中考数学复习专题讲座精编含详细参考答案数学思想方法
2013年浙江省宁波地区中考数学复习专题讲座六:数学思想方法(二)(含详细参考答案)
2013年中考数学复习专题讲座六:数学思想方法(二)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点四:方程思想从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。
这种思想在代数、几何及生活实际中有着广泛的应用。
例1 (2012•广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?考点:一元二次方程的应用。
专题:增长率问题。
分析:(1)设年平均增长率为x.根据题意2010年公民出境旅游总人数为 5000(1+x)万人次,2011年公民出境旅游总人数 5000(1+x)2 万人次.根据题意得方程求解;(2)2012年我国公民出境旅游总人数约7200(1+x)万人次.解答:解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得5000(1+x)2 =7200.解得 x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为 7200(1+x)=7200×120%=8640万人次.答:预测2012年我国公民出境旅游总人数约8640万人次.点评:方程是解决应用题、实际问题和许多方面的数学问题的重要基础知识,应用范围非常广泛。
中考数学专题复习第4讲因式分解(含详细答案)
第四讲 因式分解 【基础知识回顾】一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。
2、因式分解与整式乘法是 运算,即:多项式 整式的积 【名师提醒:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。
】二、因式分解常用方法:1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。
提公因式法分解因式可表示为:ma+mb+mc= 。
【名师提醒:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。
2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。
3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。
】2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。
①平方差公式:a 2-b 2= ,②完全平方公式:a 2±2ab+b 2= 。
【名师提醒:1、运用公式法进行因式分解要特别掌握两个公式的形式特点,找准里面的a 与b 。
如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。
】三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。
2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。
3、 三查:分解因式必须进行到每一个因式都不能再分解为止。
【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】【重点考点例析】考点一:因式分解的概念例1 (•株洲)多项式x 2+mx+5因式分解得(x+5)(x+n ),则m= ,n= .思路分析:将(x+5)(x+n )展开,得到,使得x 2+(n+5)x+5n 与x 2+mx+5的系数对应相等即可.解:∵(x+5)(x+n )=x 2+(n+5)x+5n ,∴x 2+mx+5=x 2+(n+5)x+5n ∴555n m n +=⎧⎨=⎩,∴16n m =⎧⎨=⎩, 故答案为6,1.点评:本题考查了因式分解的意义,使得系数对应相等即可.对应训练1.(•河北)下列等式从左到右的变形,属于因式分解的是( )( ) ( )A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)1.D考点二:因式分解例2 (•无锡)分解因式:2x2-4x= .思路分析:首先找出多项式的公因式2x,然后提取公因式法因式分解即可.解:2x2-4x=2x(x-2).故答案为:2x(x-2).点评:此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.例3 (•南昌)下列因式分解正确的是()A.x2-xy+x=x(x-y)B.a3-2a2b+ab2=a(a-b)2C.x2-2x+4=(x-1)2+3 D.ax2-9=a(x+3)(x-3)思路分析:利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.解:A、x2-xy+x=x(x-y+1),故此选项错误;B、a3-2a2b+ab2=a(a-b)2,故此选项正确;C、x2-2x+4=(x-1)2+3,不是因式分解,故此选项错误;D、ax2-9,无法因式分解,故此选项错误.故选:B.点评:此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.例4 (•湖州)因式分解:mx2-my2.思路分析:先提取公因式m,再对余下的多项式利用平方差公式继续分解.解:mx2-my2,=m(x2-y2),=m(x+y)(x-y).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.对应训练2.(•温州)因式分解:m2-5m= .2.m(m-5)3.(•西宁)下列分解因式正确的是()A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)23.B4.(•北京)分解因式:ab2-4ab+4a= .4.a(b-2)2考点三:因式分解的应用例5 (•宝应县一模)已知a+b=2,则a2-b2+4b的值为.思路分析:把所给式子整理为含(a+b)的式子的形式,再代入求值即可.解:∵a+b=2,∴a2-b2+4b=(a+b)(a-b)+4b=2(a-b)+4b=2a+2b=2(a+b)=2×2=4.故答案为:4. 点评:本题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b 的形式是求解本题的关键,同时还隐含了整体代入的数学思想.对应训练5.(•鹰潭模拟)已知ab=2,a-b=3,则a 3b-2a 2b 2+ab 3= .5.18【聚焦山东中考】1.(•临沂)分解因式4x-x 2= .1.x (4-x )2.(•滨州)分解因式:5x 2-20= .2.5(x+2)(x-2)3.(•泰安)分解因式:m 3-4m= .3.m (m-2)(m+2)4.(•莱芜)分解因式:2m 3-8m= .4.2m (m+2)(m-2)5.(•东营)分解因式:2a 2-8b 2= .5.2(a-2b )(a+2b )6.(•烟台)分解因式:a 2b-4b 3= .6.b (a+2b )(a-2b )7.(•威海)分解因式:-3x 2+2x-13= . 7.21(31)3x --8.(•菏泽)分解因式:3a 2-12ab+12b 2= .8.3(a-2b )2【备考真题过关】一、选择题1.(•张家界)下列各式中能用完全平方公式进行因式分解的是() A .x 2+x+1 B .x 2+2x-1 C .x 2-1D .x 2-6x+9 1.D2.(•佛山)分解因式a 3-a 的结果是( )A .a (a 2-1)B .a (a-1)2C .a (a+1)(a-1)D .(a 2+a )(a-1) 2.C3.(•恩施州)把x 2y-2y 2x+y 3分解因式正确的是( )A .y (x 2-2xy+y 2)B .x 2y-y 2(2x-y )C .y (x-y )2D .y (x+y )23.C二、填空题4.(•自贡)多项式ax 2-a 与多项式x 2-2x+1的公因式是 .4.x-15.(•太原)分解因式:a 2-2a= .5.a (a-2)6.(•广州)分解因式:x 2+xy= .6.x (x+y )7.(2013•盐城)因式分解:a 2-9= .7.(a+3)(a-3)8.(•厦门)x2-4x+4=()2.8.x-29.(•绍兴)分解因式:x2-y2= .9.(x+y)(x-y)10.(•邵阳)因式分解:x2-9y2= .11.(x+3y)(x-3y)12.(•南充)分解因式:x2-4(x-1)= .12.(x-2)213.(•遵义)分解因式:x3-x= .13.x(x+1)(x-1)14.(•舟山)因式分解:ab2-a= .14.a(b+1)(b-1)15.(•宜宾)分解因式:am2-4an2= .15.a(m+2n)(m-2n)16.(•绵阳)因式分解:x2y4-x4y2= .16.x2y2(y-x)(y+x)17.(•内江)若m2-n2=6,且m-n=2,则m+n= .17.318.(•廊坊一模)已知x+y=6,xy=4,则x2y+xy2的值为.18.2419.(•凉山州)已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b= .19.-31。
中考复习数学思想方法篇(一线教师精编教师版可编辑有详细解析)
数学方法篇一:配方法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.【范例讲析】1.配方法在确定二次根式中字母的取值范围的应用在求二次根式中的字母的取值范围时,经常可以借助配方法,通过平方项是非负数的性质而求解。
例1、求二次根式322+-a a 中字母a 的取值范围分析:根据二次根式的定义,必须被开方数大于等于零,再观察被开方数可以发现可以利用配方法求得。
解:2)1(2)12(32222+-=++-=+-a a a a a因为无论a 取何值,都有0)1(2≥-a 。
所以a 的取值范围是全体实数。
点评:经过配方,观察被开方数,然后利用被开方数必须大于等于零求得所需要的解。
2.配方法在化简二次根式中的应用在二次根式的化简中,也经常使用配方法。
例2、化简526-分析:题中含有两个根号,化简比较困难,但根据题目的结构特征,可以发现526-可以写成2)15(1525-=+-,从而使题目得到化简。
