后由超声传感器接收反射脉冲, 测量出超声脉冲从发射到接收的时间, 再乘以超声波在空气中的速度就得到二倍的声源与障碍物之间的距离, 即:L=c ·t/2 (1)式(1)中, L 为超声传感器与被测障碍物之间的距离, c 为超声波在介质(空气)中的传输速率, t 为超声波从发射到接收的时间。

超声波在空气中的传播速度为: 00c c T T =⋅, 其中T 为绝对温度数值, 0273.15T k ≈,0331.4C m s =。

在测量精度不是很高的情况下, 一般可以认为c 为常数340m/s 。

由于温度影响超声波在空气中的传播速度;超声波反射回波又很难精确捕捉,致使超声波在空气中传播的时间很难精确测量。

这些因素是使用超声测距引起误差的原因。

2.5超声波测距误差分析根据超声波测距公式L=c·t/2,可知测距的误差是由超声波的温度误差、传播速度误差和测量距离传播的时间误差引起的。

2.5.1 温度误差由于超声波也是一种声波。

其声速C与温度有关。

表1列出了几种不同温度下的声速表1声速与温度关系温度(℃) -30 -20 -10 0 10 20 30 100313 319 325 323 338 344 349 386 声速(米/秒)这是超声波的温度效应特性,超声波的传播速度“C”可以用公式(2)表示:C=331.5+0.607t(m/s),式中t=温度(℃)。

相关文档
最新文档