水体富营养化程度的评价

合集下载

水体富营养化评价方法

水体富营养化评价方法
在江河湖泊和水库中称为水华在海洋中称为赤潮水体富营养化潜在性富营养化评价方法营养状态质量指数评价方法物理指标化学指标生物指标根据coddindip三项参数计算e营养状态指数值进行综合判定根据din活性磷酸盐含量氮磷比结合国家海水水质标准参照生物培养实验结果对水质富营养化情况做出分级
水体富营养化的评价方法
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/ PPT课件下载:/kejian/ 试卷下载:/shiti/ PPT论坛:
加权平均原则基本思路是权与单因素隶属度的乘 积综合反映了样本集因素(ui)对类的隶属情况
2
模糊综合评价法
1.确定评价对象的评价指标: 评价指标的 选取参考《地表水环境质量标准》 (GB3838—2002),同时结合评价体的 现有数据。
3.根据评价指标的隶属函数进行单因素评
价,建立模糊关系矩阵(R);根据各指
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/ PPT课件下载:/kejian/ 试卷下载:/shiti/ PPT论坛:
定义
主成分 分析法
特点
主成分分析法的应用具有其 拘束性,要求变量之间具有 较好的相关性
主成分分析是通过变量变换 把注意力集中在具有最大变 差的那些主成分上,而视变 差不大的主成分为常数予以 舍弃;
主成分分析中的L 阵是唯一的 正交阵;
主成分分析由可观测原变量 (x)直接求得主成分(y), 并可逆。
3
实例分析(以北京三大湖库水源地为例-主成分分析法)

富营养化评价方法

富营养化评价方法

富营养化评价方法
富营养化评价方法通常包括以下几个方面:
1. 水质评价:通过监测水体中的氮、磷等养分含量,以及水体的浑浊度、溶解氧含量等指标,来评估水体富营养化的程度。

2. 植物评价:通过调查和监测水体中的水生植物种类、数量和分布情况,以及植物的生长状况和富营养化相关的指标(如叶绿素含量),来评估富营养化对水生植物群落的影响。

3. 浮游植物评价:通过监测水体中的浮游植物种类、数量和分布情况,以及浮游植物的生长状况和富营养化相关的指标(如叶绿素含量),来评估富营养化对浮游植物群落的影响。

4. 湖泊营养状态指数(TN/TP比值):通过测量水体中的总氮(TN)和总磷(TP)的浓度,计算出TN/TP的比值,来评估水体的富营养化状态。

较高的TN/TP比值通常表示水体富营养化程度较高。

5. 富营养化指数(TSI):TSI是一种综合评价指标,通过综合考虑水质、植物和浮游植物等多个方面的指标,来评估水体富营养化的程度。

不同的TSI计算方法会根据具体的指标和参数设定不同的权重。

这些评价方法可以单独或组合使用,根据具体情况选择最合适的评价方法,从而有效评估富营养化的程度。

水体富营养化的评价及调控

水体富营养化的评价及调控

农业与生态环境98科技资讯 SC I EN C E & TE C HN O LO G Y I NF O R MA T IO N当水体中氮、磷等营养物质过量时,就会出现富营养化的情况,这时水中某些藻类和水生植物会异常增殖,致使水质变坏等,严重破坏了水生生态系统。

水体富营养化一般发生在水体流动性不高且水体更新时间较长的水域。

而这种水体现象在我国很严重。

淡水水域中,大部分的湖泊及水库都出现过富营养化(也被称作为“水华”),而“赤潮”(就是海域的水体富营养化)也不容乐观。

20世纪以前,只有少数海域发生过赤潮;而进入21世纪后,除去个别海域(比如:南海)还好,剩下的其他海域都经常爆发大面积的赤潮。

而这种现象现在还在往更频繁、更大面积、更恶劣的趋势发展[1]。

目前,世界上大多数发达国家都对水体富营养化的问题引起了很大的重视,很多的权威专家对此问题都进行了比较全面系统的研究。

而该文主要就采用王维[2]的方法之一模糊综合评价法进行评价,进而采取相应措施进行调控降低水体富营养化程度。

1 问题重述水体富营养化在全世界都很普遍。

而现在,随着世界的发展,人口数量增长迅速,生态环境也终将会受到更大的影响。

伴随着水生生态环境被破坏,人类的生活质量将受到影响,人类的身体也将会受到危害。

而我国是一个多湖泊、水库以及海域的国家,对于水体富营养化的问题尤为重要,为此,有必要对水体富营养化的问题设计合理的指标体系,建立模型进行分析,并提出可行有效的建议。

2 水体富营养化的问题分析2.1 水体富营养化的成因分析水体富营养化是由于水体中含有的氮、磷等可利用的营养物质较多,导致藻类繁殖泛滥而造成的。

根据研究发现:氮、磷等营养物质的来源比较繁琐,所以水体富营养化的形成伴随着很多的因素,自然因素算一个,人为因素也算一个[1]。

2.1.1 自然因素除了营养物质之外,还有一些自然因素也会促使水体出现富营养化问题,比如:冰体的深度,流度及气候环境等因素。

水体富营养化程度的评价

水体富营养化程度的评价

实验八水体富营养化程度的评价富营养化(Eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量急剧下降,水质恶化,鱼类及其他生物大量死亡的现象。

在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。

这种自然过程非常缓慢,常需几千年甚至上万年。

而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可在短期内出现。

水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。

水体富养化严重时,湖泊可被某些水生植物及其残骸淤塞,成为沼泽甚至干地。

局部海区可变成“死海”,或出现“赤潮”。

植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。

每人每天带进污水中的氮约50 g。

生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50~80%流入江河、湖海和地下水体中。

许多参数可用作水体富营养化的指标,常用的有总磷、叶绿素-a含量和初级生产率的大小(见表8-1)。

表8-1 水体富营养化程度划分富营养化程度初级生产率/mg O2·m·日总磷/ µg·L无机氮/ µg·L 极贫0~136 <0.005 <0.200贫-中0.005~0.010 0.200~0.400中137~409 0.010~0.030 0.300~0.650 中-富0.030~0.100 0.500~1.500富410~547 >0.100 >1.500一、实验目的1. 掌握总磷、叶绿素-a及初级生产率的测定原理及方法。

