讲解霍尔效应ppt
合集下载
霍尔效应原理图ppt课件
40
霍尔式压力传感器
磁钢
霍尔元件
N S
S N 波登管 压力P
图9-9 霍尔压力传感器结构原理图
41
霍尔式压力传感器由两部分组 成:一部分是弹性敏感元件的 波登管用以感受压力P,并将P 转换为弹性元件的位移量x, 即x=KPP,其中系数KP为常数。 另一部分是霍尔元件和磁系统, 磁系统形成一个均匀梯度磁场, 如右图所示,在其工作范围内, B=KBx,其中斜率KB为常数; 霍尔元件固定在弹性元件上, 因此霍尔元件在均匀梯度磁场 中的位移也是x。
34
理想情况下,不等位电 势 UM=0 ,对应于电桥的平衡 状态,此时R1=R2=R3=R4。 如果霍尔元件的 UM≠0 , 则电桥就处于不平衡状态, 此时R1、R2、R3、R4的阻值有 差异, UM 就是电桥的不平衡 输出电压。 只要能使电桥达到平衡 的方法都可作为不等位电势 的补偿方法。
35
(一)基本补偿电路
27
合理选择负载电阻
如上图所示,若霍尔电势输出端接负载电阻RL, 则当温度为T时,RL上的电压可表示为: RL UL UH RL R0 式中 R0—霍尔元件的输出电阻。
28
当温度由T变为T+ΔT时,则RL上的电压变为 RL U L U L U H (1 T ) RL R0 (1 T )
需施加极高的电压才能产生很小 的电流。因此霍尔元件一般采用N 型半导体材料
10
2)霍尔电压UH与元件的尺寸有关。 高,所以霍尔元件的厚度都比较薄, 但d太小,会使元件的输入、输出电 阻增加。 霍尔电压UH与控制电流及磁场强 度成正比,当磁场改变方向时,也改 变方向。
11
d 愈小,KH 愈大,霍尔灵敏度愈
实验九霍尔效应实验优秀课件
• 霍尔电势
实验九霍尔效应实验优秀课件
6
电磁特性
• 霍尔输出与磁场(恒定或交变)之间的 关系
实验九霍尔效应实验优秀课件
7
霍尔元件的基本驱动电路
• .霍尔元件的基
本驱动电路如下 图所示。
恒流驱动或恒压驱动电路
实验九霍尔效应实验优秀课件
8
六、电路原理
+2V
直
流
稳
r
压 W1 电
源
-2V
+ _感器
实验九霍尔效应实验优秀课件
2
三、实验应知知识
霍尔传感器是一种基于霍尔效应的传感器。本实验 所用的霍尔传感器,由两个产生梯度磁场的环形磁 钢和霍尔元件组成。霍尔元件通以恒定电流时,霍 尔电势的大小正比于磁场强度,当霍尔元件在梯度 磁场中上、下移动时,输出的霍尔电势V取决于其 在磁场中的位移量,所以测得霍尔电势的大小便可 获知霍尔元件的静位移。
实验九霍尔效应实验优秀课件
3
四、实验器材
霍尔片、磁路系统、差动放大器、电桥、移相器、 相敏检波器、低通滤波、低频振荡器、音频振荡 器、振动平台、主、副电源、激振线圈、双线示 波器。
实验九霍尔效应实验优秀课件
4
五、实验原理
实验九霍尔效应实验优秀课件
5
• 工作原理
• 若在如图所示的金属或半导体薄片两端通以控制 电流 I,在与薄片方向上施加磁感应强度为 B 的 磁场,那么在垂直于电流和磁场方向的薄片的另 两侧会产生电动势 ,的大小正比于控制电流 I 和磁感应强度 B,这一现象称为霍尔效应,利用 霍尔效应制成的传感元件称霍尔传感器。
一、实验目的:
1. 了解霍尔式传感器的原理与特性; 2. 了解霍尔式传感器在静态测量中的应用; 3. 了解交流激励霍尔片的特性; 4. 了解霍尔式传感器在振动测量中的应用。
实验九霍尔效应实验优秀课件
6
电磁特性
• 霍尔输出与磁场(恒定或交变)之间的 关系
实验九霍尔效应实验优秀课件
7
霍尔元件的基本驱动电路
• .霍尔元件的基
本驱动电路如下 图所示。
恒流驱动或恒压驱动电路
实验九霍尔效应实验优秀课件
8
六、电路原理
+2V
直
流
稳
r
压 W1 电
源
-2V
+ _感器
实验九霍尔效应实验优秀课件
2
三、实验应知知识
