外文翻译的格式样式
毕业论文外文翻译格式【范本模板】
因为学校对毕业论文中的外文翻译并无规定,为统一起见,特做以下要求:1、每篇字数为1500字左右,共两篇;2、每篇由两部分组成:译文+原文.3 附件中是一篇范本,具体字号、字体已标注。
外文翻译(包含原文)(宋体四号加粗)外文翻译一(宋体四号加粗)作者:(宋体小四号加粗)Kim Mee Hyun Director, Policy Research & Development Team,Korean Film Council(小四号)出处:(宋体小四号加粗)Korean Cinema from Origins to Renaissance(P358~P340) 韩国电影的发展及前景(标题:宋体四号加粗)1996~现在数量上的增长(正文:宋体小四)在过去的十年间,韩国电影经历了难以置信的增长。
上个世纪60年代,韩国电影迅速崛起,然而很快便陷入停滞状态,直到90年代以后,韩国电影又重新进入繁盛时期。
在这个时期,韩国电影在数量上并没有大幅的增长,但多部电影的观影人数达到了上千万人次。
1996年,韩国本土电影的市场占有量只有23.1%。
但是到了1998年,市场占有量增长到35。
8%,到2001年更是达到了50%。
虽然从1996年开始,韩国电影一直处在不断上升的过程中,但是直到1999年姜帝圭导演的《生死谍变》的成功才诞生了韩国电影的又一个高峰。
虽然《生死谍变》创造了韩国电影史上的最高电影票房纪录,但是1999年以后最高票房纪录几乎每年都会被刷新。
当人们都在津津乐道所谓的“韩国大片”时,2000年朴赞郁导演的《共同警备区JSA》和2001年郭暻泽导演的《朋友》均成功刷新了韩国电影最高票房纪录.2003年康佑硕导演的《实尾岛》和2004年姜帝圭导演的又一部力作《太极旗飘扬》开创了观影人数上千万人次的时代。
姜帝圭和康佑硕导演在韩国电影票房史上扮演了十分重要的角色。
从1993年的《特警冤家》到2003年的《实尾岛》,康佑硕导演了多部成功的电影。
毕业论文 外文翻译格式
毕业论文外文翻译格式毕业论文外文翻译格式在撰写毕业论文时,外文翻译是一个重要的环节。
无论是引用外文文献还是翻译相关内容,都需要遵循一定的格式和规范。
本文将介绍一些常见的外文翻译格式,并探讨其重要性和应用。
首先,对于引用外文文献的格式,最常见的是使用APA(American Psychological Association)格式。
这种格式要求在引用外文文献时,先列出作者的姓氏和名字的首字母,然后是出版年份、文章标题、期刊名称、卷号和页码。
例如:Smith, J. D. (2010). The impact of climate change on biodiversity. Environmental Science, 15(2), 145-156.在翻译外文文献时,需要注意保持原文的准确性和完整性。
尽量避免意译或添加自己的解释,以免歪曲原文的意思。
同时,还需要在翻译后的文献后面加上“译者”和“翻译日期”的信息,以便读者可以追溯翻译的来源和时间。
其次,对于翻译相关内容的格式,可以参考国际标准组织ISO(International Organization for Standardization)的格式。
这种格式要求在翻译相关内容时,先列出原文,然后是翻译后的文本。
例如:原文:The importance of effective communication in the workplace cannot be overstated.翻译:工作场所有效沟通的重要性不容忽视。
在翻译相关内容时,需要注意保持原文的意思和语气。
尽量使用准确的词汇和语法结构,以便读者能够理解和接受翻译后的内容。
同时,还需要在翻译后的文本后面加上“翻译者”和“翻译日期”的信息,以便读者可以追溯翻译的来源和时间。
此外,对于长篇外文文献的翻译,可以考虑将其分成若干章节,并在每个章节前面加上章节标题。
这样可以使读者更容易理解和阅读翻译后的内容。
外文翻译与文献综述模板格式以及要求说明
外文翻译与文献综述模板格式以及要求说明
外文中文翻译格式:
标题:将外文标题翻译成中文,可以在括号内标明外文标题
摘要:将外文摘要翻译成中文,包括问题陈述、研究目的、方法、结果和结论等内容。
关键词:将外文关键词翻译成中文。
引言:对外文论文引言进行翻译,概述问题的背景、重要性和研究现状。
方法:对外文论文方法部分进行翻译,包括研究设计、数据采集和分析方法等。
结果:对外文论文结果部分进行翻译,介绍研究结果和统计分析等内容。
讨论:对外文论文讨论部分进行翻译,对研究结果进行解释和评价。
结论:对外文论文结论部分进行翻译,总结研究的主要发现和意义。
附录:如果外文论文有附录部分,需要进行翻译并按照指定的格式进行排列。
文献综述模板格式:
标题:文献综述标题
引言:对文献综述的背景、目的和方法进行说明。
综述内容:按照时间、主题或方法等进行分类,对相关文献进行综述,可以分段进行描述。
讨论:对综述内容进行解释和评价,概括主要研究成果和趋势。
结论:总结文献综述,概括主要发现和意义。
要求说明:
1.外文中文翻译要准确无误,语句通顺流畅,做到质量高、符合学术
规范。
2.文献综述要选择与所研究领域相关的文献进行综述,覆盖面要广,
内容要全面、准确并有独立思考。
4.文献综述要注重整体结构和逻辑连贯性,内容要有层次感,段落间
要过渡自然。
5.外文中文翻译和文献综述要进行查重,确保原文与译文的一致性,
并避免抄袭和剽窃行为。
外文翻译译文模板
要求:1、外文资料翻译内容要求:外文资料的内容应为本学科研究领域,并与毕业设计(论文)选题相关的技术资料或专业文献,译文字数应不少于3000汉字以上,同时应在译文末注明原文的出处。
不可采用网络中直接有外文和原文的。
2、外文资料翻译格式要求:译文题目采用小二号黑体,居中;译文正文采用宋体小四号,段前、段后距为0行;行距:固定值20磅。
英文原文如果为打印的话用新罗马(Times New Roman)小四号字。
装订时原文在前,译文在后。
文章中有引用的地方在原文中也要体现。
参考文献也要翻译成中文!用于无线传感器网络数据估算的节能协调算法摘要:无线传感器网络的各节点是用电池供电的,网络的生存期取决于各节点的能耗大小。
考虑到这类传感器网络在不同地方,节点都是检测单一现象并发送信息到汇聚中心(Fusion Center, FC为其缩写形式),以便汇聚中心能够处理实时信息。
在传统的系统中,数据处理任务是由汇聚中心来完成的,在传输之前是没有进行加工处理的。
在综合各种适值计算方法基础上,把网络分成了多个簇,数据分两个部分进行处理。
第一个部分是在各个簇的各个传感器节点上完成本地数据共享。
第二部分将在汇聚中心从各簇节点接收到所有的信息后完成。
本地数据共享将会使比特数据传输方面更高效。
在每个簇的所有节点上,我们可以采用相同的数据备份和一个虚拟的多输入-多输出(V-MIMO)架构,在簇到汇聚(FC)中心之间进行数据传输。
一个虚拟V-MIMO网络是由一组的分布式节点组成,每个节点都有自己的天线。
通过他们之间的数据共享,这些节点将变成传统的MIMO 系统。
在协同/虚拟的MIMO架构提出之前,协同阶段是没有进行任何数据处理或压缩的。
我们改变现有的V-MIMO网络算法来适应我们所关心的特殊类别的传感器网络。
我们用正交的时空分组码(STBC)作为MIMO部分。
通过仿真表明,这种算法相比于传统系统更加节能。
I.简介一个典型的无线传感器网络是由一组小型的、低价的和只有有限能源的传感器节点组成。
外文翻译格式说明
山东理工大学毕业设计(外文翻译材料)学院:专业:学生姓名:指导教师:电气与电子工程学院自动化于小涵季画外文翻译材料格式要求:1.页边距:上3.8磅;下3.8磅;左3.2,右3.2;页眉距边界2.8,页脚距边界32.原文题目:Arial,小三;间距:段前18磅,段后12磅,间距21磅3.原文正文:Times New Roman,小四;间距:段前0磅,段后6磅,间距21磅4.译文题目:黑体,小三;间距:同原文题目5.译文正文:宋体,小四;间距同原文正文6.页眉页脚:原文页眉处写:外文翻译(原文),宋体,五号。
译文页眉处写:外文翻译(译文),宋体,五号。
原文译文的页脚统一编页码(不要单独编页码)。
Plant Model Generation for PLC SimulationHyeong-Tae ParkAbstract:This paper reports an automated procedure for constructing a plant model for PLC simulation. Since PLC programs contain only the control logic without information on the plant model, it is necessary to build the corresponding plant model to perform the simulation. Conventionally, a plant model for PLC simulation has been constructed manually, which requires much effort and indepth knowledge of the simulation. As a remedy for this problem, we propose an automated procedure for generating a plant model from the symbol table of a PLC program. To do so, we propose a naming rule for PLC symbols so that the symbol names include sufficient information on the plant model. By analysing such symbol names, we extract a plant model automatically. The proposed methodology has been implemented and test runs performed.Keywords: agile manufacturing; CAD/CAM; CAPP; simulation1. IntroductionTo survive and prosper in the modern manufacturing era, manufacturers need to continuously improve their products, as well as their production systems. A modern manufacturing line is a highly integrated system composed of automated workstations, such as robots with tool-changing capabilities, a hardware handling system and storage system, and a computer control system that controls the operations of the- 1 -entire system.Since the implementation of a manufacturing line requires heavy investment, proper verification of a line’s operational status sho uld be performed to ensure that the highly automated manufacturing system will successfully achieve the intended benefits. Simulation technology is considered to be an