2. 评价水体的富营养化状况。

二、仪器和试剂1. 仪器(1)可见分光光度计。

(2)移液管:1 mL、2 mL、10 mL。

(3)容量瓶:100 mL、250 mL。

(4)锥型瓶:250 mL。

河流富营养化评价标准

河流富营养化评价标准

河流富营养化评价标准
富营养化是水体中由于营养物质过量积累而导致水生生物群落结构异常变化,水体透明度降低,水质恶化的过程。

富营养化的水体通常具有蓝藻大量繁殖、水质恶化、水中溶解氧减少、鱼类死亡等特点。

为了评估河流的富营养化程度,以下是一些常用的评价标准:1. 水体中氮、磷含量
水体中的氮、磷含量是衡量水体富营养化程度的重要指标。

一般来说,水体中的氮、磷含量越高,水体的富营养化程度就越高。

通常使用总氮(TN)、总磷(TP)和可溶性磷(DP)等指标来表示水体中的氮、磷含量。

2. 生化需氧量(BOD)
生化需氧量是指水体中在一定温度下,有机物分解所需的微生物分解作用所消耗的溶解氧量。

BOD值越高,说明水体中有机物含量越高,水体的富营养化程度也可能越高。

3. pH值
pH值是衡量水体酸碱度的指标,对于河流来说,通常要求pH值在6.5-8.5之间。

如果pH值过低或过高,都可能对水生生物产生不利影响,导致水体的富营养化程度增加。

4. 叶绿素-a含量
叶绿素-a是浮游植物的主要光合色素,它可以反映水体中浮游植物的丰富程度。

叶绿素-a含量越高,说明水体中的浮游植物越丰富,水体的富营养化程度也可能越高。

5. 透明度(SD)
透明度是指水体的清澈程度,它反映了水体中悬浮物和浮游植物的多少。

一般来说,透明度越低,说明水体中的悬浮物和浮游植物越多,水体的富营养化程度越高。

以上这些指标都可以用来评估河流的富营养化程度。

在实际评价中,通常会根据具体情况选择其中的几个指标进行综合评价。

同时,还需要注意数据的准确性和可靠性,以保证评价结果的客观性和准确性。

水体富营养化评价标准

水体富营养化评价标准

水体富营养化评价标准水体富营养化是指水体中富含大量营养物质,特别是氮、磷等营养盐,导致水体生物生长异常旺盛,水质恶化,水生态系统失衡的现象。

富营养化不仅影响水质,还对水生态环境造成严重破坏,因此对水体富营养化进行评价具有重要的意义。

本文将从水体富营养化的定义、影响因素、评价指标和方法等方面进行探讨。

一、水体富营养化的定义。

水体富营养化是指由于外源性氮、磷等营养物质的输入过量,导致水体中富含营养物质,从而引发水生态系统失衡,水质恶化的现象。

富营养化的主要表现是水体中藻类、水生植物等生物大量繁殖,引发水华、赤潮等现象,严重影响水体的透明度、溶解氧含量等水质指标,破坏水生态系统的平衡。

二、水体富营养化的影响因素。

1. 氮、磷等营养物质的输入,工业废水、农业化肥、城市污水等都是导致水体富营养化的主要原因,其中以农业面源污染为主要来源。

2. 水体环境条件,水温、光照、流速等环境条件对水体富营养化的发展起着重要作用,适宜的环境条件有利于富营养化的发展。

3. 水体生物群落,水体中的浮游植物、底栖生物等对水体富营养化的发展也有一定影响,它们的数量和种类会影响水体中营养物质的吸收和释放。

三、水体富营养化的评价指标。

1. 溶解氧含量,富营养化会导致水体中藻类大量繁殖,消耗大量溶解氧,导致水体溶解氧含量下降。

2. 叶绿素a含量,叶绿素a是藻类的主要色素,其含量可以反映水体中藻类的数量和分布情况。

3. 透明度,富营养化会导致水体中藻类大量繁殖,使水体透明度下降,影响水生态系统的正常运行。

4. 水华发生频率,水华是富营养化的一种表现形式,通过水华发生频率可以评价水体富营养化的程度。

四、水体富营养化的评价方法。

1. 实地调查,通过实地采样、监测和调查,获取水体中营养盐、叶绿素a含量、水华发生情况等数据,对水体富营养化进行评价。

2. 水质模型模拟,利用水质模型对水体富营养化进行模拟和预测,通过模型模拟可以更加客观地评价水体富营养化的程度。

水体富营养化评价与治理资料

水体富营养化评价与治理资料
⑴ 导致水质富营养化的氮、磷营养物质既有天然源,又有人为 源;既有外源性,又有内源性;既有点源,又有非点源,这给控制污 染源带来了显而易见的困难。
⑵ 营养物质去除难度高。至今还没有任何单一的生物学、化学 和物理措施能够彻底去除废水中的氮、磷营养物质。通常的二级生化 处理方法,只能去除 30%~50%的氮和磷。
深层曝气适用于湖水较深而出现厌氧层的水体。磷容易在厌氧条 件下从底泥中释放出来,采取定期或不定期人为湖底深层曝气充氧, 使水与底泥面之间不出现厌氧层,有利于抑制底泥磷释放,对改善水 质有利。
注水冲稀的一种手段是在有条件的地方,用含磷和氮浓度低的水 注入湖泊,起到稀释营养物质浓度的作用,这对控制水华现象,提高 水体透明度等有一定作用,但营养物绝对量并未减少,不能从根本上 解决问题;另一种手段是换水,这是针对临江湖泊的方案,起到江水 取代湖水,以流动的贫营养水代替停滞的富营养水的目的。
水体富营养化程度的评价指标分为物理指标、化学指 标和生物学指标。物理指标主要是透明度,化学指标包括 溶解氧和氮、磷等营养物质浓度等,生物学指标包括优势 浮游生物种类、生物群落结构与多样性和生物现存量(如 生物量、叶绿素a)等。
目 前 一 般 采 用 的 标 准 是 : 水 体 中 氮 含 量 超 过 0.2~0. 3mg/L, 磷 含 量 大 于 0.01~0.02mg/L, 生 化 需 氧 量 大 于 10mg/L,pH值7~9的淡水中细菌总数每毫升超过10万个 ,表征藻类数量的叶绿素-a含量大于10 umg/L.
水体富营养化评价与治理
2012年8月 武汉东湖 蓝藻水华
赤潮
水体富营养化
水体富营养化(eutrophication)是指在人类活动的影
响下,氮、磷等营养物质大量进入湖泊、河口、海湾等 缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶 解氧量下降,水质恶化,鱼类及其他生物大量死亡的现 象。这种现象在河流湖泊中出现称为水华,在海洋中出

