函数图象应用(习题及答案)

合集下载

一次函数图像练习题及答案

一次函数图像练习题及答案

一次函数图像练习题及答案一次函数图像练习题及答案一次函数是数学中的基本概念之一,也是初中数学中的重点内容。

掌握一次函数的概念和图像特点,对于解决实际问题和理解其他函数类型都有很大帮助。

在这篇文章中,我将给出一些一次函数图像的练习题及其答案,希望能够帮助读者更好地理解和应用一次函数。

练习题一:已知函数f(x) = 2x + 3,求出函数的图像。

解答一:一次函数的一般形式为y = kx + b,其中k和b分别代表斜率和截距。

根据给定的函数f(x) = 2x + 3,我们可以得知斜率k = 2,截距b = 3。

根据斜率和截距的意义,我们可以得到以下图像特点:1. 斜率k = 2表示每增加1个单位的x,y的值增加2个单位。

2. 截距b = 3表示当x = 0时,y的值为3,即函数的图像与y轴相交于点(0, 3)。

根据上述特点,我们可以画出函数f(x) = 2x + 3的图像。

首先,我们将点(0, 3)标记在坐标系上,然后根据斜率k = 2,我们可以找到另外一个点(1, 5),再连接这两个点,就得到了一次函数的图像。

练习题二:已知函数g(x)的图像如下图所示,请写出函数g(x)的表达式。

解答二:根据给定的函数图像,我们可以得知函数g(x)与x轴相交于点(-2, 0)和(3, 0),并且函数图像在x轴的右侧上升。

根据这些特点,我们可以推测函数g(x)的表达式为g(x) = ax + b。

为了确定a和b的值,我们可以利用已知的两个点(-2, 0)和(3, 0)。

将这两个点的坐标代入函数表达式,可以得到以下方程组:-2a + b = 03a + b = 0解这个方程组,我们可以得到a = 0,b = 0。

因此,函数g(x)的表达式为g(x) = 0。

练习题三:已知函数h(x)的图像如下图所示,请写出函数h(x)的表达式。

解答三:根据给定的函数图像,我们可以观察到函数h(x)与x轴相交于点(0, -3),并且函数图像在x轴的右侧下降。

一次函数的图象专题练习题(最新版) 含答案

一次函数的图象专题练习题(最新版) 含答案

一次函数的图象专题练习题1.画函数图象的方法.可以概括为_______,__ __,__ __三步,通常称为__ __.2.如果点M 在函数y =x -1的图象上,则M 点的坐标可以是( )A .(-1,0)B .(0,1)C .(1,0)D .(1,-1)3.(1)若点A(a ,-3)在函数y =-3x的图象上,则a =____; (2)下列各点M (1,2),N (3,32),P (1,-1),Q (-2,-4)中,在函数y =2x x +1的图象上的点是__________. 4. 小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s 关于时间t 的函数图象,那么符合小明行驶情况的图象大致是( )5. 小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是( )6. 某星期六上午,小明从家出发跑步去公园,在公园停留了一会儿打车回家.图中折线表示小明离开家的路程y(米)和所用时间x(分)之间的函数关系,则下列说法中错误的是()A.小明在公园休息了5分钟B.小明乘出租车用了17分C.小明跑步的速度为180米/分D.出租车的平均速度是900米/分7. 一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()8. 李老师为锻炼身体一直坚持步行上下班.已知学校到李老师家总路程为2000米.一天,李老师下班后,以45米/分的速度从学校往家走,走到离学校900米时,正好遇到一个朋友,停下又聊了半小时,之后以110米/分的速度走回了家.李老师回家过程中,离家的路程s(米)与所用时间t(分)之间的关系如图所示.(1)求a,b,c的值;(2)求李老师从学校到家的总时间.9. 如果两个变量x,y之间的函数关系如图,则函数值y的取值范围是() A.-3≤y≤3 B.0≤y≤2C.1≤y≤3 D.0≤y≤310. 如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度11. 甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A.4B.3C.2D.112. 有一个水箱,它的容积是500升,水箱内原有水200升,现需将水箱注满,已知每分钟注入水10升.(1)写出水箱内水量Q(升)与时间t(分)的函数关系式;(2)求自变量t的取值范围;(3)画出函数的图象.13.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()14. 如图①,底面积为30 cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为____cm,匀速注水的水流速度为____cm3/s;(2)若“几何体”的下方圆柱的底面积为15 cm2,求“几何体”上方圆柱的高和底面积.答案:1. 描点 连线 描点法2. C3. (1) 1 (2) 点N4. D5. B6. B7. A8. (1)李老师停留地点离他家路程为:2000-900=1100(米),900÷45=20(分).a =20,b =1100,c =20+30=50 (2)20+30+1100110=60(分).答:李老师从学校到家共用60分钟 9. D10. C11. B 点拨:①②④正确12. (1)Q =200+10t (2)令200≤Q≤500,则0≤t≤30 (3)图略13. B14. (1) 14 5(2) “几何体”下方圆柱的高为a ,则a·(30-15)=18×5,解得a =6,所以“几何体”上方圆柱的高为11 cm-6 cm =5 cm ,设“几何体”上方圆柱的底面积为S cm 2,根据题意得5(30-S )=5×(24-18),解得S =24,即“几何体”上方圆柱的底面积为24 cm 2。

函数图像变换练习题

函数图像变换练习题

函数图像变换练习题函数图像变换练习题函数图像变换是数学中的重要概念,它帮助我们理解函数的性质和变化规律。

通过对函数图像进行变换,我们可以观察到函数在平移、伸缩和翻转等操作后的形态变化。

在这篇文章中,我们将通过一些练习题来加深对函数图像变换的理解。

1. 平移变换平移变换是指将函数图像沿着坐标轴的方向进行平移。

具体而言,平移变换可以分为水平平移和垂直平移两种情况。

练习题1:考虑函数f(x) = x^2,将其沿x轴方向平移3个单位,请画出平移后的函数图像。

解答:对于函数f(x) = x^2,进行水平平移3个单位后的函数可以表示为f(x-3) = (x-3)^2。

通过计算可知,平移后的函数图像与原函数相比,在x轴上整体向右平移了3个单位。

2. 伸缩变换伸缩变换是指将函数图像沿着坐标轴的方向进行拉伸或压缩。

具体而言,伸缩变换可以分为水平伸缩和垂直伸缩两种情况。

练习题2:考虑函数f(x) = x^2,将其在x轴方向进行压缩,使得函数图像变为原来的一半宽度,请画出压缩后的函数图像。

解答:对于函数f(x) = x^2,进行在x轴方向的压缩后的函数可以表示为f(2x) = (2x)^2。

通过计算可知,压缩后的函数图像与原函数相比,在x轴上整体变窄了一半。

3. 翻转变换翻转变换是指将函数图像沿着坐标轴进行翻转。

具体而言,翻转变换可以分为水平翻转和垂直翻转两种情况。

练习题3:考虑函数f(x) = x^2,将其进行水平翻转,请画出翻转后的函数图像。

解答:对于函数f(x) = x^2,进行水平翻转后的函数可以表示为f(-x) = (-x)^2。

通过计算可知,翻转后的函数图像与原函数相比,在y轴上对称翻转。

通过以上练习题,我们可以看到函数图像在不同的变换下发生了形态上的变化。

这些变换可以帮助我们更好地理解函数的性质和变化规律。

在实际应用中,函数图像变换也被广泛应用于物理、工程和经济等领域。

除了上述的平移、伸缩和翻转变换,函数图像还可以进行其他的变换,如旋转和剪切等。

初二数学函数概念与图像练习题及答案

初二数学函数概念与图像练习题及答案

初二数学函数概念与图像练习题及答案函数是数学中非常重要的概念,在初二数学中也是学习的重点之一。

理解函数的概念以及掌握函数图像的绘制对于学习数学非常关键。

下面将为大家提供一些初二数学函数概念与图像的练习题及答案,以帮助大家更好地掌握这一知识点。

练习题一:给出以下函数,判断它们是否为函数,并画出它们的图像。

1. 函数f(x) = 2x + 12. 函数g(x) = √x3. 函数h(x) = x^2 + 14. 函数k(x) = |x|答案一:1. 函数f(x) = 2x + 1 是函数。

它的图像为一条直线,斜率为2,截距为1.2. 函数g(x) = √x 是函数。

它的图像为一条抛物线,开口向上,过点(0,0).3. 函数h(x) = x^2 + 1 是函数。

它的图像为一条抛物线,开口向上,顶点为(0,1).4. 函数k(x) = |x| 是函数。

它的图像为以原点为对称中心的一条直线段.练习题二:给出以下函数的图像,写出它们的解析式。

1.图像描述:一条斜率为1,截距为2的直线段。

解析式:f(x) = x + 22.图像描述:一条横纵坐标均为正的对数曲线。

解析式:g(x) = ln(x)3.图像描述:一个顶点在坐标原点的开口向下的抛物线。

解析式:h(x) = -x^24.图像描述:一条横坐标为负的直线段。

解析式:k(x) = -2答案二:1. 图像描述所给出的直线的斜率为1,截距为2,因此解析式为f(x) = x +2.2. 图像描述所给出的曲线是对数曲线,横纵坐标均为正,因此解析式为g(x) = ln(x).3. 图像描述所给出的抛物线是一个顶点在坐标原点的开口向下的抛物线,因此解析式为h(x) = -x^2.4. 图像描述所给出的直线段横坐标为负,因此解析式为k(x) = -2.练习题三:根据函数的图像,判断它们的性质。