霍尔传感器是一种基于霍尔效应的传感器。本实验 所用的霍尔传感器,由两个产生梯度磁场的环形磁 钢和霍尔元件组成。霍尔元件通以恒定电流时,霍 尔电势的大小正比于磁场强度,当霍尔元件在梯度 磁场中上、下移动时,输出的霍尔电势V取决于其 在磁场中的位移量,所以测得霍尔电势的大小便可 获知霍尔元件的静位移。
实验九霍尔效应实验优秀课件
3
四、实验器材
霍尔片、磁路系统、差动放大器、电桥、移相器、 相敏检波器、低通滤波、低频振荡器、音频振荡 器、振动平台、主、副电源、激振线圈、双线示 波器。
实验九霍尔效应实验优秀课件
4
五、实验原理
实验九霍尔效应实验优秀课件
5
• 工作原理
• 若在如图所示的金属或半导体薄片两端通以控制 电流 I,在与薄片方向上施加磁感应强度为 B 的 磁场,那么在垂直于电流和磁场方向的薄片的另 两侧会产生电动势 ,的大小正比于控制电流 I 和磁感应强度 B,这一现象称为霍尔效应,利用 霍尔效应制成的传感元件称霍尔传感器。
一、实验目的:
1. 了解霍尔式传感器的原理与特性; 2. 了解霍尔式传感器在静态测量中的应用; 3. 了解交流激励霍尔片的特性; 4. 了解霍尔式传感器在振动测量中的应用。
《霍尔效应实验》课件
电源
磁铁
测量尺
导线 记录本
搭建实验装置
01
将霍尔效应测试仪放置 在平稳的工作台上,确 保测试仪固定。
02
使用导线将电源与霍尔 效应测试仪连接,确保 电源正负极正确连接。
03
将磁铁放置在测试仪的 适当位置,以便产生稳 定的磁场。
04
调整测试仪的灵敏度, 确保测量结果准确。
开始实验并记录数据
打开电源,观察霍尔 效应测试仪的读数, 记录初始数据。
《霍尔效应实验》ppt课件
目 录
• 实验目的 • 实验原理 • 实验步骤 • 结果分析 • 实验总结与展望
01
实验目的
掌握霍尔效应原理
霍尔效应
当电流垂直于外磁场通过导体时,在 导体垂直于磁场和电流方向的两个端 面之间会出现电势差,这一现象便是 霍尔效应。
霍尔系数与载流子类型
霍尔常数与载流子浓度
大小。
测量误差与精度
了解影响测量误差和精度的因素 ,如温度、电流稳定性等。
了解霍尔效应在日常生活中的应用
01
02
03
磁场测量
利用霍尔效应可以测量磁 场的大小和方向,广泛应 用于地球磁场测量、磁力 探矿等领域。
位置传感器
利用霍尔元件可以制作出 各种位置传感器,如接近 开关、转速传感器等。
电子罗盘
基于霍尔效应的电子罗盘 可以用来指示方向,具有 体积小、精度高等优点。
了解了霍尔元件在生产和生活中的应 用。
学会了使用霍尔效应测量仪进行数据 测量和记录。
提高了自己的实验技能和数据处理能 力。
实验中存在的问题与不足
部分同学对实验原理理解不够深入,操作不够熟练。
部分同学在数据处理方面存在一定困难,需要加强练习 。
霍尔效应原理图 PPT课件
或I的未知量均可利用霍尔元 件进行测量。
2020/6/8
13
第二节 霍尔元件的基本结构和 主要技术指标
一、霍尔元件的基本结构组成
由霍尔片、四根引线和壳体组成,如下图示。
2020/6/8
14
❖ 国产霍尔元件型号的命名方法
2020/6/8
15
二、主要技术指标
1、额定控制电流IC和最大控制电流ICm ❖ 霍尔元件在空气中产生10℃的温升时所施加
式中EH为霍尔电场,e 为电子电量,UH为霍尔 电势。当FL = FE时,电 子的积累达到动平衡, 即
所以
2020/6/8
I B
A FE
D
FL
B
C
dL
l
UH
A、B- 霍尔电极 C、D-控制电极
6
设流过霍尔元件的 电流为 I 时,
式中ld为与电流方 向垂直的截面积,n 为 单位体积内自由电子数 (载流子浓度)。则
2020/6/8
34
理想情况下,不等位电 势 UM=0 , 对 应 于 电 桥 的 平 衡 状态,此时R1=R2=R3=R4。
如果霍尔元件的UM≠0, 则电桥就处于不平衡状态, 此时R1、R2、R3、R4的阻值有 差 异 , UM 就 是 电 桥 的 不 平 衡 输出电压。