第1.1节 水体富营养化的指标

第1.1节 水体富营养化的指标

水体富营养化的指标
富营养化或水体中富含营养物质会对水体的健康和生态产生负面影响。

有几个指标可用于衡量水体中的富营养化程度:
1.叶绿素-a浓度:叶绿素-a是一种存在于藻类和其他水生植物中的色素,其在水体中的
浓度常被用作营养富集的指标。

高水平的叶绿素-a可能表明存在过量的营养物质,这可能导致藻华和其他形式的氧气消耗。

2.总磷和氮浓度:磷和氮是水生植物生长所必需的两种营养素,但过量会导致富营养化。

测量水体中磷和氮的总浓度可以指示营养富集水平。

3.溶解氧(DO)水平:水生生物呼吸需要氧气,水体中溶解氧(DO)水平低可能是富
营养化的标志。

水中过量的营养物质会导致藻类和其他水生植物过度生长,这会在分解时耗尽水中的氧气。

4.pH值:水体的pH值是衡量其酸度或碱度的指标。

水体pH值的变化可能是富营养化的
标志,因为过量的营养物质会改变水的化学平衡。

5.底栖大型无脊椎动物:底栖大型无脊椎动物是生活在水体沉积物中的小动物,对水质变
化敏感。

某些种类的大型无脊椎动物的存在与否可用作富营养化的指标。

富营养化评价方法

富营养化评价方法

富营养化评价方法富营养化是指水体或土壤中营养物质浓度过高,导致水体或土壤生态系统失去平衡的现象。

富营养化的主要原因是人类活动过程中的过度施肥、排污和土地利用变化等。

为了准确评价富营养化程度,科学家们开发了各种富营养化评价方法。

本文将介绍几种常用的富营养化评价方法。

1. 营养盐浓度法营养盐浓度法是最常见也是最直接的富营养化评价方法之一。

通过测量水体或土壤中营养盐的浓度,如氮、磷、钾等,来判断其富营养化程度。

一般来说,氮、磷是水体富营养化的主要指标。

当水体中氮、磷浓度超过一定阈值时,即可判断为富营养化。

2. 叶绿素浓度法叶绿素是植物光合作用的关键物质,也是评价水体富营养化的重要指标之一。

通过测量水体中叶绿素的浓度,可以评估水体中藻类和其他植物的生长情况,从而判断富营养化的程度。

叶绿素浓度法常用于湖泊和水库等水体的富营养化评价。

3. 生物指标法生物指标法是通过观察和统计水体或土壤中的生物群落结构和特征来评价富营养化程度的方法。

常用的生物指标包括浮游植物的种类和数量、底栖动物的丰富度和多样性等。

富营养化水体中,浮游植物种类会增多,底栖动物的丰富度和多样性会降低,这些变化都可以用来评价富营养化的程度。

4. 水质指数法水质指数法是将多个水质指标综合考虑来评价富营养化程度的方法。

常用的水质指标包括溶解氧、浊度、氨氮、硝酸盐氮、总磷等。

通过将这些指标进行加权平均或综合计算,得到一个综合水质指数,从而评价富营养化的程度。

水质指数法可以综合考虑多个指标,更全面地评价富营养化程度。

5. 水质模型法水质模型法是一种基于数学模型的富营养化评价方法。

通过建立数学模型,模拟富营养化过程中的营养物质迁移和转化过程,预测水体中的富营养化程度。

水质模型法需要大量的数据和专业知识来建立模型,但可以提供较为准确的富营养化评价结果。

富营养化评价方法多种多样,可以从不同角度评估富营养化的程度。

不同的评价方法有各自的优缺点,可以根据具体情况选择合适的评价方法。

实验三 水体富营养化程度的评价(共享)

实验三 水体富营养化程度的评价(共享)

实验三水体富营养化程度的评价(共享)水体富营养化是指水体中的营养物质过度富集,导致生物生长过度而影响水生态系统的稳定性和水质环境。

评价水体富营养化的程度是对水环境进行保护和治理的重要依据。

本实验将介绍几种常用的水体富营养化程度评价方法。

一、总氮和总磷浓度评价法总氮和总磷是导致水体富营养化的主要营养物质。

通过测定水体中的总氮和总磷浓度来判断水体富营养化的程度。

根据国家标准《地表水环境质量标准》(GB 3838-2002)中,对于湖泊、水库、坑塘等静态水体,总氮浓度标准为 1.0 mg/L,超过这一标准即为富营养化。

对于河流等动态水体,总氮浓度标准为 3.0 mg/L,超过这一标准也为富营养化。

二、叶绿素浓度评价法水体富营养化导致水中蓝藻、浮游植物等生物过度生长,促进叶绿素的积累。

通过测定水体中叶绿素 a 浓度来评价水体富营养化的程度。

叶绿素 a 是叶绿体中的主要成分,也是评价水中藻类生物量的指标。

三、营养盐指数评价法营养盐指数(Trophic State Index,TSI)是评价水体富营养化的一种综合指标,它包括水的透明度、浮游植物生物量、总磷和总氮等因素。

TSI 值越大,水体富营养化程度越高。

TSI 是通过测量透明度、总磷和总氮以及浮游植物生物量计算得出,可以根据下表计算TSI 值:|指标(单位)|TSI 分值||:--------:|:--------:||透明度(m)|10(INT (100/S))||总氮(mg/L)|10(INT (100/(1+s))^1.5)||总磷(mg/L)|10(INT (100/(1+p)))||浮游植物(mg/L)|10(INT (100/(1+u)))|其中,s、p、u 分别为总氮、总磷和浮游植物生物量对应的潜在比例。

INT 表示向下取整。

根据国家标准《地表水环境质量标准》(GB 3838-2002)中,TSI 值为 40 以下为清洁水体,40-50为轻度富营养化,50-60为中度富营养化,60 以上为严重富营养化。