解:1 5 )1 5 ( 1 52 ) 5 ( 1 5 2 5 5 2 6 2 2 2 - = - = + - = + - = - 点评:题型b a 2+一般可以转化为y x y x +=+2)((其中⎩⎨⎧==+b xy ay x )来化简。
3.配方法在证明代数式的值为正数、负数等方面的应用在证明代数式的值为正数或负数,配方法也是一种重要的方法。
例3、不管x 取什么实数,322-+-x x 的值一定是个负数,请说明理由。
分析:本题主要考查利用配方法说明代数式的值恒小于0,说明一个二次三项式恒小于0的方法是通过配方将二次三项式化成“2a -+负数”的形式。
解:2)1(31)12(3)2(322222---=-++--=---=-+-x x x x x x x ∵0)1(2≤--x , ∴02)1(2<---x 。
因此,无论x 取什么实数,322-+-x x 的值是个负数。
九年级数学中考数学思想方法专题讲座四
九年级数学中考数学思想方法专题讲座四解题思想方法概论:数形结合百般好学号______班级________姓名__________【化数为形 以形助数】问题一.几个好玩的数列题.1.(南京中考)计算:1+3+5+7+···+(2n -1)=_______________.2.(长沙中考)计算:2561641321161814121+⋅⋅⋅++++++ =_________. 3.(课本)化简:63322...2221+++++=_______________4.计算:333310...321++++=____________.问题二.函数图象与数形结合1.(山东德州)已知a >0,b <0,且a +b <0,试比较实数a , b , -a , -b 的大小.2.比较大小:x +2和-2x -1. 3.比较x ,x1,2x 的大小. 练习1.(武汉)如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 . 练习2.在大连到烟台160千米的航线上,某轮船公司每天上午8点到下午16点每隔2小时有一只轮船从大连开往烟台,同时也有一只轮船从烟台开往大连,轮船在途中花费8小时,求:今天上午8点从大连开往烟台的轮船在航行途中(不包括大连和烟台)遇到几只从对面开来的本公司的轮船,在遇到第三只从对面开来的本公司轮船时的时间及离大连的距离。
问题三.正方形的妙用.1.解一元二次方程01-2=+x x . 2.请证明ab b a ≥+2构造圆的方法 3.已知a >b >0,求证:b a b a ->-. 4.已知1=-a c b ,求证:ac b 42≥. 5.正数a 、b 、c 、A 、B 、C 满足k C c B b A a =+=+=+,求证:2k cA bC aB <++.问题四.联想的妙用.若x 为实数,则代数式4)4(122+-++x x 的最小值为多少?【化形为数 以数解形】问题1. 如图,△ABC 中,已知∠BAC =45°,AD ⊥BC 于D ,BD =2,DC =3,求AD 的长.问题2.已知正方形ABCD 中,点E 在BC 上,点F 在DC 上,若EF=BE +DF ,猜想∠CAF 的度数等于多少?并证明你的结论.问题3.如图,若Rt △AOB ≌Rt △COD ,且OA =2,OB =1,AB 与CD 交于点E ,请问点E 到OA 的距离等于多少?变式练习.如图,直角梯形ABCD 中,∠B =90°,腰AB =2cm ,BC =6,AD =2,点E 是CD 上一动点,EG ⊥BC 于点G ,EF ⊥AB 于点F ,设EF =x ,四边形EFBG 的面积为S ,求S 的最大值.B C AD。
九年级数学中考数学思想方法专题讲座三
GFECBAD九年级数学中考数学思想方法专题讲座三解题思想方法概论:一般与特殊学号______班级________姓名__________【化静为动】问题1.如图,在矩形ABCD 中,AB =4,AD =2,E 是AD 上一点, 连接BE ,点P 是BE 上一点,过P 作FG ⊥BE ,交AB 于点F ,交CD 于点G ,则FGBE 的值等于______.问题2.如图,在△ABC 中,AB =AC=8,P 是边BC 上不与B 、 C 重合的一点,则AP 2+BP ·PC 值为______.问题3.如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的 两个动点,且总使AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G , 则F G A F.问题4.如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =4,BC =6,将CD 以D 为中心逆时针旋转90°至ED ,连AE ,求△ADE 的面积.【动中求静】问题5.(北京)如图所示,一根长2a 的木棍(AB ),斜靠在与地面(OM )垂直的墙(ON )上,设木棍的中点为P . 若木棍A 端沿墙下滑,且B 端沿地面向右滑行.(1)请判断木棍滑动的过程中,点P 到点O 的距离是否变化,并简述理由.(2)在木棍滑动的过程中,当滑动到什么位置时,△AOB 的面积最大?简述理由,并求出面积 的最大值.【能力训练】1.如图,DP ⊥PB 于点P ,BC ⊥PB 于点B , PD =PB =2,点A 是BP 延长线上一点,过点D 作DC ⊥DA 交BC 于点C ,则四边形ABCD 的面积等于_____.2.如图,平行四边形ABCD 中,AB =8,BC =15,AC =17.P 是边AD 上一点,E 是对角线AC 上一点, EF //BC 交AB 于点F ,则图中的阴影部分面积等于_______.3.如图,等边△ABC 中,D 是BC 上一点,E 是AC 上一点,且BD =CE ,AD 与BE 交于点P ,则∠APE 等于( ) A .45° B .55° C . 60° D . 75°4.如图,△ABC 是等边三角形,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F .若BC =2,则DE +DF 的值为_________.5.(2013届八年级期末)在平行四边形ABCD 中,点F 为线段BC 上一点(端点B ,C 除外),连结AF 、AC ,连结DF ,并延长DF 交AB 的延长线于点E ,连结CE .若△ABF 面积为S ,求△EFC 的面积.6.如图,在等腰R t ABC △中,908C A C ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持A D C E =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:① D F E △是等腰直角三角形;② 四边形CDFE 不可能为正方形; ③ DE 长度的最小值为4; ④ 四边形CDFE 的面积保持不变;⑤ △CDE 面积的最大值为8. 其中正确的结论是( ) A .①②③B .①④⑤C .①③④D .③④⑤第1题第3题第2题 FE BCDA第4题CEBAFD。
中考专题复习数学思想方法
3.映射模型(结构型);如图,直线l是一条河,P,Q两地相距8千米, P,Q两地到l的距离分别为2千米,5千米,欲在l上的某点M处修建一个 水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设 的管道,则铺设的管道最短的是()
(2)数形结合思想
由数想形
1.如图
6,直线 l
:
y
2 3
x
3与直线
y
a
(
a
为常数)的交点在第四象限,则
a 可能在(
)
A.1 a 2
B. 2 a 0
见形C思. 数3 a 2 D. 10 a 4
2.有如图所示的两种广告牌,其中图是由两个等腰直角三角形构成的,
图是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种
【特别提醒】 1.分类中的每一部分是相互独立的. 2.一次分类必须按同一个标准. 3.分类讨论应逐级进行,做到不重、不漏. 4.最后必须归纳小结,综合得出结论.
1. 已知点P到圆的最大距离为11,最小距离为7,则此圆的半径为 多少? 2.(2015·攀枝花中考)如图,在平面直角坐标系中,O为坐标原点,矩 形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD 为等腰三角形,则所有满足条件的点P的坐标为________.
(4)数学建模思想
1.函数模型(定义型);
10.一台印刷机每年印刷的书本数量 y(万册)与它
的使用时间 x(年)成反比例关系,当 x=2 时,y=20,
则 y 与 x 的函数图像大致是(
中考数学复习专题讲座五数学思想方法(学生版)
1)求AC所在直线的函数解析式;
2)过点O作OG⊥AC,垂足为G,求△OEG的面积;
3)已知点F(10,0),在△ABC的边上取两点P,Q,是否存在以O,P,Q为顶点的三角形与△OFP全等,
OP的异侧?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
A.9 B. ±3 C. 3 D.5
.(2012?广元)如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为( )
A.(0,0) B.
. D.
. (2012?黔西南州)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y交于C点,且A(﹣1,0),点
.(2012?东营)若3x=4,9y=7,则3x﹣2y的值为( )
A. B. C. ﹣3 D.
.(2012?南京)计算(a2)3÷(a2)2的结果是( )
A.a B. a2 C. a3 D.a4
.(2012?南昌)已知(m﹣n)2=8,(m+n)2=2,则m2+n2=( )
A.10 B. 6 C. 5 D.3
.(2012?本溪)已知一元二次方程x2﹣8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的
)
A.13 B. 11或13 C. 11 D.12
.(2012?莱芜)已知m、n是方程x2+2x+1=0的两根,则代数式的值为( )
120元,并且各自推出不同的优惠方案.甲家
35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的
45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选哪家宾馆更实惠些?