essential tool in the design and analysis of complex systems that cannot be easily described by analytical or mathematical models . Simulation is useful for calculating utilisation statistics, finding bottlenecks, pointing out scheduling errors, and even for creating manufacturing schedules. Traditionally, various simulation languages, including ARENA and AutoMod, have been used for the simulation of manufacturing systems. These simulation languages have been widely accepted both by industry and by academia; however, they remain as analysis tools for the rough design stage of a production line, because their simulation models are not sufficiently realistic to be utilised for a detailed design or for implementation purposes. For example, real production lines are usually controlled by PLC (Programmable Logic Controller) programs (Rullan 1997), but conventional simulation languages roughly describe the control logic with independent entity flows (job flows) between processes.- 2 -Production systems typically consist of simultaneously operating machines, which are controlled by PLCs, currently the most suitable and widely employed industrial control technology. A PLC emulates the behaviour of an electric ladder diagram. As they are sequential machines, to emulate the workings of parallel circuits that respond instantaneously, PLCs use an input/output symbol table and a scanning cycle. When a program is being run in a PLC it is continuously executing a scanning cycle. The program scan solves the Boolean logic related to the information in the input table with that in the output and internal relay tables. In addition, the information in the output and internal relay tables is updated during the program scan. In a PLC, this Boolean logic is typically represented using a graphical language known as a ladder diagram (IEC 2003).Since the abstraction levels of conventional simulators and PLC programs are quite different, the control logic of conventional simulators cannot be reused for the generation of PLC programs. Usually, electrical engineers manually write PLC programs by referring to the rough control logic of conventional simulators, as shown in Figure 1. Since PLC programming is a very tedious and error-prone job, it is essential to verify the PLC programs offline to reduce the stabilisation time of a production system.Previous approaches to a PLC program can be categorised into two groups:- 3 -(1) verification of a given PLC programand (2) generation of a dependable PLC program. In the first group, various software tools have been developed for the verification of PLC based systems via the use of timed automata, such as UPPAAL2k, KRONOS, Supremica and HyTech, mainly for programs written in a statement list language, also termed Boolean (Manesis and Akantziotis 2005). Such software tools verify PLC programs to a certain extent; however, they remain limited. Since they mainly focus on the checking of theoretical attributes (safety, liveness, and reachability), it is not easy for users to determine whether the PLC programs actually achieve the intended control objectives. In the second group, many researchers have focused on the automatic generation of PLC programs from various formalisms including state diagrams, Petri nets, and IDEF0. These formalisms can help the design process of control logics; however, it is still difficult to find hidden errors, which is the most difficult part of verifying a control program.Figure 2. The concept of PLC simulation.To overcome the aforementioned problems, it is necessary to utilise simulation techniques for PLC program verification. By simulating PLC programs, it is possible to analyse the control logic in various ways and recognise hidden errors more intuitively (David 1998). Although PLC simulation can be a very powerful tool for the detailed verification of a production system, the accompanying construction of a plant model is a major obstacle (the counterpart model of a control program). Since PLC programs only contain the control information, without device models, it is necessary to build a corresponding plant model to perform simulation, as shown in- 4 -Figure 2. However, constructing a plant model requires an excessive amount of time and effort. Sometimes, the plant model construction requires much more time than the PLC programming. This serves as the motivation for exploring the possibility of finding an automatic procedure for generating a plant model from a given PLC program.Figure3.Symbol table of a PLC program.Although the objective of a PLC program is not to describe a plant model (device models), the symbol table of a PLC program can provide a glimpse of the plant model. As shown in Figure 3, symbols in a PLC program usually contain some information related to the plant. For example, ‘EXLINE_MB_AGV_P1’ means that the symbol is a signal that is related to the control of an ‘AGV’ (Auto Guided Vehicl e) belonging to the ‘MB’ station of ‘EXLINE’ line. The above scenario reveals the key idea of the present study. If we can develop a proper naming rule for PLC symbols, then it might be possible to extract a plant model by analysing the symbol names.This paper has two