只要能使电桥达到平衡
的方法都可作为不等位电势 的补偿方法。
针对温度变化导致内阻(输入、输出电阻) 的变化,可以采用对输入或输出电路的电阻进 行补偿。
2020/6/8
27
合理选择负载电阻
❖ 如上图所示,若霍尔电势输出端接负载电阻RL, 则当温度为T时,RL上的电压可表示为:
UL
UH
RL RL R0
式中
2020/6/8
13
第二节 霍尔元件的基本结构和 主要技术指标
一、霍尔元件的基本结构组成
由霍尔片、四根引线和壳体组成,如下图示。
2020/6/8
14
❖ 国产霍尔元件型号的命名方法
2020/6/8
15
二、主要技术指标
1、额定控制电流IC和最大控制电流ICm ❖ 霍尔元件在空气中产生10℃的温升时所施加
式中EH为霍尔电场,e 为电子电量,UH为霍尔 电势。当FL = FE时,电 子的积累达到动平衡, 即
所以
2020/6/8
I B
A FE
D
FL
B
C
dL
l
UH
A、B- 霍尔电极 C、D-控制电极
6
设流过霍尔元件的 电流为 I 时,
式中ld为与电流方 向垂直的截面积,n 为 单位体积内自由电子数 (载流子浓度)。则
2020/6/8
34
理想情况下,不等位电 势 UM=0 , 对 应 于 电 桥 的 平 衡 状态,此时R1=R2=R3=R4。
如果霍尔元件的UM≠0, 则电桥就处于不平衡状态, 此时R1、R2、R3、R4的阻值有 差 异 , UM 就 是 电 桥 的 不 平 衡 输出电压。
只要能使电桥达到平衡
的方法都可作为不等位电势 的补偿方法。
针对温度变化导致内阻(输入、输出电阻) 的变化,可以采用对输入或输出电路的电阻进 行补偿。
2020/6/8
27
合理选择负载电阻
❖ 如上图所示,若霍尔电势输出端接负载电阻RL, 则当温度为T时,RL上的电压可表示为:
UL
UH
RL RL R0
式中
大学物理实验霍尔效应(课堂PPT)
霍尔效应实验
黑龙江大学普通物理实验室
.
1
霍尔( A.H.Hall )
霍尔效应是美国物理学家 霍尔(A.H.Hall,1855—1938) 于1879年在美国霍普金斯大学 读研究生期间,研究关于载流导 体在磁场中的受力性质时发现 的一种现象。
A.H.Hall(1855~1938)
.
2
霍尔效应(Hall effect )
A'
v B
IS
A
.
1返7 回
厄廷豪森效应
1887年厄廷豪森发现,由于载流子的速度不相等,它 们在磁场的作用下,速度大的受到的洛仑兹力大,绕大圆 轨道运动,速度小则绕小圆轨道运动,这样导致霍尔元件 的一端较另一端具有较多的能量而形成一个横向的温度梯 度决于。因Bv 和而产I S 的生方温向差。效可应判,断形出成V电E 和势V差H 始,终记同为向V E。,其方向取
在需要调节霍尔片位置时,必须谨慎,切勿随意改变Y轴方向的高度,以 免霍尔片与磁极面摩擦而受损。
决不允许将“IM输出”接到“IS输入”或“VH、Vσ输出”处,否则, 一旦通电,霍尔样品即遭损坏。
测量Vσ时, IS不宜过大,以免数字电压表超量程,通常IS取为0.2mA 左右。
.
12
.
13
最小二乘法(直线拟合y=A’+B’x)
如果在一块矩形半导
体薄片上沿x轴方向通以电
流 则,在Bv 在垂z直轴于方电向上流加和磁磁场场
, 的
方向(即y 轴方向)上产生
电势差,这一现象称为霍
尔效应,所产生的电压称为
霍尔电压。
VH
v B
y
z
x
IS
.
3
霍尔效应(Hall effect )
黑龙江大学普通物理实验室
.
1
霍尔( A.H.Hall )
霍尔效应是美国物理学家 霍尔(A.H.Hall,1855—1938) 于1879年在美国霍普金斯大学 读研究生期间,研究关于载流导 体在磁场中的受力性质时发现 的一种现象。
A.H.Hall(1855~1938)
.