中考数学复习专题讲座(八)数形结合思想
中考数学复习专题讲座(八)----数形结合思想【中考展望】1.用数形结合的解题思想来解决问题主要分为两类,一是利用几何图形的直观或者图形的有关性质来解决数量关系和表示数的问题, 它常常借用数轴、函数图象等;二是运用数量关系来研究几何图形性质,常常需要建立方程(组)或函数关系式等。
2. 热点内容:在初中教材中,“数”的常见表现形式为: 实数、代数式、函数和不等式等,而“形”的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数图象对应一条直线,二次函数的图像对应着一条抛物线,这些都是初中数学的重要内容.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.【典型例题】类型一、利用数形结合探究数字的变化规律例 1. 如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.【思路点拨】首先计算几个特殊图形,发现:数出每边上的个数,乘以边数,但各个顶点的重复了一次,应再减去.第1个图形是2×3-3,第2个图形是3×4-4,第3个图形是4×5-5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n2+2n.【答案与解析】第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋(2×3-3)个;第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子(3×4-4)个;第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子(4×5-5)个;按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n(n+2).故答案为n(n+2)=n2+2n.【总结升华】这样的试题从最简单的图形入手.找出图形中黑点的个数与第n个图形之间的关系,找规律需要列出算式,一律采用原题中的数据,不要用到计算出来的结果来找规律.举一反三:【变式】用棋子按下列方式摆图形,依照此规律,第n个图形比第(n-1)个图形多_____枚棋子.S.【答案】解:设第n个图形的棋子数为n第1个图形,S 1=1; 第2个图形,S 2=1+4; 第3个图形,S 3=1+4+7;第n 个图形,S n =1+4+…+3n -2;第(n-1)个图形,S n-1=1+4+…+[3(n-1)-2];则第n 个图形比第(n-1)个图形多(3n-2)枚棋子.类型二、 利用数形结合解决数与式的问题例2.已知实数a 、b 、c 在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是 ( ).0a c bA.a+cB.-a-2b+cC.a+2b-cD.-a-c【思路点拨】首先从数轴上a 、b 、c 的位置关系可知:c <a <0;b >0且|b|>|a|,接着可得a+b >0,c-b <0,然后即可化简|a+b|-|c-b|可得结果. 具体步骤为:① a,b,c 的具体位置,在原点左边的小于0,原点右边的大于0.②比较绝对值的大小.|a|<|c|<|b|.③化简原式中的每一部分,看看绝对值内部(二次根式中的被开方数的底数)的性质,若大于零,直接提出来,若小于零,则取原数的相反数.④进行化简计算,得出最后结果. 【答案与解析】解:从数轴上a 、b 、c 的位置关系可知:c <a <0;b >0且|b|>|a|, 故a+b >0,c-b <0,即有|a+b|-|c-b|=a+b+c-b=a+c . 故选A . 【总结升华】此题主要考查了利用数形结合的思想和方法来解决绝对值与数轴之间的关系,进而考察了非负数的 运用.数轴的特点:从原点向右为正数,向左为负数,及实数与数轴上的点的对应关系.非负数在初中的范围内,有三种形式:绝对值(|a|),完全平方式(a ±b)2,二次根式((0)a a ≥.性质:非负数有最小值是0;几个非负数的和等于0,那么每一个非负数都等于0.★【变式】实数a 、b 在数轴上的位置如图所示,化简2||a a b +-=_________。
中考数学专题复习--《数学思想方法》典题精讲.doc
二WWW lb中考数学专题复习•…《数学思想方法》题型概述【题型特征】数学思想是对数学知识、方法、规律的一种本质认识;数学方法是解决数学问题的策略和程序,是数学思想的具体反映.对于学习者来说,运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种积累达到一定程度就会产生飞跃,从而上升为数学思想,一旦数学思想形成Z后,便对数学方法起着指导作用.因此,人们通常将数学思想与方法看成一个整体概念一数学思想方法.在初屮数学屮常见如下m大数学思想方法:(1)转化化归的思想方法;(2)数形结合的思想方法;(3)方程与函数的思想方法;(4)分类讨论的思想方法.【解题策略】⑴转化化归的思想方法:将不熟悉和难解的问题转化为熟知的易解的或已一经解决的问题,将抽象的问题转化为具体的直观的问题,将复杂的问题转化为简单的问题,将一般性的问题转化为直观的特殊的问题;将实际问题转化为数学问题,使问题便于解决.如解分式方程时,我们将其转化为整式方程來解、一元二次方程我们将其转化为一元一次方程来解、四边形我们将其转化为三角形来研究、立体图形将其转化为平血图形来研究等.(2)数形结合的思想方法:数形结合解题就是在解决与儿何图形有关的问题时,将图形信息转换成代数的信息,利用数量特征,将其转化为代数问题.在解决与数量有关的问题时,根据数量的结构特征,构造出相应的几何图形,即化为几何问题.(3)方程与函数的思想方法:用运动、变化的观点,分析研究具体问题中的数量关系,通过将问题转化为函数和方程模型来解决就体现了方程与函数的思想方法•具体地,函数思想,是指用函数(一次函数、反比例函数、二次函数)的概念和性质去分析问题、转化问题和解决问题•方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型 (方程、不等式或方程与不等式的泥合组),然后通过解方程(组)或不等式(组)来使问题获解. 有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的.(4)分类讨论的思想方法:当求解的数学问题的结论有多种情况或多种可能性吋,就要进行分类讨论.比如前面等腰三角形、直角三角形的有关计算问题、圆的有关问题(垂径定理计算问题、弦所对的圆周角的大小问题、位置关系问题等)中,往往因为已知的不确定性,需要分类讨论.这些同学们应引起重视,否则可能会出现漏解.典题精讲类型一转化化归的思想方法A.4B. -4C. 16D. -16例1若兀2—3y —5 = 0,则6y —2兀~—6的值为()•【解析】3y —5 = 0,・•• x2 -3y = 5则6y _ 2兀_ — 6 ——2(x* — 3y) — 6 ——2x5 — 6 — -16.【全解】D1•已知血是方程兀2 一兀一1 = 0的_个根,求m(m + l)2一加2(加+ 3)+ 4的值.X 9 r — 12•解方和口一百八【考情小结】转化就是在研究和解决有关数学问题时,采用某种方法将问题通过变换使之转化,进而达到解决的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题转化为已解决的问题.所谓“化归”就是将要解决的问题转化归结为另一个较易问题或已经解决的问题.类型二数形结合的思想方法例2如图,O为数轴原点,两点分别对应一3,3,作腰长为4的等腰AABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M ,则点M对应的实数为 ___________________C【解析】•・・AABC为等腰三角形,OA = OB = 3,・•・OC丄AB .在R临OBC中,O C Z B D-OB?「42—32 =",•・•以0为圆心,CO长为半径画弧交数轴于点M, ,\OM =OC = y/i .・••点M对应的数为一J7.【全解】V73.二次函数y = ax2 +/?x + c(dH0)的图象如图所示,下列结论:①2a + b = 0 ;②.a + c > b ;③抛物线与兀轴的另一个交点为(3, 0);④。
中考数学复习专题讲座(精编含详细参考答案)数学思想方法()
2018年中考数学复习专题讲座:数学思想方法<2)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试卷中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点四:方程思想从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组>。
这种思想在代数、几何及生活实际中有着广泛的应用。
例1 <2018•广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2018年公民出境旅游总人数约7200万人次,若2018年、2018年公民出境旅游总人数逐年递增,请解答下列问题:<1)求这两年我国公民出境旅游总人数的年平均增长率;<2)如果2018年仍保持相同的年平均增长率,请你预测2018年我国公民出境旅游总人数约多少万人次?考点:一元二次方程的应用。
专题:增长率问题。
分析:<1)设年平均增长率为x.根据题意2018年公民出境旅游总人数为5000<1+x)万人次,2018年公民出境旅游总人数 5000<1+x)2 万人次.根据题意得方程求解;<2)2018年我国公民出境旅游总人数约7200<1+x)万人次.解答:解:<1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得5000<1+x)2 =7200.解得 x1 =0.2=20%,x2 =﹣2.2 <不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.<2)如果2018年仍保持相同的年平均增长率,则2018年我国公民出境旅游总人数为 7200<1+x)=7200×120%=8640万人次.答:预测2018年我国公民出境旅游总人数约8640万人次.点评:方程是解决应用题、实际问题和许多方面的数学问题的重要基础知识,应用范围非常广泛。
