离散数学试卷A答案

合集下载

离散数学试题(A卷答案)

离散数学试题(A卷答案)

离散数学试题(A 卷答案)一、(10分)求(P ↓Q )→(P ∧⌝(Q ∨⌝R ))的主析取范式 解:(P ↓Q )→(P ∧⌝(Q ∨⌝R ))⇔⌝(⌝( P ∨Q ))∨(P ∧⌝Q ∧R ))⇔(P ∨Q )∨(P ∧⌝Q ∧R ))⇔(P ∨Q ∨P )∧(P ∨Q ∨⌝Q )∧(P ∨Q ∨R ) ⇔(P ∨Q )∧(P ∨Q ∨R )⇔(P ∨Q ∨(R ∧⌝R ))∧(P ∨Q ∨R ) ⇔(P ∨Q ∨R )∧(P ∨Q ∨⌝R )∧(P ∨Q ∨R ) ⇔0M ∧1M⇔2m ∨3m ∨4m ∨5m ∨6m ∨7m二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。

乙说:王教授不是上海人,是苏州人。

丙说:王教授既不是上海人,也不是杭州人。

王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。

试判断王教授是哪里人?解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。

则根据题意应有: 甲:⌝P ∧Q 乙:⌝Q ∧P 丙:⌝Q ∧⌝R王教授只可能是其中一个城市的人或者3个城市都不是。

所以,丙至少说对了一半。

因此,可得甲或乙必有一人全错了。

又因为,若甲全错了,则有⌝Q ∧P ,因此,乙全对。

同理,乙全错则甲全对。

所以丙必是一对一错。

故王教授的话符号化为:((⌝P ∧Q )∧((Q ∧⌝R )∨(⌝Q ∧R )))∨((⌝Q ∧P )∧(⌝Q ∧R ))⇔(⌝P ∧Q ∧Q ∧⌝R )∨(⌝P ∧Q ∧⌝Q ∧R )∨(⌝Q ∧P ∧⌝Q ∧R ) ⇔(⌝P ∧Q ∧⌝R )∨(P ∧⌝Q ∧R ) ⇔⌝P ∧Q ∧⌝R ⇔T因此,王教授是上海人。

三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。

证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。

安徽大学大二计算机专业离散数学试卷及答案13

安徽大学大二计算机专业离散数学试卷及答案13

安徽大学20 xx —20 xx 学年第 2 学期《 离散数学(下) 》考试试卷(A 卷)(闭卷 时间120分钟)一、单项选择题(每小题2分,共20分) 1.设R 为实数集合,则下列集合关于加法运算不是,R <+>的子代数的是( ) A.偶数集合; B.奇数集合; C.自然数集合; D.整数集合。

2.下列关于群的说法正确的是( )A.质数阶的群必为循环群;B.有限群必为循环群;C.循环群必为质数阶群;D.循环群必为有限群。

3.设R 为实数集合,则20(),0a M R a b R b ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭关于矩阵的加法和乘法构成( ) A.有幺元的交换环; B.无幺元的非交换环; C.无幺元的交换环; D.有幺元的非交换环。

4.设I 为整数集合,则下列关系是代数,I <+>上的同余关系的是( )A.||0x y x y ⇔-≤;B.(00)(00)x y x y x y ⇔<∧<∨≥∧≥;C.xy x y ⇔≤; D.(0)(00)xy x y x y ⇔==∨≠∧≠。

5.下列集合关于整除关系构成格的是( )A.{1,2,3,4,6};B.{1,2,3,6};C.{2,3,6};D.{1,2,3}。

6.在布尔代数,,,,0,1B '<*⊕>中任取两元素,a b ,下列命题与a b ≤不一定等价的是() A.a b a *=; B.a b b ⊕=; C.0a b '*=; D.1a b '⊕=。

7.在布尔代数>'⊕*<1,0,,,,B 上定义的n 元布尔表达式所对应的不同主析取范式总个数为( ) A.n2; B.nBB; C.nB2; D.nB 。

8.设无向图,G V E =<>中{1,2,3,4,5}V =,{(1,2),(2,3),(3,4),(4,5),(5,1),(2,5)}E =, 则{2,4}V '=不是图G 的( )A.点割;B.支配集;C.点覆盖;D.独立集。