实验三 水体富营养化程度的评价

实验三 水体富营养化程度的评价

实验三水体富营养化程度的评价富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。

在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。

这种自然过程非常缓慢,常需几千年甚至上万年。

而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现。

水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。

水体富养化严重时,湖泊可被某些繁生植物及其残骸淤塞,成为沼泽甚至干地。

局部海区可变成“死海”,或出现“赤潮”现象。

植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。

每人每天带进污水中的氮约50 g。

生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中。

许多参数可用作水体富营养化的指标,常用的是总磷、叶绿素-a含量和初级生产率的大小(见表7-1)。

一、实验目的1. 掌握总磷、叶绿素-a及初级生产率的测定原理及方法。

2. 评价水体的富营养化状况。

二、仪器设备及试剂1. 仪器(1) 可见分光光度计。

(2) 移液管:1mL、2mL、10mL。

(3) 容量瓶:100mL、250mL。

(4) 锥型瓶:250mL。

(5) 比色管:25mL。

(6) BOD瓶:250mL。

(7) 具塞小试管:10mL。

(8) 玻璃纤维滤膜、剪刀、玻棒、夹子(9) 多功能水质检测仪2. 试剂(1) 过硫酸铵(固体)。

(2) 浓硫酸。

(3) 1 mol/L硫酸溶液。

(4) 2 mol/L盐酸溶液。

(5) 6 mol/L氢氧化钠溶液。

(6) 1%酚酞:1g酚酞溶于90mL乙醇中,加水至100mL。

(7) 丙酮:水(9:1)溶液。

(8) 酒石酸锑钾溶液:将4.4gK(SbO)C4H4O6 ·1/2H2O溶于200mL蒸馏水中,用棕色瓶在4℃时保存。

水体富营养化程度分析评价

水体富营养化程度分析评价

水体富营养化程度分析评价水体富营养化(eutrophication)是指在人类活动的影响下,氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。

提到富营养化,普遍想到的就是营养盐总磷、总氮超标。

诚然,总磷总氮等营养盐是发生富营养化的必要条件。

如果水体中总磷总氮浓度很低,不可能发生富营养化;但是,反之则不然,水体中总磷总氮浓度的升高,并不一定能发生富营养化问题。

富营养化发生发展是由于水体整个环境系统出现失衡,导致某种优势藻类大量繁殖生长的过程。

因此,了解富营养化的发生机理和发生条件,实质上需要了解的是藻类生长繁衍的过程。

尽管对于不同的水域,由于区域地理特性、自然气候条件、水生生态系统和污染特性等诸多差异,会出现不同的富营养化表现症状,也即出现不同的优势藻类种群,并连带出现各种不同类型的水生生物种类的失衡。

但是,富营养氧化发生所需的必要条件基本上是一样的,最主要影响因素可以归纳为以下三个方面:(1)总磷、总氮等营养盐相对比较充足;(2)缓慢的水流流态;(3)适宜的温度条件;只有在三方面条件都比较适宜的情况下,才会出现某种优势藻类"疯"长现象,爆发富营养化。

其中的水流流态主要指以流速、水深为要素的水流结构。

一、水体富营养化的主要原因:水体富营养化的根本原因是营养物质的增加。

一般认为主要是磷,其次是氮,可能还有碳、微量元素或维生素等。

受控生态系统装置和试验湖区的研究结果表明磷是主要“限制因子”。

Vollenweider等关于磷负荷和初级生产关系的研究也表明磷的重要性.在氮磷比低于10: 1时,或在某个季节,氮也可能成为限制因子。

导致富营养化的营养物按其来源可分为点源和非点源(或面源)。

前者是排放集中、位置固定的污染源,也较容易测定:非点源污染是通过地表径流、降水、地下水等进入水体,较难以测定和控制。

水体富营养化评价方法

水体富营养化评价方法

水体富营养化评价方法-CAL-FENGHAI.-(YICAI)-Company One12 为了进一步认识调查区域水质状况,我们采用了TLI 综合营养指数法运用TP 、TN 、SD 、COD Mn 对其水质进行评价。

综合营养状态指数公式:j 1()()mj TLI W TLI j ==•∑∑ (1) TLI(chl)=10+(2) TLI(TP)=10+(3) TLI(TN)=10+(4) TLI(SD)=10 TLI(COD)=10+式中,TLI (∑)表示综合营养状态指数;TLI (j )代表第j 种参数的营养状态指数;W j 为第j 种参数的营养状态指数的相关权重。

以chla 为基准参数,则第j 种参数的归一化的相关权重计算公式为:221ij mij j rWj r==∑ r ij 为第j 种参数与基准参数chla 的相关系数;m 为评价参数的个数。

中国湖泊的chla 与其他参数之间的相关关系r ij 和r 2ij 见表2。

表1 中国湖泊的chla 与其他参数之间的相关关系r ij 和r 2i 值 参数chla TP TN SD COD Mn r ij1 r 2ij 1为了说明湖泊富营养状态情况, 采用0~100的一系列连续数字对湖泊营养状态进行分级:TL I < 30 贫营养(Oligotropher)30≤ TL I ≤50 中营养(Mesotropher)TL I > 50 富营养(Eutropher)50< TL I ≤60 轻度富营养( lighteutropher)60< TL I ≤70 中度富营养(Middleeutropher)TL I > 70 重度富营养(Hypereutropher)在同一营养状态下, 指数值越高, 其营养程度越重。

水体富营养化程度的评价实验报告

水体富营养化程度的评价实验报告

水体富营养化程度的评价实验报告一、实验目的水体富营养化是当前面临的重要环境问题之一,本实验旨在通过对特定水体样本的分析和检测,评价其富营养化程度,为水资源的保护和管理提供科学依据。

二、实验原理水体富营养化主要是由于氮、磷等营养物质的过量输入,导致藻类等水生生物大量繁殖。

评价水体富营养化程度通常基于对水体中营养盐(如总氮、总磷)、叶绿素a 含量、透明度以及化学需氧量(COD)等指标的测定。

三、实验材料与仪器1、水样采集器2、实验室常用玻璃仪器(如容量瓶、移液管、比色管等)3、分光光度计4、消解装置5、总氮、总磷测定试剂盒6、塞氏盘四、实验步骤1、水样采集选择具有代表性的水体,使用水样采集器在不同深度和位置采集水样,混合均匀后装入干净的采样瓶中,尽快带回实验室进行分析。

2、指标测定(1)总氮(TN)的测定采用碱性过硫酸钾消解紫外分光光度法。

取适量水样于消解管中,加入碱性过硫酸钾溶液,在高温高压下消解,冷却后用紫外分光光度计在 220nm 和 275nm 处测定吸光度,计算总氮含量。

(2)总磷(TP)的测定采用钼酸铵分光光度法。

取适量水样加入过硫酸钾溶液进行消解,消解完成后加入钼酸铵试剂和抗坏血酸溶液,显色后用分光光度计在700nm 处测定吸光度,计算总磷含量。

(3)叶绿素 a 的测定水样经过滤后,用丙酮提取叶绿素 a,提取液在分光光度计 663nm和 645nm 处测定吸光度,计算叶绿素 a 的含量。

(4)透明度的测定使用塞氏盘在现场垂直放入水中,直至刚刚看不见盘体,记录深度即为透明度。

(5)化学需氧量(COD)的测定采用重铬酸钾法,在水样中加入一定量的重铬酸钾和硫酸银硫酸溶液,在加热回流条件下反应,然后用硫酸亚铁铵溶液滴定剩余的重铬酸钾,计算化学需氧量。