九年级数学中考数学思想方法专题讲座二
九年级数学中考数学思想方法专题讲座二解题思想方法概论:化归学号______班级________姓名__________典型问题展示 问题1. .______23311的值为,则若bab a b ab a b a +++-=+问题2.已知484212=++xx ,求x 的值.问题3.已知,2=+y x 求222121y xy x ++的值.练习:计算(1) )()(526110132301-+-÷-(2)20092008331)()(-⨯-;(3)20072008)2(3)2(-⨯+- (4)若522781+-=x x ,求x 的值. 问题4.(1)小学问题:两数之和为10,那么哪两个数之积最大?此时这两个数有何数量关系?(2)点P 是线段AB 上一点,则点P 在哪个位置时,使得P A ·PB 之积最大?为什么?(3)一根长为4的铁丝围成一个矩形,请问它的面积最大是多少?(4)有一个长为2的围栏,利用互相垂直的两堵墙, 围成一个矩形羊圈ABCD ,请问它最大面积是多少?(5)如图,利用原有的一面墙(图中虚线表示的部分), 用长为4的围栏围成一个矩形羊圈ABCD ,求它的最大面积.l D CBA l 2l 1D C BADCBA(6)如图,从一张矩形纸片较短的边上找一点,过这个点剪下两个正方形,它们的边长分别为AE ,BE .要剪下的两个正方形的面积和最小,点E 应选在何处?为什么?(7)有一块直角三角形铁皮,两条直角边长分别为3dm 和4dm ,需在其内部裁出一块面积尽量大的矩形铁皮ABCD ,在分割时,小明和小亮的意见出现了分歧. 小明:利用图①的分割方法,设矩形铁皮的一边AB =x dm .①AD 边的长度如何表示? ②当x 取何值时,矩形铁皮的面积最大?最大值是多少?小亮:利用图②的分割方法,他认为能裁出面积更大的矩形铁皮,你认为他的想法能否实现?为什么?(8)已知△ABC 的面积为4,则其内接矩形的最大面积为多少?问题5. 对于n (n 是大于2的自然数)个任意的正方形,能否通过若干次拼接,将其拼接成为一个正方形?请简要说明你的理由.图②。
中考数学专题复习数学思想方法问题
数学思想方法问题【专题点拨】整体思想:整体思想,就是研究和解决问题时,从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理,从而达到迅速解题的目的.分类讨论思想:当一个问题因为某种量或图形的情况不同而有可能引起问题的结果不同时,需要对这个量或图形的各种情况进行分类讨论.转化思想:转化思想亦可在狭义上称为划归思想.就是将待解决的或者难以解决的问题A 经过某种转化手段,转化为有固定解决模式的或者容易解决的问题B,通过解决问题B来解决问题A的方法.数学建模思想:为了描述一个实际现象更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学.使用数学语言描述的事物就称为数学模型.数学建模,其实就是把数学问题转化为用方程、不等式、函数等来解决的数学方法.数形结合思想:所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,利用“数形结合”可使所要研究的问题化难为易,化繁为简.类比思想:类比思想是数学创造型思维中很重要的一种思想方法,它可以帮助学习者建立新旧知识联系的桥梁,实现知识的正迁移,将已学过的知识或已掌握的解题方法迁移到陌生的问题中,进而使问题得到解决.【解题策略】整体思想:分析问题整体结果→发现问题特征→找到相互关联→运用整体思想→化难为易解决问题分类讨论思想:分析问题有变化→探索不同分析思路→找到需分解的部分→运用分类讨论的思想→多种情况分析解决问题转化思想:分析问题有难度→转化手段和方法→从难到易转化→运用转化化归的思想→通过另一途径解决问题建模思想:分析抽象问题→借助模型思想→找到相同本质→运用数学建模的思想→采用方程或函数等解决问题数形结合思想:分析问题较抽象→转化为直观易分析→找到相对应图形→运用数形结合的思想→化难为易解决问题类比思想:分析问题有深度→借助新旧知识的关联→合理进行知识迁移→运用类比的思想→轻松解决疑难问题【典例解析】类型一:整体思想应用问题例题1:(2016·青海西宁·2分)已知x2+x﹣5=0,则代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值为 2 .【考点】整式的混合运算—化简求值.【分析】先利用乘法公式展开,再合并得到原式=x2+x﹣3,然后利用整体代入的方法计算.【解答】解:原式=x2﹣2x+1﹣x2+3x+x2﹣4=x2+x﹣3,因为x2+x﹣5=0,所以x2+x=5,所以原式=5﹣3=2.故答案为2.变式训练1:(2015·菏泽)已知m是方程x2-x-1=0的一个根,求2+()—2m m1()的值.m m34++类型二:分类讨论思想问题例题2:(2016·贵州安顺·3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【分析】根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.【点评】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.根据题意列出方程是正确解答本题的关键.变式训练2:(2016·江西·3分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.类型三:转化思想问题例题3:(2016·浙江省绍兴市·4分))解分式方程: +=4.【考点】解分式方程.【分析】观察可得方程最简公分母为(x﹣1),将方程去分母转化为整式方程即可求解.【解答】解:方程两边同乘(x﹣1),得:x﹣2=4(x﹣1),整理得:﹣3x=﹣2,解得:x=,经检验x=是原方程的解,故原方程的解为x=.变式训练3:(2016·吉林·5分)解方程: =.类型四:数学建模问题例题4:(2016·四川宜宾)今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组.【考点】由实际问题抽象出二元一次方程组.【分析】分别利用“A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元”得出等式求出答案.【解答】解:设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组:.故答案为:.变式训练4:(2016·四川眉山·3分)受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高.据调查,2016年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.假设该公司这两个月住房销售量的增长率为x,根据题意所列方程为.类型五:数形结合问题例题5:(2016·黑龙江齐齐哈尔·12分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是70 米,甲机器人前2分钟的速度为95 米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为60 米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.【考点】一次函数的应用.【分析】(1)结合图象得到A、B两点之间的距离,甲机器人前2分钟的速度;(2)根据题意求出点F的坐标,利用待定系数法求出EF所在直线的函数解析式;(3)根据一次函数的图象和性质解答;(4)根据速度和时间的关系计算即可;(5)分前2分钟、2分钟﹣3分钟、4分钟﹣7分钟三个时间段解答.【解答】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,∵1×(95﹣60)=35,∴点F的坐标为(3,35),则,解得,,∴线段EF所在直线的函数解析式为y=35x﹣70;(3)∵线段FG∥x轴,∴甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发xs相距28米,由题意得,60x+70﹣95x=28,解得,x=,前2分钟﹣3分钟,两机器人相距28米时,35x﹣70=28,解得,x=,4分钟﹣7分钟,两机器人相距28米时,(95﹣60)x=28,解得,x=,+4=,答:两机器人出发或或相距28米.变式训练5:(2016·湖北荆州·8分)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.类型六:数学类比问题例题6:(2016·浙江省湖州市)数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究如图3,若AD=3AB,探究得:的值为常数t,则t= .【考点】几何变换综合题.【分析】(1)①先证明△ABC,△ACD都是等边三角形,再证明∠BCE=∠ACF即可解决问题.②根据①的结论得到BE=AF,由此即可证明.(2)设DH=x,由由题意,CD=2x,CH=x,由△ACE∽△HCF,得=由此即可证明.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.先证明△CFN∽△CEM,得=,由AB•CM=AD•CN,AD=3AB,推出CM=3CN,所以==,设CN=a,FN=b,则CM=3a,EM=3b,想办法求出AC,AE+3AF即可解决问题.【解答】解;(1)①∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∵AD=AB,∴△ABC,△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∴△BCE≌△ACF.②∵△BCE≌△ACF,∴BE=AF,∴AE+AF=AE+BE=AB=AC.(2)设DH=x,由由题意,CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,∴AC==2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30°,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴==2,∴AE=2FH.