2
霍尔效应(Hall effect )
A'
v B
IS
A
.
1返7 回
厄廷豪森效应
1887年厄廷豪森发现,由于载流子的速度不相等,它 们在磁场的作用下,速度大的受到的洛仑兹力大,绕大圆 轨道运动,速度小则绕小圆轨道运动,这样导致霍尔元件 的一端较另一端具有较多的能量而形成一个横向的温度梯 度决于。因Bv 和而产I S 的生方温向差。效可应判,断形出成V电E 和势V差H 始,终记同为向V E。,其方向取
在需要调节霍尔片位置时,必须谨慎,切勿随意改变Y轴方向的高度,以 免霍尔片与磁极面摩擦而受损。
决不允许将“IM输出”接到“IS输入”或“VH、Vσ输出”处,否则, 一旦通电,霍尔样品即遭损坏。
测量Vσ时, IS不宜过大,以免数字电压表超量程,通常IS取为0.2mA 左右。
.
12
.
13
最小二乘法(直线拟合y=A’+B’x)
如果在一块矩形半导
体薄片上沿x轴方向通以电
流 则,在Bv 在垂z直轴于方电向上流加和磁磁场场
, 的
方向(即y 轴方向)上产生
电势差,这一现象称为霍
尔效应,所产生的电压称为
霍尔电压。
VH
v B
y
z
x
IS
.
3
霍尔效应(Hall effect )
霍尔效应及其应用ppt课件
度d的关系:
VH
RH
IB d
式中RH为霍尔系数,它与载流子浓度n和载流子电
量q的关系:
1
RH nq
若令霍尔灵敏度KH=RH/d,则 U H K H IB
6
霍尔元件中的附加效应
在霍尔效应建立的同时还会伴有其它附加效应 的产生,在霍尔元件上测得的电压是各种附加电 压叠加的结果。
附加电压 1.不等势电压Uo (不等势效应 )=Is . R
12
注意事项
1.Is, Im的正确调零; 2.Is, Im的正确组合切换; 3.读数应以小数点的正确位置; 4.采取开关切换次数最少的测法; 5.B=K .Im ,K为常数,记录在线圈上。
13
基本要求
• 数据记录 • 思考与作业
14
思考与作业
1.根据测得的UH~Im与UH~Is的关系,绘 制UH~Im与UБайду номын сангаас~Is的关系;
通过该实验可以了解霍尔效应的物理原理以及把物理 原理应用到测量技术中的基本过程。
3
预备知识
•霍尔效应 •霍尔元件中的附加效应
4
霍尔效应
当电流垂直于外磁场方向通过导体时,在垂直于磁场 和电流方向的导体的两个端面之间出现电势差的现象 称为霍尔效应,该电势差称为霍尔电势差(霍尔电 压)。
5
霍尔效应
霍尔电压UH与电流I和磁感应强度B及元件的厚
大学物理实验
实验九 霍尔效应及应用
物理教研室
1
主要内容
实验简介 预备知识
设计思路 操作指南
基本要求
返回目录页 2
实验简介
霍尔效应是一种磁电效应,是美国研究生霍尔1879 年研究载流导体在磁场中受力的性质时发现的。
《霍尔效应及应用》课件
磁流体发电原理
磁流体发电是一种高效、清洁的发电方式,利用高温、高速的离子或等离子体流 过强磁场时产生的洛伦兹力,使带电粒子与磁场相互作用,产生电能。
磁流体发电装置
磁流体发电装置主要包括燃烧室、磁体、电极和冷却系统等部分。燃烧室产生高 温、高速的离子或等离子体流,穿过强磁场区域,在电极上产生电压和电流。
核磁共振成像(MRI)
利用磁场梯度变化产生的霍尔效应,实现人体内部结构的无创、 无痛、无辐射的成像。
超声波成像
通过检测声波在人体组织中的传播速度和方向变化,利用霍尔效应 分析声波的传播特性,实现医学成像。
磁场感应成像
利用磁场感应技术,通过测量人体内部磁场变化产生的霍尔效应, 实现高分辨率的医学成像。
。
生物学中的应用
生物磁场测量
利用磁场感应技术,测量生物体 内磁场变化产生的霍尔效应,研 究生物磁场的分布和变化规律, 为生物医学研究提供重要依据。
生物电信号检测
通过测量生物电信号的变化,利 用霍尔效应分析生物电信号的传 播特性和生理机制,为生物医学 研究和临床诊断提供技术支持。
02
在汽车工业中,霍尔元 件用于发动机控制、气 囊安全系统、ABS防抱 死系统等。
03
在新能源领域,霍尔元 件用于光伏逆变器、风 力发电系统的电流和磁 场检测。