major objectives: (1) to propose a proper naming rule for PLC symbols and (2) to develop a procedure for generating a plant model by analysing the symbol names. The application area of the proposed methodology includes all types of automated manufacturing systems controlled by PLC programs, such as automotive production lines, FMSs (flexible manufacturing systems), and ASRSs (automatic storage and retrieval systems). The overall structure of the paper is as follows. Section 2 addresses the specifications of a plant model for PLC simulation. Section 3 describes a naming rule for PLC symbols, which enables the automatic generation of a plant model. Finally, concluding remarks are given in Section 4.2. Plant model for PLC simulationBefore explaining the specification of a plant model enabling PLC simulation, we want to address the importance of the PLC simulation. Chuang et al. (1999) proposed a procedure for the development of an industrial automated production system that- 5 -- 6 -consists of nine steps, as follows: (1) define the process to be controlled; (2) make a sketch of the process operation; (3) create a written sequence of the process; (4) on the sketch, add the sensors needed to carry out the control sequence; (5) add the manual controls needed for the process setup or for operational checks; (6) consider the safety of the operating personnel and make additions and adjustments as needed;(7) add the master stop switches required for a safe shutdown; (8) create a ladder logic diagram that will be used as a basis for thePLC program; and (9) consider the possible points where the process sequence may go astray. The most time-consuming task for the control logic designers is the eighth step, which is usually done by the repetitive method of code writing, testing, and debugging until the control objectives are achieved (Manesis and Akantziotis 2005). This is the reason why conventional PLC programming is often inefficient and prone to human error. As the configurations of production lines and their control programs become more complicated, there is a strong need for a more efficient PLC simulation environment. It is hoped that this paper will take positive steps in this direction.A PLC can be considered as a dedicated computer system having input and output signals. To run a PLC, the corresponding plant model (the counterpart system) is required to interact with the input and output of the PLC. The behaviour of the plant model should be the same as that of the actual system to achieve PLC verification. Since a production line consists of various devices, including robots, transporters, jigs, solenoids, proximity sensors, and light sensors (Groover 2006), we can consider a plant model as a set of device models. To build such a device model, this paper em ploys Zeigler’s DEVS (Discrete Event Systems Specifications) formalism (Zeigler 1984, Kim 1994), which supports the specification of discrete event models in a hierarchical, modular manner. The semantics of the formalism are highly compatible with object-oriented specifications for simulation models. We use the atomic model of the DEVS formalism to represent the behavior of a device model. Formally, an atomic model M is specified by a 7-tuple:M =〈X, S,Y, sin δ,ext δ,λ ,t a 〉X input events setS sequential states setY output events setsin δ S→S: internal transition functionext δQ*X→S: external transition functionQ={(s, e)∣s ∈S, 0≤e ≤t a (s)}: total state of MλS →Y: output function- 7 -t a S →Real: time advance functionThe four elements in the 7-tuple, namely sin δ,ext δ,λand t a , are called the characteristic functions of an atomic model. The atomic model of the DEVS formalism can be considered as a timed-FSA (finite state automata), and it is suitable for describing the behaviour of a device model. Once the device models (plant model) are obtained, it becomes possible to perform the PLC simulation. Currently, device models should be construed manually, which takes much time and effort. To cope with the problem, the objective of the paper is to propose an automated generation procedure for device models.Before explaining the automatic generation procedure of a plant model, let us take a look at the manual procedure to construct device models. To construct a device model, first it is necessary to identify the set of tasks that are assigned to the device. The activation of each task is normally triggered by an external signal from PLC programs. Once the set of tasks is identified for a device, it is then possible to extract the state transition diagram, which defines an atomic model of the DEVS formalism. Figure 4(a) shows a simple example of an AGV (Automatic Guided Vehicle) with two tasks, T1 (movement from p1 to p2) and T2 (movement from p2 to p1). As the two tasks should be triggered by external events, the shell part of the AGV must have two input ports, termed here as Signal_1 and Signal_2, as shown in Figure 4(b).From the set of tasks, it is possible to instantiate the state transition diagram. For this example, there are four states, P1, DoT1, P2 and DoT2. While P1 and P2 take external events from the input ports (Signal_1, Signal_2) for state transitions, DoT1 