1. 以下函数图像是否为奇函数?图像描述:一条关于y轴对称的曲线。

答案:是奇函数。

(完整版)正弦函数的图像及性质练习题

(完整版)正弦函数的图像及性质练习题

(完整版)正弦函数的图像及性质练习题正弦函数是数学中重要的三角函数之一。

它的图像呈现周期性变化的波形,具有一些特殊的性质。

以下是一些关于正弦函数图像及性质的练题,帮助加深对该函数的理解。

练题1画出正弦函数$f(x) = \sin(x)$在$x$轴上的一个完整周期的图像。

标明原点$(0,0)$和与$x$轴交点$(2\pi,0)$。

练题2正弦函数的图像在何种情况下与$x$轴相切?给出一个具体的例子。

练题3在一个完整周期内,正弦函数的最大值是多少?最小值是多少?它们出现在图像的什么位置?练题4对于正弦函数$f(x) = \sin(ax)$,$a$的取值会如何影响函数图像的周期和振幅?给出两个具体的例子。

练题5将正弦函数$f(x) = \sin(x)$的图像上所有点的横坐标的值增加$\pi/2$,得到新的函数图像$g(x)$。

$g(x)$与$f(x)$有什么关系?画出$g(x)$的图像。

练题6正弦函数的图像具有的对称性是什么?说明是关于哪个点对称,并给出一个具体的例子。

练题7对于一般的正弦函数$f(x) = a\sin(bx+c)+d$,$a$、$b$、$c$和$d$的取值会如何影响函数图像的振幅、周期、平移和垂直方向的偏移?给出一个具体的例子。

练题8正弦函数有无界范围吗?是否可以取到任意实数值?解释你的答案。

练题9正弦函数在实际问题中的应用有哪些?举出一个具体的例子,并分析为什么正弦函数适用于该问题。

以上是一些关于正弦函数图像及性质的练题,希望能够帮助你巩固对该函数的理解。

通过解答这些题目,你可以更好地掌握正弦函数的特点和应用。

请注意,这些题目只涉及正弦函数的基本性质和应用,更深入的研究还需要进一步的研究和探索。

(完整版)函数图像练习题

(完整版)函数图像练习题

函数图像练习题 1、小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文章,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是( )2、某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离与时间的关系的大致图象是( )3、如图,扇形OAB 动点P 从点A 出发,沿线段B0、0A 匀速运动到点A ,则0P 的长度y 与运动时间t 之间的函数图象大致是( )4、某人进行登山活动,从山脚到山顶,休息一会儿又沿原路返回。

若用横轴表示时间t ,纵轴表示与山脚距离h ,那么反映全程h 与t 的关系的图是( )5.甲、乙两人在一次赛跑中,路程s (米)与所用时间t (秒)的关系如图所示,则下列说法正确的是( )A .甲比乙先出发 B .乙比甲跑的路程多C .甲先到达终点D .甲、乙两人的速度相同6.“龟兔赛跑”讲述了这样一个故事:“领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当醒来时,发现乌龟快到达终点了,于是,急忙追赶,但为时已晚,乌龟还是先到达了终点.……”用s 1,s 2分别表示乌龟和兔子的行程,t 为时间,则下列图象中与故事情节相吻合的图象是( )7. 如图是古代计时器----“漏壶”的示意图在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间。

用x 表示时间,y 表示壶底到水面的高度,下面的哪个图象适合表示一小段时间内y 与x 的函数关系?8、如图所示的曲线,哪个表示y是x 的函数( )y x y x y xy x9.如图所示,一枝蜡烛上细下粗,设这枝蜡烛点燃后剩下的长度为h,点燃时间为t,则能大致刻画出h与t之间函数关系的图象是()10.柿子熟了,从树上落下来,可以大致刻画出柿子下落过程中的速度变化情况的图象是()11.小明家距学校m千米,一天他从家上学,先以a千米/时的速度跑步,后以b千米/时的速度步行,到达学校共用n小时。

利用函数的图像探究函数的性质经典习题附答案

利用函数的图像探究函数的性质经典习题附答案

利用函数的图像探究函数的性质经典习题附答案题型一、运用图像研究函数零点的个数知识点拨:运用函数的图像研究函数的零点问题的关键要正确做出函数的图像,观察图像交点的个数。

由于答案依赖于图像因此,要正确规范的做出图像,该标的关键的点、线要标出,另外有时为了更好地作图也要多对函数进行调整,变成常见的函数。

例题1、定义在R上的奇函数f(x)满足f(x+4)=f(x),且在区间[2,4)上【解析】因为f(x+4)=f(x),可得f(x)是周期为4的奇函数,先画出函数f(x)在区间[2,4)上的图像,根据奇函数和周期为4,可以画出f(x)在R上的图像,由y=f(x)-log5|x|=0,得f(x)=log5|x|,分别画出y=f(x)和y =log5|x|的图像,如下图,由f(5)=f(1)=1,而log55=1,f(-3)=f(1)=1,log5|-3|<1,而f(-7)=f(1)=1,而log5|-7|=log57>1,可以得到两个图像有5个交点,所以零点的个数为5.本题考查了函数的零点问题,以及函数的奇偶性和周期性,考查了转化与化归、数形结合的思想,函数的零数问题,常转化为函数的图像的交点个数来处理,其中能根据函数的性质作出函数的图像并能灵活地运用图像,找到临界点是解题的关键也是难点.题型二、根据函数的零点确定参数的范围知识点拨:求解函数的零点问题的填空题,其基本策略是应用数形结合的方法来加以解决,在应用数形结合思想时,一般地会将函数的零点问题转化为两个函数的图像的交点问题来加以解决,此时,为了方便起见,转化后的两个函数,其中一个是不含参数的函数,另一个是含有参数的函数,即转化为“一静一动”两个函数,这样,通过研究“动”函数的图像与“静”函数的图像的相对位置关系就可以得到问题的解。

例题2、【解析】注意到x<-1时,f(x)=x2-2ax的零点是可求的,即x=0(舍去)或x=2a,为此,就需要对2a是否小于-1来进行讨论,若2a大于或等于-1,则需要x≥-1时,f(x)有三个零点,从而通过数形结合的方式来加以研究;若2a小于-1,则需要x≥-1时,f(x)有两个零点,从而通过数形结合的方式来加以研究,进而得到问题的答案.由x2-2ax=0得x=0或x=2a,因为x<-1,所以x=0不合题意.题型三、运用函数图像解决多元问题知识点拨:解决多元问题的最值问题主要思想就是把多元问题转化为单元问题,要通过函数的图像找到各个参数的关系,但要注意参数的范围。

函数图像练习题

函数图像练习题

函数图像练习题函数图像是数学中一种重要的表示方法,通过绘制函数的图像可以直观地理解函数的性质和变化规律。

本文将提供一些函数图像的练习题,帮助读者巩固对函数图像的理解和应用。

1. 基本函数图像考虑以下函数图像的练习题:题目一:绘制函数 y = x 的图像。

题目二:绘制函数 y = x^2 的图像。

题目三:绘制函数 y = sin(x) 的图像。

题目四:绘制函数 y = e^x 的图像。

通过绘制以上函数图像,我们可以观察到不同函数的特点和性质。

在纸上画出图像,并标注重要的点和特征,如坐标轴交点、最值点、周期等。

2. 变换函数图像在实际问题中,我们常常需要对函数进行平移、伸缩、反转等操作,以适应具体的应用场景。

下面是一些变换函数图像的练习题:题目五:将函数 y = x^2 的图像向左平移2个单位。

题目六:将函数 y = sin(x) 的图像上下翻转。

题目七:将函数 y = e^x 的图像进行纵向压缩。

通过变换函数图像,我们可以进一步观察函数图像的性质变化和规律。

在纸上绘制平移、旋转、压缩等操作后的图像,并标注变换前后的重要点和特征。

3. 复合函数图像复合函数是指将一个函数的输出作为另一个函数的输入,进行连续的运算。

下面是一些复合函数图像的练习题:题目八:绘制函数 y = sin(x^2) 的图像。

题目九:绘制函数 y = e^(-x) 的图像在 y 轴方向上的压缩。

通过绘制复合函数图像,我们可以进一步理解函数的复合运算对图像的影响。

在纸上绘制复合函数的图像,并标注重要点和特征。

4. 函数图像与实际应用函数图像不仅可以帮助我们理解函数本身,还可以用于解决实际问题。

下面是一些涉及实际应用的函数图像练习题:题目十:绘制一个函数图像,使其在[0, 2π] 区间内有两个相等的正零点。

题目十一:绘制一个函数图像,使其在 [-1, 1] 区间内有两个相等的负零点。

通过解决这些实际应用问题,我们可以将数学知识应用到实际中,并建立数学模型来解决实际问题。

二次函数图像与性质练习题及参考答案

二次函数图像与性质练习题及参考答案

二次函数图像与性质练习题及参考答案二次函数是高中数学中一个重要的概念,在学习这一部分知识的过程中掌握二次函数的图像和性质是非常关键的。

本文将提供二次函数图像与性质的练习题及参考答案,帮助学生加深对这方面知识的理解和掌握。

第一题:给定函数 $f(x)=x^2+2x-3$,试回答下列问题:1. $f(x)$ 的自变量定义域是什么?2. $f(x)$ 的值域是什么?3. $f(x)$ 的对称轴方程是什么?4. $f(x)$ 的顶点坐标是什么?5. $f(x)$ 的图像是否有对称性?参考答案:1. 自变量定义域为实数。