五、实验结果与分析1、实验数据记录将测定的各项指标数据记录在下表中:|水样编号|总氮(mg/L)|总磷(mg/L)|叶绿素 a(mg/L)|透明度(m)| COD(mg/L)||||||||| 1 |____ |____ |____ |____ |____ || 2 |____ |____ |____ |____ |____ || 3 |____ |____ |____ |____ |____ |2、富营养化评价标准根据相关标准和研究,通常采用以下指标来评价水体富营养化程度:|富营养化程度|总氮(mg/L)|总磷(mg/L)|叶绿素 a (mg/L)|透明度(m)| COD(mg/L)|||||||||贫营养|<02 |<002 |<0005 |>6 |<15 ||中营养| 02 05 | 002 005 | 0005 002 | 3 6 | 15 25 ||富营养|>05 |>005 |>002 |<3 |>25 |3、结果分析(1)将测定的各项指标数据与评价标准进行对比,判断水体的富营养化程度。

湖泊富营养化评价方法及分级标准

湖泊富营养化评价方法及分级标准

湖泊富营养化评价方法及分级标准1. 外部养分负荷评价法是一种常用的湖泊富营养化评价方法,该方法通过分析和计算湖泊接受的外部养分负荷和湖泊自身的处理能力来评价湖泊的富营养化程度。

2. 水质监测法是湖泊富营养化评价的常用方法之一,通过定期监测湖泊的水质参数,如营养盐浓度和浊度等,来评估湖泊的营养状态。

3. 水华发生频率评价法是评价湖泊富营养化程度的一种方法,通过记录和统计湖泊发生水华的频率和规模来评估湖泊的富营养化程度。

4. 湖泊透明度评价法是一种常用的湖泊富营养化评价方法,透明度是反映湖泊内溶解性物质、浮游生物等因子的重要指标,透明度较低可能表明湖泊存在富营养化问题。

5. 氯叶藻生物量评价法是一种常用的湖泊富营养化评价方法,通过测量湖泊水体中的氯叶藻生物量来评估湖泊的富营养化程度。

6. 叶绿素a浓度评价法是一种常用的湖泊富营养化评价方法,叶绿素a是湖泊中浮游植物的重要生物标志物,测量湖泊水体中的叶绿素a浓度可以反映湖泊的富营养化状态。

7. 湖泊底泥养分含量评价法是一种常用的湖泊富营养化评价方法,通过分析湖泊底泥中的养分含量,如氮、磷等元素,来评估湖泊的富营养化程度。

8. 藻类多样性评价法是一种常用的湖泊富营养化评价方法,通过调查和记录湖泊中不同种类藻类的物种组成和数量来评估湖泊的富营养化水平。

9. 湖泊生态系统变化评价法是一种综合评价湖泊富营养化程度的方法,通过分析湖泊生态系统的组成和结构变化,如鱼类种群结构和水生植物分布等,来评估湖泊的富营养化程度。

10. 湖泊生物群落结构评价法是一种常用的湖泊富营养化评价方法,通过调查和记录湖泊生物群落的组成和结构,如浮游植物和动物种群的密度和多样性等,来评估湖泊的富营养化程度。

11. 水生植物覆盖度评价法是一种常用的湖泊富营养化评价方法,通过测量湖泊中水生植物的覆盖度来评估湖泊的富营养化程度。

12. 水体色度评价法是一种常用的湖泊富营养化评价方法,水体的颜色和透明度可以反映湖泊水质的改变,较高的颜色值可能与富营养化有关。

水体富营养化程度分析评价

水体富营养化程度分析评价

水体富营养化程度分析评价水体富营养化(eutrophication)是指在人类活动的影响下,氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。

提到富营养化,普遍想到的就是营养盐总磷、总氮超标。

诚然,总磷总氮等营养盐是发生富营养化的必要条件。

如果水体中总磷总氮浓度很低,不可能发生富营养化;但是,反之则不然,水体中总磷总氮浓度的升高,并不一定能发生富营养化问题。

富营养化发生发展是由于水体整个环境系统出现失衡,导致某种优势藻类大量繁殖生长的过程。

因此,了解富营养化的发生机理和发生条件,实质上需要了解的是藻类生长繁衍的过程。

尽管对于不同的水域,由于区域地理特性、自然气候条件、水生生态系统和污染特性等诸多差异,会出现不同的富营养化表现症状,也即出现不同的优势藻类种群,并连带出现各种不同类型的水生生物种类的失衡。

但是,富营养氧化发生所需的必要条件基本上是一样的,最主要影响因素可以归纳为以下三个方面:(1)总磷、总氮等营养盐相对比较充足;(2)缓慢的水流流态;(3)适宜的温度条件;只有在三方面条件都比较适宜的情况下,才会出现某种优势藻类"疯"长现象,爆发富营养化。

其中的水流流态主要指以流速、水深为要素的水流结构。

一、水体富营养化的主要原因:水体富营养化的根本原因是营养物质的增加。

一般认为主要是磷,其次是氮,可能还有碳、微量元素或维生素等。

受控生态系统装置和试验湖区的研究结果表明磷是主要“限制因子”。

Vollenweider等关于磷负荷和初级生产关系的研究也表明磷的重要性.在氮磷比低于10: 1时,或在某个季节,氮也可能成为限制因子。

导致富营养化的营养物按其来源可分为点源和非点源(或面源)。

前者是排放集中、位置固定的污染源,也较容易测定:非点源污染是通过地表径流、降水、地下水等进入水体,较难以测定和控制。

水体富营养化程度的评价误差分析

水体富营养化程度的评价误差分析

水体富营养化程度的评价误差分析
水体富营养化程度的评价实验目的1.了解水体富营养化评价方法2.掌握总磷、总氮测定方法3.评价水体(情人坡、外山村河、风则江)富营养化程度
二、方法原理总磷(磷钼蓝法):在酸性溶液中,将各种形态的磷转化成磷酸.根离子(PO43-)。

