电力系统继电保护 第四章输电线路的纵联保护

合集下载

电力系统继电保护第二版答案参考之输电线路纵联保护

电力系统继电保护第二版答案参考之输电线路纵联保护

第四章输电线路纵联保护4-1试述纵联保护的基本工作原理和特点。

纵联保护能否单端运行?答:纵联保护的基本工作原理:纵联保护是用某种通信通道将输电线两端或各端(对于多端线路)的保护装置纵向连接起来,将各端的电气量(电流、功率的方向等)传送到对端,将各端的电气量进行比较,以判断故障在本线路范围内还是在线路范围之外,从而决定是否切断被保护线路。

纵联保护的特点:能实现全线速动,具有绝对的选择性。

纵联电流差动保护、高频闭锁方向纵联保护、高频闭锁距离纵联保护、纵联电流相位差动保护这四种纵联保护均可以单端运行。

4-2目前常用的纵联保护有哪几种?分别简述它们的工作原理。

答:目前常用的纵联保护有3种,分别是纵联电流差动保护、高频闭锁方向纵联保护、高频闭锁距离纵联保护。

其工作原理如下:纵联电流差动保护:流进差动继电器的量为线路双端电流量为测量量之和。

当正常运行时或外部故障时,流进差动继电器的电流为比较小的不平衡电流或者最大的负荷电流(考虑到两端的电流互感器有一个出现断线故障时),均比整定值小不动作,内部故障时流进差动继电器的电流是比较大的短路电流,比整定值大而使得两端断路器动作。

高频闭锁方向纵联保护:两端的保护装置测量的是功率的方向,功率方向为负的一侧发高频闭锁信号。

当外部故障时,两端的功率方向不同,为一正一负。

功率方向为负的一侧发高频闭锁信号且本身自己不动作,使得同线路的另一端收到闭锁信号也不动作。

内部故障时两端功率方向均为正,都不发闭锁信号,因此两端都收不到闭锁信号,保护都跳闸。

高频闭锁距离纵联保护:在距离保护的基础上加上高频闭锁部分。

以距离保护III段的整定值为故障启动发信元件,以距离保护II段的整定值为方向判别和停信元件。

当发生内部故障时,线路两侧的保护装置均不发出高频信号,因此线路两侧的保护均动作,当发生外部故障时,测量阻抗为负的一侧不动作且发出高频闭锁信号闭锁同线路另一侧的保护,使得其无法动作。

当作为后备使用时,则按照距离保护II、III段的整定时限动作。

电力系统继电保护原理-输电线路纵联保护

电力系统继电保护原理-输电线路纵联保护
3、电流相位比较式纵联保护
对比两侧电流相位差为0°保护动作; 对比两侧电流相位差为180°保护不动作;
4、距离纵联保护
距离Ⅱ段作为方向元件。 该保护的优点:既具有纵联保护的优点,又具有距离 保护的优点。
4.2 输电线路纵联保护两侧信息的交换
4.2.1 导引线通信(见P132图4.5)
4.2.2 电力线载波通信(见P134图4.6) “高频保护 ”
KD . Ir
. 正常、k外:Ir =
. IM2
-
. IN2
.. . d内:Ir = IM2 + IN2
线路两侧装有相同变比的TA
保护动作特性: 1)不带制动特性
I set K rel K np K er K st I k .max
2)带制动特性
动作方程:
I m I n K I m I n Iop0
2)使用线路侧电压 2、功率倒向对方向高频保护的影响
在环网或双回线路上,当一回线发生故障时,由于故障线 路两侧的断路器相继动作。造成非故障线路的短路功率改 变方向,从而有可能使得非故障线路的方向高频保护误动。
为防止在功率倒向中保护误动,采取的措施是: 一是反方向功率方向元件优先的原则。即一旦反方向元件 动作,立即闭锁正方向元件。 二是当故障发生后经过一段时间(大于本保护动作时间, 小于相邻线路断路器跳闸时间),尚未判为内部故障,则 认为是外部故障,程序转入另一模块。
protect &
GSX
跳闸
③跳闸讯号方式:高频讯号本身可直接使断路器跳闸
protect
பைடு நூலகம்GSX
≥1
跳闸
4.2.3 微波通道
利用150mHz到20gHz间的电磁波进行无线通信称为微波通 信。 优点: 微波通道频带宽。 微波通道独立于输电线之外,可靠。 因而用微波通道可实现传送允许信号和直接跳闸信号的 保护方式。 缺点: 微波信号的衰耗与天气有关。 必须沿线路建设微波中继站。