离散数学考试试题(A卷及答案)

离散数学考试试题(A卷及答案)

离散数学考试试题(A卷及答案)离散数学考试试题(A卷及答案)⼀、(10分)判断下列公式的类型(永真式、永假式、可满⾜式)?1)((P→Q)∧Q)?((Q∨R)∧Q) 2)?((Q→P)∨?P)∧(P∨R)3)((?P∨Q)→R)→((P∧Q)∨R)解:1)永真式;2)永假式;3)可满⾜式。

⼆、(8分)个体域为{1,2},求?x?y(x+y=4)的真值。

解:?x?y(x+y=4)??x((x+1=4)∨(x+2=4))((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+1=4))(0∨0)∧(0∨1)1∧1?0三、(8分)已知集合A和B且|A|=n,|B|=m,求A到B的⼆元关系数是多少?A到B的函数数是多少?解:因为|P(A×B)|=2|A×B|=2|A||B|=2mn,所以A到B的⼆元关系有2mn个。

因为|BA|=|B||A|=mn,所以A到B的函数mn个。

四、(10分)已知A={1,2,3,4,5}和R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求r(R)、s(R)和t(R)。

解:r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>}t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}五、(10分) 75个⼉童到公园游乐场,他们在那⾥可以骑旋转⽊马,坐滑⾏铁道,乘宇宙飞船,已知其中20⼈这三种东西都乘过,其中55⼈⾄少乘坐过其中的两种。

(完整版)离散数学试题及答案,推荐文档

(完整版)离散数学试题及答案,推荐文档

11 设 A,B,R 是三个集合,其中 R 是实数集,A = {x | -1≤x≤1, xR}, B = {x | 0≤x < 2, xR},则
A-B = __________________________ , B-A = __________________________ ,
A∩B = __________________________ , . 13. 设集合 A={2, 3, 4, 5, 6},R 是 A 上的整除,则 R 以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式 G = xP(x)xQ(x),则 G 的前束范式是__________________________
二、选择题
1. C. 2. D. 3. B. 4. B.
5. D. 6. C. 7. C.
8. A. 9. D. 10. B. 11. B.
第 5 页 共 18 页
13. {(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}.
14. x(P(x)∨Q(x)). 15. 21.
16. (R(a)∧R(b))→(S(a)∨S(b)). 17. {(1, 3),(2, 2)}; {(1, 1),(1, 2),(1, 3)}.
8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
__________________________,_____________________________,
__________________________.

离散数学试卷及答案

离散数学试卷及答案

离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。

2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。

3.设P ,Q 的真值为0,R ,S 的真值为1,则)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。

4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 。

6.设A={1,2,3,4},A 上关系图为则 R 2 = 。

7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。

8.图的补图为 。

9.设A={a ,b ,c ,d} ,A 上二元运算如下:A BC* a b c d a b c da b c d b c d a c d a b d a b c那么代数系统<A ,*>的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。

10.下图所示的偏序集中,是格的为 。

二、选择 20% (每小题 2分)1、下列是真命题的有( ) A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C . }},{{ΦΦ∈Φ;D . }}{{}{Φ∈Φ。

2、下列集合中相等的有( )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。

3、设A={1,2,3},则A 上的二元关系有( )个。

A . 23 ; B . 32 ; C . 332⨯; D . 223⨯。

4、设R ,S 是集合A 上的关系,则下列说法正确的是( ) A .若R ,S 是自反的, 则S R 是自反的; B .若R ,S 是反自反的, 则S R 是反自反的; C .若R ,S 是对称的, 则S R 是对称的; D .若R ,S 是传递的, 则S R 是传递的。

《离散数学》试卷A及答案

《离散数学》试卷A及答案

《离散数学》试卷(A)适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一、单项选择题(本大题共8小题,每小题3分,共24分)1、下述哪一个不是命题?( ) A 、离散数学是计算机系的一门必修课 B 、不存在最大偶数。