随之用钳酸铵和酒石酸锑钾与之反应,生成磷钳锑杂多酸,再用抗坏血酸把它还原为深色钥蓝。

砷酸盐与磷酸盐一样也能生成钼蓝,0.1ug/mL的砷就会干扰测定。

六价铬、二价铜和亚硝酸盐能氧化钼蓝,使测定结果偏低。

总氮(碱性过硫酸钾氧化紫外检测法):总氮测定方法通常采用过硫酸钾氧化,使有机氮和无机氮化合物转变为硝酸盐后,再可将水样中的氨氮和亚硝酸盐氮氧化为硝酸盐,同时将水样中大部分有机氮化合物氧化为硝酸盐。

而后,用紫外分光光度法分别于波长220nm 与275nm处测定其吸光度,按A=A220-2A275计算硝酸盐氮的吸光度值,从而计算总氮的含量。

其摩尔吸光系数为1.47X103L/(mol*cm)干扰及消除:①水样中含有六价铬离子及三价铁离子时,可入5%盐酸羟胺溶液1~2mI 以消除其对测定的影响。

②碘离子及溴离了对测定有干扰。

测定20ug硝酸盐氮时,碘离子含量相对于总氮含量的0.2倍时
无干扰;溴离子含量相对于总氮含量的3.4倍时无干扰。

③碳酸盐及碳酸氢盐对测定的影响,在加入一定量的盐酸后可消除。

④硫酸盐及氯化物对测定无影。

水体富营养化治理技术的效果评估

水体富营养化治理技术的效果评估

水体富营养化治理技术的效果评估在当今社会,随着工业化和城市化进程的加速,水体富营养化问题日益严重,成为了环境保护领域的一个重要挑战。

水体富营养化是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河流、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。

为了解决这一问题,科学家们研发了多种治理技术,然而,这些技术的效果如何,需要进行科学、全面的评估。

一、常见的水体富营养化治理技术1、物理治理技术物理治理技术主要包括人工打捞、底泥疏浚和引水换水等方法。

人工打捞可以直接去除水体中的藻类和漂浮物,但这种方法工作量大,且只能解决表面问题。

底泥疏浚能够减少水体内部的营养盐含量,但操作复杂,成本较高。

引水换水可以在一定程度上稀释水体中的营养物质,但需要有充足的清洁水源。

2、化学治理技术化学治理技术通常使用化学药剂来抑制藻类的生长或沉淀水中的营养物质。

例如,使用硫酸铜可以杀死藻类,但同时也可能对其他水生生物造成危害。

化学沉淀剂如铁盐、铝盐等能够与磷结合形成沉淀,但过量使用可能会导致水体化学性质的改变。

3、生物治理技术生物治理技术是利用生物的代谢作用来去除水体中的营养物质。

常见的方法有种植水生植物、投放微生物菌剂和构建水生动物群落等。

水生植物通过吸收氮、磷等营养物质来生长,同时还能为水生动物提供栖息地和食物。

微生物菌剂可以分解有机污染物和转化营养物质。

合理构建水生动物群落,如鱼类、贝类等,可以控制藻类的生长,维持水体生态平衡。

二、治理技术效果评估的指标1、水质指标水质指标是评估治理效果的最直接依据。

常见的水质指标包括总氮、总磷、叶绿素 a 含量、化学需氧量(COD)、溶解氧(DO)等。

总氮和总磷的浓度下降,表明水体中营养物质的输入得到了控制。

叶绿素 a 含量的降低反映藻类生长受到抑制。

COD 的减少说明水体中有机物的污染减轻,DO 的增加则表示水体自净能力增强。

富营养化程度的评价水中总磷的测定

富营养化程度的评价水中总磷的测定

水体富营养化程度的评价水中总磷的测定(快速消解光度法)富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。

水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。

许多参数可作为水体富营养化的指标,常用的是总磷、总氮、叶绿素-a含量和初级生产率等。

本实验通过测定天然水体中的总磷,来判断水体的富营养化程度。

总磷与水体富营养化程度的关系富营养化程度极贫贫-中中中-富富总磷/ mg·L-1<0.005 0.005~0.010 0.010~0.030 0.030~0.100 >0.100[实验目的]1.掌握总磷的测定原理及方法2.评价水体的富营养化状况[实验原理]一般地面水在硫酸的酸性条件下,加入一定量的过硫酸铵为氧化剂,加热或高温高压消解,将各种形态的磷转化成磷酸根离子(PO43-),随后用钼酸铵和酒石酸锑钾与之反应,生成磷钼锑杂多酸,再用抗坏血酸把它还原为深色钼蓝。

砷酸盐与磷酸盐一样也能生成钼蓝,0.1μg/mL的砷就会干扰测定。

此外,六价铬、二价铜和亚硝酸盐能氧化钼蓝,使测定结果偏低。

[主要仪器和试剂]1.仪器1)多功能水质速测仪,2)电子天平3)快速消解仪4)移液管:1 mL,10 mL,100 mL5)消解管:10 mL2.试剂1)过硫酸钾K2S2O8(固体)(分析纯)或过硫酸铵(固体)(分析纯)2)浓硫酸(分析纯)3)硫酸溶液:1:1(v:v)4)钼酸盐混合试剂:分别称取0.21 g 固体酒石酸锑氧钾(K(SbO)C4H4O6·1/2H2O)和7.8 g 钼酸铵((NH 4)6Mo 7O 24·4H 2O )全部溶解于100 mL 1:1(v:v )硫酸溶液中。