04
在智能家居领域,霍尔 元件用于智能电表、智 能家居控制系统的传感 器模块。
01
霍尔效应在磁流体 发电和磁悬浮列车
中的应用
磁流体发电原理及装置
《霍尔效应及应用》 ppt课件
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 霍尔效应简介 • 霍尔效应的实验研究 • 霍尔效应在电子学中的应用 • 霍尔效应在磁流体发电和磁悬浮列
磁流体发电是一种高效、清洁的发电方式,利用高温、高速的离子或等离子体流 过强磁场时产生的洛伦兹力,使带电粒子与磁场相互作用,产生电能。
磁流体发电装置
磁流体发电装置主要包括燃烧室、磁体、电极和冷却系统等部分。燃烧室产生高 温、高速的离子或等离子体流,穿过强磁场区域,在电极上产生电压和电流。
核磁共振成像(MRI)
利用磁场梯度变化产生的霍尔效应,实现人体内部结构的无创、 无痛、无辐射的成像。
超声波成像
通过检测声波在人体组织中的传播速度和方向变化,利用霍尔效应 分析声波的传播特性,实现医学成像。
磁场感应成像
利用磁场感应技术,通过测量人体内部磁场变化产生的霍尔效应, 实现高分辨率的医学成像。
。
生物学中的应用
生物磁场测量
利用磁场感应技术,测量生物体 内磁场变化产生的霍尔效应,研 究生物磁场的分布和变化规律, 为生物医学研究提供重要依据。
生物电信号检测
通过测量生物电信号的变化,利 用霍尔效应分析生物电信号的传 播特性和生理机制,为生物医学 研究和临床诊断提供技术支持。
02
在汽车工业中,霍尔元 件用于发动机控制、气 囊安全系统、ABS防抱 死系统等。
03
在新能源领域,霍尔元 件用于光伏逆变器、风 力发电系统的电流和磁 场检测。
04
在智能家居领域,霍尔 元件用于智能电表、智 能家居控制系统的传感 器模块。
01
霍尔效应在磁流体 发电和磁悬浮列车
中的应用
磁流体发电原理及装置
《霍尔效应及应用》 ppt课件
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 霍尔效应简介 • 霍尔效应的实验研究 • 霍尔效应在电子学中的应用 • 霍尔效应在磁流体发电和磁悬浮列
《霍尔效应测量磁场》课件
洛伦兹力
洛伦兹力是带电粒子在磁场中受到的力,其方向 与磁场方向和带电粒子运动方向均垂直。
洛伦兹力的大小与带电粒子的电荷量和速度成正 比,与磁感应强度成正比。
在霍尔效应中,洛伦兹力导致电子在磁场中偏转 ,从而产生霍尔电压。
霍尔电压的产生
01 当电流通过半导体材料时,电子在磁场中 受到洛伦兹力的作用,产生偏转。
数据处理能力需提
高
在分析实验数据时,我们发现数 据处理的技巧和统计学知识有所 欠缺,建议加强相关方面的培训 。
仪器使用需规范
在操作过程中,部分同学对仪器 的使用不够规范,导致测量结果 存在误差,建议加强仪器使用的 培训和指导。
对未来研究的展望
探索更多应用场景
希望未来能够将霍尔效应测量磁场技术应用于更多领域, 如生物学、医学等,为相关领域的研究提供新的方法和思 路。
霍尔元件
利用霍尔效应制成的测量磁场的 器件称为霍尔元件。
霍尔效应的发现历史
1879年,美国物理学家E.H.霍尔在实 验中发现,当电流垂直于外磁场通过 导体时,导体中产生横向电势差。
1881年,德国物理学家C.F.高斯在实 验中发现,当电流垂直于外磁场通过 导体时,导体中产生横向磁通量。
1880年,法国物理学家J.E.贝脱勒在 实验中发现,当电流垂直于外磁场通 过导体时,导体中产生横向磁通量。
提高实验技能
实验过程中,我们学会了使用精密的测量仪器, 如电压表、电流表等,以及如何调整实验参数, 提高了实验操作技能。
培养探究精神
实验中遇到问题时,我们学会了独立思考、团队 协作,积极寻找解决问题的方法,培养了科学探 究的精神。
本实验的不足与改进建议
实验时间紧张
由于实验操作较为复杂,我们在 规定的时间内未能完成所有步骤 ,建议增加实验时间或优化实验 流程。
霍尔效应PPT课件
是一常量,仅与导体材料有关,它是反映材料霍