输电线路纵联保护

输电线路纵联保护
第四章.输电线路纵联保护
▪输电线路纵联差动保护 ▪输电线路高频保护 ▪微波保护
问题的提出:
前述保护存在的主要问题 ①单侧量保护只能保护本线路的一部分 ②受运行方式影响;长线路,重负荷Klm低
第一节. 输电线纵联差动保护(纵差保护)
一.原理:
1. 纵联保护:就是用某种通信通道(简称通道)
将输电线两端的保护装置纵向联结起来,将各 端电气量(电流、功率的方向等)传送到对端, 将两端电气量比较,以判断故障在本线路范围 内还是在本线路保护范围之外,从而决定是否 切除被保护线路。
2、导引线的阻抗和分布电容 3、导引线的故障和感应过电压
第二节.输电线路的高频保护
▪构成 ▪分类 ▪原理
一、概念
1、定义 高频保护:是以输电线载波通道作为通信通道的纵联保护.
广泛应用于高压和超高压输电线路 无时限快速保护,无需与下一线路配合,同时比较两端电 流的相位或功率方向区分内、外故障
电流相位(功率方向)→高频信号→输电线本身 →对端→比较 2、分类
Sd
Sd
Sd
图4-9 高频闭锁方向保护的作用原理
d短路: 3、4功率方向为正,不发闭锁信号 2、5为负,发闭锁信号
则1、2、5、6被闭锁
(1)动作条件 功率方向为正 收不到高频载波信号
(2)讯号由功率方向为负一端发出,两端闭锁 (3)闭锁信号的优点:
当内部故障并伴随通道破坏时(如接地or断 线)保护仍能正确动作
复习题: 一.判断题
二.简答题
答案:
一.判断题 1.对 2.错 3.对 4.对 5.错 二.简答题 1.
2. 3.
4.
5. 6.
相差高频保护: 相差高频保护
五、高频闭锁方向保护

4.纵联保护

4.纵联保护

电力系统继电保护
4.3.2 闭锁式方向纵联保护
闭锁式方向纵联保护 闭锁信号由功率方向为负的一侧发出,被两端接收机接收,闭锁两端保护
BC线路故障 2、5功率方向为负,发闭锁信号,闭锁1、2,闭锁5、6,非故障线路都 不跳闸 3、4功率方向为正,不发闭锁信号,保护3、4跳闸
电力系统继电保护
4.3.2 闭锁式方向纵联保护
电力系统继电保护
4.2.2 电力线载波通信
输电线路:传输信号 阻波器:并联谐振回路,使 载波信号不穿越到相邻线路 耦合电容器:阻隔工频信号 连接滤波器:与耦合电容器 构成带通滤波器 高频收发信机:发送信号到 对端,接受本侧和对侧的信 号 接地开关:检修时用
电力系统继电保护
4.2.2 电力线载波通信
电力系统继电保护
4.1.3 纵联保护的基本原理
3.电流相位比较式纵联保护
比较两端电流的相位关系构 成。 区内短路:两端电流相角差 为0˚,保护动作 正常运行或区外短路:两端 电流相角差180˚,保护不动 作 考虑电流、电压互感器的误 差及线路分布电容的影响, 动作区如图所示
电力系统继电保护
电力系统继电保护
4.2.2 电力线载波通信
电力载波信号的种类
– 跳闸信号: 直接引起跳闸的信号 – 跳闸的条件(或) 本端保护元件动作 有跳闸信号 – 本端保护元件动作即作用于跳闸,与有无跳闸信号无关 – 收到跳闸信号即作用于跳闸,与本端保护元件动作与否无关 – 本侧和对侧保护元件都具有直接区分区内故障和区外故障的能力
电力系统继电保护
4.3.3 闭锁式距离纵联保护
III段继电器作为故障启动发信 元件 II段为方向判别元件和停信元 件 I段:两端各自独立跳闸段 II段增加瞬时动作的与门元 件,收不到闭锁信号跳闸,瞬 时切除全线任意点短路 III段启动元件:无方向性 缺点:后备保护检修时,主保 护也停运,运行灵活性不够。

继电保护第四章要点总结

继电保护第四章要点总结

纵联保护的基本原理:保护原理的本质是甄别系统正常和故障状态下电气量或非电气量之间的差别,纵联保护也不例外。

输电线路的纵联保护就是利用线路两端的电气量在故障与非故障时的特征差异构成的。

当线路发生区内故障、区外故障时,电力线两端电流波形、功率、电流相位以及两端的测量阻抗都有明显的差异,利用这些差异就可以构成不同原理的纵联保护。

特征:1.两侧电流量特征2.两侧电流相位特征3.两侧功率方向特征4.两侧测量阻抗值特征纵联保护的分类:纵联保护按照所利用信息通道的不同类型可以分为导引线纵联保护、电力线载波纵联保护、微波纵联保护和光纤纵联保护四种。