C 、若我有空,我就看书。

D 、请勿随地叶痰!2、设A={a,b,c},B={1,2,3},以下哪一个关系是从A 到B 的双射函数?( ) A 、f={<a,2>,<b,2>,<c,1>} B 、f={<a,3>,<b,1>,<c,2>} C 、f={<a,1>,<b,2>,<c,3>,<a,3>} D 、f={<a,1>,<b,2>,<a,3>}3.设<G, 。

>是群,且|G|>1,则下列命题不成立的是( )A.G 中有幺元B. G 中有零元C.G 中任一元素有逆元D. G 中除幺元外无其它幂等元 4、设A={}c b a ,,,则下列是集合A 的划分的是( ) A.{}{}{}c c b ,, B. {}{}{}c a b a ,,, C.{}{}c b a ,, D.{}{}{}c b a ,, 5.设集合A={a,{b}},下面四个命题为真的是A.a 包含于AB.φ∈AC.{b}包含于AD.φ包含于A 6、下列是命题公式p ∧(q ∨⌝r)的成真指派的是( ) A.110,111,100 B.110,101,011 C 所有指派 D.无 7、与一阶公式P(x)→VxQ(x)等值的公式是A.P(y)→VyQ(y)B.P(y)→VxQ(y)C.P(x)→VyQ(y)D.P(z)→VyQ(y)8、设A 和B 都是命题,则A →B 的真值为假当且仅当( ) A 、A 为0 ,B 为1 B 、A 为0 ,B 为0 C 、A 为1 ,B 为1 D 、A 为1 ,B 为0二、填空题(本大题共7小题,每空3分,共21分)1..设A={a,b,c},F 是A 上的二元关系,F={<a,c>,<b,a>,<c,b>},则其自反闭包为r(F)= 。

离散数学期末试题及答案A

离散数学期末试题及答案A

学年第二学期期末考试《离散数学》试卷( A )使用班级:命题教师:主任签字:一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( )A.10B.12C.16D.143.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( )A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉6.下列各代数系统中不含有零元素的是( )A.〈Q,*〉Q是全体有理数集,*是数的乘法运算B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算C.〈Z,ο〉,Z是整数集,ο定义为xοxy=xy,∀x,y∈ZD.〈Z,+〉,Z是整数集,+是数的加法运算7.设A={1,2,3},A上二元关系R的关系图如下:R具有的性质是A.自反性B.对称性C.传递性D.反自反性8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( )A.R∪I AB.RC.R∪{〈c,a〉}D.R∩I A9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取( )A.{〈c,a〉,〈a,c〉}B.{〈c,b〉,〈b,a〉}C.{〈c,a〉,〈b,a〉}D.{〈a,c〉,〈c,b〉}10.下列式子正确的是( )A. ∅∈∅B.∅⊆∅C.{∅}⊆∅D.{∅}∈∅11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x<y.下列公式在R下为真的是( )A.( ∀x)( ∀y)( ∀z)(A(x,y))→A(f(x,z),f(y,z))B.( ∀x)A(f(a,x),a)C.(∀x)(∀y)(A(f(x,y),x))D.(∀x)(∀y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式(∀x)(A(x)→B)等价于( )A.(∃x)A(x)→BB.(∀x)A(x)→BC.A(x)→BD.(∀x)A(x)→(∀x)B13.谓词公式(∀x)(P(x,y))→(∃z)Q(x,z)∧(∀y)R(x,y)中变元x( )A.是自由变元但不是约束变元B.既不是自由变元又不是约束变元C.既是自由变元又是约束变元D.是约束变元但不是自由变元14.若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为( )A.P∨QB.P∧┐QC.P→┐QD.P∨┐Q15.以下命题公式中,为永假式的是( )A.p→(p∨q∨r)B.(p→┐p)→┐pC.┐(q→q)∧pD.┐(q∨┐p)→(p∧┐p)二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为______,称为树根,其余结点的入度均为______。

离散数学试题及答案

离散数学试题及答案

离散数学考试试题(A卷及答案)一、(10分)某项工作需要派A、B、C和D 4个人中的2个人去完成,按下面3个条件,有几种派法?如何派?(1)若A去,则C和D中要去1个人;(2)B和C不能都去;(3)若C去,则D留下。