and DoT2 take internal events that are the end events of the two tasks (T1 and T2). The DEVS atomic model of the virtual device, corresponding to the AGV, can be described as follows:- 8 -Shell of a virtual device:M=〈X,S,Y,sin δ,ext δ,λ ,t a 〉}2_,1_{Signal Signal =X S={P1,DOT1,P2,DOT2} Y={T1Done,T2Done}sin δ(DOT1)=P2 s i nδ(DOT2)=P1 ext δ(P1,Signal_1)=DOT1 ext δ(P2,Signal_2)=DOT2λ(DOT1)=T1Done λ(DOT2)=T2Donet a (DOT1)=Time_1 t a (DOT2)=Time_2Once a plant model has been constructed, it is possible to perform the PLC simulation, which enables the intuitive verification of a PLC program. Figure 5 shows the connections between a PLC program and a plant model. The plant model includes all device models of a production system, and the PLC program contains the control logic for the plant model. To integrate the plant model and the PLC program, it is necessary to define the mapping between the plant model and the PLC program, which is described by I/O mapping. To enable the visual verification of a PLC program, it is necessary to import 3D graphic models, which are controlled by the logical device models (the state transition diagrams). Since 3D graphic models are not always necessary, they are optional for PLC simulation. As mentioned already, the objective of this paper is to extract device models from the symbol names of PLC programs. To do so, it is necessary to develop a proper naming rule for PLC symbols. The naming rule will be addressed in the next section.3. Symbol naming for plant model generationAlthough IEC 61131-3 provides various standard specifications for a PLC, the naming rules of PLC symbols have rarely been brought into focus. Since there have been no standard rules for the naming of PLC symbols, it has been fully dependent on individual PLC programmers.To generate device models from PLC symbols, it is necessary to make PLC symbols that include enough information concerning the plant model. To achieve this objective, we interviewed many PLC programmers and analysed various conventional rules. As a result, we came up with a naming structure consisting of five fields: (1) line name, (2) process number, (3) device name, (4) input or output, and (5) task name (or state name). Figure 6 shows the naming structure for PLC symbols.If the PLC symbols are named according to the proposed naming structure, then it becomes possible to extract device models (atomic models of DEVS formalism) by simply analysing the symbol names. There are two types of symbols (signals), input or output, which are specified by the fourth field. The purpose of the output signal is to trigger a task that is specified by the fifth field. Thus, it is possible to identify the set of tasks of a device by analysing the output symbols. As mentioned already, once the set of tasks is identified for a device, it is then possible to extract the state transition diagram for the device model, which defines an atomic model of the DEVS formalism. While an output signal (symbol) is issued by a PLC to trigger a task, an input signal (symbol) is issued by a device to report the completion of the task to theδand internal transition functions PLC. This means that external transition functionsextδof a device model can be automatically extracted from the output and input sinsymbols, respectively. We demonstrate the generation procedure of a plant modelfrom PLC symbols using an example, as shown in Figure 7.- 9 -- 10 -In the example cell, we assume a part is loaded manually on the AGV by a worker. When the AGV senses the existence of a part, it moves to transfer the part to the machine. After the transfer, the machine performs machining to convert the part into a finished product. In this case, the plant model consists of two device models: an AGV model and a machine model. The PLC program to control the simple manufacturing cell is shown in Figure 8(a), and its symbol table is shown in Figure 8(b).As shown in Figure 8(b), the AGV model has two output symbols and two input symbols. From the output symbols (EX_OP_AGV_O_GOP1, EX_OP_AGV_O_GOP2), we can intuitively recognise that the AGV has two tasks- 11 -(movement from P2 to P1, and movement from P1 to P2). By using the output symbols, we can extract the state transition diagram, as well as the external transitionfunctions, as shown in Figure 9(a).As mentioned already, an output symbol triggers a task of a device model, and an input symbol is made by the device to notify the completion of the task. Since the execution of a task is performed internally by the device, the internal transition functions of a device model can easily be extracted from the input symbols(EX_OP_AGV_I_DONEGOP1, EX_OP_AGV_I_DONEGOP2). In this way, the device model of the machine can be extracted from the related symbols(EX_OP_MC_, etc.), as shown in Figure 9(b). The procedure for the construction of a device model can be described as follows.