纵联保护按照保护动作原理,可以分为方向比较式纵联保护和纵联电流差动保护两类。

通信通道的构成1.导引线通道特点:信息无须加工,直接传送至对端,因而基本不存在同步问题保护原理一般采用电流差动原理,故也称导引线差动保护。

简单可靠,不受系统运行方式影响,不受振荡影响缺点:需铺设专门的导引线,投资高,互感器二次负载较大。

导引线本身的故障,会引起保护的拒动或误动。

2.电力线载波(高频)通道:1—阻波器;阻波器是由一个电感线圈与可变电容器并联组成的回路。

2—结合电容器;结合电容器与连接滤过器共同配合将载波信号传递至输电线路,同时使高频收发信机与工频高压线路绝缘。

3—连接滤波器;连接滤波器由一个可调节的空心变压器及连接至高频电缆一侧的电容器组成。

4—电缆;5—高频收发信;发信机部分系由继电保护装置控制,通常都是在电力系统发生故障时,保护起动之后它才发出信号。

6—刀闸优点:无中继通信距离长;经济,使用方便;工程施工比较简单缺点:由于其直接通过高压输电线路传送高频载波信号,因此高压输电线路上的干扰直接进入载波通道,高压输电线路的电晕、短路、开关操作等都会在不同程度上对载波信号进行干扰电力线载波通道工作方式:正常有高频电流方式(长期发信方式)正常无高频电流方式(故障启动发信方式)移频方式特点通信通道独立于输电线路通信频带宽,300-30000MHz ,传输速度快受外界干扰的影响小传输距离有限4.光纤通道特点通信容量大,光纤通信的经济性佳光纤通信还有保密性好光纤最重要的特性之一是无感应性能通信距离有限高频信号的分类1.闭锁信号:即无闭锁信号是保护作用于跳闸的必要条件,或者说闭锁信号是阻止保护动作于跳闸的信号。

电力系统继电保护-第四章

电力系统继电保护-第四章
I I I M N 0
由于受TA的误差、线路分布电容等因素影响, 实际上其二次电流相量和可能不为0。 纵联电流差动保护动作判据可写为:
I M I N I set
IM IN



两侧电流的相量和 差动保护整定值
I set
2. 方向比较式纵联保护
线路发生内部故障时: M侧和N侧功率方向元件均为正;
1. 电流全量特征
根据基尔霍夫电流定律 (KCL)可知:
在集总参数电路中,任何时刻, 对任意一节点,所有支路电流相 量和等于零。用数学表达式表示 如下: I 0
M
U M
I M
k1
N I N
U N
内部故障
M
I M
I N
N
k2
区外故障
对于输电线路MN可以认为是一个节点。 内部故障 外部故障
线路发生外部故障时: 一端电流为母线流向线路,另一端为由线路流 向母线,于是两端电流相位相反 180 。
因此可以根据两侧电流的相位差来判 别线路内部或者外部短路。
考虑到TV、TA的相角误差以及输电线分布电容等影 响,当线路发生区外故障时两侧二次电流的相角差并不 刚好等于1800,而是近似为1800,且在故障前两侧电动势 有一定的相角差,这样在区内短路时两侧电流也不完全 同相位。 当两侧电流的相位差
I N
外部故障
I M
I N
iM
t
I M
I N

iN
iM
t
0
0
I M
t
I N
iN
t
180
IM IN

arg
IM IN

电力系统继电保护 第四章输电线路的纵联保护

电力系统继电保护 第四章输电线路的纵联保护
只有在两端保护的I段有重叠区时才能实现全线速动。
3 微波通信
频段为300~30000MHz,超短波的无线电波,频带宽,信息传输容量大,传 输距离不超过40~60km;距离较远时,要装设微波中继站,以增强和传递微 波信号。通信速率快,可用于纵联电流差动原理的保护。
4 光纤通信
1.光纤通信的构成
光发射机、光纤、中继器和光接收机。
(2)正常时有高频电流方式(长时发信) 在正常工作条件下发信机始终处于发信状态,沿高 频通道传送高频电流。
优点:高频通道部分经常处于监视的状态,可靠性高;且无 需收、发信机启动元件,简化装置。 缺点:经常处于发信状态,增加了对其他通信设备的干扰时 间;也易受外界高频信号干扰,应具有更高的抗干扰能力。
(希望不动) 一侧为正 一侧为负
内部故障 (希望动作)
两侧均为正
一侧动作 一侧不动作
两侧均动作
电流相位 相位差 180
接近同相
如何应用这些特征?后面陆续予以介绍。
纵联保护:用某种通信信道将输电线 路两端的保护装置纵向联结起来,将 一端电气量(电流、功率方向等)传 到对端进行比较,判断故障在本线路 范围内还是范围之外,从而决定是否 切除被保护线路。
根据通道的构成,输电线路载波通信分为: “相-相”式 连接在两相导线之间 “相-地”式 连接在输电线一相导线和大地之间
1、输电线路载波通信的构成
继电
部分
G R
输电线路
高频阻波器 耦合电容器
连接滤波器 高频电缆
G 高频通道部分 R
接 地 开 关
继电
部分
(1)阻波器:阻波器是由 一电感线圈与可变电容器 并联组成的回路。当并联 谐振时,它所呈现的阻抗 最大(1000Ω以上),利 用这一特性,使其谐振频 率为所用的载波频率。这 样的高频信号就被限制在 被保护输电线路的范围以 内,而不能穿越到相邻线 路上去。但对工频电流而 言,阻波器仅呈现电感线 圈的阻抗,数值很小(约 为0.04Ω左右),并不影 响它的传输。

