数学中考专题 方案设计型问题汇总
中考数学专题复习——方案设计问题(经典题型)
中考数学专题复习——方案设计问题(经典题型)【专题点拨】方案设计型问题是通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的技能和方法,进行设计和操作,寻求恰当的解决方案,有时也给出几个不同的解决方案,要求判断哪个方案较优。
它包括测量方案设计、作图方案设计和经济类方案设计等。
【典例赏析】【例题1】(2017黑龙江佳木斯)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?【考点】FH:一次函数的应用;CE:一元一次不等式组的应用.【分析】(1)根据总利润=三种蔬菜的利润之和,计算即可;(2)由题意,列出不等式组即可解决问题;(3)由题意,列出二元一次不等式,求出整数解即可;【解答】解:(1)由题意y=x+1.5×2x+2=﹣2x+200.(2)由题意﹣2x+200≥180,解得x≤10,∵x≥8,∴8≤x≤10.∵x为整数,∴x=8,9,10.∴有3种种植方案,方案一:种植西红柿8公顷、马铃薯76公顷、青椒16公顷.方案二:种植西红柿9公顷、马铃薯73公顷、青椒18公顷.方案三:种植西红柿10公顷、马铃薯70公顷、青椒20公顷.(3)∵y=﹣2x+200,﹣2<0,∴x=8时,利润最大,最大利润为184万元.设投资A种类型的大棚a个,B种类型的大棚b个,由题意5a+8b≤×184,∴5a+8b≤23,∴a=1,b=1或2,a=2,b=1,a=3,b=1,∴可以投资A种类型的大棚1个,B种类型的大棚1个,或投资A种类型的大棚1个,B种类型的大棚2个,或投资A种类型的大棚2个,B种类型的大棚1个,或投资A种类型的大棚3个,B种类型的大棚1个.【例题2】(2017内蒙古赤峰)为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,根据两种树苗购买的棵树一样多列出方程求出其解即可;(2)设购买梨树苗种树苗a棵,苹果树苗则购买棵,根据购买两种树苗的总费用不超过6000元建立不等式求出其解即可.【解答】解:(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,依题意得: =,解得x=5.经检验x=5是原方程的解,且符合题意.答:梨树苗的单价是5元;(2)设购买梨树苗种树苗a棵,苹果树苗则购买棵,依题意得:(5+2)+5a≤6000,解得a≥850.答:梨树苗至少购买850棵.【例题3】(2017毕节)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.【考点】B7:分式方程的应用;95:二元一次方程的应用.【分析】(1)首先设这种笔单价为x元,则本子单价为(x﹣4)元,根据题意可得等量关系:30元买这种本子的数量=50元买这种笔的数量,由等量关系可得方程=,再解方程可得答案;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,根据题意可得这种笔的单价×这种笔的支数m+本子的单价×本子的本数n=1000,再求出整数解即可.【解答】解:(1)设这种笔单价为x元,则本子单价为(x﹣4)元,由题意得:=,解得:x=10,经检验:x=10是原分式方程的解,则x﹣4=6.答:这种笔单价为10元,则本子单价为6元;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,由题意得:10m+6n=100,整理得:m=10﹣n,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买这种笔7支,购买本子5本;②购买这种笔4支,购买本子10本;③购买这种笔1支,购买本子15本.【能力检测】1.(2017黑龙江鹤岗)某企业决定投资不超过20万元建造A、B两种类型的温室大棚.经测算,投资A种类型的大棚6万元/个、B种类型的大棚7万元/个,那么建造方案有()A.2种B.3种C.4种D.5种【考点】95:二元一次方程的应用.【分析】直接根据题意假设出未知数,进而得出不等式进而分析得出答案.【解答】解:设建造A种类型的温室大棚x个,建造B种类型的温室大棚y个,根据题意可得:6x+7y≤20,当x=1,y=2符合题意;当x=2,y=1符合题意;当x=3,y=0符合题意;故建造方案有3种.故选:B.2.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y 万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.3.(2017黑龙江鹤岗)由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批口罩,已知1个A型口罩和3个B型口罩共需26元;3个A型口罩和2个B型口罩共需29元.(1)求一个A型口罩和一个B型口罩的售价各是多少元?(2)药店准备购进这两种型号的口罩共50个,其中A型口罩数量不少于35个,且不多于B型口罩的3倍,有哪几种购买方案,哪种方案最省钱?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)设一个A型口罩的售价是a元,一个B型口罩的售价是b元,根据:“1个A型口罩和3个B型口罩共需26元;3个A型口罩和2个B型口罩共需29元”列方程组求解即可;(2)设A型口罩x个,根据“A型口罩数量不少于35个,且不多于B型口罩的3倍”确定x的取值范围,然后得到有关总费用和A型口罩之间的关系得到函数解析式,确定函数的最值即可.【解答】解:(1)设一个A型口罩的售价是a元,一个B型口罩的售价是b元,依题意有:,解得:.答:一个A型口罩的售价是5元,一个B型口罩的售价是7元.(2)设A型口罩x个,依题意有:,解得35≤x≤37.5,∵x为整数,∴x=35,36,37.方案如下:B型B型方案口罩口罩一35 15二36 14三37 13设购买口罩需要y元,则y=5x+7(50﹣x)=﹣2x+350,k=﹣2<0,∴y随x增大而减小,∴x=37时,y的值最小.答:有3种购买方案,其中方案三最省钱.4.(2017•温州)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.【考点】C9:一元一次不等式的应用;HE:二次函数的应用;LB:矩形的性质.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;【解答】解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,∴0<x<50,∴丙瓷砖单价3x的范围为0<3x<150元/m2.【点评】本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.5. (2017宁夏)某商店分两次购进 A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)购进所需费用(元)A B第一次30 40 3800第二次40 30 3200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.【分析】(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据总利润=单件利润×购进数量,即可得出w与m之间的函数关系式,由A种商品的数量不少于B种商品数量的4倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据一次函数的性质即可解决最值问题.【解答】解:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据题意得:,解得:.答:A种商品每件的进价为20元,B种商品每件的进价为80元.(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据题意得:w=(30﹣20)(1000﹣m)+(100﹣80)m=10m+10000.∵A种商品的数量不少于B种商品数量的4倍,∴1000﹣m≥4m,解得:m≤200.∵在w=10m+10000中,k=10>0,∴w的值随m的增大而增大,∴当m=200时,w取最大值,最大值为10×200+10000=12000,∴当购进A种商品800件、B种商品200件时,销售利润最大,最大利润为12000元.【点评】本题考查了一次函数的应用、二元一次方程组的应用以及解一元一次不等式,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出w与m之间的函数关系式.。
初中数学专题复习方案设计题(含解答)