如混合试剂有浑浊,须摇动混合试剂,并放置几分钟,至澄清为止。

水体富营养化

水体富营养化

太湖
白洋淀
模糊综合评法:
模糊综合评判法是模糊数学中一种函数型指数法,它把污 染物超标值、水质质量分级标准、污染物在总体污染中 的贡献等几个方面联系在一起,形成一种评价函数,它包 含的数学信息广泛,避免了综合指数法不能真实反映水体 污染状况、模式分辨性及可比性差等缺点,因此广泛应用 于水质综合评价中。
综合指数评价法的步骤
1、确定综合评价指标体系,这是综合评价的基础和依 据。 2、收集数据,并对不同计量单位的指标数据进行同度 量处理。 3、确定指标体系中各指标的权数,以保证评价的科学 性。
4、对经过处理后的指标在进行汇总计算出综合评价指 数或综合评价分值。
5、根据评价指数或分值对参评单位进行排序,பைடு நூலகம்由此 得出结论。
富营养化评价指标:
1)水体中含氮量大于0.2~0.3mg/L,含 磷量大于0.01mg/L。 2)生化需氧量大于10mg/L。 3)在淡水中细菌总量达到104个/毫升 。 4)标志藻类生长的叶绿素a浓度大于 10μg/L。
程度划分指标
氮磷比对水华蓝藻优势形成的影响
在太湖蓝藻水华暴发期间,监测了梅梁湾和湖心区水体叶绿素a浓度 和氮磷营养盐结构变化,以探讨N/P比对蓝藻优势形成的影响.结果 表明,N/P比对铜绿微囊藻和斜生栅藻生长的影响并不表现在一个确 定值上,而与水体氮磷的绝对浓度有关,在0.02mg/L磷浓度下,铜绿微 囊藻和斜生栅藻在N/P比为4:1~32:1范围内生长速率均较低 (0.067~0.074,0.018~0.022d-1),说明受到营养盐的限制;当磷浓度 达到0.20mg/L时,铜绿微囊藻在N/P比为32:1时生长速率达到最大值 (0.240d-1),斜生栅藻在N/P比为64:1时生长速率达到最大值(0.380 d-1);而在磷浓度升高到2.00mg/L时,不同N/P比下铜绿微囊藻和斜 生栅藻均达到最大生长速率(0.24~0.25,0.378~0.381d-1),说明氮 磷浓度均比较充足,N/P比对生长速率已经没影响.可见,氮磷浓度比 N/P比对两种藻的生长影响更大.与斜生栅藻相比,铜绿微囊藻对氮 磷营养的生理需求和最大生长速率均相对较低,属K策略物种,易在 低氮磷浓度下形成优势.梅梁湾在水华暴发期间氮浓度一直远低于 水华较轻的湖心区,而磷浓度远高于湖心区,进而导致梅梁湾N/P质 量比(低于20:1)在水华期间一直低于湖心区(124:1),低N/P比是蓝藻 水华暴发导致氮浓度下降,磷浓度升高的结果.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验八水体富营养化程度的评价富营养化(Eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量急剧下降,水质恶化,鱼类及其他生物大量死亡的现象。

在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。

这种自然过程非常缓慢,常需几千年甚至上万年。

而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可在短期内出现。

水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。

水体富养化严重时,湖泊可被某些水生植物及其残骸淤塞,成为沼泽甚至干地。

局部海区可变成“死海”,或出现“赤潮”。

植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。

每人每天带进污水中的氮约50 g。

生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50~80%流入江河、湖海和地下水体中。

许多参数可用作水体富营养化的指标,常用的有总磷、叶绿素-a含量和初级生产率的大小(见表8-1)。

表8-1 水体富营养化程度划分富营养化程度初级生产率/mg O2·m·日总磷/ µg·L无机氮/ µg·L 极贫0~136 <0.005 <0.200贫-中0.005~0.010 0.200~0.400中137~409 0.010~0.030 0.300~0.650 中-富0.030~0.100 0.500~1.500富410~547 >0.100 >1.500一、实验目的1. 掌握总磷、叶绿素-a及初级生产率的测定原理及方法。

2. 评价水体的富营养化状况。

二、仪器和试剂1. 仪器(1)可见分光光度计。

(2)移液管:1 mL、2 mL、10 mL。

(3)容量瓶:100 mL、250 mL。

(4)锥型瓶:250 mL。

(5)比色管:25 mL。

(6)BOD瓶:250 mL。

(7)具塞小试管:10 mL。

(8)玻璃纤维滤膜、剪刀、玻棒、夹子。

2. 试剂(1)过硫酸铵(固体)。

(2)浓硫酸。

(3)1 mol/L 硫酸溶液。

(4)2 mol/L 盐酸溶液。

(5)6 mol/L氢氧化钠溶液。

(6)1%酚酞:1 g酚酞溶于90 mL乙醇中,加水至100 mL。

(7)丙酮:水(9:1)溶液。

(8) 酒石酸锑钾溶液:将4.4 g K(SbO)C4H4O6·1/2H2O溶于200 mL蒸馏水中,用棕色瓶在4℃时保存。

(9) 钼酸铵溶液:将20g (NH4)6MO7O24·4 H2O溶于500 mL蒸馏水中,用塑料瓶在4℃时保存。

(10) 抗坏血酸溶液:0.1 mol/L(溶解1.76 g抗坏血酸于100 mL蒸馏水中,转入棕色瓶,若在在4℃时保存,可维持一个星期不变)。

(11) 混合试剂:50 mL 2 mol/L硫酸、5 mL酒石酸锑钾溶液、15 mL钼酸铵溶液和30 mL抗坏血酸溶液。

混合前,先让上述溶液达到室温,并按上述次序混合。

在加入酒石酸锑钾或钼酸铵后,如混合试剂有浑浊,须摇动混合试剂,并放置几分钟,至澄清为止。

若在4℃下保存,可维持1个星期不变。

(12) 磷酸盐储备液(1.00 mg/mL磷):称取1.098 g KH2PO4,溶解后转入250 mL容量瓶中,稀释至刻度,即得1.00 mg/mL磷溶液。

(13) 磷酸盐标准溶液:量取1.00 mL 储备液于100 mL 容量瓶中,稀释至刻度,即得磷含量为10 µg / mL 的工作溶液。

三、实验过程1. 磷的测定(1) 原理在酸性溶液中,将各种形态的磷转化成磷酸根离子(PO 43-)。

随之用钼酸铵和酒石酸锑钾与之反应,生成磷钼锑杂多酸,再用抗坏血酸把它还原为深色钼蓝。

砷酸盐与磷酸盐一样也能生成钼蓝,0.1 µg/mL 的砷就会干扰测定。

六价铬、二价铜和亚硝酸盐能氧化钼蓝,使测定结果偏低。

(2) 步骤① 水样处理:水样中如有大的微粒,可用搅拌器搅拌2~3 min ,以至混合均匀。

量取100 mL 水样(或经稀释的水样)2份,分别放入250 mL 锥型瓶中,另取100 mL 蒸馏水于250 mL 锥型瓶中作为对照,分别加入1 mL 2 mol/L H 2SO 4,3 g (NH 4)2S 2O 8,微沸约1 h ,补加蒸馏水使体积为25~50 mL (如锥型瓶壁上有白色凝聚物,应用蒸馏水将其冲入溶液中),再加热数分钟。