解设A:A去工作;B:B去工作;C:C去工作;D:D去工作。

则根据题意应有:A→C⊕D,⌝(B ∧C),C→⌝D必须同时成立。

因此(A→C⊕D)∧⌝(B∧C)∧(C→⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧(⌝B∨⌝C)∧(⌝C∨⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧((⌝B∧⌝C)∨(⌝B∧⌝D)∨⌝C∨(⌝C∧⌝D))⇔(⌝A∧⌝B∧⌝C)∨(⌝A∧⌝B∧⌝D)∨(⌝A∧⌝C)∨(⌝A∧⌝C∧⌝D)∨(C∧⌝ D∧⌝B∧⌝C)∨(C∧⌝ D∧⌝B∧⌝D)∨(C∧⌝ D∧⌝C)∨(C∧⌝ D∧⌝C∧⌝D)∨(⌝C∧D∧⌝B∧⌝C)∨(⌝C∧D∧⌝B∧⌝D)∨(⌝C∧D∧⌝C)∨(⌝C∧D∧⌝C∧⌝D)⇔F∨F∨(⌝A∧⌝C)∨F∨F∨(C∧⌝ D∧⌝B)∨F∨F∨(⌝C∧D∧⌝B)∨F∨(⌝C∧D)∨F⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D∧⌝B)∨(⌝C∧D)⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D)⇔T故有三种派法:B∧D,A∧C,A∧D。

二、(15分)在谓词逻辑中构造下面推理的证明:某学术会议的每个成员都是专家并且是工人,有些成员是青年人,所以,有些成员是青年专家。

解:论域:所有人的集合。

S(x):x是专家;W(x):x是工人;Y(x):x是青年人;则推理化形式为:∀x(S(x)∧W(x)),∃x Y(x)∃x(S(x)∧Y(x))下面给出证明:(1)∃x Y(x) P(2)Y(c) T(1),ES(3)∀x(S(x)∧W(x)) P(4)S( c)∧W( c) T(3),US(5)S( c) T(4),I(6)S( c)∧Y(c) T(2)(5),I(7)∃x S((x)∧Y(x)) T(6) ,EG三、(10分)设A、B和C是三个集合,则A⊂B⇒⌝(B⊂A)。

离散数学试卷(A)

离散数学试卷(A)

离散数学试卷(A)一、单项选择题(每小题2分。

共20分)在每小题的四个备选答案中只有一个正确的答案。

请将正确答案的序号写在题干的括号内。

1.设集合A={2,{a},3,4},B = {{a},3,4,1},E 为全集,则下列命题正确的是( ).A.{2}∈AB.{a}⊆AC.∅⊆{{a}}⊆B ⊆ED.{{a},1,3,4}⊂ B.2.除非613≥ ,否则79≤。

令r: 613≥,s :79≤,可符号化为( ).A.s r →B. r s →⌝C. s r →⌝D. r s →3.使命题公式()p q q ∧→为假的赋值是( )A.10B.01C.00D.114. ()r q p ↔→的合取范式是( )A.()()()r q p r q r p ⌝∨∨⌝∧∨⌝∧∨;B. ()()()r q p r q q p ⌝∨∨⌝∧∨⌝∧∨C. ()()()r q p r q q p ⌝∨∨⌝∧∨∧∨;D. ()()()r q p r q r p ⌝∨∨⌝∧∨∧∨;5.判断下列各式中,不是合式公式的是 ( )A.S R Q ∧→B.()()S R P →↔C.()()()P Q Q P →→→⌝D.()K RS →6. 下列语句中是命题的只有( )A .1+1=10B .x+y=10C .sinx+siny<0D .x mod 3=2 7.设A={1,2,3,4,5},下面集合等于A 的是( )A .{1,2,3,4} B.{}252≤x x x 是整数,且C .{}5≤x x x 是正整数,且D .{}5≤x x x 是正有理数,且8.设f 和g 都是x 上的双射函数,则()1-g f ( ) A.11--g f B. ()1-f gC. 11--f gD. 1-g f9.下面等值式不正确的是:( C )A.A A A ⇔∨ ;B. ()B A B A ⌝∨⌝⇔∧⌝ ;C. ()B B A A ⇔∧∨;D. B A B A ∨⌝⇔→;10.R 代表实数集合,针对给定的函数集合f ,下面函数f: R R →属于双射的是:( )A. ()x x f 2=B. ()x x f sin =C. ()23x x x f -=D. ()x x f x +=2二、判断题(每题2分,共10分)11. A 是合式公式,但()B A ∨不一定就是合式公式( )12. q p →为真当且仅当p 与q 同时为真或同时为假( )13.设i i m M 与是命题变项1p ,2p ,。