- 12 -(1) Identify all corresponding pairs between output symbols and input symbols. While an output symbol triggers a task, the corresponding input symbol reports the completion of the task. For example, EX_OP_AGV_O_GOP1 corresponds toEX_OP_AGV_I_DONEGOP1. (2) Define the states of a device mode using the last naming fields of input/output symbols. In the case of the AGV, we can define four states, GoP1, DoneGoP1, GoP2, and DoneGoP2. (3) Define external (internal) transition functions using output (input) symbols. Once a plant model has been obtained, it becomes possible to perform the PLC simulation by defining the I/O mapping relations between the plant model and the PLC symbols. Through the PLC simulation, we can efficiently check whether the PLC program achieves the control objectives or not.The proposed methodology was implemented in C++language, and test runs were made on a personal computer, as shown in Figure 10. The PLC program shown in Figure 8(a) was written using GX IEC developer version 7.0 provided byMitsubishi Electric Corporation. The GX IEC developer can export a symbol table in the form of an Excel file, as shown in Figure 8(b). The exported symbol table becomes the input for the generation of a plant model. Figure 10 shows that the generated device models by analysing the exported symbol table.4. Discussion and conclusionsThrough PLC simulation, it is possible to analyse control logic in various ways and recognise hidden errors more intuitively. Although PLC simulation can be a very powerful tool for the detailed verification of a production system, the accompanying construction of a plant model requires too much time and effort. To remedy this problem, we have proposed an automated procedure to generate a plant model from the symbol table of a PLC program. To do so, we have also proposed a naming rule for PLC symbols so that the symbol names include sufficient information on the plant model. By analysing the symbol names, a plant model can be extracted automatically. Since a plant consists of various manufacturing devices, we can consider a plant model as a set of device models. To represent such a device model, the proposed method employs Zeigler’s DEVS formalism. We use the atomic model of the DEVS formalism to describe the logical behavior of a device model. In other words, it is necessary to extract the device models from the symbol table in the form of an atomic model of the DEVS formalism. Although the proposed methodology only deals with the local verification of PLC programs, it is also possible to extend the methodologyto include the verification of mechanical aspects of the plant .- 13 -工厂模型生成PLC仿真Hyeong-Tae Park摘要 :本文介绍一个自动程序可编程序控制器(PLC)生成工厂模型仿真。
本科毕业设计(论文)外文译文格式详解
附件8
桂林航天工业学院
本科毕业设计(论文)外文译文
系名:
专业班级:
学生姓名:学号:
外文出处:
(用外文写)
附件:1.外文译文2.外文原文
年月日
填写要求
一、外文译文必须使用计算机打印,或用黑色水笔手工工整书写。
二、所选的外文原文不少于10000印刷字符,其内容必须与课题或专业方向紧密相关,由指导教师提供,并注明详细出处。
三、外文译文需在文本后附原文(或复印件)。
附件1:外文译文
译文标题(小二号黑体,居中)
×××××××××(小4号宋体,行间距取固定值23磅)×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××…………。
(要求不少于5000汉字)
附件2:外文原文。
超详细外文翻译模板及写法
XX学院毕业论文(设计)外文翻译撰写格式规范一、外文翻译形式要求1、要求本科生毕业论文(设计)外文翻译部分的外文字符不少于1.5万字, 每篇外文文献翻译的中文字数要求达到2000字以上,一般以2000~3000字左右为宜。
2、翻译的外文文献应主要选自学术期刊、学术会议的文章、有关著作及其他相关材料,应与毕业论文(设计)主题相关,并作为外文参考文献列入毕业论文(设计)的参考文献。
3、外文翻译应包括外文文献原文和译文,译文要符合外文格式规范和翻译习惯。
二、打印格式XX学院毕业论文(设计)外文翻译打印纸张统一用A4复印纸,页面设置:上:2.8;下:2.6;左:3.0;右:2.6;页眉:1.5;页脚:1.75。
段落格式为:1.5倍行距,段前、段后均为0磅。
页脚设置为:插入页码,居中。
具体格式见下页温馨提示:正式提交“XX学院毕业论文(设计)外文翻译”时请删除本文本中说明性的文字部分(红字部分)。
XX学院毕业论文(设计)外文翻译题目:系别:服装与艺术设计系专业:班级:学号:学生姓名:一、外文原文见附件(文件名:12位学号+学生姓名+3外文原文.文件扩展名)。
二、翻译文章翻译文章题目(黑体小三号,1.5倍行距,居中)作者(用原文,不需翻译,Times New Roman五号,加粗,1.5倍行距,居中)工作单位(用原文,不需翻译,Times New Roman五号,1.5倍行距,居中)摘要:由于消费者的需求和汽车市场竞争力的提高,汽车检测标准越来越高。
现在车辆生产必须长于之前的时间并允许更高的价格进行连续转售……。
(内容采用宋体五号,1.5倍行距)关键词:汽车产业纺织品,测试,控制,标准,材料的耐用性1 导言(一级标题,黑体五号,1.5倍行距,顶格)缩进两个字符,文本主体内容采用宋体(五号),1.5倍行距参考文献(一级标题,黑体五号, 1.5倍行距,顶格)略(参考文献不需翻译,可省略)资料来源:AUTEX Research Journal, Vol. 5, No3, September 2008*****译****校(另起一页)三、指导教师评语***同学是否能按时完成外文翻译工作。
论文及外文翻译格式(标准)
负责教师(宋体,四号,首行缩进6字符)
(空7行)
沈阳航空航天大学(宋体,四号,居中)
2010年6月(宋体,四号,居中)
附录2 摘要格式示例(设置成三号,空2行)
摘 要(黑体,加粗,三号,居中,两个字之间空两格)
(空1行)
我国已经步入经济全球化发展的21世纪,随着市场经济的快速增长和对外开放的进一步深化,我国金融市场发生了巨大的变化。一方面,投资理财所涉及到的领域越来越广,不仅仅是政府、企业、社会组织进行投资理财,居民也逐步进入到金融市场中,开始利用各种投资工具对个人、家庭财产进行打理,以达到资产保值、增值,更好的用于消费、养老等的目的;另一方面,我国居民投资理财观念逐渐趋于成熟化、理性化;同时,其投资理财工具以及方式手段亦越来越向多元化、完善化发展。
附件5 论文及外文翻译写作格式样例
附录1 内封格式示例(设置成小二号字,空3行)
我国居民投资理财现状及发展前景的研究
(黑体,加粗,小二,居中,空2行)
The ResearchonStatus and Future of Inhabitants’ Investment and Financial Management inChina
关键词:(宋体,小四,加粗,左缩进:0)投资理财 资理财工具通货膨胀(宋体,小四,每个关键词之间空两格,关键词的个数在3到5个之间)
(空2行)
Abstract(Time New Roman体,三号,加粗,居中)
(空1行)
Our country has already entered into The Economic Globalization Development’ 21st century. Along with the fast growth of our country economy and opening to the outside world furthermore, our country finance market has had the hugely changed. On one hand, the investment and financial management involve in more and more fields.Not only governments, enterprises and social organizations carry on the investing to make money, but also the inhabitants start investing in the finance market, who make money by all kinds of investment tools for spending, caring for the aged and so on. On the other hand, the idea of our country inhabitants for investment and financial management has becoming mature and rational; At the same time, their investment tools as well as the methods for investment and financial management tend to more and more multiplication and consummation.