专题复习四方案设计题一、知识系统网络近年来,在各地中考试题中,出现了方案设计题.•方案设计题可以综合考查学生的阅读理解能力、分析推理能力、数据处理能力、文字概括能力、动手能力等.•命题的方案设计也出现创新、新颖、异彩纷呈的新趋势.二、中考题型例析1.设计图形题例1 (2003·潍坊)小明家有一块三角形菜地,要种植面积相等的四种蔬菜,请你设计四种不同的分割方案(分成三角形或四边形不限).方案一方案二方案三方案四分析:解决本题作图主要用到的是三角形面积公式,考查学生对这一公式和相关概念的灵活运用,以及分解平面图形的能力.解:方案一方案二方案三方案四2.设计测量方案题例2 (2004·青岛)在一次实验活动中,某课题学习小组用测倾器、•皮尺测量旗杆的高度,他们设计了如下方案(如图1所示):(1)在测点A处安置测倾器,测得旗杆顶部M的仰角∠MCE=α;(2)量出测点A到旗杆底部N的水平距离AN=m;(3)量出测倾器的高度AC=h.根据上述测量数据,即可求出旗杆的高度MN.如果测量工具不变,请仿照上述过程,设计一个测量某小山高度(如图2)•的方案:(1)在图中,画出你测量小山高度MN的示意图(标上适当字母);(2)写出你设计的方案.(1) (2) (3)分析:本题主要考查解决直角三角形的有关知识,学生根据提供的信息容易写出测量方案.解:(1)正确画出示意图(如图3)(2)①在测点A处安置测倾器,测得此时山顶M的仰角∠MCE=α;②在测点A与小山之间的B处安置测倾器(A、B与N在同一条直线上),测得此时山顶M的仰角∠MDE=β;③量出测倾器的高度AC=BD=h,以及测点A、B之间的距离AB=m.•根据上述测量数据,即可求出小山的高度MN.点评:数学与生活紧密相连,将一些数学知识置于生活情景之中,•使学生进一步论证以数学就在身边,会用数学知识解决现实生活中的问题.3.设计最佳方案题例3 (2003·广州)现计划把甲种货物1 240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A•型车厢每节费用为6 000元,使用B型车厢每节费用为8 000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,•每节乙型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按时要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最省?最少运费为多少元?分析:解答应用题,先要读懂文字,理解题意,再将其翻译成数学语言,•建立数学模型.从条件和提高的角度看,A、B两种车厢的节数是一个范围内的整数值,•由此需用不等式组来求解.解:(10设用A型车厢x节,则用B型车厢(40-x)节,总运费为y万元.依题意,得y=0.6x+0.8(40-x)=-0.2x+32.(2)依题意,得3525(40)1240, 1535(40)880.x xx x+-≥⎧⎨+-≥⎩化简,得10240,52020;xx≥⎧⎨≥⎩24,26.xx≥⎧⎨≤⎩∴24≤x≤26.∵x取整数,故A型车厢可用24节或25节或26节,相应有三种装车方案:①24节A型车厢和16节B型车厢;②25节A型车厢和15节B型车厢;③26节A型车厢和14节B型车厢.(3)由函数y=-0.2x+32知,x越大,y越小,故当x=26时,运费最省.这时y=-0.•2•×26+32=26.8(万元).答:安排A型车厢26节、B型车厢14节运费最省,最少运费为26.8万元.点评:与当今各行业都密切相关的“最好、最省、最大、•最低”等优化问题常常与函数的解析式及性质有关,因此,加强培养学生用函数知识解决优化问题的意识和能力势在必行.专题训练1.(2004·潍坊)现有树12棵,把它栽成三排,要求每排恰好为5棵,如图所示就是一种符合条件的栽法,请你再给出三种不同的栽法(画出图形即可).2.(2003·河北)探究规律:如图(1),已知:直线m∥n,A、B为直线n•上两点,C、P为直线m上两点.(1)请写出图(1)中,面积相等的各对三角形:_______________________________;(2)如果A、B、C为三个定点,点P在m上移动,那么,无论P点移动到任何位置,•总有________与△ABC的面积相等.理由是:_____________;解决问题:如图(2),五边形ABCDE是张大爷十年前承包的一块土地的示意图.•经过多年开垦荒地,现已变成如图(3)所示的形状.但承包土地与开垦荒地的分界小路(即图(3)中折线CDE)还保留着.张大爷想过E点修一条直路,直路修好后,•要保持直路左边的土地面积与承包时的一样多,•右边的土地面积与开垦的荒地面积一样多.请你用有关的几何知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积)(1)写出设计方案,并在图(3)中画出相应的图形;(2)说明方案设计理由.(1)nAPmBCO(2)ABDEC(3)ABDNMEC3.(2004·潍坊)图为人民公园中的荷花池,现要测量此荷花池两旁A、B•两棵树间的距离(我们不能直接量得).请你根据所学知识,以卷尺和测量仪为测量工具设计一种测量方案.要求:(1)画出你设计的测量平面图;(2)简述测量方法,并写出测量的数据(长度用a,b,c…表示;角度用α,β,γ,…表示).(3)根据你测量的数据,计算A、B两棵树间的距离.4.(2004·哈尔滨)“利海”通讯器材商场,计划用60 000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,•出厂价分别为甲种型号手机每部1 800元,乙种型号的手机每部600元,丙种型号手机每部1 200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60 000元恰好用完.•请你帮助商场计算一下如何购买.(2)若商场同时购进三种不同型号的手机共40部,并将60 000元恰好用完,•并且要求乙种型号手机的购买数量不少于6部且不多于8部,•请你求出商场每种型号手机的购买数量.5.(2004·沈阳)某地有一居民楼,窗户朝南,窗户的高度为hm,此地一年中的冬至这一天的正午时刻太阳光与地面的夹角最小为α,夏至这一天的正午时刻太阳光与地面的夹角最大为β(如图1).小明想为自己家的窗户设计一个直角形遮阳篷BCD,•要求它既能最大限度地遮挡夏天火热的阳光,•又能最大限度地使冬天温暖的阳光射入室内,小明查阅了有关资料,获得了所在地区∠α和∠β的相应数据:∠α=24°36′,•∠β=73°30′,小明又量得窗户的高AB=1.65m.若同时满足下面两个条件:(1)•当太阳光与地面的夹角为α时,要想使太阳光刚好全部射入室内;(2)当太阳光与地面的夹角为β时,要想使太阳光刚好不射入室内.请你借助下面的图形(如图2),帮助小明算一算,遮阳篷BCD中,BC和CD的长各是多少?(精确到0.01m)sin24°36′=0.416, cos24°36′=0.909,tan24°36′=0.458, cot24°36′=2.184, sin73°30′=0.959, cos73°30′=0.284,tan73°30′=3.376, cot73°30′=0.296.(1) (2)6.(2003·黑龙江)为了保护环境,某企业决定购买10台污水处理设备.现有A、•B两种型号的设备,经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2 040吨,为了节约资金,应选择哪种购买方案;(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10•年的费用包括购买设备的资金和消耗费)7.(2004·陕西)李大爷有一个边长为a 的正方形鱼塘如图所示,•鱼塘四个角的顶点A 、B 、C 、D 上各有一棵大树,•现在李大爷想把原来的鱼塘扩建成一个圆形或正方形鱼塘(原鱼塘周围的面积足够大),又不想把树挖掉(四棵大树要在新建鱼塘的边沿上).(1)若按圆形设计,利用图 (1)画出你所设计的圆形鱼塘示意图,并求出圆形鱼塘的面积;(2)若按正方形设计,利用图 (2)画出你所设计的正方形鱼塘示意图; (3)你在图(2)所设计的正方形鱼塘中,有无最大面积?为什么?(4)李大爷想使新建的鱼塘面积最大,你认为新建鱼塘的最大面积是多少?(1)ABDC (2)ABDC8.(2004·黑龙江)某送奶公司计划在三栋楼之间建一个取奶站,三栋楼在同一条直线上,顺次为A楼、B楼、C楼,其中A楼与B楼之间的距离为40m,B楼与C•楼之间的距离为60m.已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,送奶公司提出两种建站方案.方案一:让每天所有取奶的人到奶站的距离总和最小;方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和.(1)若按照方案一建站,取奶站应建在什么位置?(2)若按照方案二建站,取奶站应建在什么位置?(3)在(2)的情况下,若A楼每天取奶的人数增加(增加的人数不超过22人),•那么取奶站将离B楼越来越远,还是越来越近?请说明理由.答案: 1.略2.探究规律:(1)△ABC 和△ABP,△AOC 和△BOP,△CPA 和△CPB; (2)△ABP.因为平行线间的距离相等,所以无论点P 在m 上移动到任何位置,总有△ABP•和与△ABC 同底等高,因此,它们的面积总相等. 解决问题:(1)画法如图.连结EC,过点D 作DF ∥EC,交CM 于点F,连结EF,EF 即为所求直路的位置. (2)设EF 交CD 于点H,由上面得到的结论,可知: S △ECF =S △ECD ,S △HCF =S △EDH ,∴S 五边形ABCDE =S 五边形ABCFE ,S 五边形EDCMN =S 四边形EFMN 。
数学中考专题系列-方案设计专项练习
方案设计型专项练习一. 方程、函数型设计题1. 某体育彩票经销商计划用45000元从体彩中心购进彩票20扎,每扎1000张。
已知体彩中心有A ,B ,C 三张不同价格的彩票,进价分别是:A 彩票每张1.5元,B 彩票每张2元,C 彩票每张2.5元。
(1)若经销商同时购进两种不同型号的彩票20扎,请你设计进票方案。
(2)若销售A 种彩票1张获手续费0.2元,B 种彩票1张获手续费0.3元,C 种彩票1张获手续费0.5元。
在购进两种彩票的方案中,为使销售完时获得手续费最多,应选择哪种进票方案? (3)若经销商准备同时购进三种彩票20扎,请你设计进票方案。
1.(1)设购进A 种彩票x 张,B 种彩票y 张,C 种彩票z 张,根据题意有如下三种方案: ①x y x y +=⨯+=⎧⎨⎩10002015245000.;②x z x z +=⨯+=⎧⎨⎩100020152545000..;③y z y z +=⨯+=⎧⎨⎩10002022545000.解①得x y =-=⎧⎨⎩100030000(舍去)解②得x z ==⎧⎨⎩500015000解③得y z ==⎧⎨⎩1000010000有两种进票方案:A 种彩票5扎,C 种彩票15扎,或B 种彩票与C 种彩票各10扎。
(2)设购进A 种彩票5扎,C 种彩票15扎。