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.∵∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴=,∵AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴==,设CN=a,FN=b,则CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHN=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC==a,AE+3AF=(EM﹣AM)+3(AH+HN﹣FN)=EM﹣AM+3AH+3HN﹣3FN=3AH+3HN﹣AM=a,∴==.故答案为.变式训练6:(2016·陕西)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.【能力检测】1.(2016·四川泸州)分式方程﹣=0的根是.2.(2016·黑龙江齐齐哈尔·3分)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.3.(2016·湖北荆门·3分)如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是什么?.4.(2016·内蒙古包头)一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.5.(2016·陕西)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?6.(2016河南)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【参考答案】变式训练1:(2015·菏泽)已知m是方程x2-x-1=0的一个根,求2()—2+m m1()的值.++m m34【解析】把m代入方程求得m2-m=1,再把有关m的代数式化简,最后整体代入求出代数式的值.【解答】∵m是方程x2-x-1=0 的一个根,∴m2-m-1=0.即m2-m=1.m(m+1)2-m2(m+3)+4=m3+2m2+m-m3-3m2+4=-m2+m+4=-(m2-m)+4=-1+4=3.【点评】本题考查代数式的求值,解答这类问题要善于观察代数式的整体特征,先将条件进行转化,再把代数式化简,然后将化简结果转成与条件有关的式子进行计算.变式训练2:(2016·江西·3分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.【考点】矩形的性质;等腰三角形的性质;勾股定理.【分析】分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE=AE=5即可;②当PE=AE=5时,求出BE,由勾股定理求出PB,再由勾股定理求出等边AP即可;③当PA=PE时,底边AE=5;即可得出结论.【解答】解:如图所示:①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当PE=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴PB==4,∴底边AP===4;③当PA=PE时,底边AE=5;综上所述:等腰三角形AEP的对边长为5或4或5;故答案为:5或4或5.变式训练3:(2016·吉林·5分)解方程: =.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣2=x+3,解得:x=5,经检验x=5是分式方程的解.变式训练4:(2016·四川眉山·3分)受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高.据调查,2016年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.假设该公司这两个月住房销售量的增长率为x,根据题意所列方程为100(1+x)2=169 .【分析】根据年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.设该公司这两个月住房销售量的增长率为x,可以列出相应的方程.【解答】解:由题意可得,100(1+x)2=169,故答案为:100(1+x)2=169.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出形应的方程.变式训练5:(2016·湖北荆州·8分)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.【分析】(1)利用得到系数法求解析式,列出方程组解答即可;(2)根据所需费用为W=A种树苗的费用+B种树苗的费用,即可解答.【解答】解:(1)设y与x的函数关系式为:y=kx+b,把(20,160),(40,288)代入y=kx+b得:解得:∴y=+32.(2)∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴∴≤x≤35,设总费用为W元,则W=+32+7(45﹣x)=﹣+347,∵k=﹣,∴y随x的增大而减小,∴当x=35时,W总费用最低,W最低=﹣×35+347=137(元).【点评】此题主要考查了一次函数的应用,根据一次函数的增减性得出费用最省方案是解决问题的关键.变式训练6:(2016·陕西)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.【考点】四边形综合题.【分析】(1)作B关于AC 的对称点D,连接AD,CD,△ACD即为所求;(2)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGH的周长最小,根据轴对称的性质得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=2即可得到结论;(3)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x根据勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论.【解答】解:(1)如图1,△ADC即为所求;(2)存在,理由:作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,交BC于G,交CD于H,连接FG,EH,则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,∴AF′=6,AE′=8,∴E′F′=10,EF=2,∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,∴在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小,最小值为2+10;(3)能裁得,理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,∴∠1=∠2,在△AEF与△BGF中,,∴△AEF≌△BGF,∴AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x,∴x2+(3﹣x)2=()2,解得:x=1,x=2(不合题意,舍去),∴AF=BG=1,BF=AE=2,∴DE=4,CG=5,连接EG,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,此时,四边形EFGH′是要想裁得符合要求的面积最大的,∴C在线段EG的垂直平分线设,∴点F,O,H′,C在一条直线上,∵EG=,∴OF=EG=,∵CF=2,∴OC=,∵OH′=OE=FG=,∴OH′<OC,∴点H′在矩形ABCD的内部,∴可以在矩形ABCD中,裁得符合条件的面积最大的四边形EFGH′部件,这个部件的面积=EG•FH′=××(+)=5+,∴当所裁得的四边形部件为四边形EFGH′时,裁得了符合条件的最大部件,这个部件的面积为(5+)m2.【能力检测】1.(2016·四川泸州)分式方程﹣=0的根是x=﹣1 .【考点】分式方程的解.【分析】把分式方程转化成整式方程,求出整式方程的解,再代入x(x ﹣3)进行检验即可.【解答】解:方程两边都乘以最简公分母x(x﹣3)得:4x﹣(x﹣3)=0,解得:x=﹣1,经检验:x=﹣1是原分式方程的解,故答案为:x=﹣1.2.(2016·黑龙江齐齐哈尔·3分)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为20和20 .【考点】正方形的性质;等腰三角形的性质.【分析】分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,分别作腰上的高即可.【解答】解:如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=AB=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=120°,∠BAD=60°,在RT△ABD中,∵∠D=90°,∠BAD=60°,∴BD=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.故答案为20或20.3.(2016·湖北荆门·3分)如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是什么?.【考点】反比例函数图象上点的坐标特征;等腰三角形的性质.【分析】由对称性可知O为AB的中点,则当△PAB为等腰三角形时只能有PA=AB或PB=AB,设P点坐标为(x,0),可分别表示出PA和PB,从而可得到关与x的方程,可求得x,可求得P点坐标.【解答】解:∵反比例函数y=图象关于原点对称,∴A、B两点关于O对称,∴O为AB的中点,且B(﹣1,﹣2),∴当△PAB为等腰三角形时有PA=AB或PB=AB,设P点坐标为(x,0),∵A(1,2),B(﹣1,﹣2),∴AB==2,PA=,PB=,当PA=AB时,则有=2,解得x=﹣3或5,此时P点坐标为(﹣3,0)或(5,0);当PB=AB时,则有=2,解得x=3或﹣5,此时P点坐标为(3,0)或(﹣5,0);综上可知P点的坐标为(﹣3,0)或(5,0)或(3,0)或(﹣5,0),故答案为:(﹣3,0)或(5,0)或(3,0)或(﹣5,0).4.