附表:外文翻译格式
英文翻译(原文)说明书题目:系别:专业:学生姓名:学号:指导教师:职称:题目类型:理论研究实验研究工程设计工程技术研究软件开发年月日英文翻译(译文)说明书题目:系别:专业:学生姓名:学号:指导教师:职称:题目类型:理论研究实验研究工程设计工程技术研究软件开发年月日附件二:范例摘要(“摘要”之间空两格,采用三号字、黑体、居中,与内容空一行) (内容采用小四号宋体)注:毕业设计(论文)摘要或总说明书要概括研究课题的内容、方法和观点以及取得的成果和结论,应反映整个内容的精华,字数在300字左右。
关键词:(小四号、黑体、顶格)☆☆☆;☆☆☆;☆☆☆(内容采用小四号、宋体、接排、各关键词之间有分号)Abstract(三号加粗):(采用三号字、Times New Roman字体、加黑、居中、与内容空一行) There is a kind of automatic access system that use automatic indemnification technology to identify user’s ID and rights, and according to user’s rights to control the door.••••••(内容采用小四号Times New Roman字体,要求300-500单词)Key words(小四号加粗、Times New Roman字体、顶格):(内容采用小四号、Times New Roman字体、接排、各关键词之间有分号)目录(三号、黑体、居中、目录两字空四格、与正文空一行)引言 (1)1(空两格)☆☆☆☆,☆☆(四号黑体) (3)1.1(空一格)☆☆☆,☆☆☆(小四号黑体) (3)1.2 ☆☆☆、☆☆☆☆ (4)2 ☆☆☆☆☆☆☆☆ (6)2.1 ☆☆☆、☆☆,☆ (6)2.1.1☆☆☆☆☆ (6)2.1.2☆☆☆☆☆☆ (7)••••••5 结论 (34)谢辞 (35)参考文献 (35)附录 (36)注:目录按三级标题编写(即:1 ……、1.1 ……、1.1.1 ……),要求标题层次清晰。
外文翻译及外文原文参考格式
外文翻译要求:1、外文资料与毕业设计(论文)选题密切相关,译文准确、质量好。
2000的共字符左右)的外文资料,完成2篇不同文章、阅读22篇幅以上(10000 汉字以上的英译汉翻译。
严禁采用专业外国作者可以由指导教师提供,外文资料原则上应是3、外文资料外语教材文章。
插图、排序:“一篇中文译文、一篇外文原文、一篇中文译文、一篇外文原文”4 内文字及图名也译成中文。
与论文格式要求相同。
5、标题与译文格式(字体、字号、行距、页边距等)下页附:外文翻译与原文参考格式英文翻译黑体、四号、顶格()外文原文出处:)(译文前列出外文原文出处、作者、国籍,译文后附上外文原文 .CHAPTER3 .SYSTEM Practices for ammonia —Refrigeration》《ASHRAE Handbook System Selection 3.1Equipment3.2外文翻译的标题与译Reciprocating Compressors3.10 字号文中的字体页边距等与论文距、式相同。
章氨制冷系统的实施第3 3.1 系统选择)在选择一个氨制冷系统设计时,须要考虑一些设计决策要素,包括是否采用(1)液体再64)直接蒸发(5)满液式()多级压缩(单级压缩(2)带经济器的压缩(3 7循环()载冷剂。
单级压缩系统基本的单级压缩系统由蒸发器、压缩机、冷凝器、储液器(假如用的话)和制冷剂手册——“原理篇”中的第一章讨论控制装置(膨胀阀、浮球阀等)。
1997 ASHRAE了压缩制冷循环。
图1.壳管式经济器的布置文件可采用外文原文有PDF 文件直接插入。
PDF英文原文)(黑体、四号、顶格2英文翻译(黑体,四号,顶格)外文原文出处:(黑体,四号,顶格)Lecturer, Concrete Beams. Reinforced and Post-tensioned Models P. Fanning. Nonlinear ofDepartment of Civil Engineering, University College Dublin. Received 16 Jul 2001.非线形模型钢筋和后张法预应力混凝土梁商业有限元软件一般包括混凝土在荷载做用下非线性反应的专用数值模型。
外文翻译格式及规范
嘉兴学院毕业论文(设计)外文翻译撰写格式规范一、外文翻译形式要求1、要求本科生毕业论文(设计)外文翻译部分的外文字符不少于1.5万字, 每篇外文文献翻译的中文字数要求达到2000字以上,一般以2000~3000字左右为宜。
2、翻译的外文文献应主要选自学术期刊、学术会议的文章、有关著作及其他相关材料,应与毕业论文(设计)主题相关,并作为外文参考文献列入毕业论文(设计)的参考文献。
3、外文翻译应包括外文文献原文和译文,译文要符合外文格式规范和翻译习惯。
二、打印格式嘉兴学院毕业论文(设计)外文翻译打印纸张统一用A4复印纸,页面设置:上:2.8;下:2.6;左:3.0;右:2.6;页眉:1.5;页脚:1.75。
段落格式为:1.5倍行距,段前、段后均为0磅。
页脚设置为:插入页码,居中。
具体格式见下页温馨提示:正式提交“嘉兴学院毕业论文(设计)外文翻译”时请删除本文本中说明性的文字部分(红字部分)。