尔效应强弱的重要参数
14
2021
由(6)(7)式得
UH
RH
IS B d
由此可以定义霍尔元件的灵敏度
KH
RH d
1 ned
UHKHISB
(8) (9) (10)
可见,只要测出霍尔电势差U H 和工作电流 I S ,就可以求出磁感 应强度 B 。
当给定 斜率就是 K
4如今由清华大学薛其坤院士领衔清华大学中科院物理所和斯坦福大学研究人员联合组成的团队历时4年在量子反常霍尔效应研究中叏得重大突破在美国物理学家霍尔1880年収现反常霍尔效应133年后他们仍实验中首次观测到量子反常霍尔效应这是中国科学家仍实验中独立观测到的一个重要物理现象也是物理学领域基础研究的一项重要科学収现
fB f时e ,
电子不再横向漂移,结果在 、P 两S面形成恒定的电势差
叫霍U 尔电势差。
H
13
2021
fB fe
EH vB
即 evBeEH (4)
(5)
U HV PV SE H bvB bn IS eB d
(6)
由固体物理理论可以证明金属的霍尔系数为
RH
1 ne
(7)
式中 n 为载流子浓度,e 为载流子所带的电量。R H
4 2021
背景介绍
霍尔效应---应用发展
霍尔效应应被发现100多年以来,它的应用发展经历了三个阶段:
第一阶段:从霍尔效应的发现到20世纪40年代前期。最初由于金属材料中 的电子浓度很大而霍尔效应十分微弱所以没有引起人们的重视。这段时期也 有人利用霍尔效应霍尔效制成磁场传感器,但实用价值不大,到了1910年有 人用金属铋制成霍尔元件,作为磁场传感器。但是,由于当时未找到更合适 的材料,研究处于停顿状态。
尔效应强弱的重要参数
14
2021
由(6)(7)式得
UH
RH
IS B d
由此可以定义霍尔元件的灵敏度
KH
RH d
1 ned
UHKHISB
(8) (9) (10)
可见,只要测出霍尔电势差U H 和工作电流 I S ,就可以求出磁感 应强度 B 。
当给定 斜率就是 K
4如今由清华大学薛其坤院士领衔清华大学中科院物理所和斯坦福大学研究人员联合组成的团队历时4年在量子反常霍尔效应研究中叏得重大突破在美国物理学家霍尔1880年収现反常霍尔效应133年后他们仍实验中首次观测到量子反常霍尔效应这是中国科学家仍实验中独立观测到的一个重要物理现象也是物理学领域基础研究的一项重要科学収现
fB f时e ,
电子不再横向漂移,结果在 、P 两S面形成恒定的电势差
叫霍U 尔电势差。
H
13
2021
fB fe
EH vB
即 evBeEH (4)
(5)
U HV PV SE H bvB bn IS eB d
(6)
由固体物理理论可以证明金属的霍尔系数为
RH
1 ne
(7)
式中 n 为载流子浓度,e 为载流子所带的电量。R H
4 2021
背景介绍
霍尔效应---应用发展
霍尔效应应被发现100多年以来,它的应用发展经历了三个阶段:
第一阶段:从霍尔效应的发现到20世纪40年代前期。最初由于金属材料中 的电子浓度很大而霍尔效应十分微弱所以没有引起人们的重视。这段时期也 有人利用霍尔效应霍尔效制成磁场传感器,但实用价值不大,到了1910年有 人用金属铋制成霍尔元件,作为磁场传感器。但是,由于当时未找到更合适 的材料,研究处于停顿状态。
【精品】PPT课件 霍尔效应实验PPT共20页
【精品】PPT课件 霍尔效应实验
51、山气日夕佳,飞鸟相与还。 52、木欣欣以向荣,泉涓涓而始流。
53、富贵非吾愿,帝乡不可期。 54、雄发指危冠,猛气冲长缨。 55、土地平旷,屋舍俨然,有良田美 池桑竹 之属, 阡陌交 通,鸡 犬相闻 。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
拉ห้องสมุดไป่ตู้
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
51、山气日夕佳,飞鸟相与还。 52、木欣欣以向荣,泉涓涓而始流。