(2016·内蒙古包头)一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.【考点】一元二次方程的应用;根据实际问题列二次函数关系式.【分析】(1)由横、竖彩条的宽度比为3:2知横彩条的宽度为xcm,根据:三条彩条面积=横彩条面积+2条竖彩条面积﹣横竖彩条重叠矩形的面积,可列函数关系式;(2)根据:三条彩条所占面积是图案面积的,可列出关于x的一元二次方程,整理后求解可得.【解答】解:(1)根据题意可知,横彩条的宽度为xcm,∴y=20×x+2×12•x﹣2×x•x=﹣3x2+54x,即y与x之间的函数关系式为y=﹣3x2+54x;(2)根据题意,得:﹣3x2+54x=×20×12,整理,得:x2﹣18x+32=0,解得:x1=2,x2=16(舍),∴x=3,答:横彩条的宽度为3cm,竖彩条的宽度为2cm.5.(2016·陕西)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?【考点】一次函数的应用.【分析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.【解答】解:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有,解得.故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);(2)12+3﹣(7+)=15﹣=(小时),112÷=80(千米/时),÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.6.(2016河南)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为a+b (用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【考点】三角形综合题.【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.【解答】解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴P N=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣﹣3=2﹣,∴P(2﹣,).【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.。
中考数学复习专题讲座探究型问题(含详细参考答案)
中考数学复习专题讲座探究型问题一、中考专题诠释探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类.二、解题策略与解法精讲由于探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.三、中考考点精讲考点一:动态探索型:此类问题结论明确,而需探究发现使结论成立的条件.例1 (2015•自贡)如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF 和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.考点:菱形的性质;二次函数的最值;全等三角形的判定与性质;等边三角形的性质。
中考数学专题复习:数学思想方法
专题01 数学思想方法【要点提炼】一、【分类讨论的思想方法】有些问题包含的对象比较复杂,很难用一种情况概括它的全貌,这时往往按照一种标准把问题分成几类,分别进行讨论,再综合起来进行说明,这种思想方法称为分类讨论思想。
二、【数形结合思想】数形结合思想就是数学问题的题设与结论之间的内在联系,既分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,使问题得到解决。
在进行二次根式的化简时,可以利用数轴确定字母的取值范围,然后对式子进行化简。
三、【整体思想】整体思想是一种重要的思想方法,它把研究对象的一部分(或全部)视为整体,在解题时,则把注意力和着眼点放在问题整体结构上,从而触及问题的本质,避开不必要的计算,使问题得以简化。
四、【转化的思想方法】如果a.b互为相反数,那么a+b=O,a= -b;如果c,d互为倒数,那么cd=l,c=1/d;如果|x|=a(a >0),那么x=a或-a.【专题训练】一、单选题(共10小题)1.将一元二次方程x2+4x+2=0配方后可得到方程()A.(x﹣2)2=2 B.(x+2)2=2 C.(x﹣2)2=6 D.(x+2)2=6【答案】B【解答】解:x2+4x+2=0,x2+4x=﹣2,x2+4x+4=2,(x+2)2=2.故选:B.【知识点】解一元二次方程-配方法2.若对所有的实数x,x2+ax+a恒为正,则()A.a<0 B.a>4 C.a<0或a>4 D.0<a<4【答案】D【解答】解:令y=x2+ax+a,这个函数开口向上,式子的值恒大于0的条件是:△=a2﹣4a<0,解得:0<a<4.故选:D.【知识点】配方法的应用3.已知a,b,c为有理数,当a+b+c=0,abc<0,求的值为()A.1或﹣3 B.1,﹣1或﹣3 C.﹣1或3 D.1,﹣1,3或﹣3【答案】A【解答】解:∵a+b+c=0,∴b+c=﹣a、a+c=﹣b、a+b=﹣c,∵abc<0,∴a、b、c三数中有2个正数、1个负数,则原式=+﹣=﹣1﹣1﹣1=﹣3或1﹣1+1=1或﹣1+1+1=1.故选:A.【知识点】绝对值、代数式求值4.若a﹣b=3,ab=1,则a3b﹣2a2b2+ab3的值为()A.3 B.4 C.9 D.12【答案】C【解答】解:a3b﹣2a3b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2将a﹣b=3,ab=1代入,原式=1×32=9,故选:C.【知识点】整式的混合运算—化简求值5.实数a、b在数轴上的位置如图所示,化简的结果是()A.﹣2 B.0 C.﹣2a D.2b【答案】A【解答】解:由数轴可知﹣2<a<﹣1,1<b<2,∴a+1<0,b﹣1>0,a﹣b<0,∴=|a+1|+|b﹣1|﹣|a﹣b|=﹣(a+1)+(b﹣1)+(a﹣b)=﹣a﹣1+b﹣1+a﹣b=﹣2故选:A.【知识点】二次根式的性质与化简、实数与数轴6.若一个正比例函数的图象经过点A(1,﹣2),B(m,4)两点,则m的值为()A.2 B.﹣2 C.8 D.﹣8【答案】B【解答】解:设正比例函数的解析式为y=kx(k≠0),将A(1,﹣2)代入y=kx,得:﹣2=k,∴正比例函数解析式为y=﹣2x.当y=4时,﹣2m=4,解得:m=﹣2.故选:B.【知识点】待定系数法求正比例函数解析式7.下列分式方程无解的是()A.B.C.D.【答案】B【解答】解:∵方程A去分母,得2x=3(x﹣3),解得x=9,当x=9时,x(x﹣3)≠0,所以原方程的解为x=9;方程B去分母,得x2﹣1=2x﹣2,解得x=1,当x=1时,(x﹣1)(x2﹣1)=0,所以原方程无解;方程C去分母,得x+3﹣4x=0,解得x=1,当x=1时,2x(x+3)≠0,所以原方程的解为x=1;方程D去分母,得3x=2x+3x+3,解得x=﹣,当x=﹣时,3x+3≠0,所以原方程的解为x=﹣.故选:B.【知识点】分式方程的解8.当时,x+y的值为()A.2 B.5 C.D.【答案】D【解答】解:∵+=﹣,∴两边平方得出x+y+2=8﹣2,∵=﹣,∴两边同乘2,得2=2﹣2,∴x+y+2﹣2=8﹣2,则x+y=8﹣4+2.故选:D.【知识点】二次根式的化简求值9.已知变量y与x的关系满足下表,那么能反映y与x之间的函数关系的解析式是()x…﹣2 ﹣10 1 2 …y…4 3 2 1 0…A.y=﹣2x B.y=x+4 C.y=﹣x+2 D.y=2x﹣2【答案】C【解答】解:设y与x之间的函数关系的解析式是y=kx+b(k≠0),则,解得,所以,y与x之间的函数关系的解析式是y=﹣x+2.故选:C.【知识点】待定系数法求一次函数解析式10.如图,在平面直角坐标系xOy中,已知点A(﹣9,7),B(﹣3,0),点P在x轴的正半轴上运动,将线段AB沿直线AP翻折到AC,当点C恰好落在y轴上时,直线AP对应的函数表达式可以是()A.y=x+8 B.y=﹣C.y=﹣x+1 D.y=﹣x+4【答案】B【解答】解:连接BC,交P A于Q,由题意可知,P A垂直平分BC,设直线P A的解析式为y=kx+b,把A(﹣9,7)代入得,7=﹣9k+b,∴b=9k+7,∴直线P A的解析式为y=kx+9k+7,设直线BC的解析式为y=﹣x+n,把B(﹣3,0)代入得0=+n,∴n=﹣,∴C(0,﹣),∴Q(﹣,﹣),∵Q在直线P A上,∴﹣=﹣k+9k+7,整理得,15k2+14k+3=0,解得k1=﹣,k2=﹣,∴直线P A的解析式为y=﹣x+,或y=﹣x+4,故选:B.【知识点】待定系数法求一次函数解析式二、填空题(共8小题)11.用配方法解方程x2﹣2x﹣6=0,原方程可化为﹣.【答案】(x-1)2=7【解答】解:方程变形得:x2﹣2x=6,配方得:x2﹣2x+1=7,即(x﹣1)2=7.故答案为:(x﹣1)2=7.【知识点】解一元二次方程-配方法12.如图,字母b的取值如图所示,化简:|b﹣1|+=.【答案】4【解答】解:由数轴得2<b<5,所以原式=|b﹣1|+=|b﹣1|+|b﹣5|=b﹣1+5﹣b=4.故答案为4.【知识点】实数与数轴、二次根式的性质与化简13.若关于x的方程﹣1=有无解,则m=﹣﹣.【解答】解:去分母得:2mx+x2﹣x2+3x=2x﹣6,整理得:(2m+1)x=﹣6,当2m+1=0,即m=﹣时,整式方程无解,即分式方程无解;当2m+1≠0,即m≠﹣时,x=﹣,由分式方程无解,得到x=0或x=3,把x=0代入整式方程无解;把x=3代入整式方程得:m=﹣,综上,m=﹣或﹣,故答案为:﹣或﹣【知识点】分式方程的解14.如图,点P、A、B、C在同一平面内,点A、B、C在同一直线上,且PC⊥AC,在点A处测得点P在北偏东60°方向上,在点B处测得点P在北偏东30°方向上,若AP=12千米,则A,B两点的距离为千米.