2. 值域为 $y\ge -4$。

3. 对称轴方程为 $x=-1$。

4. 顶点坐标为 $(-1,-4)$。

5. 图像有对称轴对称性。

第二题:给定函数 $f(x)=-\frac{1}{2}x^2+4$,试回答下列问题:1. $f(x)$ 的自变量定义域是什么?2. $f(x)$ 的值域是什么?3. $f(x)$ 的对称轴方程是什么?4. $f(x)$ 的顶点坐标是什么?5. $f(x)$ 的图像是否有对称性?参考答案:1. 自变量定义域为实数。

2. 值域为 $y\le 4$。

3. 对称轴方程为 $x=0$。

4. 顶点坐标为 $(0,4)$。

5. 图像有对称轴对称性。

第三题:给定函数 $f(x)=3x^2-12x+7$,试回答下列问题:1. $f(x)$ 的自变量定义域是什么?2. $f(x)$ 的值域是什么?3. $f(x)$ 的对称轴方程是什么?4. $f(x)$ 的顶点坐标是什么?5. $f(x)$ 的图像是否有对称性?参考答案:1. 自变量定义域为实数。

2. 值域为 $y\ge -2$。

3. 对称轴方程为 $x=2$。

4. 顶点坐标为 $(2,-5)$。

5. 图像有对称轴对称性。

第四题:给定函数 $f(x)=-2x^2+8x+3$,试回答下列问题:1. $f(x)$ 的自变量定义域是什么?2. $f(x)$ 的值域是什么?3. $f(x)$ 的对称轴方程是什么?4. $f(x)$ 的顶点坐标是什么?5. $f(x)$ 的图像是否有对称性?参考答案:1. 自变量定义域为实数。

三角函数图像变换练习题(含答案解析)

三角函数图像变换练习题(含答案解析)

三角函数图像变换一、选择题1.(本题5分)函数()si ()n f x A x ωϕ=+(000A ωϕπ>><<,,)的图象如图所示,则()4f π的值为()B.0C.12.(本题5分)[2014·郑州质检]要得到函数y=cos2x 的图象,只需将函数y=sin2x 的图象沿x 轴()A.向右平移4π个单位 B.向左平移4π个单位C.向右平移8π个单位D.向左平移8π个单位3.(本题5分)在函数①|2|cos x y =,②|cos |x y =,③62cos(π+=x y ,④42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B.①③④C.②④D.①③4.(本题5分)已知a 是第二象限角,5sin ,cos 13a a ==则()A.1213B.513-C.513D.-12135.(本题5分)已知函数()sin cos f x x x ωω+(ω>0)的图象与直线y=-2的两个相邻公共点之间的距离等于π,则()f x 的单调递减区间是()A、2,,63k k k Zππππ⎡⎤++∈⎣⎦B、,,36k k k Zππππ⎡⎤-+∈⎣⎦C、42,2,33k k k Z ππππ⎡⎤++∈⎣⎦D、52,2,1212k k k Z ππππ⎡⎤-+∈⎣⎦6.(本题5分)已知1cos sin 21cos sin x xx x -+=-++,则x tan 的值为()A、34B、34-C、43D、43-7.(本题5分)函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,下列结论:①最小正周期为π;②将f(x)的图象向左平移6π个单位,所得到的函数是偶函数;③f(0)=1;④f(1211π)<f(1413π);⑤f(x)=-f(53π-x).其中正确的是()A.①②③B.②③④C.①④⑤D.②③⑤8.(本题5分)将函数()3cos 22x x f x =-的图象向右平移23π个单位长度得到函数()y g x =的图象,则函数()y g x =的一个单调递减区间是()A.(,42ππ-B.(,)2ππC.(,)24ππ--D.3(,2)2ππ9.(本题5分)函数cos sin y x x x =-在下面哪个区间内是增函数().A.3,22ππ⎛⎫⎪⎝⎭B.(),2ππC.35,22ππ⎛⎫⎪⎝⎭D.()2,3ππ10.(本题5分)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称二、填空题11.(本题5分)已知tan()2θπ-=,则22sin sin cos 2cos 3θθθθ+-+的值为12.(本题5分)已知函数()sin f x x ω=,()sin(2)2g x x π=+,有下列命题:①当2ω=时,函数y =()()f x g x 是最小正周期为2π的偶函数;②当1ω=时,()()f x g x +的最大值为98;③当2ω=时,将函数()f x 的图象向左平移2π可以得到函数()g x 的图象.其中正确命题的序号是(把你认为正确的命题的序号都填上).13.(本题5分)已知函数()()log 01a f x x a a =>≠且和函数()sin2g x x π=,若()f x 与()g x 的图象有且只有3个交点,则a 的取值范围是.14.(本题5分)若函数()sin f x a x =+在区间[],2ππ上有且只有一个零点,则实数a =__________.15.(本题5分)给出下列四个命题:①若0x >,且1x ≠则1lg 2lg x x+≥;②2()lg(1),,22f x x ax R a =++-<<定义域为则;③函数)32cos(π-=x y 的一条对称轴是直线π125=x ;④若x R ∈则“复数()21(1)z x x i =-++为纯虚数”是“lg 0x =”必要不充分条件.其中,所有正确命题的序号是.三、解答题16.(本题12分)已知函数2()2sin cos 1f x x x x =-++⑴求()f x 的最小正周期及对称中心;⑵若[,63x ππ∈-,求()f x 的最大值和最小值.17.(本题12分)已知()()()3cos cos 2sin 223sin sin 2f αααααα⎛⎫⎛⎫+⋅-⋅-+ ⎪ ⎪⎝⎭⎝⎭=⎛⎫--+ ⎪⎝⎭πππππ.(1)化简()fα;(2)若α是第三象限角,且31cos 25α⎛⎫-=⎪⎝⎭π,求()f α的值.18.(本题12分)设向量(1)若,求x 的值(2)设函数,求f(x)的最大值19.(本题12分)(本小题10的最大值为1.(1)求函数()f x 的单调递增区间;(2)将()f x 的图象向左平移个单位,得到函数()g x 的图象,若方程()g x =m 在x∈m 的取值范围.参考答案1.D【解析】试题分析:由已知,4112,(),2,3126A T πππω==⨯-==,所以()2sin 2()f x x ϕ=+,将(),26π代人得,()2,s 2si in(6)1n 23ππϕϕ==⨯+,所以,,326πππϕϕ==+,()2sin 2(2sin 2(),()2co64466s f x x f πππππ=⨯==+=+D .考点:正弦型函数,三角函数诱导公式.2.B【解析】∵y=cos2x=sin(2x+2π),∴只需将函数y=sin2x 的图象沿x 轴向4π个单位,即得y=sin2(x+4π)=cos2x 的图象,故选B.3.A【解析】试题分析:①中函数是一个偶函数,其周期与cos 2y x =相同,22T ππ==;②中函数|cos |x y =的周期是函数cos y x =周期的一半,即T π=;③22T ππ==;④2T π=,则选A.考点:三角函数的图象和性质4.D【解析】试题分析:∵a 是第二象限角,∴cos a ==1213-,故选D.考点:同角三角函数基本关系.5.A【解析】试题分析:因为()sin cos 2sin()6f x x x x πωωω+=+最小值为-2,可知y=-2与f(x)两个相邻公共点之间的距离就是一个周期,于是2T ππω==,即ω=2,即()2sin(2)6f x x π=+令322,2622x k k πππππ⎡⎤+∈++⎣⎦,k∈Z,解得x∈2,,63k k k Z ππππ⎡⎤++∈⎣⎦,选A 考点:三角函数恒等变形,三角函数的图象及周期、最值、单调性.6.A【解析】试题分析:由条件,得1cos sin 22cos 2sin x x x x -+=---,整理得:3sin cos 3x x +=-,即cos 3sin 3x x =--①,代入22sin cos 1x x +=中,得22sin 3sin 31x x +--=(),整理得:25sin 9sin 40x x ++=,即sin 15sin 40x x ++=()(),解得sin 1x =-(舍)或4sin 5x =-,把4sin 5x =-,代入①,得3cos 5x =-,所以4tan 3x =,故选A.考点:同角三角函数基本关系.7.C【解析】由图可知,A=2,4T =712π-3π=4π⇒T=π⇒ω=2,2×712π+φ=2kπ+32π,φ=2kπ+3π,k∈Z.f(x)=2sin(2x+3π)⇒6π)=2sin(2x+3π+3π)=2sin(2x+23π),对称轴为直线x=2k π+12π,k∈Z,一个对称中心为(56π,0),所以②、③不正确;因为f(x)的图象关于直线x=1312π对称,且f(x)的最大值为f(1312π),1211π-1312π=1211π⨯>1312π-1413π=1312π⨯,所以f(1211π)<f(1413π),即④正确;设(x,f(x))为函数f(x)=2sin(2x+3π)的图象上任意一点,其关于对称中心(56π,0)的对称点(53π-x,-f(x))还在函数f(x)=2sin(2x+3π)的图象上,即f(53π-x)=-f(x)⇒f(x)=-f(53π-x),故⑤正确.综上所述,①④⑤正确.选C.8.C【解析】试题分析:因为()2sin(26x f x π=-,所以2()()2sin()2cos 32632x x g x f x πππ=-=--=-,则()g x 在(,24ππ--上递减.考点:三角函数的性质.9.B【解析】试题分析:cos sin cos sin y x x x x x x '=--=,当2x ππ<<时,0y '>,所以函数在区间(,2)ππ上为增函数,故选B.考点:导数与函数的单调性.10.D 【解析】试题分析:()sin 2cos 2224444f x x x x x ππππ⎛⎫⎛⎫⎛⎫=+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,()f x 单调递减,图象关于直线2x π=对称。