销售完后获手续费为:02500005150008500..⨯+⨯=(元) 设购进B 种彩票与C 种彩票各10扎销售完后获手续费为:031000005100008000..⨯+⨯=(元) 所以获得手续费最多的方案为:购A 种彩票5扎,C 种彩票15扎。
(3)设购进A 种彩票x 扎,B 种彩票y 扎,C 种彩票z 扎。
可列方程组x y z x y z ++=⨯+⨯+⨯=⎧⎨⎩201510002100025100045000.. 即z x y x =+=-+⎧⎨⎩10210∴≤<15x又因x 为整数,故共有4种进票方案:A 种1扎,B 种8扎,C 种11扎;A 种2扎,B 种6扎,C 种12扎;A 种3扎,B 种4扎,C 种13扎;A 种4扎,B 种2扎,C 种14扎。
初中数学方案设计型问题(word版+详解答案)
方案设计型问题【考题研究】方案设计型问题,是指根据问题所提供的信息,运用学过的技能和方法,进行设计和操作,然后通过分析、计算、证明等,确定出最佳方案的一类数学问题。
随着新课程改革的不断深入,一些新颖、灵活、密切联系实际的方案设计问题正越来越受到中考命题人员的喜爱,这些问题主要考查学生动手操作能力和创新能力,这也是新课程所要求的核心内容之一。
【解题攻略】(1)方程或不等式解决方案设计问题:首先要了解问题取材的生活背景;其次要弄清题意,根据题意建构恰当的方程模型或不等式模型,求出所求未知数的取值范围;最后再结合实际问题确定方案设计的种数.(2)择优型方案设计问题:这类问题一般方案已经给出,要求综合运用数学知识比较确定哪种方案合理.此类问题要注意两点:一是要符合问题描述的要求,二是要具有代表性.(3)操作型问题:大体可分为三类,即图案设计类、图形拼接类、图形分割类等.对于图案设计类,一般运用中心对称、轴对称或旋转等几何知识去解决;对于图形拼接类,关键是抓住需要拼接的图形与所给图形之间的内在关系,然后逐一组合;对于图形分割类,一般遵循由特殊到一般、由简单到复杂的动手操作过程.【解题类型及其思路】方案设计型问题涉及生产生活的方方面面,如:测量、购物、生产配料、汽车调配、图形拼接等。
所用到的数学知识有方程、不等式、函数、解直角三角形、概率和统计等知识。
这类问题的应用性非常突出,题目一般较长,做题之前要认真读题,理解题意,选择和构造合适的数学模型,通过数学求解,最终解决问题。
解答此类问题必须具有扎实的基础知识和灵活运用知识的能力,另外,解题时还要注重综合运用转化思想、数形结合的思想、方程函数思想及分类讨论等各种数学思想。
【典例指引】类型一【利用不等式(组)设计方案】【典例指引1】光明小区房屋外墙美化工程工地有大量货物需要运输,某车队有载重量为8吨和10吨的卡车共15辆,所有车辆运输一次能运输128吨货物.(1)求该车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的扩大,车队需要一次运输货物170吨以上,为了完成任务,车队准备增购这两种卡车共5辆(两种车都购买),请写出所有可能的购车方案.【举一反三】如果第一次租用2辆A型车和1辆B型车装运水果,一次运货10吨;第二次租用1辆A型车和2辆B型车装水果,一次运货11吨(两次运货都是满载)①求每辆A型车和B型车满载时各装水果多少吨?②现有31吨水果需运出,计划同时租用A型车和B型车一次运完,且每辆车都恰好装满,请设计出有哪几种租车方案?③若A型车每辆租金200元,B型车每辆租金300元,问哪种租车方案最省钱,最省钱的方案总共租金多少钱?类型二【利用方程(组)设计方案】【典例指引2】星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的56,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?【举一反三】为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?类型三【利用一次函数的性质与不等式(组)设计方案】【典例指引3】某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?【举一反三】1.新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:(方案一)降价8%,另外每套房赠送a元装修基金;(方案二)降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;(2)老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.2.某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.【新题训练】1.某化妆品店老板到厂家购A、B两种品牌店化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌的化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货?2.学校准备租用一批汽车去韶山研学,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车需租金1320元,3辆甲种客车和2辆乙种客车共需租金1860元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,总费用不超过3360元,则共有哪几种租车方案?3.5.1劳动节,某校决定组织甲乙两队参加义务劳动,并购买队服.下面是服装厂给出的服装的价格表:经调查:两个队共75人(甲队人数不少于40人),如果分别各自购买队服,两队共需花费5600元,请回答以下问题:(1)如果甲、乙两队联合起来购买服装,那么比各自购买服装最多可以节省_________.(2)甲、乙两队各有多少名学生?(3)到了现场,因工作分配需要,临时决定从甲队抽调a人,从乙队抽调b人,组成丙队(要求从每队抽调的人数不少于10人),现已知重新组队后,甲队平均每人需植树1棵;乙队平均每人需植树4棵;丙队平均每人需植树6棵,甲乙丙三队共需植树265棵,请写出所有的抽调方案.4.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.5.某手机经销商计划同时购进一批甲、乙两种型号的手机,已知每部甲种型号的手机进价比每部乙种型号的手机进价多200元,且购进3部甲型号手机和2部乙型号手机,共需要资金9600元;(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机共20台进行销售,现已有顾客预定了8台甲种型号手机,且该店投入购进手机的资金不多于3.8万元,请求出有几种进货方案?并请写出进货方案.(3)售出一部甲种型号手机,利润率为30%,乙种型号手机的售价为2520元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元充话费,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.6.某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.7.某公司要将本公司100吨货物运往某地销售,经与运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨,已知租用1辆甲型汽车和2辆乙型汽车共需费用2600元;租用2辆甲型汽车和1辆乙型汽车共需费用2500元,且同一型号汽车每辆租车费用相同.(1)求租用辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若这个公司计划此次租车费用不超过5200元,通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用,8.今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?9.2019年暑假期间,某学校计划租用8辆客车送280名师生参加社会实践活动,现有甲、乙两种客车,它们的载客量和租金如表,设租用甲种客车x辆,租车总费用为w元.甲种客车乙种客车载客量(人/辆)30 40租金(元/辆)270 320(1)求出w(元)与x(辆)之间函数关系式,并直接写出....自变量x的取值范围;(2)选择怎样的租车方案所需的费用最低?最低费用多少元?10.随着春节临近,某儿童游乐场推出了甲、乙两种消费卡,设消费次数为x时,所需费用为y元,且y与x的函数关系如图所示. 根据图中信息,解答下列问题;(1)分别求出选择这两种卡消费时,y关于x的函数表达式.(2)求出B点坐标.(3)洋洋爸爸准备240元钱用于洋洋在该游乐场消费,请问选择哪种消费卡划算?11.甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x (x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.12.我区注重城市绿化提高市民生活质量,新建林荫公园计划购买甲、乙两种树苗共800株,甲种树苗每株12元,乙种树苗每株15元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去10500元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.13.某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.14.随着人民生活水平不断提高,家庭轿车的拥有量逐年增加,据统计,某小区16年底拥有家庭轿车640辆,到18年底家庭轿车拥有量达到了1000辆.(1)若该小区家庭轿车的年平均增长量都相同,请求出这个增长率;(2)为了缓解停车矛盾,该小区计划投入15万元用于再建若干个停车位,若室内每个车位0.4万元,露天车位每个0.1万元,考虑到实际因素,计划露天车位数量大于室内车位数量的2倍,但小于室内数量的3.5倍,求出所有可能的方案.15.