【解答】解:∵PC⊥AC,在点A处测得点P在北偏东60°方向上,∴∠PCA=90°,∠P AC=30°,∵AP=12千米,∴PC=6千米,AC=6千米,∵在点B处测得点P在北偏东30°方向上,∠PCB=90°,PC=6千米,∴∠PBC=60°,∴BC===2千米,∴AB=AC﹣BC=6﹣2=4(千米),故答案为:4千米.【知识点】解直角三角形的应用-方向角问题15.如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC=3,则BD的长度为.【解答】解:∵∠C=90°,∠ADC=60°,∴∠DAC=30°,∴CD=AD,∵∠B=30°,∠ADC=60°,∴∠BAD=30°,∴BD=AD,∴BD=2CD,∵BC=3,∴CD+2CD=3,∴CD=,∴DB=2,故答案为:2.【知识点】勾股定理、含30度角的直角三角形16.在平面直角坐标系xOy中,一次函数y=k1x+b(k1,b均为常数)与正比例函数y=k2x(k2为常数)的图象如图所示,则关于x的不等式k2x<k1x+b的解集为.【答案】x<3【解答】解:两条直线的交点坐标为(3,﹣1),且当x<3时,直线y=k2x在直线y=k1x+b的下方,故不等式k2x<k1x+b的解集为x<3.故答案为x<3.【知识点】一次函数与一元一次不等式、一次函数的图象17.如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.若劣弧的长为,则图中阴影部分的面积为.【解答】解:连接OA,如图,∵AD=AB,∴∠B=∠D=30°,∵OA=OB,∴∠OAB=∠B=30°,∴∠AOC=2∠B=60°,∵劣弧的长为,∴=,解得OC=2,∵∠D=30°,∠DOA=60°,∴∠OAD=90°,∴AD=OA=2,∴图中阴影部分的面积=S△AOD﹣S扇形AOC=×2×2﹣=2﹣π.故答案为2﹣π.【知识点】弧长的计算、扇形面积的计算、圆周角定理18.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为直线x=﹣1.则该抛物线的解析式为﹣﹣.【答案】y=-x2-2x+3【解答】解:∵抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),对称轴为直线x=﹣1,∴A点坐标为(﹣3,0),设抛物线解析式为y=a(x+3)(x﹣1),把C(0,3)代入得3=a×3×(﹣1),解得a=﹣1,∴抛物线解析式为y=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3.故答案为y=﹣x2﹣2x+3.【知识点】抛物线与x轴的交点、待定系数法求二次函数解析式、二次函数的性质三、解答题(共8小题)19.解不等式组:并把解集在数轴上表示出来.【解答】解;解不等式x+1<2,得:x<1,解不等式2(1﹣x)≤6,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,将不等式组的解集表示在数轴上如下:【知识点】在数轴上表示不等式的解集、解一元一次不等式组20.(1)解方程:.(2)关于x的分式方程无解,求a的值.【解答】解:(1)方程整理得:+=+,即=,当2x+8=0,即x=﹣4时,方程成立;当2x+8≠0,即x≠﹣4时,方程无解,经检验x=﹣4是分式方程的解;(2)去分母得:x2﹣ax﹣3x+3=x2﹣x,即﹣ax﹣3x+3=﹣x,由分式方程无解,得到x=0或x﹣1=0,解得:x=0或x=1,把x=0代入整式方程得:无解;把x=1代入整式方程得:a=0,则a的值为1.【知识点】分式方程的解、解分式方程21.某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙(墙长25m)另外三边用木栏围成,木栏长40m.(1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.(2)养鸡场面积能达到最大吗?如果能,请你用配方法求出;如果不能,请说明理由.【解答】解:(1)设鸡场垂直于墙的一边AB的长为x 米,则x(40﹣2x)=168,整理得:x2﹣20x+84=0,解得:x1=14,x2=6,∵墙长25m,∴0≤BC≤25,即0≤40﹣2x≤25,解得:7.5≤x≤20,∴x=14.答:鸡场垂直于墙的一边AB的长为14米.(2)围成养鸡场面积为S,则S=x(40﹣2x)=﹣2x2+40x=﹣2(x2﹣20x)=﹣2(x2﹣20x+102)+2×102=﹣2(x﹣10)2+200,∵﹣2(x﹣10)2≤0,∴当x=10时,S有最大值200.即鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值200米2.【知识点】一元二次方程的应用、二次函数的应用、配方法的应用22.如图,已知四边形ABCD是平行四边形,△AOB是等边三角形.(1)求证:四边形ABCD是矩形.(2)若AB=5cm,求四边形ABCD的面积.【解答】解:(1)平行四边形ABCD是矩形.理由如下:∵四边形ABCD是平行四边形(已知),∴AO=CO,BO=DO(平行四边形的对角线互相平分),∵△AOB是等边三角形(已知),∴OA=OB=OC=OD(等量代换),∴AC=BD(等量代换),∴平行四边形ABCD是矩形(对角线相等的平行四边形是矩形);(2)因为AB=5,在Rt△ABC中,由题意可知,AC=10,则BC==5,所以平行四边形ABCD的面积S=5×5=25(cm2).【知识点】等边三角形的性质、矩形的判定与性质、平行四边形的性质23.如图,等腰△ABC中,AC=BC=8,点D、E分别在边AB、BC上(不与顶点重合),且∠CDE=∠A=∠B,CE=5,设AD=x,BD=y.(1)求y关于x的函数关系式(不用写x的取值范围);(2)当AB=10时,求AD的值.【解答】解:(1)∵CB=8,CE=5,∴BE=CB﹣CE=3,∵∠ADB是△ADC的一个外角,∴∠BAE+∠CDE=∠A+∠ACD,∵∠CDE=∠A,∴∠ACD=∠BDE,∵∠A=∠B,∴△ACD∽△BDE,∴=,即=,整理得,y=;(2)当AB=10,即x+y=10时,10﹣x=,整理得,x2﹣10x+24=0,解得,x1=4,x2=6,则AD的值为4或6.【知识点】等腰三角形的性质、相似三角形的判定与性质24.四边形ABCD内接于⊙O,AC为其中一条对角线.(Ⅰ)如图①,若∠BAD=70°,BC=CD.求∠CAD的大小;(Ⅱ)如图②,若AD经过圆心O,连接OC,AB=BC,OC∥AB,求∠ACO的大小.【解答】解:(1)∵BC=CD,∴=,∴∠CAD=∠CAB=∠BAD=35°;(2)连接BD,∵AB=BC,∴∠BAC=∠BCA,∵OC∥AB,∴∠BAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠BAC=∠BCA=∠OAC,由圆周角定理得,∠BCA=∠BDA,∴∠BAC=∠BDA=∠OAC,∵AD是⊙O的直径,∴∠ABD=90°,∴∠ACO=30°.【知识点】圆心角、弧、弦的关系、圆内接四边形的性质、圆周角定理25.如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=.(1)求OD的长;(2)计算阴影部分的面积.【解答】解:(1)∵AB⊥OD,∴∠OCB=90°,AC=BC=AB=,∵点C为OD的中点,∴OC=OB,∵cos∠COB==,∴∠COB=60°,∴OC=BC=×=1,∴OB=2OC=2,∴OD=OB=2;(2)阴影部分的面积=S扇形BOD﹣S△COB=﹣××1=π﹣.【知识点】勾股定理、垂径定理、扇形面积的计算26.如图,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的顶点为P.已知B(1,0),C(0,﹣3).请解答下列问题:(1)求抛物线的解析式,并直接写出点P的坐标;(2)抛物线的对称轴与x轴交于点E,连接AP,AP的垂直平分线交直线PE于点M,则线段EM 的长为.注:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣,顶点坐标是(﹣,).【解答】解:(1)∵抛物线经过点B(1,0),C(0,﹣3),代入得:,解得:,∴抛物线表达式为:y=x2+2x﹣3=(x+1)2﹣4,∴顶点P的坐标为(﹣1,﹣4);(2)∵直线PE为抛物线对称轴,∴E(﹣1,0),∵B(1,0),∴A(﹣3,0),∴AP==,∵MN垂直平分AP,∴AN=NP=,∠PNM=90°,∵∠APE=∠MPN,∴△PMN∽△P AE,∴,即,解得:PM=,∴EM=PE﹣PM=4﹣=,故答案为:.【知识点】二次函数图象与系数的关系、线段垂直平分线的性质、待定系数法求二次函数解析式、抛物线与x轴的交点、二次函数图象上点的坐标特征。
中考数学复习讲义课件 专题3 数学思想方法
A.m<a<b<n
B.a<m<n<b
C.a<m<b<n
D.m<a<n<b
[解析] 依题意,画出函数 y=(x-a)(x-b)的图象,如图.函数图象为抛物 线,开口向上,与 x 轴两个交点的横坐标分别为 a,b(a<b).方程 1-(x- a)(x-b)=0 转化为(x-a)(x-b)=1,方程的两根是抛物线 y=(x-a)(x-b) 与直线 y=1 的两个交点. 由 m<n,可知对称轴左侧交点横坐标为 m,右侧交点横坐标为 n. 由抛物线开口向上,则在对称轴左侧,y 随 x 增大而减小,则有 m<a;在 对称轴右侧,y 随 x 增大而增大,则有 b<n. 综上所述,可知 m<a<b<n.故选 A.
6.(2021·宿迁)已知二次函数 y=ax2+bx+c 的图象如图所示,有下列结论:
①a>0;②b2-4ac>0;③4a+b=1;④不等式 ax2+(b-1)x+c<0 的解集
为 1<x<3.其中正确的结论个数是( C )
A.1
B.2
C.3
D.4
7.(2021·岳阳二模)二次函数 y=ax2+bx+c(a,b,c 是常数,a≠0)的 y 与 x
∴△ DAB 是等边三角形. ∴AB=DB,∠3+∠5=60°. ∵AB=2, ∴△ ABD 的高为 3. ∵扇形 EBF 的圆心角为 60°, ∴∠4+∠5=60°. ∴∠3=∠4. 设 AD 与 BE 相交于点 G,BF 与 DC 相交于点 H.