53、富贵非吾愿,帝乡不可期。 54、雄发指危冠,猛气冲长缨。 55、土地平旷,屋舍俨然,有良田美 池桑竹 之属, 阡陌交 通,鸡 犬相闻 。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
拉ห้องสมุดไป่ตู้
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
霍尔效应实验-PPT课件
(1- 5)
将
可得 I nebd V vbB代入 v
H
H
v I B ned H
可改写为
V RI B d KI B
H H H
该式与
一致 KI B V RI d和式 V H H H H
就是霍尔系数 R 1ne
(1)厄廷豪森效应
• 1887年厄廷豪森发现,由于载流子的速度不相等, 它们在磁场的作用下,速度大的受到的洛仑兹力大, 绕大圆轨道运动,速度小则绕小圆轨道运动,这样导 致霍尔元件的一端较另一端具有较多的能量而形成一 个横向的温度梯度。因而产生温差效应,形成电势差, 记为 其方向决定于 I 和磁场B的方向,并可判断, V V V H 始终同向。
霍尔效应实验仪的部件之一:电磁铁(2500GS/A)
霍尔样品及调节架
调节架上的水平和垂直刻度
霍尔效应测试仪
实验原理
Z
B Y 4 d 1
IH
2 X 3
VH
V RI B d H H
(1-1)
上式中比例系数R称为霍尔系数,对同一材料R为一常数。 因成品霍尔元件(根据霍尔效应制成的器件)d也是一常数。 故R/d常用另一常数K来表示,有
2. 在记录的螺线管长度L,匝数N和励磁电流代入B的公式 中B 算出B理论值与X=10.0cm比较,分析原因 u N I L 0 M 3. 绘制 I M~B曲线,分析励磁电流与磁感应强度的关系。
4. 绘制I H ~V H 曲线,分析工作电流 I H 与霍尔电压
VH
的关系。
5. 将实际测量的霍尔灵敏度K值与实验室给出值进行比较,分析 异号观测法的作用。
霍尔效应实验
山东农业大学物理实验教学中心
霍尔效应是霍尔 (Hall)24
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、电磁无损探伤
霍尔效应无损探伤方法安全、可靠、实用,并能实现无速度影响 检测,因此,被应用在设备故障诊断、材料缺陷检测之中。其探伤原 理是建立在铁磁性材料的高磁导率特性之上。采用霍尔元件检测该泄 漏磁场B的信号变化,可以有效地检测出缺陷存在。钢丝绳作为起重 、运输、提升及承载设备中的重要构件,被应用于矿山、运输、建筑 、旅游等行业,但由于使用环境恶劣,在它表面会产生断丝、磨损等 各种缺陷,所以,及时对钢丝绳探伤检测显得尤为重要。目前,国内 外公认的最可靠、最实用的方法就是漏磁检测方法,根据这一检测方 法设计的断丝探伤检测装置,如EMTC 系列钢丝绳无损检测仪,其 金属截面积测量精度为± 0.2%,一个捻距内断丝有一根误判时准确 率>90%,性能良好,在生产中有着广泛的用途。
背景介绍
量子霍尔效应
长时期以来,霍尔效应是在室温和中等 强度磁场条件下进行实验的。在霍尔效应发 现100年后,1980年,德国物理学家克利青 (Klaus von Klitzing)在研究极低温和强磁 场中的半导体时,发现在低温条件下半导体 硅的霍尔效应不是常规的那种直线,而是随 着磁场强度呈跳跃性的变化,这种跳跃的阶 梯大小由被整数除的基本物理常数所决定。 这是当代凝聚态物理学令人惊异的进展之一, 这在后来被称为整数量子霍尔效应。由于这 个发现,克利青在1985年获得了诺贝尔物理 奖。
Robert Laughlin
构造出了分数量子霍尔系统的解 析波函数,给分数量子霍尔效应 作出了理论解释
1998年的诺贝尔物理学奖
在量子霍尔效应家族里,至此仍未被发现的效应是“量子反常霍尔效 应”——不需要外加磁场的量清华大学薛其坤院士领衔,清华大学、中科院 物理所和斯坦福大学研究人员联合组成的团队历时4年在 量子反常霍尔效应研究中取得重大突破,在美国物理学家 霍尔1880年发现反常霍尔效应133年后,他们从实验中 首次观测到量子反常霍尔效应,这是中国科学家从实验中 独立观测到的一个重要物理现象,也是物理学领域基础研 究的一项重要科学发现。这一发现是相关领域的重大突破 ,也是世界基础研究领域的一项重要科学发现。这一发现 或将对信息技术进步产生重大影响。