继电保护-第4章 电网的纵联保护

继电保护-第4章 电网的纵联保护
第 四 章
输电线路纵联保护
Pilot Protection for Transmission Lines
4.1
输电线路纵联保护概述
4.1.1 引言( 纵联保护的提出 )
1. 电流、距离保护的缺陷
M 1 2 N 3
k1
k2
反映:一侧电气量,即只采集线路一侧的电气量 缺陷:Ⅱ段有延时,无法实现全线速动,
N
正常运行时:两侧的测量阻抗都是负荷阻抗, 距离Ⅱ段都不启动 外部故障时:至少有一侧的距离Ⅱ段不启动(反方向)
I U M M
M
U I N N
N
区内故障时:两侧的距离Ⅱ段同时启动
4.1.3 纵联保护的基本原理
1、纵联电流差动保护
基本原理:利用输电线路两端电流波形和或电流相量和的特征。
I U M M
M SM SN
U I N N
N
正常运行或区外故障时:远故障点的功率方向是从母线流向 线路,功率方向为正;近故障点的功率方向是由线路流向母 线,功率方向为负。两端功率方向相反。 U I I U N
M
M
N

M SM SN
N
区内故障时:两端的功率方向都是从母线流向线路,同为正。
优点:不受系统振荡的影响,不受非全相的影响,简单可靠
缺点:导引线不能太长
4.2.2 电力线载波通信
将线路两端的电流相位(或功率方向)信息转变为高 频信号,经过高频耦合设备将高频信号加载到输电线 路上,输电线路本身作为高频信号的通道将高频载波 信号传输到对侧,对端再经过高频耦合设备将高频信 号接收,以实现各端电流相位(或功率方向)的比较, 称为高频保护。
缺点: a. 施工的要求高,“焊接”难(熔纤机); b. 光纤断裂难以查找; c. 通信距离还不够长。 光纤通讯网是电力通讯网的主干网,基于光纤通信的纵联保 护成为主流模式。

04 输电线路纵联保护

04 输电线路纵联保护

4.3.3 闭锁式距离纵联保护的构成
¾ 本线路故障: ZIII启动发信; ZII判断为正方向,启动停信;两侧均未收到高频闭锁信号
而跳闸。
4.3.3 闭锁式距离纵联保护的构成
¾ 外部故障: ZIII启动发信; ZII判断为反方向,不停信;两侧均收到高频闭锁信号而不
跳闸。
闭锁式距离纵联保护中的III段定时限距 具有为线路远端母线和相邻元件的远后备 能力。
它是以由短路功率为负的一侧发出高频闭 锁信号,这个信号被两端的收信机所接收,而 把保护闭锁。故称高频闭锁方向保护。
这种按闭锁信号构成的保护只在非故障线 路上才传送高频信号,而在故障线路上并不传 送高频信号。因此,在故障线路上由于短路使 高频通道可能遭到破坏时,并不会影响保护的 正确动作。
高频闭锁信号由非故障线的近故障点侧保 护发出。
4.4 纵联电流差动保护 4.4.1 纵联电流差动保护原理
线路两侧装有相同变比的TA
由于两侧电流互感器励磁特性不同,正常 运行及外部故障时流过的短路电流反映至二 次侧大小会不相同。此电流差称为不平衡电 流。
4.4 纵联电流差动保护
4.4.1 纵联电流差动保护原理
不平衡电流的值可计算为:
Iunb = 0.1Kst Knp Ik max
两侧电流相位差00
两侧电流相位差1800
4.1 输电线路纵联保护概述
4.1.2 输电线路短路时两侧电气量的故障特征分析
两端测量阻抗的特征(距离纵联保护) (以II段距离为启动元件,采用方向阻抗特性)
区内故障:两侧测量阻抗均为短路阻抗 区外故障:两侧测量阻抗均为短路阻抗,但一侧 为反方向 正常运行时:两侧测量阻抗均为负荷阻抗
4. 2 输电线路纵联保护两侧信息量的交换

《继电保护技术》课件——第四章_输电线路全线速动保护

《继电保护技术》课件——第四章_输电线路全线速动保护

4.导引线通道
在两个变电站之间铺设电缆,用电缆作为通道传 送保护信息这就是导引线通道。用导引线为通道构 成的纵联保护称做导引线保护。导引线保护一般做 成纵联电流差动保护,在电缆中传送的是两侧的电 流信息。考虑到雷击以及在大接地电流系统中发生 接地故障时地中电流引起的地电位升高的影响,作 为导引线的电缆也应有足够的绝缘水平,从而增大 了投资。显然从技术经济角度来看用导引线通道只 适用于小于十公里的短线路上。
高频闭锁方向保护的框图说明
2KW (M侧)
M
K1
1QF
1KW (M侧)
N
2QF
K2
2KW (N侧)
当向当时K元发间1件 生 元点件1K发K2T故生W1障故有不时障输动,时出作N,前,侧两到不的侧达发1的M闭K正W 侧琐方收动信向信作号元输,,件出发于2端出是K,闭两W从琐侧动而信的作保号2,证K,反了W在方虽 通然过M时侧间的元2K件WT动1和作禁,止但门不J会Z2发将出两跳侧开的1断QF路的器跳1闸Q脉F、冲。 2QF跳开;
3.光纤通道
随着光纤通信技术的快速发展,用光纤作 为继电保护通道使用得越来越多。用光纤通 道做成的纵联保护有时也称做光纤保护。光 纤通信容量大又不受电磁干扰,且通道与输 电线路有无故障无关。近年来发展的若干根 光纤制成光缆直接与架空地线做在一起,在 架空线路建设的同时光缆的铺设也一起完成, 使用前景十分诱人。
方向高频保护 相差高频保护
高频保护构成框图
高频保护由继电部分、高频收发信机和高频 通道三部分构成
(二)通道类型 1.电力线载波通道 2.微波通道 3.光纤通道 4.导引线通道
1.电力线载波通道
这是目前使用较多的一种通道类型, 其使用的信号频率是50-400kHz。这种 频率在通信上属于高频频段范围,所以 把这种通道也称做高频通道。把利用这 种通道的纵联保护称做高频保护。高频 频率的信号只能有线传输,所以输电线 路也作为高频通道的一部份。