一次函数图像练习题及答案

一次函数图像练习题及答案

一次函数图像练习题及答案一次函数图像练习题及答案一次函数是数学中的基础概念之一,也是我们在实际生活中经常遇到的数学模型。

它的图像呈现一条直线,具有简洁明了的特点。

在学习一次函数的过程中,练习题是必不可少的一环。

下面,我将给出一些常见的一次函数练习题及其答案,希望能够帮助大家更好地理解和掌握一次函数的概念和性质。

1. 练习题一:已知一次函数y = 2x + 3,求当x取值为-1、0、1、2时,对应的y的值。

解答:当x = -1时,y = 2*(-1) + 3 = 1;当x = 0时,y = 2*0 + 3 = 3;当x = 1时,y = 2*1 + 3 = 5;当x = 2时,y = 2*2 + 3 = 7。

2. 练习题二:已知一次函数y = -0.5x + 2,求当y取值为0、1、2、3时,对应的x的值。

解答:当y = 0时,-0.5x + 2 = 0,解得x = 4;当y = 1时,-0.5x + 2 = 1,解得x = 2;当y = 2时,-0.5x + 2 = 2,解得x = 0;当y = 3时,-0.5x + 2 = 3,解得x = -2。

3. 练习题三:已知一次函数y = 3x - 1,求该函数的图像与x轴和y轴的交点坐标。

解答:当y = 0时,3x - 1 = 0,解得x = 1/3;当x = 0时,y = 3*0 - 1 = -1。

因此,该函数与x轴的交点坐标为(1/3, 0),与y轴的交点坐标为(0, -1)。

通过以上练习题的解答,我们可以发现一次函数的图像具有一些特点。

首先,一次函数的图像是一条直线,斜率决定了直线的倾斜方向和程度。

当斜率为正数时,直线向上倾斜;当斜率为负数时,直线向下倾斜;当斜率为零时,直线水平。

其次,直线与x轴的交点坐标即为函数的解,与y轴的交点坐标则表示了函数在原点的截距。

除了以上的基础练习题,我们还可以进一步拓展一次函数的应用。

例如,我们可以通过一次函数模型来描述某商品的价格与销量之间的关系。

函数图像练习题及答案

函数图像练习题及答案

函数图像练习题及答案一、选择题1. 函数f(x)=2x^2-3x+1的图像是开口向上的抛物线,其顶点坐标为:A. (1,0)B. (-1,2)C. (3/4,-1/8)D. (0,1)2. 若函数f(x)=x^3-3x^2+2x+1的导数为f'(x)=3x^2-6x+2,求f'(1)的值:A. 2B. 3B. 4D. 53. 函数y=|x|的图像是:A. 一条直线B. V形曲线C. 一条抛物线D. 一条双曲线4. 若函数f(x)=x^2+2x+1的图像与x轴相交于点(-1,0),则该点也是:A. 极大值点B. 极小值点C. 拐点D. 无特殊点5. 函数y=sin(x)的图像是:A. 一条直线B. 一条周期曲线C. 一条抛物线D. 一条双曲线二、填空题1. 函数y=x^2的导数是________。

2. 函数y=cos(x)的周期是________。

3. 若函数f(x)=x^3-6x^2+11x-6的极小值点为x=2,则其极小值是________。

4. 函数y=1/x的图像在第一象限和第三象限是________。

5. 函数y=ln(x)的定义域是________。

三、解答题1. 已知函数f(x)=x^3-6x^2+11x-6,求其导数,并找出其极值点及对应的极值。

2. 函数y=x^2-4x+4的图像与y=0相交于哪两点?并说明这两点的性质。

3. 函数f(x)=x^2+4x+4的图像与直线y=k相交于两点,求k的取值范围。

4. 函数y=x^2-2x+1的图像关于直线x=1对称,求证。

5. 若函数f(x)=x^3-3x^2+4x-12的图像在点(2,-4)处的切线方程,求出该切线方程。

答案:一、选择题1. C2. A3. B4. A5. B二、填空题1. 2x2. 2π3. -34. 向下5. (0,+∞)三、解答题1. 导数f'(x)=3x^2-12x+11,令f'(x)=0得x=(12±√(144-132))/6=2或x=(12-√(144-132))/6,检验得x=2为极小值点,极小值为f(2)=-3。

人教版八年级数学下册 19.1.2函数的图像同步练习试题(含答案)

人教版八年级数学下册 19.1.2函数的图像同步练习试题(含答案)

人教版八年级数学下册第十九章19.1.2函数的图像同步练习题1.下列曲线中不能表示y是x的函数的是(C)A B C D2.“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离s与时间t之间函数关系的是(B),A),B),C),D)3.如图是九年级某考生做的水滴入一个玻璃容器的示意图(滴水速度保持不变),能正确反映容器中水的高度(h)与时间(t)之间对应关系的大致图象是(D),A),B),C),D)4.如图是护士统计一位甲型H1N1流感疑似病人的体温变化图,这位病人在16时的体温约是(C)A.37.8 ℃B.38 ℃C.38.7 ℃D.39.1 ℃5.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是(C)A.体育场离林茂家2.5 kmB.体育场离文具店1 kmC.林茂从体育场出发到文具店的平均速度是50 m/minD.林茂从文具店回家的平均速度是60 m/min6.均匀地向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的(D),),A),B),C),D)7.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终赢得比赛,下列函数图象可以体现这一故事过程的是(B)8.下列各点在函数y=3x+2的图象上的是(B)A.(1,1) B.(-1,-1)C.(-1,1) D.(0,1)9.已知点A(2,3)在函数y=ax2-x+1的图象上,则a=(A)A.1 B.-1C.2 D.-210.在点P(3,-1),Q(-3,-1),R(-52,0),S(12,4)中,在函数y =-2x +5的图象上的点有(B )A .1个B .2个C .3个D .4个11.如图是济南市8月2日6:00~8月3日6:00的气温随时间变化的图象,根据图象可知:在这一天中,气温T(℃)是(填“是”或“不是”)时间t (h)的函数.12.已知点P(3,m),Q(n ,2)都在函数y =x +b 的图象上,则m +n =5. 13.如图是江津区某一天的气温随时间变化的图象,根据图象回答:在这一天中: (1)气温T(℃)是不是时间t (时)的函数? (2)12时的气温是多少?(3)什么时候气温最高,最高是多少?什么时候气温最低,最低是多少? (4)什么时候气温是4 ℃?解:(1)在气温T 随时间t 的变化过程中有两个变量T 和t ,并且对于t 的每一个值,变量T 都有唯一的值与它对应,符合函数的定义,所以气温T (℃)是时间t (时)的函数.(2)12时的气温是8 ℃.(3)14时的气温最高,是10 ℃;4时的气温最低,是-2 ℃. (4)8时,22时的气温是4 ℃.14.某气象站观察一场沙尘暴从发生到结束的全过程,开始时风速按一定的速度匀速增大,经过荒漠地时,风速增大得比较快.一段时间后,风速保持不变,当沙尘暴经过防风林时,其风速开始逐渐减小,最终停止.如图所示是风速与时间之间的关系的图象.结合图象回答下列问题:(1)沙尘暴从开始发生到结束共经历了多长时间?(2)从图象上看,风速在哪一个时间段增大得比较快,增大的速度是多少? (3)风速在哪一时间段保持不变,经历了多长时间? (4)风速从开始减小到最终停止,风速每小时减小多少?解:(1)沙尘暴从开始发生到结束共经历了41.2小时.(2)风速在5~12小时这个时间段增大得比较快,每小时增大38-1012-5=4(千米/小时).(3)风速在12~26小时这个时间段保持不变,经历了14小时. (4)风速每小时减小3841.2-26=2.5(千米/小时).15.在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a ,b 两个情境:① ② ③情境a :小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校;情境b :小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进. (1)情境a ,b 所对应的函数图象分别是③和①(填写序号); (2)请你为剩下的函数图象写出一个适合的情境.解:情境是小芳离开家不久,休息了一会儿,又走回了家.(答案不唯一)16.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m )与摆动时间t(s )之间的关系如图2所示.(1)根据函数的定义,请判断变量h 是否为关于t 的函数? (2)结合图象回答:①当t =0.7 s 时,h 的值是多少?并说明它的实际意义;②秋千摆动第一个来回需多少时间?解:(1)由图象可知,对于每一个摆动时间t,h都有唯一确定的值与其对应,∴变量h是关于t的函数.(2)①由图象可知,当t=0.7 s时,h=0.5 m,它的实际意义是秋千摆动0.7 s时,离地面的高度是0.5 m.②由图象可知,秋千摆动第一个来回需2.8 s.17.在如图所示的平面直角坐标系内,画出函数y=-x的图象.(1)列表:18.画出函数y=-x-3的图象.解:列表:19.已知函数y=2x-1.(1)画出函数y=2x-1的图象;(2)判断点A(-3,-5),B(2,-3),C(3,5)是否在函数y=2x-1的图象上?(3)若点P(m,9)在函数y=2x-1的图象上,求出m的值.解:(1)列表:(2)点A,B不在其图象上,点C在其图象上.(3)m=5.20.在如图所示的平面直角坐标系中画出函数y=12x2的图象.解:列表:21.在如图的平面直角坐标系中,画出函数y=|x|的图象.解:列表:10.(1)画出函数y=8x的图象;(2)从函数图象观察,当x<0时,y随x的增大而增大,还是y随x的增大而减小?当x>0呢?解:(1)列表:(2)当x<0时,y随x的增大而减小;当x>0时,y随x的增大而减小.22.(1)在如图所示的平面直角坐标系中画出函数y1=x和y2=x2的图象;(2)观察图象,何时y1>y2?何时y1=y2?何时y1<y2?解:(1)列表:(2)当0<x<1时,y1>y2;当x=0或x=1时,y1=y2;当x<0或x>1时,y1<y2.。