为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求购买每个笔记本和钢笔分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x>0)支钢笔需要花y元,请你求出y与x的函数关系式;(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.16.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.17.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买A、B两种商品共30件,要求购买B商品的数量不高于A商品数量的2倍,且该商店购买的A、B两种商品的总费用不超过276元,那么该商店有几种购买方案?(3)若购买A种商品m件,实际购买时A种商品下降了a(a>0)元,B种商品上涨了3a元,在(2)的条件下,此时购买这两种商品所需的最少费用为1076元,求m的值.18.为了迎接“六•一”儿童节.某儿童运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?该专卖店要获得最大利润应如何进货?方案设计型问题【考题研究】方案设计型问题,是指根据问题所提供的信息,运用学过的技能和方法,进行设计和操作,然后通过分析、计算、证明等,确定出最佳方案的一类数学问题。
中考数学专题——方案设计问题知识点
中考数学专题————方案设计问题1、光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A 、B 两地区收割小麦,其中30台派往A 地区,20台派往B 地区.两地与该农机(1y (元),求y 与x 间的函数关系式,并写出x 的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.解:(1)若派往A 地区的乙型收割机为x 台,则派往A 地区的甲型收割机为(30-x )台;派往B 地区的乙型收割机为(30-x )台,派往B 地区的甲型收割机为(x -10)台.∴y =1600x +1800(30-x )+1200(30-x )+1600(x -10)=200x +74000.x 的取值范围是:10≤x ≤30(x 是正整数).(2)由题意得200x +74000≥79600,解不等式得x ≥28.由于10≤x ≤30,∴x 取28,29,30这三个值,∴有3种不同分配方案.①当x =28时,即派往A 地区甲型收割机2台,乙型收割机28台;派往B 地区甲型收割机18台,乙型收割机2台.②当x =29时,即派往A 地区甲型收割机1台,乙型收割机29台;派往B 地区甲型收割机19台,乙型收割机1台.③当x =29时,即派往A 地区甲型收割机1台,乙型收割机29台;派往B 地区甲型收割机19台,乙型收割机1台.③ 当x =30时,即30台乙型收割机全部派往A 地区;20台甲型收割机全部派往B 地区.(3)由于一次函数y =200x +74000的值y 是随着x 的增大而增大的,所以,当x =30时,y 取得最大值.如果要使农机租赁公司这50台联合收割机每天获得租金最高,只需x =30,此时,y =6000+74000=80000.建议农机租赁公司将30台乙型收割机全部派往A 地区;20台甲型收割要全部派往B 地区,可使公司获得的租金最高.2.今年6月份,我市某果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可装荔枝4吨和香蕉1吨,一种货车可装荔枝香蕉各2吨;(1) 该果农按排甲、乙两种货车时有几种方案?请你帮助设计出来,(2) 甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,则该果农应选哪种方案?使运费最少?最少运费是多少元?解:(1)设安排甲种货车x 辆,则安排乙种货车(10-x )辆,依题意,得⎩⎨⎧≥-+≥-+13)10(230)10(24x x x x 解这个不等式组,得 ⎩⎨⎧≤≥75x x 75≤≤∴x ∵x 是整数,∴x 可取5、6、7,既安排甲、乙两种货车有三种方案:① 甲种货车5辆,乙种货车5辆;② 甲种货车6辆,乙种货车4辆;③ 甲种货车7辆,乙种货车3辆;(2)方法一:由于甲种货车的运费高于乙种货车的运费,两种货车共10辆,所以当甲种货车的数量越少时,总运费就越少,故该果农应选择① 运费最少,最少运费是16500元; 方法二:方案①需要运费2000×5+1300×5=16500(元)方案②需要运费2000×6+1300×4=17200(元)方案③需要运费2000×7+1300×3=17900(元)∴该果农应选择① 运费最少,最少运费是16500元;3、某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?解:(1)设购买甲种机器x 台,则购买乙种机器(6-x )台.由题意,得75(6)34x x +-≤,解这个不等式,得2x ≤,即x 可以取0、1、2三个值,所以,该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台;方案二:购买甲种机器1台,购买乙种机器5台;方案三:购买甲种机器2台,购买乙种机器4台;(2)按方案一购买机器,所耗资金为30万元,新购买机器日生产量为360个;按方案二购买机器,所耗资金为1×7+5×5=32万元;,新购买机器日生产量为1×100+5×60=400个;按方案三购买机器,所耗资金为2×7+4×5=34万元;新购买机器日生产量为2×100+4×60=440个.因此,选择方案二既能达到生产能力不低于380个的要求,又比方案三节约2万元资金,故应选择方案二.4、我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下(1)设装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,求y 与x 之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采哪种安排方案?并求出最大利润的值.解:(1)根据题意,装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,那么装运C 种脐橙的车辆数为()y x --20,则有:()10020456=--++y x y x 整理得:202+-=x y(2)由(1)知,装运A 、B 、C 三种脐橙的车辆数分别为x 、202+-x 、x ,由题意得:⎩⎨⎧≥+-≥42024x x ,解得:4≤x ≤8,因为x 为整数,所以x 的值为4、5、6、7、8,所以安排方案共有5种.方案一:装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车;方案二:装运A 种脐橙5车,B 种脐橙10车,C 种脐橙5车;方案三:装运A 种脐橙6车,B 种脐橙8车,C 种脐橙6车;方案四:装运A 种脐橙7车,B 种脐橙6车,C 种脐橙7车;方案五:装运A 种脐橙8车,B 种脐橙4车,C 种脐橙8车;(3)设利润为W (百元)则:()160048104162025126+-=⨯+⨯+-+⨯=x x x x W∵048<-=k ∴W 的值随x 的增大而减小要使利润W 最大,则4=x ,故选方案一1600448+⨯-=最大W =1408(百元)=14.08(万元)答:当装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车时,获利最大,最大利润为14.08万元. 5、2007年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A B ,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?解:(1)设搭配A 种造型x 个,则B 种造型为(50)x -个,依题意,得:8050(50)34904090(50)2950x x x x +-⎧⎨+-⎩≤≤ 解这个不等式组,得:3331x x ⎧⎨⎩≤≥,3133x ∴≤≤ x 是整数, x ∴可取313233,,, ∴可设计三种搭配方案:①A 种园艺造型31个 B 种园艺造型19个②A 种园艺造型32个 B 种园艺造型18个③A 种园艺造型33个 B 种园艺造型17个.(2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元)方法二:方案①需成本:318001996043040⨯+⨯=(元)方案②需成本:328001896042880⨯+⨯=(元)方案③需成本:338001796042720⨯+⨯=元∴应选择方案③,成本最低,最低成本为42720元6、某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)解:(1)设购进电视机x 台,则购进洗衣机(100-x )台,根据题意,得1(100),218001500(100)161800.x x x x ⎧≥-⎪⎨⎪+-≤⎩ ,解不等式组,得 1333≤x ≤1393.即购进电视机最少34台,最多39台,商店有6种进货方案.(2)设商店销售完毕后获利为y 元,根据题意,得y =(2000-1800)x +(1600-1500)(100-x )=100x +10000.∵ 100>0,∴ 当x 最大时,y 的值最大.即 当x =39时,商店获利最多为13900元.7、绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得4x + 2(8-x )≥20,且x + 2(8-x )≥12,解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4.