嘉兴学院本科毕业论文(设计)外文翻译题目:(指毕业论文题目)学院名称:服装与艺术设计学院专业班级:楷体小四学生姓名:楷体小四一、外文原文见附件(文件名:12位学号+学生姓名+3外文原文.文件扩展名)。
二、翻译文章翻译文章题目(黑体小三号,1.5倍行距,居中)作者(用原文,不需翻译,Times New Roman五号,加粗,1.5倍行距,居中)工作单位(用原文,不需翻译,Times New Roman五号,1.5倍行距,居中)摘要:由于消费者的需求和汽车市场竞争力的提高,汽车检测标准越来越高。
现在车辆生产必须长于之前的时间并允许更高的价格进行连续转售……。
(内容采用宋体五号,1.5倍行距)关键词:汽车产业纺织品,测试,控制,标准,材料的耐用性1 导言(一级标题,黑体五号,1.5倍行距,顶格)缩进两个字符,文本主体内容采用宋体(五号),1.5倍行距参考文献(一级标题,黑体五号, 1.5倍行距,顶格)略(参考文献不需翻译,可省略)资料来源:AUTEX Research Journal, V ol. 5, No3, September 2008*****译****校(另起一页)三、指导教师评语***同学是否能按时完成外文翻译工作。
3-外文翻译模板
说明: 模板中的蓝色字体及红色字体为提示说明用,填写过程应删除。
3外文翻译模板外文翻译格式毕业论文外文翻译格式外文翻译外文翻译网站外文翻译范文外文文献翻译外文翻译怎么写谷歌翻译身份证翻译模板
毕业设计
外文出处:(用外文写,按参考文献格式要求)
附 件:1.外文资料翻译译文
2.外文原文
题 目填写毕业论文(设计)的题目 (黑体四号)
院 (系)化工与环境工程学院专 业环境工程
班 级环境0#Байду номын сангаас#学号
学 生###
指导教师###(职称)
附件1:外文资料翻译译文
译文标题 (3号黑体,居中)
(空一行)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxx。…(小4号宋体,1.25倍行距)
附件2:外文原文
外文翻译格式
ABCD题目(小二号,黑体,不加粗)(可作为正文第1章标题,用小3号黑体,加粗,并留出上下间行,段后0.5行,下同)4号宋体,固定行距25磅)×××××××××××××××××××××………1.1 ××××××(作为正文2级标题,用4号黑体,加粗)×××××××××(小4号宋体)××××××…………1.1.1 ××××(作为正文3级标题,用小4号黑体,不加粗)×××××××××(小4号宋体)×××××××××××××××××××××××××××………2 ××××××××××××××××(小4号宋体)×××××××××××××××××××××××××××××××××××………注:1.正文中表格与插图的字体一律用5号宋体;英文字母用Times New Roman 字体;2.正文各页的格式请以此页为标准复制,页脚中的页码用阿拉伯数字表示;3.为保证打印效果,学生在打印前,请将全文字体的颜色统一设置成黑色。
外文翻译格式要求
外文翻译格式要求1.原文必须选用与课题相关的国外学者所著的学术专著或学术文章,不能选用教材类作品或中国作者撰写的英文文章。
2.中文译文不少于3000汉字。
3.原文资料用毕业论文稿纸单面复印,页边距与毕业论文稿纸一致,便于装订。
装订时,原文在前,译文在后。
原文和译文合计页码总数,在文本每页右上角用五号Times New Roman 标明页码。
4.原文的处理方式针对所选资料不同,区别对待:1)复印书本、期刊、论文集,需包含书的封面、选译章节;2)节选自网络文章,应调整好电子文档格式,按照英文Times New Roman,标题四号加粗(若有副标题,小四号加粗),正文五号。
中文译文宋体,标题四号加粗,正文五号。
原文及译文正均采用1.5倍行距,文中若有小标题,一律五号加粗。
5.外文著录格式按照正规参考文献的范式进行,“著录-题名-出版事项”的顺序排列注明。
1)若选自期刊:著者,题名,期刊名称,出版年,卷号(期号),起始页码。
外文著录:Liu Shaozhong, Liao Fengrong. S tudies of negative pragmatic transfer in interlanguage pragmatics[J]. Journal of Guangxi Normal University, 2002, (4):34-45.2)若选自论文集:著者,题名,论文集名称,编者,出版地,出版社,出版年,起始页码。
例如:外文著录:Thomas, J. Cross-Cultural Pragmatic Failure[A]. Edited by He Zhaoxiong. Selected Reading For Pragmatics[C]. Shanghai: Shanghai Foreign Language Education Press, 2003:677-714.3)若选自书籍:著者,书名,版次(第一版不标注),出版地,出版者,出版年,起始页码。
外文资料和译文格式要求
大连东软信息技术职业学院
外文资料和译文格式要求
一、译文必须采用计算机输入、打印,幅面A4。
外文资料原文(复印或打印)在前,译文在后,于左侧装订。
二、具体要求:
1、至少翻译一篇内容与所选课题相关的外文文献。
2、译文汉字字数不少于2000字。
3、格式要求参照《大连东软信息技术职业学院毕业设计(论文)撰写规范》。