初中数学一次函数图像及应用练习题(附答案)

初中数学一次函数图像及应用练习题(附答案)

初中数学一次函数图像及应用练习题一、单选题1.如图,一次函数11y k x b =+与一次函数224y k x =+的图象交于点(13)P ,,则关于x 的不等式124k x b k x +>+的解集是( )A.1x >B.0x >C.2x >-D.1x <2.在函数32y x =-中,自变量x 的取值范围是( ) A.1x >- B.1x - C.1x >-且2x ≠ D.1x -且2x ≠ 3.如果一个正比例函数的图象经过不同象限的两点()()2,,,3A m B n ,那么一定有( )A.0,0m n >>B.0,0m n ><C.0,0m n <>D.0,0m n <<4.若直线1l 经过点()04,,2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( ) A .()2,0-B .()2,0C .()6,0-D .()6,05.如果一次函数y kx b =+,当31x -≤≤时,17y -≤≤,则kb 的值为( ) A.10B.21C.-10或2D.-2或106.若一次函数y kx b =+,当x 得值减小1,y 的值就减小2,则当x 的值增加2时,y 的值( ) A.增加4B.减小4C.增加2D.减小27.在平面直角坐标系中,已知(1,1),(3,5)A B ,要在坐标轴上找一点P ,使得PAB △的周长最小,则点P 的坐标为( )A.(0,1)B.(0,2)C.4,03⎛⎫⎪⎝⎭或(0,1) D.(0,2)或4,03⎛⎫⎪⎝⎭8.函数y kx b =+与21y x =-的图象关于x 轴对称,且交点在x 轴上,则该函数表达式为( ) A.21y x =-+B.21y x =--C.21y x =+D.以上都不对9.已知一次函数的图象与直线1y x =-+平行,且过点(6,2)-,那么一次函数解析式为( ) A.6y x =-B.4y x =--C.10y x =-+D.4y x =10.如果一条直线l 经过不同的三点()()(),,,,,A a b B b a C a b b a --,那么直线l 经过( )A. 第二、四象限B. 第一、二、三象限C. 第二、三、四象限D. 第一、三、四象限11.如图所示,直线4y x =+与两坐标轴分别交于A B 、两点,点C 是OB 的中点,D E 、分别是直线AB ,y 轴上的动点,则CDE 周长的最小值是( )A. B. 310C. D. 12.如图,把Rt ABC 放在直角坐标系内,其中905CAB BC ∠=︒=,,点A B 、的坐标分别为()10,、()40,,将ABC 沿x 轴向右平移,当点C 落在直线26y x =-上时,线段BC 扫过的面积为( )A. 4B. 8C. 16D. 13.如图,一次函数0ax by c ++=的图象与坐标轴交于A B ,两点,且,34x b y c ==-是方程3-2ax by c +=的一组解,则下列结论错误的是( )A .20c b -=B .0abc <C .0a c +=D .1OAB S ∆=14.下列各关系中,不是函数关系的是( ) A.(0)y x x =-≤ B.(0)y x x =±≥C.(0)y x x =≥D.(0)y x x =-≥15.下列式子:①35y x =-;②1y x=;③y =2y x =;⑤y x =。

八年级数学下册《函数的图像》练习题及答案(人教版)

八年级数学下册《函数的图像》练习题及答案(人教版)