∵ x x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:(2方案二所需运费 300×3 + 240×5 = 2100元;方案三所需运费 300×4 + 240×4 = 2160元.所以王灿应选择方案一运费最少,最少运费是2040元.8、某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.解:(1)由租用甲种汽车x 辆,则租用乙种汽车(8)x -辆由题意得:4030(8)2901020(8)100x x x x +-⎧⎨+-⎩≥≥ 解得:56x ≤≤ 即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.(2)第一种租车方案的费用为520003180015400⨯+⨯=元;第二种租车方案的费用为620002180015600⨯+⨯=元∴第一种租车方案更省费用.9、在社会主义新农村建设中,李叔叔承包了家乡的50亩荒山.经过市场调查,预测水果上市后A 种水果每年每亩可获利0.3万元,B 种水果每年每亩可获利0.2万元,李叔叔决定在承包的山上种植A 、B 两种水果.他了解到需要一次性投入的成本为:A 种水果每亩1万元,B 种水果每亩0.9万元.设种植A 种水果x 亩,投入成本总共y 万元.(1)求y 与x 之间的函数关系式;(2)若李叔叔在开发时投入的资金不超过47万元,为使总利润每年不少于11.8万元,应如何安排种植面积(亩数x 取整数)?请写出获利最大的种植方案.解:(1)y=0.1x+4.5 .(2)根据题意得:0.9(50)470.30.2(50)11.8x x x x +-≤⎧⎨+-≥⎩ 解得:1820x ≤≤所以,有如下种植方案:B 水果20亩.10、某电脑公司现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1) 写出所有选购方案(利用树状图或列表方法表示);(2) 如果(1)中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(3) 现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A 型号电脑,求购买的A 型号电脑有几台.解:(1) 树状图如下 列表如下:有6可能结果:(A ,D ),(A ,E ),(B ,D ),(B ,E ),(C ,D ),(C ,E ).(注:用其它方式表达选购方案且正确给1分)(2) 因为选中A 型号电脑有2种方案,即(A ,D )(A ,E ),所以A 型号电脑被选中的概率是31 (3) 由(2)可知,当选用方案(A ,D )时,设购买A 型号、D 型号电脑分别为x ,y 台,根据题意,得⎩⎨⎧=+=+.10000050006000,36y x y x 解得⎩⎨⎧=-=.116,80y x 经检验不符合题意,舍去; (注:如考生不列方程,直接判断(A ,D )不合题意,舍去,也给2分)当选用方案(A ,E)时,设购买A 型号、E型号电脑分别为x ,y 台,根据题意,得⎩⎨⎧=+=+.10000020006000,36y x y x 解得⎩⎨⎧==.29,7y x 所以希望中学购买了7台A 型号电脑.11、已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的(3) 之间的函数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.解:(1)解:图①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg批发; 图②表示批发量高于60kg 的该种水果,可按4元/kg 批发. (2)解:由题意得: 2060 6054m m w m m ⎧=⎨⎩≤≤())>(,函数图象如图所示.由图可知资金金额满足 240<w ≤300时,以同样的资金可批发到较多数量的该种水果.(3)解法一:设当日零售价为x 元,由图可得日最高销量32040w m =-当m >60时,x <6.5 由题意,销售利润为 2(4)(32040)40[(6)4]y x m x =--=--+ 当x =6时,160y =最大值,此时m =80即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.解法二:设日最高销售量为x kg (x >60)则由图②日零售价p 满足:32040x p =-,于是32040x p -= 销售利润23201(4)(80)1604040x y x x -=-=--+ 当x =80时,160y=最大值,此时p =6即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.)。
中考数学专题————方案设计问题
每台甲型收割机的租金每台甲型收割机的租金 每台乙型收割机的租金每台乙型收割机的租金 A 地区地区 1800元 1600元 B 地区地区 1600元 1200元 A x
甲 乙
价格(万元/台)台)
7 5 每台日产量(个)每台日产量(个)
100 60 问题:问题: 脐 橙 品 种
A B C 每辆汽车运载量
(吨)(吨) 6 5 4 每吨脐橙获得(百
元)元)
12
16
10
类别电视机洗衣机进价(元/台)1800 1500 售价(元/台)2000 1600
甲种货车乙种货车方案一2辆6辆方案二3辆5辆方案三4辆4辆
A种水果
(亩)18 19 20
B种水果(亩)32 31 30
利润(万元)11.8 11.9 12
是
60 20 4 批发单价(元)批发单价(元) 5 批发量(kg )
① ②
6 2 40 日最高销量(kg ) 80 零售价(元)零售价(元) 4 8 (6,80) (7,40)
函数关系式;在下图的坐标系中画出该函数图象;指出金额在什
么范围内,以同样的资金可以批发到较多数量的该种水果.
经调查,某经销商销售该种水果的日最高销量与零售价 320
40
=
(40
40
-金额(元)(元) 批发量(kg 300 200 100 20 40 60。
中考数学试题中的方案设计归纳
中考数学试题中的方案问题归类(一)利用不等式组解决方案问题[2020·邵阳]2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A 、B 两种类型的便携式风扇到地摊一条街出售.已知2台A 型风扇和5台B 型风扇进价共100元,3台A 型风扇和2台B 型风扇进价共62元.(1)求A 型风扇、B 型风扇进货的单价各是多少元?(2)小丹准备购进这两种风扇共100台,根据市场调查发现,A 型风扇销售情况比B 型风扇好,小丹准备多购进A 型风扇,但数量不超过B 型风扇数量的3倍,购进A 、B 两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案?解:(1)设A 型风扇进价为每台x 元,B 型风扇进价为每台y 元,则241003262x y x y += ⎧⎨+= ⎩①②①3⨯-②×2得:11176y =, ∴16y =,把16y =代入①得:10x = ∴1016x y =⎧⎨=⎩答:A 型风扇、B 型风扇进货的单价各是10元、16元;(2)由题意得: A 型风扇进了a 个,则B 型风扇进了()100a -个,所以:()31001016(100)1170a a a a ≤- ⎧⎪⎨+-≤⎪⎩①② ∴解不等式①,得75a ≤,解不等式②,得2713a ≥ 所以不等式组的解集为:271753a ≤≤ 其中a 为正整数,所以72,73,74,75a =. ∴小丹的进货方案如下:∴或:小丹共有4种进货方案,方案1:购进A 型风扇72台,B 型风扇28台;方案2:购进A 型风扇73台,B 型风扇27台;方案3:购进A 型风扇74台,B 型风扇26台;方案4:购进A 型风扇75台,B 型风扇25台.(二)利用一次函数性质解决方案问题[2020·遵义]为倡导健康环保,自带水杯已成为一种好习惯,某超市销售甲,乙两种型号水杯,进价和售价均保持不变,其中甲种型号水杯进价为25元/个,乙种型号水杯进价为45元/个,下表是前两月两种型号水杯的销售情况:(1)求甲、乙两种型号水杯的售价;(2)第三月超市计划再购进甲、乙两种型号水杯共80个,这批水杯进货的预算成本不超过2600元,且甲种型号水杯最多购进55个,在80个水杯全部售完的情况下设购进甲种号水杯a 个,利润为w 元,写出w 与a 的函数关系式,并求出第三月的最大利润. 解:(1)设甲种型号的水杯的售价为每个x 元,乙种型号的水杯每个y 元,则 228110038242460x y x y +=⎧⎨+=⎩①② ①3⨯-②得:28840,x = 30,x ∴=把30x =代入①得:55,y =30,55x y =⎧∴⎨=⎩答:甲、乙两种型号水杯的销售单价分别为30元、55元;(2)由题意得:甲种水杯进了a 个,则乙种水杯进了()80a -个,所以:()()()30255545805800,W a a a =-+--=-+又()254580260055a a a ⎧+-≤⎨≤⎩①② 由①得:50a ≥,所以不等式组的解集为:5055,a ≤≤其中a 为正整数,所以50,51,52,53,54,55.a =∵k=-5<0,W ∴随a 的增大而减小,当50a =时,第三月利润达到最大,最大利润为:550800550W =-⨯+=元.(三)利用二次函数解决方案问题[2020·营口]某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x (元),每天的销售量为y (瓶).(1)求每天的销售量y (瓶)与销售单价x (元)之间的函数关系式;(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为多少元?解:(1)由题意得:y =80+20×,∴y =﹣40x +880;(2)设每天的销售利润为w 元,则有:w =(﹣40x +880)(x ﹣16)=﹣40(x ﹣19)2+360,∵a =﹣40<0,∴二次函数图象开口向下,∴当x =19时,w 有最大值,最大值为360元.