冷却后,加一滴酚酞,并用 6 mol/L NaOH 将溶液中和至微红色。

再滴加 2 mol/L HCl 使粉红色恰好褪去,转入100 mL 容量瓶中,加水稀释至刻度,移取25 mL 至50 mL 比色管中,加1 mL 混合试剂,摇匀后,放置10 min ,加水稀释至刻度再摇匀,放置10 min ,以试剂空白作参比,用1 cm 比色皿, 于波长880 nm 处测定吸光度(若分光光度计不能测定880 nm 处的吸光度,可选择710 nm 波长)。

② 标准曲线的绘制:分别吸取10 µg / mL 磷的标准溶液0.00、0.50、1.00、1.50、2.00、2.50、3.00 mL 于50 mL 比色管中,加水稀释至约25 mL ,加入 1 mL 混合试剂,摇匀后放置10 min ,加水稀释至刻度,再摇匀,10 min 后,以试剂空白作参比,用1 cm 比色皿, 于波长880 nm 处测定吸光度。

(3)结果处理由标准曲线查得磷的含量,按下式计算水中磷的含量:310)/(-⨯=VP L g P i式中,P为水中磷的含量,g/L;P i为由标准曲线上查得磷含量,µg;V为测定时吸取水样的体积(本实验V=25.00mL)。

2. 生产率的测定(1) 原理绿色植物的生产率是光合作用的结果,与氧的产生量成比例。

因此测定水体中的溶解氧含量可看作对生产率的测量。

然而在任何水体中都有呼吸作用产生,要消耗一部分氧。

因此在计算生产率时,还必须测量因呼吸作用所损失的氧。

本实验用测定2只无色瓶和2只深色瓶中相同样品内溶解氧变化量的方法测定生产率。

此外,测定无色瓶中氧的减少量,提供校正呼吸作用的数据。

(2) 实验过程①取四只BOD瓶,其中两只用铝箔包裹使之不透光,这些分别记作“亮”和“暗”瓶。

从一水体上半部的中间取出水样,测量水温和溶解氧,溶解氧采用碘量法测定(见附页)。

如果此水体的溶解氧未过饱和,则记录此值为O i,然后将水样分别注入一对“亮”和“暗”瓶中。

若水样中溶解氧过饱和,则缓缓地给水样通气,以除去过剩的氧。

重新测定溶解氧并记作O i。

按上法将水样分别注入一对“亮”和“暗”瓶中。

②从水体下半部的中间取出水样,按上述方法同样处理。

③将两对“亮”和“暗”瓶分别悬挂在与取水样相同的水深位置,调整这些瓶子,使阳光能充分照射。

一般将瓶子暴露几个小时,暴露期为清晨至中午,或中午至黄昏,也可清晨到黄昏。

为方便起见,可选择较短的时间。

④暴露期结束即取出瓶子,逐一测定溶解氧,分别将“亮”和“暗”瓶的数值记为O L和O d。

(3) 结果处理①呼吸作用:R=氧在暗瓶中的减少量= O i - O d净光合作用:P n=氧在亮瓶中的增加量= O L - O i总光合作用:P g = 呼吸作用 + 净光合作用= (O i - O d) +( O L - O i)= O L - O d②计算水体上下两部分值的平均值。

③通过以下公式计算来判断每单位水域总光合作用和净光合作用的日速率:ⅰ、把暴露时间修改为日周期日P g′(mg O2·L-1·日-1) = P g ×每日光周期时间/暴露时间ⅱ、将生产率单位从mg O2/L 改为mg O2/m2,这表示1 m2水面下水柱的总产生率。

为此必须知道产生区的水深:日P g"(mg O2·m-2·日-1) = P g ×每日光周期时间/暴露时间×103×水深( m )103是体积浓度 mg/L换算为mg/m3的系数。

ⅲ、假设全日24 h呼吸作用保持不变,计算日呼吸作用日R(mg O2·m-2·日-1) = R× 24/暴露时间( h )× 103×水深(m)ⅳ、计算日净光合作用:日P n(mg O2·L-1·日-1)= 日P g –日R④假设符合光合作用的理想方程(CO2 + H2O CH2O +O2),将生产率的单位转换成固定碳的单位:日P m(mg C·m-2·日-1)= 日P n(mg O2 m-2·日-1)× 12/323. 叶绿素- a的测定(1) 原理测定水体中的叶绿素-a的含量,可估计该水体的绿色植物存在量。

将色素用丙酮萃取,测量其吸光度值,便可以测得叶绿素- a的含量。

(2) 实验过程①将100~500 mL水样经玻璃纤维滤膜过滤,记录过滤水样的体积。

将滤纸卷成香烟状,放入小瓶或离心管。

加10 mL或足以使滤纸淹没的90%丙酮液,记录体积,塞住瓶塞,并在4℃下暗处放置4 h。

如有浑浊,可离心萃取。

将一些萃取液倒入1 cm玻璃比色皿,加比色皿盖,以试剂空白为参比,分别在波长665 nm和750 nm处测其吸光度。

② 加1滴2 mol/L 盐酸于上述两只比色皿中,混匀并放置1 min ,再在波长665 nm 和750 nm 处测定吸光度。

(3) 结果处理酸化前 : A =A 665-A 750酸化后: A a =A 665a -A 750a在665 nm 处测得吸光度减去750 nm 处测得值是为了校正浑浊液。

用下式计算叶绿素- a 的浓度(µg/L ):根据测定结果,评价水体富营养化状况。

四、思考题1. 水体中氮、磷的主要来源有哪些?2. 在计算日生产率时,有几个主要假设?3. 被测水体的富营养化状况如何?附:碘量法测定水中溶解氧原理水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀。

加酸后,氢氧化物沉淀溶解,并与碘离子反应而释放出游离碘。

以淀粉为指示剂,用硫代硫酸钠标准溶液滴定释放出的碘,据滴定溶液消耗量计算溶解氧含量。

试剂1. 硫酸锰溶液:称取480 g 硫酸锰(MnSO 4·4H 2O )溶于水,用水稀释至1000 mL 。

此溶液加至酸化过的碘化钾溶液中,遇淀粉不得产生蓝色。

2. 碱性碘化钾溶液:称取500 g 氢氧化钠溶解于300~400 mL 水中;另称取150 g 碘化钾溶于200 mL 水中,待氢氧化钠溶液冷却后,将两溶液合并,混匀,用水稀释至1000 mL 。

相关文档
最新文档