长江大学08级离散试卷A答案

长江大学08级离散试卷A答案

一 判断题(每小题1分,共 15分)1、 若图G 是自对偶的,则e=2v-2 (T)2、 “离散数学是很有趣的一门课程”,这句话是命题。

(T )3、 函数的复合既能交换也能结合。

(F )4、 如果A ∨C ⇔B ∨C ,则A ⇔B (F )5、 设G=<V,E>为连通图,且e ∈E,则当e 是G 的割边时,e 才在G 的每棵生成树中。

(T )6、 )()(R Q P Q ∨↔→是合式公式。

(T )7、 任何阶数为4的群都是阿贝尔群。

(T )8、 设G 是简单连通图,且有v 个结点,e 条边,若G 是平面图,则e ≤3v-6。

(T )9、 一个循环群的生成元是唯一的。

(F )10、有任意集合A 、B ,则f(A ∩B)⊆f(A)∩f(B)且f(A)∩f(B)⊆f(A ∩B)。

(F ) 11、)()()()())()()((x B x x A x x B x A x ∃∧∃⇔∧∃(F ) 12、对任意集合A ,B ,C ,如果A ∈B 以及B ⊆C ,则A ⊆C 。

(F ) 13、整数集上的同余类是对整数集的一个划分。

(T ) 14、有限半群中存在等幂元。

(T ) 15、 设<A,*>是一个代数系统,且|A|>1,若该代数系统中存在幺元和零元,则幺元与零元相等。

(F )二 、选择题(每小题2分,共 22分)1、 一棵树有两个结点度数为2,一个结点度数为3,三个结点度数为4,则该树有(D )片树叶。

B. 7C. 82、图1中v 1到v 4 长度为2的路有(A )条A. 1B. 2C. 3v 4v 1图13、设A={1,2,3,4},B={a ,b ,c ,d},f 定义为:{<1,a>,<2,b>,<3,c>,<4,d>},则f (D )。

A.不是函数B.仅为入射函数C.仅为满射函数D.是双射函数4、设F(x):x 是乌鸦;G(x,y):x 与y 一般黑,则“天下乌鸦一般黑”可以符号化为:(A)A.)),()()()()((y x G y F x F y x →∧∀∀B.)),()()()()((y x G y F x F y x →∧∃∀C.)),()()()()((y x G y F x F y x →∧∃∃D.)),()()()()((y x G y F x F y x →∧∀∃5、给定下列谓词公式,则是矛盾式的公式为(C )A.))()()((x P x P x ⌝→⌝∀B. )()()()(x P x x P x ∃→∀C.)()())()(()()((y Q y y Q y x P x ∀∧∀→∀⌝D.),())((),())((y x P y x y x P y x ∀∃→∃∀6、设有下列四个集合,偏序关系为整除,则是全序关系的为(D )A. {3,5,15}B.{1,2,3,6,12}C.{3,4,12}D.{3,9,27,54}7、设集合P={x1,x2,x3,x4,x5}上的偏序关系如图2所示,则下列说法中正确的是(A )A 、P 的最大元素为x1 ,无最小元素,极小元素为x4,x5 ,极大元为素x1B 、P 无最大元素,也无最小元素,极小元素为x4,x5 ,极大元为素x1C 、P 的最大元素为x1 ,无最小元素,也无极小元素 ,极大元为素x1D 、P 的最大元素为x1 ,最小元素为x4,x5,极小元素为x4,x5 ,极大元为素x1x 1x 4x 5x 2图28、集合A={a ,b ,c},A 上的关系R={(a ,b ),(a ,c ),(b ,a ),(b ,c ),(c ,a ),(c ,b ),(c ,c )},则R 具有关系的(B )性质。

离散数学考试试题(A、B卷及答案)