附:外文资料和译文封面、空白页
大连东软信息技术职业学院
外文资料和译文
专业:软件技术
班级:软件07101班
姓名:
学号:
指导教师:刘冰月
2009 年 12 月 16 日
原文粘贴在这里,不要求格式
大连东软信息技术职业学院毕业设计(论文)译文
正文写在这里,小四号宋体,1.5倍行距
标题格式如下:。
外文文献翻译格式
外文文献翻译格式
外文文献翻译格式一般需包括以下内容:
1. 文献翻译的题目:对外文文献的标题进行翻译,并在翻译后的题目前加上“外文文献翻译:”。
2. 文献的出处:包括外文文献的作者名称、文献标题、原文出版信息等。
3. 翻译的正文:按照文章的段落,将外文文献逐段翻译成中文。
在翻译的文本前后加上序号,以示区分。
4. 翻译的语言风格:外文文献翻译应注重语言风格的保持。
翻译时要根据文章的风格,选择适当的中文表达方式,保持原文的句子结构和词汇用法。
5. 原文和译文对照:将原文和译文对照排列,方便读者对照阅读。
可以将原文和译文分别排列在左右两栏中,或者将原文和译文分别放在不同的页面上,便于对照阅读。
6. 翻译中的注释:如果有部分内容翻译困难或有待解释的地方,在翻译文中添加注释。
注释的格式一般为在译文后面加上方括号,括号内的文字为注释内容。
7. 译者的信息:在文献翻译末尾一般会加上译者的姓名,并注明译者的专业领域或者工作单位。
总之,外文文献翻译格式需要将原文翻译成中文,保持原文的结构和风格,并加上适当的注释和对照,方便读者阅读和理解。
外文文献翻译格式要求
外文文献翻译格式要求:,行间距设( 1)摘要,关键词:宋体五号(其中“摘要”和“关键词”为宋体五号加粗)置为 18 磅,段前段后间距设置为 0.5 行,对齐方式选择“两端对齐”方式;各个关键词之间以分号(;)或者(,)隔开,最后一个关键词后不加标点;( 2)正文一级标题:采用黑体小三号加粗,行间距设置为20 磅,段前段后间距设置为0.5行,一般采用“ 1 引言”样式,其中 1 和“引言”之间用一个空格分开;正文二级标题:采用黑体小三号,行间距设置为20 磅,段前段后间距设置为0.5 行,一般采用“ 2.1 系统原理”样式,其中 1 和“系统原理”之间用一个空格分开;;一级标题和二级标题采用“左对齐”方式;( 3)正文内容:采用宋体小四号,行间距设置为 20 磅,段前段后间距设置为 0 行,首行缩进 2 字符,正文对齐方式在段落格式设置中选择“两端对齐”,遇正文中有公式的,设置该行(段)行间距为“单倍行距”( 4)插图:请设置图片版式为“浮于文字上方”,并勾选“居中”,图片大小根据版面,按比例适当进行缩放,图示说明采用“图 1 主控制器的结构图”样式置于图下,图序与说明以一个空格字符间隔,图示说明采用宋体五号,居中对齐,行间距设置为“单倍行距”,段前段后距设置为 0.5 行;( 5)表格:在表格属性中选择“居中”对齐方式,表格说明采用“表 1 两种方法试验数据比较”样式置于表格上方,表序与说明以一个空格字符间隔,表格说明采用宋体五号,居中对齐,行间距设置为“单倍行距”,段前段后距设置为 0.5 行;(6)参考文献:“参考文献”格式同一级标题格式,参考文献内容采用宋体五号,行间距设置为 18 磅,段前段后间距设置为 0 行,对齐方式选择“左对齐”方式,其中出现的标点一律采用英文标点;Times 以上摘要,关键词,正文,标题及参考文献中出现的英文字符和数字,一律设置为“ New Roman ”字体。
另外:外文文献翻译附于开题报告之后:第一部分为译文,第二部分为外文文献原文,译文与原文均需单独编制页码(底端居中)并注明出处。
外文翻译的格式样式
外文翻译格式样式
标题(黑体小二加粗居中)
(宋体小四空一行)
外文作者署名(楷体小四号居中)
(宋体小四空一行)
1 内容(黑体三号加粗)
1.1内容(黑体四号加粗)
边坡是地壳表部一切具有临空面的地质体,具有一定的坡度和高度,包括人工边坡、自然边坡以及崩滑体。
在重力、风化、侵蚀和其它地质作用下,边坡不断地发生变化,应力重新分布,并且随着边(宋体小四号)……
说明:以上为外文翻译的格式,译文前应附有被翻译的外文原件复印件,为了反映文稿的科学依据和译者尊重他人研究成果的严肃态度及向读者提出有关信息的出处,要求译者按著录/题名/出版事项顺序排列注明,请同学们遵照执行。
期刊:著者,题名,期刊名称,出版年,卷号(期号),起始页码。
书籍:著者,书名、版次(第一版不标注),出版地,出版者,出版年,起始页码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外文翻译格式样式
标题(黑体小二加粗居中)
(宋体小四空一行)
外文作者署名(楷体小四号居中)
(宋体小四空一行)
1 内容(黑体三号加粗)
1.1内容(黑体四号加粗)
边坡是地壳表部一切具有临空面的地质体,具有一定的坡度和高度,包括人工边坡、自然边坡以及崩滑体。
在重力、风化、侵蚀和其它地质作用下,边坡不断地发生变化,应力重新分布,并且随着边(宋体小四号)……
说明:以上为外文翻译的格式,译文前应附有被翻译的外文原件复印件,为了反映文稿的科学依据和译者尊重他人研究成果的严肃态度及向读者提出有关信息的出处,要求译者按著录/题名/出版事项顺序排列注明,请同学们遵照执行。
期刊:著者,题名,期刊名称,出版年,卷号(期号),起始页码。
书籍:著者,书名、版次(第一版不标注),出版地,出版者,出版年,起始页码。