八年级数学下册《函数的图像》练习题及答案(人教版)班级姓名考号1.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原来的速度返回,父亲在报亭看报10分钟,然后用15分钟返回家,下面给出的图象中表示父亲离家距离与离家时间的函数关系是()A.B.C.D.2.下列各曲线中不能..表示y是x的函数的是()A.B.C.D.3.梦想从学习开始,事业从实践起步.近来,每天登录“学习强国”APP,学精神增能量、看文化长见识已经成为一种学习新风尚.下面是爸爸上周“学习强国”周积分与学习天数的有数据,则下列说法错误的是()学习天数n(天)1234567周积分w(分)55110160200254300350A.在这个变化过程中,学习天数是自变量,周积分是因变量B.周积分随学习天数的增加而增加C.从第3天到第4天,周积分的增长量为50分D.天数每增加1天,周积分的增长量不一定相同4.函数图象是研究函数的重要工具.探索函数性质时,我们往往要经历列表、描点、连线画出函数的图象,然后观察分析图象特征,概括函数性质,小明在探索函数284x y x =-+的性质时,根据如下的列表,画出了该函数的图象并进行了观察表现.x … 4- 3-2- 1- 0 1 2 3 4 … y … 85 2413 a 85 0 b 2- 2413- 85- … 小明根据他的发现写出了以下三个命题:①当22x -≤≤时,函数图象关于直线y x =对称;①2x =时,函数有最小值,最小值为2-;①11x -<<时,函数y 的值随x 点的增大而减小.其中正确的是( )A .①①B .①①C .①①D .①①①5.“利用描点法画出函数图像,探究函数的一些简单性质”是初中阶段研究函数的主要方式,请试着探究函数3y x =-,其图像经过( )A .第一、二象限B .第三、四象限C .第一、三象限D .第二、四象限.6.小明和小强两个人开车从甲地出发匀速行驶至乙地,小明先出发.在整个行驶过程中,小明和小强两人的车离开甲地的距离y (千米)与行驶的时间t (小时)之间的函数关系如图所示,有下列结论:①甲、乙两地相距300千米;①小强的车比小明的车晚出发1小时,却早到1个小时;①小强的车出发后1.5小时追上小明的车.其中正确的结论有( )A .①①B .①①C .①①D .①①①7.科学家就蟋蟀鸣叫的次数与室外温度的数量关系做了如下记录:温度/① 76 78 80 82 84蜂每分钟鸣叫的次数 144 152 160 168 176如果这种数量关系不变,那么当室外温度为88①时,蟋蜂每分钟鸣叫的次数是( )A .178B .184C .190D .1928.如图,在长方形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,ABP 的面积为y ,y 关于x 的函数图象如图2所示,若25b a -=,则长方形ABCD 的周长为( )A .20B .18C .16D .249.如图1,点P 从矩形ABCD 的顶点A 出发,沿A →D →B 以2cm/s 的速度匀速运动到点B ,图2是点P 运动时,PBC 的面积y (cm 2)随时间x (s )变化的关系图像,则a 的值为( )A .8B .6C .4D .310.将盛有凉牛奶的瓶子放在热水中(如图甲所示),通过热传递方式改变牛奶的内能,图乙是凉牛奶与热水的温度随时间变化的图像.假设热水放出热量全部被牛奶吸收,下列回答错误..的是( )A .08min 时,热水的温度随时间的增加逐渐降低;B .08min 时,凉牛奶的温度随时间的增加逐渐上升;C .8min 时,热水和凉牛奶的温度相同;D .0min 时,两者的温度差为80C ︒.二、填空题11.一空水池深4.8m ,现以均匀的速度往进注水,注水时间与水池内水的深度之间的关系如表,由表可知,注满水池所需要的时间为______h . 注水时间()h t0.5 1 1.5 2 2.5 … 水的深度()m h0.8 1.6 2.4 3.2 4 …12.李玲用“描点法”画二次函数2y a bx c =++的图象时,列了如下表格,根据表格上的信息回答问题:该二次函数2y a bx c =++当3x =时,y =________.13.甲、乙两车沿同一平直公路由A 地匀速行驶(中途不停留),前往终点B 地,甲、乙两车之间的距离S (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.下列说法其中正确的结论有 ___________.①A 、B 两地相距210千米;①甲车速度为60千米/小时;①乙车速度为120千米/小时;①乙车共行驶132小时.14.如图1,在菱形ABCD 中,∠A=60°,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为_______.15.育红学校七年级学生步行到郊外旅行.七(1)班出发1h 后,七(2)班才出发,同时七(2)班派一名联络员骑自行车在两班队伍之间进行联络,联络员和七(1)班的距离s (km )与七(2)班行进时间t (h )的函数关系图象如图所示.若已知联络员用了2h 3第一次返回到自己班级,则七(2)班需要_________ h 才能追上七(1)班.三、解答题16.如图所示的是一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分钟)变化而变化的图像.(1)摩托车从出发到最后停止共经过了多长时间?离家最远的跑离是多少?(2)摩托车在哪一段时间内速度最快?最快速度是多少?17.在一次实验中,马达同学把一根弹簧的上端固定,在其下端悬挂物体,所挂物体的质量与弹簧长度的几组对应值如下:x012345所挂物体质量/kgy182022242628弹簧长度/cm(1)上表反映了哪两个变量之间的关系,并指出哪个是自变量,哪个是因变量;(2)不挂物体时,弹簧长________cm;(3)当所挂物体的质量为7kg时,弹簧长度是多少?(4)当弹簧长度为34cm(在弹性限度内)时,所挂物体的质量是多少?18.上海磁悬浮列车在一次运行中速度V(千米/小时)关于时间t(分钟)的函数图象如图,回答下列问题.(1)列车共运行了___分钟(2)列车开动后,第3分钟的速度是___千米/小时.(3)列车的速度从0千米/小时加速到300千米/小时,共用了___分钟.(4)列车从___分钟开始减速.19.测得一弹簧的长度L (厘米)与悬挂物体的质量x (千克)有下面一组对应值:悬挂物体的质量x (千克) 01 2 3 4 5 6 7 8 弹簧的长度L (厘米) 12 12.5 13 13.5 14 14.5 15 15.5 16试根据表中各对对应值解答下列问题:(1)用代数式表示挂质量为x 千克的物体时的弹簧的长度L .(2)求所挂物体的质量为10千克时,弹簧的长度是多少?(3)若测得弹簧的长度是18厘米,则所挂物体的质量为多少千克?20.如图1,在Rt ABC △中,AC=BC ,点D 在AC 边上,以CD 为边在AC 的右侧作正方形CDEF .点P 以1cm/s 的速度由F 点出发,沿F E D A B →→→→的路径运动,连接BP ,CP ,BCP 的面积2/cm y 与运动时间/s x 之间的图象关系如图2所示.根据相关信息,解答下列问题:(1)判断EF 的长度;(2)求a ,b 的值;(3)当10x =时,连接,此时与的有怎样的数量关系,请说明理由.1---10CCCCD DDBCD11.312.113.①①①14.2315.216.(1)解:根据距离(千米)随行驶时间(分钟)变化而变化的图像可知摩托车从出发到最后停止共经过了100分钟,离家最远的距离是40千米.(2)解:当020t <≤时,S=10速度为100.5(km /min)20=; 当2050t <≤时401030S =-=速度为40101(km /min)5020-=-; 当50100t <≤时,S=40,速度为400.8(km /min)10050=-; ①20~50分钟这一时段内速度最快,最快速度为1千米/分钟.17.解:表格中反映的是弹簧的长度随所挂物体质量之间的变化关系,其中所挂物体的质量是自变量,弹簧的长度是因变量;(2)解:当所挂物体质量为0时,所对应的弹簧长度是18cm故答案为:18;(3)解:由表格中弹簧的长度随所挂物体质量之间的变化关系可知,当所挂物体质量每增加1kg ,弹簧的长度就增长2cm ,所以当所挂物体质量为7kg 时,弹簧的长度为18+2×7=32(cm )答:当所挂物体的质量为7kg 时,弹簧长度是32cm ;(4)解:由弹簧的长度随所挂物体质量之间的变化关系可知,当弹簧长度为34cm 时,所挂物体的质量为34182-=8(kg )答:当弹簧长度为34cm (在弹性限度内)时,所挂物体的质量是8kg .18.(1)解:列车共运行了8分钟;故答案为:8;(2)列车开动后,第3分钟的速度是300千米/小时;故答案为:300;(3)列车的速度从0千米/小时加速到300千米/小时,共用了2分钟;故答案为:2;(4)列车从5分钟开始减速.故答案为:5.19.(1)解①由表格可知,弹簧的长度L 的初始值为12厘米,当弹簧称所挂重物质量x 每增加1千克,弹簧长度L 就增加0.5厘米①L =0.5x +12 ;(2)解:当x =10时,L =0.5x +12=17=0.5×10+12=17(厘米)答①当所挂物体的质量为10千克时,弹簧的长度是17厘米;(3)解:当L = 18厘米时,则18=0.5x + 12 解得①x =12(千克)答①所挂物体质量是12千克.20.(1)解:由图2可知,点P 从点F 到点E 用了5秒 ①()155cm EF =⨯=.(2)解:①四边形CDEF 是正方形①5cm DE EF CD ===①()()55110s a =+÷=由图2可知,点P 从点D 到点A 用了()1313103s a -=-= ①()133cm AD =⨯=①()8cm AC CD AD =+=①8cm AC BC ==当点P 在DE 上时,()2118520cm 22BCP SBC EF =⋅=⨯⨯= ①20b =综上:10,20a b ==;(3)解:当10x =时,如图,点P 和点D 重合 ①四边形CDEF 是正方形①,90CD CF BCD ACF =∠=∠=︒在BCD △和ACF △中 90AC BC BCD ACF CD CF =⎧⎪∠=∠=︒⎨⎪=⎩①()SAS BCD ACF ≌①AF BD =①点P 和点D 重合①AF BP =.。

2023届高考数学《函数的图像》思维拓展练习题(含答案解析)

2023届高考数学《函数的图像》思维拓展练习题(含答案解析)