离散数学考试试题(A、B卷及答案)

离散数学考试试题(A卷及答案)一、证明题(10分)1) (P∧Q∧A→C)∧(A→P∨Q∨C)⇔ (A∧(P↔Q))→C。

P<->Q=(p->Q)合取(Q->p)证明: (P∧Q∧A→C)∧(A→P∨Q∨C)⇔(⌝P∨⌝Q∨⌝A∨C)∧(⌝A∨P∨Q∨C)⇔((⌝P∨⌝Q∨⌝A)∧(⌝A∨P∨Q))∨C反用分配律⇔⌝((P∧Q∧A)∨(A∧⌝P∧⌝Q))∨C⇔⌝( A∧((P∧Q)∨(⌝P∧⌝Q)))∨C再反用分配律⇔⌝( A∧(P↔Q))∨C⇔(A∧(P↔Q))→C2) ⌝(P↑Q)⇔⌝P↓⌝Q。

证明:⌝(P↑Q)⇔⌝(⌝(P∧Q))⇔⌝(⌝P∨⌝Q))⇔⌝P↓⌝Q。

二、分别用真值表法和公式法求(P→(Q∨R))∧(⌝P∨(Q↔R))的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值(15分)。

主析取范式与析取范式的区别:主析取范式里每个括号里都必须有全部的变元。

主析取范式可由析取范式经等值演算法算得。

证明:公式法:因为(P→(Q∨R))∧(⌝P∨(Q↔R))⇔(⌝P∨Q∨R)∧(⌝P∨(Q∧R)∨(⌝Q∧⌝R))⇔(⌝P∨Q∨R)∧(((⌝P∨Q)∧(⌝P∨R))∨(⌝Q∧⌝R))分配律⇔(⌝P∨Q∨R)∧(⌝P∨Q∨⌝Q)∧(⌝P∨Q∨⌝R)∧(⌝P∨R∨⌝Q)∧(⌝P ∨R∨⌝R)⇔(⌝P∨Q∨R)∧(⌝P∨Q∨⌝R)∧(⌝P∨⌝Q∨R)⇔4M∧5M使(非P析取Q析取R)为0所赋真值,即100,二进制M∧6为4⇔0m∨1m∨2m∨3m∨7m所以,公式(P→(Q∨R))∧(⌝P∨(Q↔R))为可满足式,其相应的成真赋值为000、001、010、011、111:成假赋值为:100、101、110。

真值表法:P Q R Q↔R P→(Q∨R)⌝P∨(Q↔R) (P→(Q∨R))∧(⌝P∨(Q↔R))0 0 0 0 0 1 0 1 00 1 11 0 0 1 0 1 1 1 0 1 1 1 1111111111111111111111由真值表可知,公式(P→(Q∨R))∧(⌝P∨(Q↔R))为可满足式,其相应的成真赋值为000、001、010、011、111:成假赋值为:100、101、110。

离散数学参考答案

离散数学参考答案

1.(单选题)A.明年“五一”是晴天。

B.这朵花多好看呀!。

C.这个男孩真勇敢啊! D.明天下午有会吗?答题: A. B. C. D. (已提交)参考答案:A问题解析:2.(单选题) 在上面句子中,是命题的是( )A.1+101=110 B.中国人民是伟大的。

C.这朵花多好看呀! D.计算机机房有空位吗?答题: A. B. C. D. (已提交)参考答案:B问题解析:3.(单选题) 在上面句子中,是命题的是( )A.如果天气好,那么我去散步。

B.天气多好呀!C.x=3。

D.明天下午有会吗?答题: A. B. C. D. (已提交)参考答案:A问题解析:4.(单选题) 在上面句子中( )是命题下面的命题不是简单命题的是( )A.3 是素数或4 是素数B.2018 年元旦下大雪C.刘宏与魏新是同学 D.圆的面积等于半径的平方与π之积答题: A. B. C. D. (已提交)参考答案:A问题解析:5.(单选题) 下面的表述与众不一致的一个是( )A.P :广州是一个大城市 B.ØP :广州是一个不大的城市C.ØP :广州是一个很不小的城市 D.ØP :广州不是一个大城市答题: A. B. C. D. (已提交)参考答案:C问题解析:6.(单选题) 设,P:他聪明;Q:他用功。