继电保护第四章-纵联保护

继电保护第四章-纵联保护

4. 输电线路纵联保护(Unit Protection)结构
继电保 护装置
通信设备
• 导引线 • 载波 • 光通信纤信道 • 微波
继电保 护装置
通信设备
继电保护装置
实现电气量采集并形成电气量特征,完成保护任务。
通信设备
将上述信息发送至对端的保护设备,同时接收对端保护发送的
信息并送至本端保护单元
通信信道
故障分量方向元件的特点
不受负荷状态的影响 不受故障点过渡电阻的影响 正、反方向短路时,方向性明确 无电压死区 不受系统振荡影响
(二) 闭锁式方向纵联保护
1. 工作原理
以高频通道经常无电流而在外部故障时发出闭
锁信号的方式构成。
闭锁信号
A1
B
2
3
闭锁信号
C
4
5
6D
F
对AB线路为外部故障,2处功率方向均为 负,发闭锁信号,1、2保护被闭锁。
导引线通信应用:
高压电网超短线路(几公里)。 用于变压器、发电机等电力设备和母线。
(二) 电力线载波通信
采用输电线路本身作为信息传输媒介,在传输电能的同时 完成两端信息的交换。 (一)通道的构成
1
2 76
3 45 89
3
2
4 5
67
98
1.传输线 2.阻波器 3.结合电容器 4.连接滤波器 5.高频电 缆 6.保护间隙 7.安全接地开关 8. 高频收发信机 9.保护 继电器
3. 电气元件故障时两端电气量的特征分析
所选电气量
区内故障 特征
区外或正常 运行时特征
保护原理
功率方向
均指向被保 护元件
一端指向被 保护元件反

电力系统继电保护——4输电线纵联保护

电力系统继电保护——4输电线纵联保护

高频信号
A
~1
B
k
C
2
3
4
5
D
6
~
Sk
Sk
Sk
Sk
动作原理
• 保护3和4的功率方向为正,不发出闭锁信号
• 保护2和5的功率方向为负,发出闭锁信号,被本端和 对端收信机接收,闭锁保护1、2、5、6
构成方式:高频通道经常无电流;外部故障时由 短路功率方向为负的一端发出闭锁信号
• 可以保证内部故障并伴随通道破坏时,保护仍然能够 正确动作
8. 高频闭锁距离保护的原理接线
tIII 0
跳闸
Z III
距离III段
0 t1
Z II
t2 0
距离II段(带方向)
&
GFX
通道
GSX
跳闸
&
tII 0
ZI
距离I段(带方向)
万一通信通道损坏,动作情况如何?请讨论
4.4 输电线纵联差动保护
——光纤纵差保护
1. 动作原理
(1) 正常运行或区外故障时
IM1
Y2
T2
D
6
~
Sk
GFX GSX
通道
Y3
跳闸
&
保护1:KW和KA2动作,准备好跳闸回路;可是,保护2的KW 功率方向为负,发出闭锁信号,该信号被两侧的保护的收信机 收到,Y3被闭锁,两侧保护均不能动作。
注意:保护2的发信机必须起动,以保证外部故障时不误动
4. 工作情况分析——两端供电内部故障
高频信号
正常运行或区