答:当销售单价为19元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为880元.(四)利用分段函数解决方案问题[2020·黄冈] 网络销售已经成为一种热门的销售方式为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗.为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg ,每日销售量(kg)y 与销售单价x (元/kg )满足关系式:1005000y x =-+.经销售发现,销售单价不低于成本价格且不高于30元/kg .当每日销售量不低于4000kg 时,每千克成本将降低1元设板栗公司销售该板栗的日获利为W (元).(1)请求出日获利W 与销售单价x 之间的函数关系式(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当40000W ≥元时,网络平台将向板栗公可收取a 元/kg(4)a <的相关费用,若此时日获利的最大值为42100元,求a 的值.解:(1)当4000y ≥,即10050004000x -+≥,10x ∴≤.∴当610x ≤≤时,(61)(1005000)2000w x x =-+-+-2100550027000x x =-+-当1030x <≤时,(6)(1005000)2000w x x =--+-2100560032000x x =-+-.22100550027000(610)100560032000(1030)x x x w x x x ⎧-+-≤≤∴=⎨-+-<≤⎩ (2)当610x ≤≤时,2100550027000w x x =-+-. ∵对称轴为5500551022(100)2b x a =-=-=>⨯-, ∴当10x =时,max 54000200018000w =⨯-=元.当1030x <≤时,2100560032000w x x =-+-. ∵对称轴为56002822(100)b x a =-=-=⨯-, ∴当28x =时,max 222200200046400w =⨯-=元.4640018000>∴综合得,当销售单价定为28元时,日获利最大,且最大为46400元.(3)4000018000>,1030x ∴<≤,则2100560032000w x x =-+-. 令40000w =,则210056003200040000x x -+-=. 解得:1220,36x x ==.在平面直角坐标系中画出w 与x 的数示意图. 观察示意图可知:40000,2036w x ≥≤≤.又1030x <≤,2030x ∴≤≤.1(6)(1005000)2000w x a x ∴=---+-2100(5600100)320005000x a x a =-++--. 对称轴为560010012822(100)2b a x a a +=-=-=+⨯- 4a <,∴对称轴128302x a =+<. ∴当1282x a =+时,max 42100w =元. 1128610028500020004210022a a a ⎡⎤⎛⎫⎛⎫∴+---++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2881720a a ∴-+=,122,86a a ∴==.又4a <,2a ∴=.。
中考数学专题复习:“方案设计题型”解析
(元)
假设购进B种彩票与C种彩票各10扎 假设购进B种彩票与C种彩票各10扎。 10 销售完后获手续费为: 销售完后获手续费为: 0.3 × 10000 + 0.5 × 10000 = 8000 (元) 所以获得手续费最多的方案为: 所以获得手续费最多的方案为: 种彩票5 种彩票15 15扎 购A种彩票5扎,C种彩票15扎。
• (2)若销售A种彩票1张获手续费0.2元,B种 若销售A种彩票1张获手续费0.2元 0.2 彩票1张获手续费0.3 0.3元 种彩票1 彩票1张获手续费0.3元,C种彩票1张获手续 0.5元 在购进两种彩票的方案中, 费0.5元。在购进两种彩票的方案中,为使销 售完时获得手续费最多, 售完时获得手续费最多,应选择哪种进票方 案? 假设购进A种彩票5 种彩票15 15扎 解:假设购进A种彩票5扎,C种彩票15扎。 销售完后获手续费为: 销售完后获手续费为:
二、统计型设计题
• 例3. 某中学要召开运动会,决定从初三年 某中学要召开运动会, 级全部150名女生中选30 150名女生中选30人组成一个彩旗方 级全部150名女生中选30人组成一个彩旗方 要求参加方队学生的身高尽可能接近)。 队(要求参加方队学生的身高尽可能接近)。 现在抽测了10名女生的身高,结果如下( 10名女生的身高 现在抽测了10名女生的身高,结果如下(单 cm):166,154,151,167,162,158, ):166 位:cm):166,154,151,167,162,158, 158,160,162,162。 158,160,162,162。
如果这个玩具厂剩下的余料是长为4厘米 厘米, 例6. 如果这个玩具厂剩下的余料是长为 厘米, 宽为3厘米的矩形布料 厘米的矩形布料, 宽为 厘米的矩形布料,在这块矩形布料上 要求剪下两个相同的半圆以供使用, 要求剪下两个相同的半圆以供使用,并且要 求尽量提高布料的使用率, 求尽量提高布料的使用率,一位同学设计了 如下图的方案, 如下图的方案, (1)你能帮他计算出半圆的半径吗? )你能帮他计算出半圆的半径吗?
中考数学专题复习(方案设计)
中考数学专题复习:方案设计问题【知识梳理】方案设计问题特点是题中给出几种方案让考生通过计算选取最佳方案,或给出设计要求,让考生自己设计方案,这种方案有时不止一种,因而又具有开放型题的特点,此种题型考查考生的数学应用意识,命题的背景广泛,考生自由施展才华的空间大,因此倍受命题者的青睐。
【课前预习】1.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .2.某班50名同学分别站在公路的A 、B 两点处,A 、B 两点相距1000米,A 处有30人,B 处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在( )A .A 点处B .线段A B 的中点处C .线段A B 上,距A 点10003米处D .线段A B 上,距A 点400米处3.如图,是由一些大小相同的小正方体组成的几何体的主视图和 俯视图,则组成这个几何体的小正方体最多块数是( )A. 9B. 10C. 11D. 124.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( ) A .2种 B .3种 C .4种 D .5种 5.某饮料厂为了开发新产品,用A 种果汁原料和B 种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x 千克,两种饮料的成本总额为y 元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y 与x 之间的函数关系式.(2)若用19千克A 种果汁原料和17.2千克B 种果汁原料试制甲、乙两种新型饮料,下表是请你列出关于x 且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y 值最小,最小值是多少? 35° A B 主视图俯视图【例题精讲】【例1】如图,甲转盘被分成3个面积相等的扇形、乙转盘被分成2个面积相等的扇形.小夏和小秋利用它们来做决定获胜与否的游戏.规定小夏转甲盘一次,小秋转乙盘一次为一次游戏(当指针指在边界线上时视为无效,重转).(1)小夏说:“如果两个指针所指区域内的数之和为6或7,则我获胜;否则你获胜”.按小夏设计的规则,请你写出两人获胜的可能性分别是多少? (2)请你对小夏和小秋玩的这种游戏设计一种公平的游戏规则,并用一种合适的方法(例如:树状图,列表)说明其公平性.【例2】某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)若需要这种规格的纸箱x 个,请分别写出从纸箱厂购买纸箱的费用y 1(元)和蔬菜加工厂自己加工制作纸箱的费用y 2(元)关于x (个)的函数关系式; (2)假设你是决策者,你认为应该选择哪种方案?并说明理由.【例3】某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下. 如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?甲 乙【巩固练习】1.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()A.只有1个 B.可以有2个 C.有2个以上,但有限 D.有无数个2.从2、3、4、5这四个数中,任取两个数p和q(p≠q),构成函数y=px-2和y=x+q,并使这两个函数图象的交点在直线x=2的右侧,则这样的有序数对(p,q)共有()A.12对B.6对C.5对D.3对3.某工厂现有甲种原料226kg,乙种原料250kg,计划利用这两种原料生产A、B两种产品共40件,生产A、B两种产品用料情况如下表,设生产A产品x件,请解答下列问题:(1)求x的值,并说明有哪几种符合题意的生产方案。
中考专题复习--方案设计型问题
类型一
考点二 考点三
方程型方案设计
不等式(组)型方案设计 函数型方案设计
类型一
[例1]
方程型购进一批篮球和足
球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个
数与900元购进的足球个数相等. (1)篮球和足球的单价各是多少元? (2)该校打算用1 000元购买篮球和足球,问恰好用完1 000元,并 且篮球、足球都买的购买方案有哪几种?
