中考数学复习专题讲座精编含详细参考答案数学思想方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考数学复习专题讲座:数学思想方法<2)
一、中考专题诠释
数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试卷中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.
二、解题策略和解法精讲
数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲
考点四:方程思想
从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组>。这种思想在代数、几何及生活实际中有着广泛的应用。
例1 <2018?广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2018年公民出境旅游总人数约7200万人次,若2018年、2018年公民出境旅游总人数逐年递增,请解答下列问题:
<1)求这两年我国公民出境旅游总人数的年平均增长率;
<2)如果2018年仍保持相同的年平均增长率,请你预测2018年我国公民出境旅游总人数约多少万人次?
考点:一元二次方程的应用。专题:增长率问题。
分析:<1)设年平均增长率为x.根据题意2018年公民出境旅游总人数为 5000<1+x)万人次,
2018年公民出 2
境旅游总人数 5000<1+x)万人次.根据题意得方程求解;
<2)2018年我国公民出境旅游总人数约7200<1+x)万人次.
2
解答:解:<1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得5000<1+x)=7200.
解得 x=0.2=20%,x=﹣2.2 <不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为 2 1
20%.
<2)如果2018年仍保持相同的年平均增长率,则2018年我国公民出境旅游总人数为 7200<1+x)=7200×120%=8640万人次.答:预测2018年我国公民出境旅游总人数约8640万人次.
点评:方程是解决应用题、实际问题和许多方面的数学问题的重要基础知识,应用范围非常广泛。很多数学问题,特别是有未知数的几何问题,就需要用方程或方程组的知识来解决。具有方程思想就能够很好地求得问题中的未知元素或未知量,这对解决和计算有关的数学问题,特别是综合题,是非常需要的。
例2 <2018?桂林)李明到离家2.1千M的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即匀速步行回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.
<1)李明步行的速度<单位:M/分)是多少?<2)李明能否在联欢会开始前赶到学校?
考点:分式方程的应用。专题:应用题。
分析:<1)设步行速度为xM/分,则自行车的速度为3xM/分,根据等量关系:骑自行车到学校比他从学校步行到家用时少20分钟可得出方程,解出即可;
<2)计算出步行、骑车及在家拿道具的时间和,然后与42比较即可作出判断.
分,根据题意得:,3xM/ xM/解答:解:<1)设步行速度为分,则自行车的速度为是原方程的解,
即李明步行的速度是70M/分.x=70x=70解得:,经检验 <2)根据题意得,李明总共需要:.即李明能在联欢会开始前赶到.- 1 - / 12
答:李明步行的速度为70M/分,能在联欢会开始前赶到学校.点评:此题考查了分式方程的应用,设出步行的速度,根据等量关系得出方程是解答本题的关键,注意分式方程一定要检验.考点五:函数思想
函数思想是用运动和变化的观点,集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。
所谓函数思想的运用,就是对于一个实际问题或数学问题,构建一个相应的函数,从而更快更好地解决问题。构造函数是函数思想的重要体现,运用函数思想要善于抓住事物在运动过程中那些保持不变的规律和性质。
例3<2018?十堰)某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A 产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.
<1)甲、乙两种材料每千克分别是多少元?<2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?
<3)在<2)的条件下,若生产一件A产品需加工费200元,生产一件B产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?<成本=材料费+加工费)
考点:一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用。
专题:应用题。
分析:<1)设甲材料每千克x元,乙材料每千克y元,根据购买甲、乙两种材料各1千克共需资
金40元,购买元,可列出方程组105,解方程组即可得到甲材料每2千克和乙
种材料3千克共需资金甲种材料千克15元,乙材料每千克25元;
<2)设生产A产品m件,生产B产品<50﹣m)件,先表示出生产这50件产品的材料费为15×30m+25×10m+15×20<50﹣m)+25×20<50﹣m)=﹣100m+40000,根据购买甲、乙两种材料的资金不超过38000元得到﹣100m+40000≤38000,根据生产B产品不少于28件得到50﹣m≥28,然后解两个不等式求出其公共部分得到20≤m≤22,而m为整数,则m的值为20,21,22,易得符合条件的生产方案;
<3)设总生产成本为W元,加工费为:200m+300<50﹣m),根据成本=材料费+加工费得到W=﹣