外故障时: I I M I N 0
差动保护补充概念
差动的含义:正常运行或者外部故障时,两个电

第四章输电线纵联保护

第四章输电线纵联保护

继电保护装置从TA,TV获取电压电流,形成或提取两端被比较的电气量特征,一方面 发送信息,一方面接收信息(通信通道),比较两端电气量特征,符合条件则动作 并告知对方。
Relay protection,copyright Zhang Jingjing I-2
4-1 输电线纵联保护概述
2、分类
A、按通道类型分 1)导引线纵联保护(需敷设导引线电缆) 2)电力线载波纵联保护(以线路为通道) 3)微波纵联保护 4)光纤纵联保护(短线路纵联保护主要通道形式) B、按保护动作原理分 1)方向比较式纵联保护(通道中传送逻辑信号) 2)纵联电流差动保护(通道中传送两侧电气量信号)
1、载波通道的构成 1)输电线路。 2)阻波器 由电感线圈和可变电容器并联组成的回路。f0为并联谐振的频率。 这样,高频讯号被限制在输电线范围内,而不穿越到相邻线路上。 50Hz工频电流阻波呈现较小阻抗,不影响其传输。
Relay protection,copyright Zhang Jingjing I-7
4-2 输电线纵联保护两侧信息的交换
8).高频收发讯机。 发讯机发出讯号,通过高频通道,送到对端收讯机中,也被自己的收讯机接收,高频 收讯机接收由本端和对端所发送的高频讯号,经过比较判断后,再动作于继电保护。 发讯分故障时发讯和长期发讯。
2、载波通道的特点
对于中长距离的输电线路,敷设专门的辅助导线,技术上、经济上是不合理的。 利用输电线路本身作为一个通道,在输电线传送50Hz工频电流的同时,迭加传送 一个讯号,以进行线路两端电气量的比较。讯号采用50~400kHz的高频电流。 1)无中继通信距离长(几百公里); 2)经济,使用方便; 3)工程施工比较简单
Relay protection,copyright Zhang Jingjing

继电保护原理第4章-纵联

继电保护原理第4章-纵联

输电线路纵联电流差动保护原理的特点
1、保护范围明确。保护范围是线路两侧电流互感器之间的范围。 2、动作速度快,可实现全线速动,即全线路瞬时切除区内故障。 这是由于纵联电流差动保护不需与相邻元件的保护配合。 3、不受系统振荡、系统运行方式变化的影响。
三、输电线路两侧电气量的故障特征
1. 两端电流相量和 (正方向:母线线路)
M IM
k1
IN N
M IM
IN N k2
区内故障
0
区外故障
180
4. 两端测量阻抗
区内故障:两端距离Ⅱ段 ZII 均启动 区外故障:近端距离Ⅱ段 ZII 不启动,远端启动。
四、纵联保护基本原理
利用不同特征差异的电气量可以构成不同的纵联保护原理
(1)纵联电流差动保护原理(两端电流相量的故障特征)
第二节 纵联保护两侧信息的交换
一、导引线通信(Pilot Wire Communication)
保护原理:电流差动原理
适用于短线路
动作线圈 动作线圈 制动线圈 制动线圈
制动线圈
i
导引线
制动线圈
(a)环流式
i
动作线圈
动作线圈
(b)均压式
二、电力线载波通信(Power Line Carrier Communication)
正常运行和外部故障时(K2):两侧电流相位相差约为180°。 内部故障时(K1):两侧电流相位相差约为0°。
(4)距离纵联保护原理(两端测量阻抗的故障特征) 正常运行和外部故障时(K2):两端的距离Ⅱ段测量阻抗一侧 为反方向,另一侧为正方向。
内部故障时(K1):两端的距离Ⅱ段方向阻抗元件都在正方向, 同时启动。
闭锁信号
k1 IN N

电力系统继电保护 第四章

电力系统继电保护 第四章

第4章输电线路纵联保护电流、电压保护和距离保护都是只反映被保护线路一侧的电量,为了获得选择性,其瞬时切除的故障范围只能是被保护线路的一部分,即使性能较好的距离保护,在单侧电源线路上也只能保护线路全长的80%左右,在双侧电源线路上瞬时切除故障的范围大约只有线路全长的60%左右。

在被保护线路其余部分发生故障时,都只能由延时保护来切除。

这对于很多重要的高压输电线路是不允许的,为了电力系统的安全稳定,线路上要求设置具有无延时切除线路上任意处故障的保护装置,输电线的纵联保护就是在这种背景下产生的。

因此仅反映线路一侧的电气量是不可能区分本线路末端和对侧母线(或相邻线路始端)故障的,只有反应线路两侧的电气量才可能区分上述两点故障,达到有选择性地快速切除全线故障的目的。

为此需要将线路一侧电气量的信息传输到另一侧去,即在线路两侧之间发生纵向的联系,这种保护装置称为输电线的纵联保护。

4.1 输电线路纵联保护的基本原理与类型仅反映线路一侧的电气量是不可能区分本线路末端和对侧母线(或相邻线路始端)故障的,只有反映线路两侧的电气量才能区分上述两点故障,达到有选择性地快速切除全线故障的目的。

为此需要将线路一侧电气量的信息传输到另一侧去,即在线路两侧之间发生纵向的联系。

这种保护装置就称为输电线的纵联保护。

4.1.1 输电线路纵联保护的基本原理当输电线路内部发生如图4.1所示的k1点短路故障时,流经线路两侧断路器的故障电图4.1 输电线路纵联保护的基本原理示意图流如图中实线箭头所示,均从母线流向线路(规定电流或功率从母线流向线路为正,反之为负)。