方案设计型问题
方案设计型问题是通过设置一个实际问题情景,给 出若干信息,提出解决问题的要求,要求学生运用学过 的技能和方法,进行设计和操作,寻求恰当的解决方案. 有时也给出几个不同的解决方案,要求判断哪个方案较 优。
方案设计型问题主要考查学生利用列方程(组)、 不等式组和一次函数等知识解决实际问题。考查数学建 模的核心素养。
树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.
[解] (1)设 y 与 x 的函数关系式为 y=kx+b, 把(20,160),(40,288)代入 y=kx+b 得 20k+b=160, 40k+b=288. k=6.4, 解得 b=32. ∴y=6.4x+32. (2)∵B 种果树苗的数量不超过 35 棵,但不少于 A 种果树苗的数 量, x≤35, ∴ x≥45-x, ∴22.5≤x≤35, 设总费用为 W,则 W=6.4x+32+7(45-x)=-0.6x+347, ∵k=-0.6, ∴y 随 x 的增大而减小, ∴当 x=35 时, 总费用 W 最低, W 最小=-0.6× 35+347=326(元).
小 结
谈谈你的收获
1.方案设计问题的类型. 3.方案设计问题的解决思路和方法.
作业:课后练习
两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务, 且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并
中考专题--利用函数与不等式解方案设计与决策型问题
利用函数与不等式解方案设计与决策型问题一、从一道例题的解答看方案设计与决策型问题引例:恩发建筑公司从上海某厂购得挖机4台,从北京某厂购得挖机10台。
现在决定运往重庆分公司8台,其余都运往汉口分公司;从上海运往汉口、重庆的运费分别是300元/台、500元/台,从北京运往汉口、重庆的运费分别是400元/台、800元/台 。
(1)若总运费为8400元,上海运往汉口应多少台?解:(1)设上海运往汉口应x 台,则400(6-x)+ 300x + 800(x+4) + 500(4-x) = 8400解得:x=4因此,若总运费为8400元, 上海运往汉口应4台。
(2)若总运费少于8400元,有哪几种调运方案?解:(2)由题意知:200x+7600<8400解得:x < 4∵x 为非负整数∴x=0、1、2或3∴若要求总运费不超过 8400元,共有4种调运方案。
如下表:(3)求出总运费最低的调运方案,总运费是多少?设总运费为y 元,由题意知:y= 200x+7600∵200>0 ∴x=0时y 最小,为7600元。
调运方案如下: 北京到汉口6台,北京到重庆4台,上海到重庆4台.二、方案设计与决策型问题的基本解题方法方案设计型问题是指应用数学基础知识建模的方法,来按题目所呈现的要求进行计算,论证,选择,判断,设计的一种数学试题。
纵观近年来各地的中考试题,涉及方案设计与应用的试题大量涌现,它在考查学生数学创新应用能力方面可谓独树一帜,新颖别致。
其类型有利用不等式(组)进行方案设计,利用概率与统计进行方案设计,利用函数知识进行方案设计,利用几何知识进行方案设计。
其中以利用函数与不等式解决的方案设计问题为最多。
利用函数与不等式解决的方案设计问题的基本方法是:(1)根据题意建立一次函数关系式;(2)根据实际意义建立关于自变量的不等式组,求函数自变量的取值范围;(3)根据函数自变量的取值范围,确定符合条件的设计方案;(4)利用一次函数的性质求最大值或最小值,确定最优化方案。
中考数学方案设计型问题
方案设计型问题考点一:设计测量方案问题这类问题主要包括物体高度的测量和地面宽度的测量。
所用到的数学知识主要有相似、全等、三角形中位线、投影、解直角三角形等。
例1 (2012•河南)某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅.如图所示,一条幅从楼顶A处放下,在楼前点C处拉直固定.小明为了测量此条幅的长度,他先在楼前D处测得楼顶A点的仰角为31°,再沿DB方向前进16米到达E处,测得点A的仰角为45°.已知点C到大厦的距离BC=7米,∠ABD=90°.请根据以上数据求条幅的长度(结果保留整数.参考数据:tan31°≈,sin31°≈,cos31°≈).例2(2012•丹东)南中国海是中国固有领海,我渔政船经常在此海域执勤巡察.一天我渔政船停在小岛A北偏西37°方向的B处,观察A岛周边海域.据测算,渔政船距A岛的距离AB长为10海里.此时位于A岛正西方向C处的我渔船遭到某国军舰的袭扰,船长发现在其北偏东50°的方向上有我方渔政船,便发出紧急求救信号.渔政船接警后,立即沿BC航线以每小时30海里的速度前往救助,问渔政船大约需多少分钟能到达渔船所在的C处(参考数据:sin37°≈,cos37°≈,sin50°≈,cos50°≈,sin53°≈,cos53°≈,sin40°≈,cos40°≈)考点二:设计搭配方案问题这类问题不仅在中考中经常出现,大家在平时的练习中也会经常碰到。
它一般给出两种元素,利用这两种元素搭配出不同的新事物,设计出方案,使获利最大或成本最低。
解题时要根据题中蕴含的不等关系,列出不等式(组),通过不等式组的整数解来确定方案。
例3 (2012•内江)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况下表所示,结合上述信息,解答下列问题:造型花卉甲乙A8040B5070(1)符合题意的搭配方案有几种(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用那种方案成本最低最低成本为多少元例4(2012•河池)随着人们环保意识的不断增强,我市家庭电动自行车的拥有量逐年增加.据统计,某小区2009年底拥有家庭电动自行车125辆,2011年底家庭电动自行车的拥有量达到180辆.(1)若该小区2009年底到2012年底家庭电动自行车拥有量的年平均增长率相同,则该小区到2012年底电动自行车将达到多少辆(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的倍,则该小区最多可建两种车位各多少个试写出所有可能的方案.考点三:设计销售方案问题在商品买卖中,更多蕴含着数学的学问。
初中数学方案设计型问题汇编
初中数学方案设计型问题知识点1、用方程或不等式解决方案设计型问题此类问题属于利用方程、不等式或综合利用方程和不等式解决方案设计型问题。
解决这类问题时,首先要弄清题意,根据题意构建恰当的方程模型或不等式模型,求出所求未知数的取值范围,然后再结合实际问题确定方案设计的种数。
例1. (黑龙江省哈尔滨市)青青商场经销甲、乙两种商品,已知甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元。
(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案。
(3)在五一黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打九折超过400元售价打八折按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?解:(1)设该商场能购进甲种商品x件,则乙种商品为(100-x)件,根据题意,得。
解得,则乙种商品为(件)。
所以该商场能购进甲种商品40件,乙种商品60件。
(2)设该商场购进甲种商品a件,则购进乙种商品(100-a)件,根据题意,得解得,因为a的值是整数,所以或49或50,即该商场共有三种进货方案,分别为:(方案一)购进甲种商品48件,乙种商品52件;(方案二)购进甲种商品49件,乙种商品51件;(方案三)购进甲种商品50件,乙种商品50件。
(3)根据题意,得第一天只购买甲种商品不享受优惠条件,所以甲种商品的件数为。
第二天只购买乙种商品有以下两种情况:①购买打九折的乙种商品件数为;②购买打八折的乙种商品件数为;所以这两天他一共可购买甲、乙两种商品(件)或(件)。
2025年中考数学高分拓展必刷题之方案设计类问题
2025年中考数学高分拓展必刷题方案设计类问题1.考点解析方案设计型问题是设置一个实际问题的情景,给出若干信息,提出解决问题的要求,寻求恰当的解决方案,有时还给出几个不同的解决方案,要求判断其中哪个方案最优.方案设计型问题主要考查学生的动手操作能力和实践能力.2.考点分类:考点分类见下表考点分类考点内容考点分析与常见题型常考热点二元一次方程组,不等式路程问题,面积最值一般考点一次函数、二次函数求最大值最大利润等冷门考点统计型设计题数目统计解决问题【方法点拨】此类题目往往要求所设计的问题中出现路程最短、运费最少、效率最高等词语,解题时常常与函数、几何联系在一起.我们在阅读材料的时候一定要把相关的信息进行整理与分类,便于后面做的过程中有条理,不会弄错条件,可以列成表格形式便于自己看清楚。