4、现代汽车工业上应用
汽车上广泛应用的霍尔器件就包括:信号传感器、 ABS系统中的速度传感器、汽车速度表和里程表、液体 物理量检测器、各种用电负载的电流检测及工作状态诊 断、发动机转速及曲轴角度传感器、各种开关等。
例如用在汽车开关电路上的功率霍尔电路,具有 抑制电磁干扰的作用。因为汽车的自动化程度越高,微 电子电路越多,就越怕电磁干扰。而汽车上有许多灯具 和电器件在开关时会产生浪涌电流,使机械式开关触点 产生电弧,产生较大的电磁干扰信号。采用功率霍尔开 关电路就可以减小这些现象。
背景介绍
分数量子霍尔效应
崔琦
Horst Stormer
用高纯度半导体材料,在超低温 环境:仅比绝对零度高十分之一 摄 氏 度 ( 约 - 273℃ ) , 超 强 磁 场 : 当 于 地 球 磁 场 强 度 100 万 倍 研究量子霍尔效应时发现了分数 量子霍尔效应,这个发现使人们
对量子现象的认识更进一步。
第二阶段:从20世纪40年代中期半导体技术出现之后,随着半导体材料、 制造工艺和技术的应用,出现了各种半导体霍尔元件,特别是锗的采用推动 了霍尔元件的发展,相继出现了采用分立霍尔元件制造的各种磁场传感器。
第三阶段;自20世纪60年代开始,,随着集成电路技术的发展,出现了将霍 尔半导体元件和相关的信号调节电路集成在一起的霍尔传感器。进入20世纪 80年代,随着大规模超大规模集成电路和微机械加工技术的进展,霍尔元件 从平面向三维方向发展,出现了三端口或四端口固态霍尔传感器,实现了产 品的系列化、加工的批量化、体积的微型化。霍尔集成电路出现以后,很快 便得到了广泛应用。
中国科学家发现的量子反常霍尔效应也具有极高的应 用前景。量子霍尔效应的产生需要用到非常强的磁场 。而反常霍尔效应与普通的霍尔效应在本质上完全不 同,反常霍尔电导是由于材料本身的自发磁化而产生 的。实现了零磁场中的量子霍尔效应,就有可能利用 其无耗散的边缘态发展新一代的低能耗晶体管和电子 学器件,从而解决电脑发热问题和摩尔定律的瓶颈问 题。这些效应可能在未来电子器件中发挥特殊作用: 无需高强磁场,就可以制备低能耗的高速电子器件, 例如极低能耗的芯片,进而可能促成高容错的全拓扑 量子计算机的诞生——这意味着个人电脑未来可能得 以更新换代。
背景介绍
霍尔效应---应用发展
霍尔效应应被发现100多年以来,它的应用发展经历了三个阶段:
第一阶段:从霍尔效应的发现到20世纪40年代前期。最初由于金属材料中 的电子浓度很大而霍尔效应十分微弱所以没有引起人们的重视。这段时期也 有人利用霍尔效应霍尔效制成磁场传感器,但实用价值不大,到了1910年有 人用金属铋制成霍尔元件,作为磁场传感器。但是,由于当时未找到更合适 的材料,研究处于停顿状态。
背景介绍
霍尔效应
Edwin Hall(1855~1938)
霍尔效应是霍尔 (Hall)24 岁时在美国霍普金斯大学研究生期 间,研究关于载流导体在磁场中的 受力性质时发现的一种现象。
在长方形导体薄板上通以 电流,沿电流的垂直方向施加磁场, 就会在与电流和磁场两者垂直的方 向上产生电势差,这种现象称为霍 尔效应,所产生的电势差称为霍尔 电压。
霍尔效应的应用
1、测量载流子浓度
根据霍尔电压产生的公式,以及在外加磁场中测量的霍尔电压可 以判断传导载流子的极性与浓度,这种方式被广泛的利用于半导体中 掺杂载体的性质与浓度的测量上。
2、霍尔效应还能够测量磁场
在工业、国防和科学研究中,例如在粒子回旋器、受控热核反应 、同位素分离、地球资源探测、地震预报和磁性材料研究等方面,经 常要对磁场进行测量,测量磁场的方法主要有核磁共振法、霍尔效应 法和感应法等。具体采用什么方法,要由被测磁场的类型和强弱来确 定。霍尔效应法具有结构简单、探头体积小、测量快和直接连续读数 等优点,特别适合于测量只有几个毫米的磁极间的磁场,缺点是测量 结果受温度的影响较大。