而当输电线路MN的外部发生短路时(如图中的k2点),流经MN 侧的电流如图中的虚线箭头所示,M侧的电流为正,N侧的电流为负。

利用线路内部短路时两侧电流方向同相而外部短路时两侧电流方向相反的特点,保护装置就可以通过直接或间接比较线路两侧电流(或功率)方向来区分是线路内部故障还是外部故障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两侧均为正 两侧均动作 接近同相
(希望不动)
方向元件 阻抗元件 电流相位
一侧为正 一侧为负
一侧动作 一侧不动作
相位差 180
如何应用这些特征?后面陆续予以介绍。
纵联保护:用某种通信信道将输电线 路两端的保护装置纵向联结起来,将 一端电气量(电流、功率方向等)传 到对端进行比较,判断故障在本线路 范围内还是范围之外,从而决定是否 切除被保护线路。 可以实现本线路全长范围内任意一点 故障的零秒切除的保护。 纵联保护没有后备保护功能
(3) 微波通道 是一种多路通信通道,频带宽,可传送交流电 的波形。是理想的通道,但保护专用微波通道 是不经济的。 (4) 光纤通道 •采用光纤作为通信通道,目前超高压线路在 架线时已同时架设光纤通道,所以,已被越来 越多的超高压线路采用。
B. 按保护动作原理分:
(1) 方向比较式纵联保护
两侧的保护装置将本侧的功率方向、测量阻
继电保护通信通道的选择原则
优先考虑采用光纤通道
其他……
4.3 方向比较式纵联保护
一、概念
以正常无高频电流而在区外故障时发 出闭锁信号的方式构成。此闭锁信号 由短路功率为负的一侧发出,这个信 号被两端的收信机所接收,而把保护 闭锁,故称闭锁式方向纵联保护(高 频闭锁方向保护)。
两侧功率方向的故障特征
纵联保护按通道类型分类



纵联保护信号传输方式: ( 1 )以导引线作为通信通道:纵联差 动保护 ( 2 )电力线载波:高频保护(方向高 频保护,相差高频保护),其中方向高 频保护又包括高频闭锁方向保护,高频 闭锁负序方向保护,高频闭锁距离保护; ( 3 )微波:微波保护,长线路,需要 中继站;
(2) 耦合电容器(滤波、隔工频) 耦合电容器与连接滤波器共同配 合,将载波信号传递至输电线路,同时 使高频收发信机与工频高压线路绝缘。 由于耦合电容器对于工频电流呈现极大 的阻抗,故由它所导致的工频泄漏电流 极小。
(3) 连接滤波器 连接滤波器由一个可调节的空心变 压器及连接至高频电缆一侧的电容器组 成。耦合电容器与连接滤波器共同组成 一个四端网络的“带通滤波器”,使所 需频带的高频电流能够通过。空心变压 器进一步使收、发信机与输电线路高压 部分隔离,提高了安全性。
号、跳闸信号。
闭锁信号:收到高频信号时,阻止本端 保护动作于跳闸,即没有收到高频电流 信号是保护作用于跳闸的必要条件。
保护元件
&
闭锁信号
跳闸
允许信号:收到高频信号时,允许本端保护 动作于跳闸,即收到高频电流信号是本端保 护作用于跳闸的必要条件。
保护元件
&
允许信号
跳闸
跳闸信号:收到高频信号时,可直接动作于 跳闸。
纵联保护的分类:
A. 按通信通道分:
(1) 导引线通道 需要沿线铺设导引线电缆传送电气量信息,其 投资随线路的长度而增加。此外,导引线越长, 其自身安全性越低。用于短线路。 (2) 电力线载波通道 利用输电线路本身作为通信通道,不需专门架 设通信通道,应用广泛。 注意:线路发生故障时通道可能遭到破坏。
二、基本原理
高频信号
A
高频信号
S
1
S S
B 2 3
k
S S
C 4 5
S
6
D
区外故障时,由短路功率为负的一端发 闭锁信号,此信号被两端的收信机接收 闭锁保护。 对于故障线路,两侧保护均为正 , 不发闭 锁信号,故两侧保护都收不到闭锁信号 而动作于跳闸。

优点;由于利用非故障线路的一端 发闭锁信号,闭锁非故障线路不 跳闸,而对于故障线路跳闸不需 要闭锁信号,所以在区内故障伴 随通道破坏时,保护仍能可靠跳 闸。
优点:能监视通道工作 情况,提高可靠性,抗 干扰能力强。 缺点:占用的频带宽, 通道利用率低。
电力线载波通道的工作方式 我国常用正常无高频电流方式。
高频电流频率 分为单频制和双频制。
单频制:应用于闭锁式保护 双频制:应用于允许式保护
电力线载波信号的种类
按高频载波通道在纵联保护中的作用,
将载波信号分为闭锁信号、允许信
任何纵联保护都是依靠通信通道传送的某种信 号来判断故障的位置是否在被保护线路内
TA TV
继电保护装置
TA TV
继电保护装置
通信通道
通信设备 通信设备
一套完整的纵联保护包括两端继电保护装置、通信设 备和通信通道。
信号: 闭锁信号 ——收不到这种信号是保护动作跳闸的必要条件 允许信号 ——收到这种信号是保护动作跳闸的必要条件 跳闸信号 ——收到这种信号是保护动作于跳闸的充要条件
根据通道的构成,输电线路载波通信分为:

“相-相”式

连接在两相导线之间

“相-地”式

连接在输电线一相导线和大地之间
1、输电线路载波通信的构成
输电线路
高频阻波器 耦合电容器
接 地 开
连接滤波器
继电

部分
G R
高频电缆
高频通道部分
G R
继电
部分
(1)阻波器:阻波器是由 一电感线圈与可变电容器 并联组成的回路。当并联 谐振时,它所呈现的阻抗 最大(1000Ω以上),利 用这一特性,使其谐振频 率为所用的载波频率。这 样的高频信号就被限制在 被保护输电线路的范围以 内,而不能穿越到相邻线 路上去。但对工频电流而 言,阻波器仅呈现电感线 圈的阻抗,数值很小(约 为0.04Ω左右),并不影 响它的传输。
三种:正常无高频、正常有高频、移频方式。
(1)正常时无高频电流方式(短时发信)
在正常条件下发信机不工作,通道中没有高频电流, 只在电力系统发生故障期间才由起动元件起动发信。
需定期检查高频通 道是否完好: 手动或自动
(2)正常时有高频电流方式(长时发信)
在正常工作条件下发信机始终处于发信状态,沿高 频通道传送高频电流。
抗是否在规定的方向、区段内的判别结果传 送到对侧,每侧保护装置根据两侧的判别结 果,区分是区内故障还是区外故障。
传送的是逻辑信号,而非电气量本身。

分为方向纵联保护和距离纵联保护。
(2) 纵联电流差动保护
将本侧电流的波形或代表电流相位的信号传送
到对侧,两侧同时比较后区分是区内故障还是 区外故障;
1 导引线通信
利用铺设在输电线路两端变电站之间的二次电 缆传递被保护线路各侧信息的通信方式称之为 导引线通信,以导引线为通道的纵联保护称为 导引线纵联保护。
优点:不受系统振荡的影响,不受非全相的影响, 简单可靠
缺点:导引线不能太长 保护原理:电流差动原理
适用于短线路
2 电力线载波通道(高频)
将线路两端的电流相位(或功率方向)信息 转变为高频信号,经过高频耦合设备将高频信 号加载到输电线路上,输电线路本身作为高频 信号的通道将高频载波信号传输到对侧,对端 再经过高频耦合设备将高频信号接收,以实现 各端电流相位(或功率方向)的比较,称为高 频保护。
2.电力线载波通道的特点
通道传输的信号频率范围:50~400kHz。
1) 无中继通信距离长(几百公里);
2) 经济、使用方便;
3) 工程施工比较简单;
4) 高压输电线路的电晕、短路、开关操作都会对 载波通信造成干扰。
一般用于传递状态信号,常用于构成方向 比较式纵联保护和电流相位比较式纵联保护。

3.电力线载波通道的工作方式
4 光纤通信
1.光纤通信的构成
光发射机、光纤、中继器和光接收机。
2.光纤通信的优点
通信容量大、节约大量金属材料、抗干扰性能好等。
光纤具有宽带、远距离传输能力强、保密性好、抗干扰能力 强等优点,是未来通信网的主要实现技术。
光信号在光导纤维内传输具有衰耗低、抗干扰能力强、通信容 量大、比微波通信提高10 万倍以上等优点。目前光纤通信使 用的波长为0.85 um、 1.31 um、1.55 um 。光纤分多模光纤和 单模光纤,后者比前者特性好,衰减小、频带宽适用于大容量 远距离的通信系统。
电流保护、距离保护,I段只
保护线路的80%~85%,对其 余的15%~20%线路故障,只 能靠带延时0.5s时间的II段来 保护,对高压输电线路不能满 足系统稳定性的要求,需要寻 求新的能保护线路全长的保护。
如何保证瞬时切除高压输电线路故障?
解决办法:
获取对侧的电气量信息,判断故障是
否在保护区内。 采用线路纵联保护!

纵联保护分类: 单元式保护(输电线路作为一个被保护单元) ——从输电线路的每一端采集电气量 的测量值,通过通信通道传送到其他 各端。在各端将这些测量值进行直接 比较,以决定保护装置是否应该动作 跳闸。 比如:相位差动保护,电流差动保护
纵联保护分类:
非单元式保护 ——在输电线路各端对某种或几种电气 量进行测量,但并不将测量值直接传送 到其他各端直接进行比较,而是传送根 据这些测量值得到的对故障性质(如故 障方向、故障位置)的某种判断结果。 比如:方向比较式纵联保护,距离纵联 保护(欧洲普遍应用)
在每侧直接比较两侧的电气量; 要求两侧信息同步采集。
分为纵联电流差动保护和纵联电流相位差动 保护。
4.2输电线路纵联保护两侧信息的交换
输电线路纵联保护需要通过通信
设备和通信通道快速地进行信息 传递。 目前常用的通信方式有:

导引线通信 电力线载波通信 微波通信 光纤通信
(4) 保护间隙:高频通道的辅助设备,用它 保护高频收发信机和高频电缆免受过电压 的冲击。
(5) 接地开关:也是高频通道的辅助设备, 在调整或维修高频收发信机和连接滤波器 时,将它接地,以保证人身安全。
(6) 高频电缆:
将位于主控室的高频收发信机与户外变电站
相关文档
最新文档