2023届高考数学《函数的图像》思维拓展练习题(含答案解析)1、若函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在(-1,3)上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)C [作出函数f (x )的图像如图所示.当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0);当x ∈(0,1)时,由xf (x )>0得x ∈∅;当x ∈(1,3)时,由xf (x )>0得x ∈(1,3).故x ∈(-1,0)∪(1,3).]2、(2019·太原模拟)已知函数f (x )=|x 2-1|,若0<a <b 且f (a )=f (b ),则b 的取值范围是( )A .(0,+∞)B .(1,+∞)C .(1,2)D .(1,2)C [作出函数f (x )=|x 2-1|在区间(0,+∞)上的图像如图所示,作出直线y =1,交f (x )的图像于点B ,由x 2-1=1可得x B =2,结合函数图像可得b 的取值范围是(1,2).]3、已知函数f (x )=⎩⎪⎨⎪⎧log 2(-x 2),x ≤-1,-13x 2+43x +23,x >-1,若f (x )在区间[m ,4]上的值域为[-1,2],则实数m 的取值范围为________.[-8,-1] [作出函数f (x )的图像,当x ≤-1时,函数f (x )=log 2(-x 2)单调递减,且最小值为f (-1)=-1,则令log 2(-x 2)=2,解得x =-8;当x >-1时,函数f (x )=-13x 2+43x +23在(-1,2)上单调递增,在[2,+∞)上单调递减,则最大值为f (2)=2,又f (4)=23<2,f (-1)=-1,故所求实数m 的取值范围为[-8,-1].]4、已知函数f (x )的图像与函数h (x )=x +1x +2的图像关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+a x ,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.[解] (1)设f (x )图像上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x ,2-y )在h (x )的图像上,即2-y =-x -1x +2,∴y =f (x )=x +1x (x ≠0).(2)g (x )=f (x )+a x =x +a +1x ,∴g ′(x )=1-a +1x 2.∵g (x )在(0,2]上为减函数,∴1-a +1x 2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立,∴a +1≥4,即a ≥3,故实数a 的取值范围是[3,+∞).5、设f (x )是定义在R 上的偶函数,F (x )=(x +2)3f (x +2)-17,G (x )=-17x +33x +2,若F (x )的图像与G (x )的图像的交点分别为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1 (x i+y i )=________.-19m [∵f (x )是定义在R 上的偶函数,∴g (x )=x 3f (x )是定义在R 上的奇函数,其图像关于原点中心对称,∴函数F (x )=(x +2)3f (x +2)-17=g (x +2)-17的图像关于点(-2,-17)中心对称.又函数G (x )=-17x +33x +2=1x +2-17的图像也关于点(-2,-17)中心对称, ∴F (x )和G (x )的图像的交点也关于点(-2,-17)中心对称,∴x 1+x 2+…+x m =m 2×(-2)×2=-2m ,y 1+y 2+…+y m =m 2×(-17)×2=-17m ,∴∑mi =1(x i +y i )=(x 1+x 2+…+x m )+(y 1+y 2+…+y m )=-19m .] 6、已知函数f (x )=2x ,x ∈R .(1)当m 取何值时,方程|f (x )-2|=m 有一个解?两个解?(2)若不等式[f (x )]2+f (x )-m >0在R 上恒成立,求m 的取值范围.[解] (1)令F (x )=|f (x )-2|=|2x -2|,G (x )=m ,画出F (x )的图像如图所示,由图像看出,当m =0或m ≥2时,函数F (x )与G (x )的图像只有一个交点,即原方程有一个解;当0<m <2时,函数F (x )与G (x )的图像有两个交点,即原方程有两个解.(2)令f (x )=t (t >0),H (t )=t 2+t ,因为H (t )=t +122-14在区间(0,+∞)上是增函数,所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0,即所求m 的取值范围为(-∞,0].一、选择题1、已知函数f (x )=2x -2,则函数y =|f (x )|的图像可能是( )A B C DB [y =|f (x )|=|2x -2|=⎩⎨⎧2x -2,x ≥1,2-2x ,x <1,易知函数y =|f (x )|的图像的分段点是x =1,且过点(1,0),(0,1),|f (x )|≥0.又|f (x )|在(-∞,1)上单调递减,故选B.]2、(2019·沈阳市质量监测(一))函数f (x )=x 2-1e |x |的图像大致为( )A BC DC [因为y =x 2-1与y =e |x |都是偶函数,所以f (x )=x 2-1e |x |为偶函数,排除A ,B ,又由x →+∞时,f (x )→0,x →-∞时,f (x )→0,排除D ,故选C.]3、下列函数中,其图像与函数y =ln x 的图像关于直线x =1对称的是( )A .y =ln(1-x )B .y =ln(2-x )C .y =ln(1+x )D .y =ln(2+x )B [法一:设所求函数图像上任一点的坐标为(x ,y ),则其关于直线x =1的对称点的坐标为(2-x ,y ),由对称性知点(2-x ,y )在函数f (x )=ln x 的图像上,所以y =ln(2-x ).故选B.法二:由题意知,对称轴上的点(1,0)既在函数y =ln x 的图像上也在所求函数的图像上,代入选项中的函数表达式逐一检验,排除A ,C ,D ,选B.]4、对∀x ∈⎝ ⎛⎭⎪⎫0,13,23x ≤log a x +1恒成立,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,23 B.⎝ ⎛⎦⎥⎤0,12 C.⎣⎢⎡⎭⎪⎫13,1 D.⎣⎢⎡⎭⎪⎫12,1 C [若23x ≤log a x +1在⎝ ⎛⎭⎪⎫0,13上恒成立,则0<a <1,利用数形结合思想画出指数函数与对数函数图像(图略),易得log a 13+1≥23×13,解得13≤a <1,故选C.]5、函数f (x )=ax +b (x +c )2的图像如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0C [函数定义域为{x |x ≠-c },结合图像知-c >0,∴c <0.令x =0,得f (0)=b c 2,又由图像知f (0)>0,∴b >0.令f (x )=0,得x =-b a ,结合图像知-b a >0,∴a <0.故选C.]二、填空题1、已知函数y =f (x +1)的图像过点(3,2),则函数y =f (x )的图像关于x 轴的对称图形一定过点________.(4,-2) [因为函数y =f (x +1)的图像过点(3,2),所以函数y =f (x )的图像一定过点(4,2),所以函数y =f (x )的图像关于x 轴的对称图形一定过点(4,-2).]2、如图,定义在[-1,+∞)上的函数f (x )的图像由一条线段及抛物线的一部分组成,则f (x )的解析式为________.f (x )=⎩⎪⎨⎪⎧ x +1,-1≤x ≤0,14(x -2)2-1,x >0 [当-1≤x ≤0时,设解析式为f (x )=kx +b (k ≠0),则⎩⎨⎧ -k +b =0,b =1,得⎩⎨⎧k =1,b =1.∴当-1≤x ≤0时,f (x )=x +1.当x >0时,设解析式为f (x )=a (x -2)2-1(a ≠0),∵图像过点(4,0),∴0=a (4-2)2-1,∴a =14. 故函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧ x +1,-1≤x ≤0,14(x -2)2-1,x >0.]8.函数f (x )是定义在[-4,4]上的奇函数,其在(0,4]上的图像如图所示,那么不等式f (x )sin x <0的解集为________.(-π,-1)∪(1,π) [由题意知,在(0,4]上,当0<x <1时,f (x )>0,当1<x <4时,f (x )<0.由f (x )是定义在[-4,4]上的奇函数可知,当-1<x <0时,f (x )<0;当-4<x <-1时,f (x )>0.g (x )=sin x ,在[-4,4]上,当0<x <π时,g (x )>0;当π<x <4时,g (x )<0;当-π<x <0时,g (x )<0,当-4<x <-π时,g (x )>0.∴f (x )sin x <0⇔⎩⎨⎧ f (x )>0,sin x <0或⎩⎨⎧f (x )<0,sin x >0,则f (x )sin x <0在区间[-4,4]上的解集为(-π,-1)∪(1,π).]三、解答题1、画出下列函数的图像.(1)y =e ln x ;(2)y =|x -2|·(x +1).[解] (1)因为函数的定义域为{x |x >0}且y =e ln x =x (x >0),所以其图像如图所示.(2)当x ≥2,即x -2≥0时,y =(x -2)(x +1)=x 2-x -2=x -122-94;当x <2,即x -2<0时,y =-(x -2)(x +1)=-x 2+x +2=-x -122+94.所以y =⎩⎪⎨⎪⎧(x -12)2-94,x ≥2,-(x -12)2+94,x <2.这是分段函数,每段函数的图像可根据二次函数图像作出(其图像如图所示).2、已知函数f (x )=⎩⎨⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5].(1)在如图所示给定的直角坐标系内画出f (x )的图像;(2)写出f (x )的单调递增区间;(3)由图像指出当x 取什么值时f (x )有最值.[解] (1)函数f (x )的图像如图所示.(2)由图像可知,函数f (x )的单调递增区间为[-1,0],[2,5].(3)由图像知当x =2时,f (x )min =f (2)=-1,当x =0时,f (x )max =f (0)=3.。

函数画图像练习题

函数画图像练习题

函数画图像练习题函数是数学中的一个重要概念,广泛应用于各个领域。

为了更好地理解函数的概念和特性,我们经常会进行函数的画图练习。

这些练习题可以帮助我们通过图像直观地了解函数的行为和性质。

下面,我将为大家介绍一些常见的函数画图练习题。

一、线性函数:1. 题目描述:画出函数 y = 2x - 3 的图像。

解析:线性函数是函数中最简单的一种形式,其图像为一条直线。

对于给定的线性函数y = 2x - 3,我们可以根据函数的定义画出其图像。

首先,我们找出函数的截距和斜率,即截距为 -3,斜率为 2。

然后,在坐标系中选择一些合适的点,并根据斜率和截距的关系连接这些点,便可画出该线性函数的图像。

二、二次函数:2. 题目描述:画出函数 y = x^2 - 4 的图像。

解析:二次函数是函数中较为复杂的一种形式,其图像为一条抛物线。

对于给定的二次函数 y = x^2 - 4,我们可以通过以下步骤画出其图像。

首先,找出抛物线的顶点。

对于该函数,顶点坐标为 (0, -4)。

接着,根据顶点和对称性质,确定抛物线的对称轴。

在这个例子中,对称轴为x = 0。

最后,选择一些其他点,并根据对称性质画出抛物线的图像。

三、指数函数:3. 题目描述:画出函数 y = 2^x 的图像。

解析:指数函数是一种常见的函数形式,其图像具有特殊的增长趋势。

对于给定的指数函数y = 2^x,我们可以通过以下方法绘制其图像。

首先,选择一些合适的 x 值,并计算对应的 y 值。

例如,当 x = 0 时,y = 2^0 = 1;当 x = 1 时,y = 2^1 = 2;当 x = -1 时,y = 2^-1 = 1/2。

然后,将这些点连成一条平滑的曲线,即可得到该指数函数的图像。

四、三角函数:4. 题目描述:画出函数 y = sin(x) 的图像。

解析:三角函数在几何学和物理学中有广泛的应用,其图像具有周期性和波动性质。

对于给定的正弦函数 y = sin(x),我们可以通过以下步骤画出其图像。

数学课程三角函数图像练习题及答案

数学课程三角函数图像练习题及答案

数学课程三角函数图像练习题及答案为了帮助学生更好地理解和掌握三角函数的图像,我们提供了一系列练习题及其答案。

请学生们认真完成练习,并参考答案进行自我检查。

题目一:绘制正弦函数图像1)绘制下列函数的图像:y = sin(x)2)写出函数的周期、最大值和最小值解答:1)根据正弦函数的性质,我们可以得到以下关键点:(0, 0)、(π/2, 1)、(π, 0)、(3π/2, -1)、(2π, 0)等。

连接这些关键点,就可以得到正弦函数y = sin(x)的图像。

2)正弦函数y = sin(x)的周期为2π,最大值为1,最小值为-1。

题目二:绘制余弦函数图像1)绘制下列函数的图像:y = cos(x)2)写出函数的周期、最大值和最小值解答:1)根据余弦函数的性质,我们可以得到以下关键点:(0, 1)、(π/2, 0)、(π, -1)、(3π/2, 0)、(2π, 1)等。