一、中考题型分析方案设计问题在近几年的中考中出现的频率还是比较高的,一般以应用题的形式出现行联结,一般以工程方案或者销售购买方案居多,占8-10分左右。
此类题目难度中等,需要学生对题目的条件理清楚,掌握基本的列方程解题的能力。
二、典例精析★考点一:函数类方案设计问题◆典例一:某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:原料型号甲种原料乙种原料A产品(每件)9 3B产品(每件) 4 10(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?【考点】一次函数的应用;一元一次不等式组的应用.【解析】(1)设工厂可安排生产x件A产品,则生产(50﹣x)件B产品,根据不能多于原料的做为不等量关系可列不等式组求解;(2)可以分别求出三种方案比较即可.学¥#科网◆典例二:1.某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元. (1)若该商店同时购进甲、乙两种商品共100件,恰好用去2 700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3 100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少(利润=售价-进价)?【解答】(1)设购进甲种商品x件,购进乙种商品y件,根据题意,得,解得:答:商店购进甲种商品40件,购进乙种商品60件.(2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据题意列,得解得20≤a≤22.∵总利润W=5a+10(100-a)=-5a+1000,W是关于x的一次函数,W随x的增大而减小,∴当x=20时,W有最大值,此时W=900,且100-20=80。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 方案设计型问题
考点一 方程型方案设计
[例1] 某校为了丰富学生的校园生活,准备购进一批篮球和足 球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个 数与900元购进的足球个数相等. (1)篮球和足球的单价各是多少元? (2)该校打算用1 000元购买篮球和足球,问恰好用完1 000元,并且 篮球、足球都买的购买方案有哪几种?
ABΒιβλιοθήκη 进价(万元/套)1.5
1.2
售价(万元/套)
1.65
1.4
[分析] (1)首先设该商场计划购进 A,B 两种品牌的教学设备 分别为 x 套,y 套,根据题意即可列方程组10..51x5x++1.02.2yy==669, ,解 此方程组即可求得答案. (2)首先设 A 种设备购进数量减少 a 套,则 B 种设备购进数量 增加 1.5a 套,根据题意即可列不等式 1.5(20-a)+1.2(30+ 1.5a)≤69,解此不等式即可求得答案. [解答] (1)设该商场计划购进 A,B 两种品牌的教学设备分别 为 x 套,y 套,
经检验:x=60 是原分式方程的解.则 x+40=100. 答:篮球和足球的单价分别是 100 元、60 元. (2)设恰好用完 1 000 元,可购买篮球 m 个和购买足球 n 个,由题意, 得 100m+60n=1 000. 整理,得 m=10-53n. ∵m,n 都是整数,∴当 n=5 时,m=7;当 n=10 时,m=4;当 n =15,m=1. ∴有三种方案:
为更新果树品种,某果园计划新购进A,B两个品种的果树苗栽植培 育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵, 购买B种果树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的 函数关系. (1)求y与x的函数关系式; (2)若在购买计划中,B种果树苗的数量不超过35棵,但不少于A种 果树苗的数量,请设计购买方案,使总费用最低,并求出最低费 用.
[解] (1)设该店有客房 x 间,房客 y 人. 根据题意得97(x+x-7=1)y,=y, 解得xy= =86, 3. 答:该店有客房 8 间,房客 63 人. (2)若每间客房住 4 人,则 63 名客人至少需客房 16 间,需付费 20×16 =320(钱); 若一次性定客房 18 间,则需付费 20×18×0.8=288(钱)<320 钱. 答:诗中“众客”再次一起入住,他们应选择一次性订房 18 间更合算.
[分析] (1)首先设足球的单价为x元,则篮球的单价为(x+40)元,根据等 量关系“1 500元购进的篮球个数=900元购进的足球个数”列出方程解出答 案即可. (2)设恰好用完1000元可购买篮球m个和购买足球n个,根据“篮球的单价 ×m+足球的单价×n=1000”,再求整数解即可.
[解答] (1)设足球的单价为 x 元,则篮球的单价为(x+40)元,由题意, 得x1+50400=9x00,解得 x=60,
①购买篮球 7 个,足球 5 个; ②购买篮球 4 个,足球 10 个; ③购买篮球 1 个,足球 15 个.
某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问 开店李三公,众客都来到店中,一房七客多七客,一房九客一房 空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无 房可住;如果每一间客房住9人,那么就空出一间房. (1)该店有客房多少间?房客多少人? (2)假设店主李三公将客房进行改造后,房间数大大增加.每间客 房收费20钱,且每间客房最多入住4人,一次性定客房18间以上 (含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如 何订房更合算?
1.5(20-a)+1.2(30+1.5a)≤69, 解得 a≤10. 答:A 种设备购进数量至多减少 10 套.
考点三 函数型方案设计
[例3] 在“清洁乡村”活动中,李家村村长提出了两种购买垃圾桶的 方案,方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾 处理费用250元;方案2:买不分类垃圾桶,需要费用1 000元,以 后每月的垃圾处理费用500元.设方案1的购买费和每月垃圾处理费 共为y1元,交费时间为x个月;方案2的购买费和每月垃圾处理费共 为y2元,交费时间为x个月. (1)直接写出y1,y2与x的函数关系式; (2)如图,在同一平面直角坐标系内, 画出函数y1,y2的图象; (3)在垃圾桶使用寿命相同的情况下, 哪种方案省钱?
考点二 不等式(组)型方案设计
[例2] 某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和 售价如表所示.
该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛 利润9万元. (1)该商场计划购进A,B两种品牌的教学设备各多少套? (2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数 量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的 数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种 设备购进数量至多减少多少套?
[解答] (1)设该商场计划购进 A,B 两种品牌的教学设备分别为 x 套,y 套,
1.5x+1.2y=66,
0.15x+0.2y=9,
解得x=20, y=30.
答:该商场计划购进 A,B 两种品牌的教学设备分别为 20 套, 30 套.
(2)设 A 种设备购进数量减少 a 套,则 B 种设备购进数量增加 1.5a 套.
[分析] (1)根据总费用=购买垃圾桶的费用+每月的垃圾处理费用 ×月数,即可求出y1,y2的函数关系式. (2)根据一次函数的性质,运用两点法即可画出函数y1,y2的图象. (3)观察图象可知在相应的范围内哪种方案省钱.
[解答] (1)由题意,得y1=250x+3000,y2=500x+1000. (2)y1,y2的图象如图所示. (3)由图象可知:①当使用时间小于8个月时,直线y2落在直线y1的 下方,y2<y1,即方案2省钱; ②当使用时间大于8个月时,直线y1落在直线y2的下方,y1<y2,即 方案1省钱; ③当使用时间等于8个月时,y1=y2,即方案1与方案2一样.