在△ ABG 和△ DBH 中,∠ABA==D∠B2,, ∠3=∠4,
4.(2021·自贡)当自变量-1≤x≤3 时,函数 y=|x-k|(k 为常数)的最小值为 k+3,则满足条件的 k 的值为 -2 .
5.(2021·乐山)在 Rt△ ABC 中,∠C=90°.有一个锐角为 60°,AB=4.若 点 P 在直线 AB 上(不与点 A,B 重合),且∠PCB=30°,则 CP 的长 为 3或 2 3或 2 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考数学复习专题讲座:数学思想方法<2)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试卷中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点四:方程思想从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组>。
这种思想在代数、几何及生活实际中有着广泛的应用。
例1 <2018?广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2018年公民出境旅游总人数约7200万人次,若2018年、2018年公民出境旅游总人数逐年递增,请解答下列问题:<1)求这两年我国公民出境旅游总人数的年平均增长率;<2)如果2018年仍保持相同的年平均增长率,请你预测2018年我国公民出境旅游总人数约多少万人次?考点:一元二次方程的应用。
专题:增长率问题。
分析:<1)设年平均增长率为x.根据题意2018年公民出境旅游总人数为 5000<1+x)万人次,2018年公民出 2境旅游总人数 5000<1+x)万人次.根据题意得方程求解;<2)2018年我国公民出境旅游总人数约7200<1+x)万人次.2解答:解:<1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得5000<1+x)=7200.解得 x=0.2=20%,x=﹣2.2 <不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为 2 120%.<2)如果2018年仍保持相同的年平均增长率,则2018年我国公民出境旅游总人数为 7200<1+x)=7200×120%=8640万人次.答:预测2018年我国公民出境旅游总人数约8640万人次.点评:方程是解决应用题、实际问题和许多方面的数学问题的重要基础知识,应用范围非常广泛。
很多数学问题,特别是有未知数的几何问题,就需要用方程或方程组的知识来解决。
具有方程思想就能够很好地求得问题中的未知元素或未知量,这对解决和计算有关的数学问题,特别是综合题,是非常需要的。
例2 <2018?桂林)李明到离家2.1千M的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即匀速步行回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.<1)李明步行的速度<单位:M/分)是多少?<2)李明能否在联欢会开始前赶到学校?考点:分式方程的应用。
专题:应用题。
分析:<1)设步行速度为xM/分,则自行车的速度为3xM/分,根据等量关系:骑自行车到学校比他从学校步行到家用时少20分钟可得出方程,解出即可;<2)计算出步行、骑车及在家拿道具的时间和,然后与42比较即可作出判断.分,根据题意得:,3xM/ xM/解答:解:<1)设步行速度为分,则自行车的速度为是原方程的解,即李明步行的速度是70M/分.x=70x=70解得:,经检验 <2)根据题意得,李明总共需要:.即李明能在联欢会开始前赶到.- 1 - / 12答:李明步行的速度为70M/分,能在联欢会开始前赶到学校.点评:此题考查了分式方程的应用,设出步行的速度,根据等量关系得出方程是解答本题的关键,注意分式方程一定要检验.考点五:函数思想函数思想是用运动和变化的观点,集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。
所谓函数思想的运用,就是对于一个实际问题或数学问题,构建一个相应的函数,从而更快更好地解决问题。
构造函数是函数思想的重要体现,运用函数思想要善于抓住事物在运动过程中那些保持不变的规律和性质。
例3<2018?十堰)某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A 产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.<1)甲、乙两种材料每千克分别是多少元?<2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?<3)在<2)的条件下,若生产一件A产品需加工费200元,生产一件B产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?<成本=材料费+加工费)考点:一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用。
专题:应用题。
分析:<1)设甲材料每千克x元,乙材料每千克y元,根据购买甲、乙两种材料各1千克共需资金40元,购买元,可列出方程组105,解方程组即可得到甲材料每2千克和乙种材料3千克共需资金甲种材料千克15元,乙材料每千克25元;<2)设生产A产品m件,生产B产品<50﹣m)件,先表示出生产这50件产品的材料费为15×30m+25×10m+15×20<50﹣m)+25×20<50﹣m)=﹣100m+40000,根据购买甲、乙两种材料的资金不超过38000元得到﹣100m+40000≤38000,根据生产B产品不少于28件得到50﹣m≥28,然后解两个不等式求出其公共部分得到20≤m≤22,而m为整数,则m的值为20,21,22,易得符合条件的生产方案;<3)设总生产成本为W元,加工费为:200m+300<50﹣m),根据成本=材料费+加工费得到W=﹣100m+40000+200m+300<50﹣m)=﹣200m+55000,根据一次函数的性质得到W 随m的增大而减小,然后把m=22代入计算,即可得到最低成本.,解得,所以甲材料每千克元,则<1)设甲材料每千克x元,乙材料每千克y解答:解:15元,乙材料每千克25元;<2)设生产A产品m件,生产B产品<50﹣m)件,则生产这50件产品的材料费为15×30m+25×10m+15×20<50﹣m)+25×20<50﹣m)=﹣100m+40000,由题意:﹣100m+40000≤38000,解得m≥20,又∵50﹣m≥28,解得m≤22,∴20≤m≤22,∴m的值为20,21,22,共有三种方案,如下表:A<件) 20 21 22B<件) 30 29 28<3)设总生产成本为W元,加工费为:200m+300<50﹣m),则W=﹣100m+40000+200m+300<50﹣m)=﹣200m+55000,∵W 随m的增大而减小,而m=20,21,22,∴当m=22时,总成本最低,此时W=﹣200×22+55000=50600元.点评:函数思想是函数概念、性质等知识更高层次的提炼和概括,是一种策略性的指导方法。
运用函数思想通常是这样进行的:将问题转化为函数问题,建立函数关系,研究这个函数,得出相应的结论。
4.<2018?广元)某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200m的生3例活垃圾运走.)假如每天能运xm,所需时间为y天,写出y与x之间的函数关系式;3<1)若每辆拖拉机一天能运12m,则5辆这样的拖拉机要用多少天才能运完?3<2<3)在<2)的情况下,运了8天后,剩下的任务要在不超过6天的时间完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?考点:反比例函数的应用。
分析:<1)根据每天能运xm3,所需时间为y天的积就是1200m3,即可写出函数关系式;- 2 - / 12<2)把x=12×5=60代入,即可求得天数;<3)首先算出8天以后剩余的数量,然后计算出6天运完所需的拖拉机数,即可求解.y==20<)x=12×5=60,代入函数解读式得;天);<1) y=;<2解答:解:<3)运了8天后剩余的垃圾是1200﹣8×60=720m3.务要在不超过6天的时间完成则每天至少运720÷6=120m3,则需要的拖拉机数是:120÷12=10<辆),则至少需要增加10﹣5=5辆这样的拖拉机才能按时完成任务.点评:本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义求解.考点六:数形结合思想数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数>,或利用数量关系来研究几何图形的性质,解决几何问题(以数助形>的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
y=相交于A<1,2)、B<m,﹣例5 <2018?襄阳)如图,直线y=kx+b与双曲线1)两点.1)求直线和双曲线的解读式;<1,请直接<x<x<0y),A<x,y)为双曲线上的三点,且x),<2)若A<x,yA<x,321133122312 y的大小关系式;y,y,写出312>kx+b的解集.<3)观察图象,请直接写出不等式1考点:反比例函数与一次函数的交点问题。
专题:计算题。
的值,再用待m,﹣B<m1)代入双曲线)代入所得解读式求出y=,求出k的值,将分析:<1)将点A<1,22的值,可得两函数解读式;x和b定系数法求出k1)根据反比例函数的增减性在不同分支上进行研究;<2x的范围,从图象上看:直线在双曲线上方,>时自变量的>的解集,就是求kx+b<3)求不等式kx+b11点的横坐标结合图象进行解答.、B这是“以形助数”.根据A)在双曲1B<m,∴双曲线的解读式为:,﹣y=.∵点<1)∵双曲线2y=经过点A<1,),∴k=2解答:解:2,上,得)在直线y=kx+b1,2),B<﹣2,A<1线2y=上,∴m=﹣,则B<﹣2,﹣1).由点1 y=x+1.解得,∴直线的解读式为:.<y>y0,∴y<y<y<2)∵在第三象限内随x的增大而减小,故y<y0,又∵y是正数,故31321320.2<x<1<3)由图可知,x>或﹣点评:数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关系的精确刻划与几何图形的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。