连接这些关键点,就可以得到余弦函数y = cos(x)的图像。

2)余弦函数y = cos(x)的周期为2π,最大值为1,最小值为-1。

题目三:绘制正切函数图像1)绘制下列函数的图像:y = tan(x)2)写出函数的周期和渐近线方程解答:1)正切函数有一些特殊的性质,导致其图像在一些点上会出现无穷大的情况。

在绘制图像时,为了简化,我们通常只绘制其中一个周期内的图像。

2)正切函数y = tan(x)的周期为π,其渐近线方程为x = (n + 1/2)π,其中n为整数。

题目四:绘制余切函数图像1)绘制下列函数的图像:y = cot(x)2)写出函数的周期和渐近线方程解答:1)余切函数的图像与正切函数的图像相似,只是在y轴上关于原点对称。

因此,我们可以通过正切函数的图像进行绘制。

2)余切函数y = cot(x)的周期为π,其渐近线方程为x = nπ,其中n 为整数。

题目五:绘制正割函数图像1)绘制下列函数的图像:y = sec(x)2)写出函数的周期和渐近线方程解答:1)正割函数的图像在每个周期内都有一个垂直渐近线,因此我们只需要绘制一个周期内的图像即可。

八年级数学下册《函数的图象》练习题及答案(人教版)

八年级数学下册《函数的图象》练习题及答案(人教版)

八年级数学下册《函数的图象》练习题及答案(人教版)班级姓名考号一、单选题1.小明步行到学校参加联欢会,到学校时发现演出道具忘在家中,于是他马上按照原来的速度步行回家取道具,随后骑自行车加快速度返回学校,下面是小明离开家的距离S(米)和时间t(分)的函数图象,那么最符合小明实际情况的大致图象是()A.B.C.D.2.小明晚饭后出门散步,行走的路线如图所示.则小明离家的距离h与散步时间t之间的函数关系可能是()A.B.C.D.3.一天晚饭后,小明陪妈妈从家里出去散步,下图描述了他们散步过程中离家的距离s(米)与散步时间t(分)之间的函数关系,下面的描述符合他们散步情景的是【】A.从家出发,到了一家书店,看了一会儿书就回家了B.从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,到了一家书店,看了—会儿书,继续向前走了一段,18分钟后开始返回4.下列是y关于x的函数是().A.B.C.D.5.甲、乙二人从学校出发去新华书店看书,甲步行一段时间后,乙骑自行车沿相同路线行进两人均匀速前行,他们之间的距离s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法错误的是()A.乙的速度是甲速度的2.5倍B.a=15C.学校到新华书店共3800米D.甲第25分钟到达新华书店6.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上下坡的速度仍然保持不变,那么他从学校回到家需要的时间是().A .8.6分钟B .9分钟C .12分钟D .16分钟7.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程y (km )与行进时间t (h )之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;①乙用了4.5个小时到达目的地:①乙比甲迟出发0.5小时;①甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个8.如图1,点P 从菱形ABCD 的顶点A 出发,沿着折线ABCDA 匀速运动,图2是线段AP 的长度y 与时间x 之间的函数关系的图像(不妨设当点P 与点A 重合时,y =0),则菱形ABCD 的面积为( )A .12B .6C .5D .2.59.铅笔每支售价0.20元,在平面直角坐标系内表示小明买1支到10支铅笔需要花费的钱数的图像是( ) A .一条直线 B .一条射线 C .一条线段 D .10个不同的点10.如图,60MAN ∠=︒,点B 在射线AN 上,2AB =.点P 在射线AM 上运动(点P 不与点A 重合),连接BP ,以点B 为圆心,BP 为半径作弧交射线AN 于点Q ,连接PQ .若,AP x PQ y ==,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A.B.C.D.13.如图,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止,右图为P运动的路与ABP的面积14.学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.15.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是____米/分钟.三、解答题16.写出下列各问题中的函数关系式,并指出自变量的取值范围.(1)如果直角三角形中一个锐角的度数为α,另一个锐角的度数β与α之间的关系;(2)一支蜡烛原长为20cm,每分钟燃烧0.5cm,点燃x(分钟)后,蜡烛的长度y(cm)与x(分钟)之间的关系;(3)有一边长为2cm的正方形,若其边长增加xcm,则增加的面积y(cm2)与x之间的关系.17.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校.他本次上学所用的时间与路程的关系示意图如图所示.(1)小明在书店停留了______分钟;(2)本次上学途中,小明一共行驶的路程为______;(1)在上升或下降过程中,无人机的速度是米/分;20.小雪和小松分别从家和图书馆出发,沿同一条笔直的马路相向而行.小雪开始跑步,中途在某地改为步行,且步行的速度为跑步速度的一半,小雪先出发5分钟后,小松才骑自行车匀速回家.小雪到达图书馆恰好用了35分钟.两人之间的距离()m y 与小雪离开出发地的时间()min x 之间的函数图象如图所示,请根据图象解答下列问题:(1)小雪跑步的速度为多少米/分?(2)小松骑自行车的速度为米/分?(3)当小松到家时,小雪离图书馆的距离为多少米?参考答案1.C2.C3.D4.C5.C6.C7.C8.B9.D10.C(3)由图象可知:图象关于直线x =2对称;故答案为:图象关于直线x =2对称;(4)进一步探究函数图象发现:①函数图象与x 轴有2个交点,对应的方程2|x ﹣2|﹣1=0有2个实数根; ①若关于x 的方程2|x ﹣2|﹣1=a 有两个实数根,则a 的取值范围是a >﹣1 故答案为2,2;a >﹣1.20.(1)解:由函数图象可知小雪跑步5分钟的路程为450035001000m -= ①小雪跑步的速度为10005200m /min ÷=;(2)解:由(1)得小雪步行的速度为100m/min设小雪在第t 分钟改为步行①()200100354500t t +-=解得10t =①由函数图象可知,当第10分钟时,小雪改为步行,此时两人相距1000m ①小松骑车的速度为()()4500200101000105300m /min -⨯-÷-=; (3)解:由(2)得小松到家的时间为4500300520min ÷+= ①小雪离图书馆的距离为()45002001010020101500m -⨯-⨯-=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数图象应用(习题)
1. 函数 f (x) x ln x 的图象大致是( )
A
B
C
D
2. 函数 f (x) 2 x x2 的图象大致是( )
A
B
C
D
3. 函数 f (x) ln(x 1 ) 的图象大致是( ) x
A
B
C
D
1
4. 函数 f (x) log2 2x 1 的图象大致是( )
A
D.(2,2 014)
3
11.
已知 f (x)的定义域为 R,且
f
(
x)
2x 1
f
(x
1)
(x

0
) ,若方
(x 0)
程 f (x)=x+a 有两个不同的实数根,则 a 的取值范围是( )
A.(-∞,1)
B.(-∞,1]
C.(0,1)
D.(-∞,+∞)
2
1
12. 若 f (x) x3 x 2 ,则满足 f (x) 0 的 x 的取值范围是

B.[-2,0]
C.[1 2 2 ,2]
D.[1 2 2 ,0]
10.
已知
f
(x)
1
2
|
x
1 2
|

0

x
≤ 1) ,若方程
f
(x)=m
存在三
log2 013 x (x 1)
个不等的实根 x1,x2,x3,则 x1+x2+x3 的取值范围是( )
A.(1,2 013)
B.(2,2 013)
C.(1,2 014)
___________________.
13. 若函数 f (x) a x x a (a>0,且 a≠1)有 2 个零点,则实 数 a 的取值范围是________________.
14. 若直线 y=1 与曲线 y x2 x a 有 4 个交点,则 a 的取值范 围是________________.
A.3 个
B.2 个
C.1 个
D.0 个
8. 函数 f (x)=2x+3x 的零点所在的一个区间是(
A.(-2,-1) B.(1,2)
C.(0,1)
) D.(-1,0)
9.
已知函数
f
(x)
x2 ln
x
x
(x (x

0
) ,若
0)
f (x) ≥ ax 2 ,则 a 的
取值范围是( )
A.[-2,2]
4
【参考答案】
1. A 2. C 3. B 4. B 5. A 6. B 7. C 8. D 9. D 10. D 11. A 12. (0,1) 13. (1,+∞) 14. (1,5)
4 15. (0,1)
2
5
15. 已知 f (x) 是定义在 R 上的函数,且满足 f (x 3) f (x) ,当 x∈[0,3)时, f (x) x2 2x 1 ,若函数 y f (x) a 在区间 2 [-3,4]上有 10 个互不相同的零点,则实数 a 的取值范围是 ___________________.
B
C
D
5. 已知函数 f (x) 的图象如图所示,则函数 y f (1 x) 的图象大 致是( )
A
B
C
D
6. 已知函数 y f (x) 和函数 y g(x) 的图象如图所示,则函数 y f (x)g(x) 的图象可能是( )
A
B
C
D
2
7. 函数 f (x)=2x+x3-2 在区间(0,1)上的零点有( )
相关文档
最新文档