在命题逻辑中,命题:“他既聪明又用功。

”可符号化为:()A.PÙQ B.P®QC.PÚØQ D.PÙØQ答题: A. B. C. D. (已提交)参考答案:A问题解析:7.(单选题) 设:P :刘平聪明。

Q:刘平用功。

在命题逻辑中,命题:“刘平不但聪明,而且用功”可符号化为:()A.PÙQ B.ØPÚQC.PÚØQ D.PÙØQ答题: A. B. C. D. (已提交)参考答案:A问题解析:8.(单选题)设:P:他聪明;Q:他用功。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。

答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。

答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。

答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。

答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。

答案:欧拉路径是一条通过图中每条边恰好一次的路径。

2. 解释什么是二元关系,并给出一个例子。

答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。

例如,小于关系就是一个二元关系。

3. 请说明什么是递归函数,并给出一个简单的例子。

答案:递归函数是一种通过自身定义来计算函数值的函数。

例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。

四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。

2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。

答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。

(大学试卷)2011.7《离散数学》考试卷A答案

(大学试卷)2011.7《离散数学》考试卷A答案

离散数学课程考试试卷A专业:信计考试日期: 所需时间:120分钟总分:100分 闭卷 一、选择题(每小题2分,总共20分)1、设P :我们划船,Q :我们跑步。

命题“我们不能既划船又跑步”符号化为( B )A 、Q P ⌝∧⌝B 、Q P ⌝∨⌝C 、)(Q P ↔⌝D 、)(Q P ⌝↔2、下列语句中哪个是真命题?( D )A 、我正在说谎。

B 、严禁吸烟C 、如果1+2=3,那么雪是黑的。

D 、如果1+2=5,那么雪是黑的。

3、命题公式Q Q P P →→∧))((是( C ) A 、矛盾式 B 、蕴含式 C 、重言式 D 、等值式4、谓词公式)())()((x Q y yR x P x →∃∨∀中变元x 是( D ) A 、自由变量 B 、约束变量 C 、既不是自由变量也不是约束变量 D 、既是自由变量也是约束变量5、若个体域为整数域,下列公式中哪个值为真?( A ) A 、)0(=+∃∀y x y x B 、)0(=+∀∃y x x y C 、)0(=+∀∀y x y x D 、)0(=+∃⌝∃y x y x6、设个体域A={a,b},公式)()(x xS x xP ∃∧∀在A 中消去量词应为( B ) A 、)()(x S x P ∧ B 、))()(()()(b S a S b P a P ∨∧∧ C 、)()(b S a P ∧ D 、)()()()(b S a S b P a P ∨∧∧8、设A={{1,2,3},{4,5},{6,7,8}},下列正确的是( C ) A 、1∈A B 、{1,2,3}⊆A C 、{{4,5}}⊂A D 、Φ∈A 9、幂集P (P (P (Φ)))为( C )A 、{{Φ},{Φ,{Φ}}}B 、{Φ,{Φ},{Φ,{Φ}}}C 、{Φ,{Φ},{Φ,{Φ}},{{Φ}}}D 、{Φ,{Φ,{Φ}}} 10、任意一个具有多个等幂元的半群,它( A )A 、不能构成群B 、不一定能构成群C 、能构成群D 、不能构成交换群 二、填空题(每小题3分,总共24分)1、设A 为任意的公式,B 为重言式,则B A ∨的类型为 重言式2、设q p q p →⌝为命题变项,,的成真赋值为10,11,013、设集合A={x|x <3,x ∈Z},B={x|x=2k,k ∈Z} C={1,2,3,4,5},则A ⊕(C-B )={0,2,4,6,7,8}4、某校有足球队员38人,篮球队员15人,排球队员20人,三队队员总数为58人,其中只有3人同时参加3种球队,则仅仅参加两种球队的队员为9人 。

离散数学试卷及参考答案

离散数学试卷及参考答案

济南大学继续教育学院离散数学试卷(A)学年:学期:年级:专业:学习形式:层次:(本试题满分100分,时间90分钟)一、选择(每题2分,共18分)1.设简单图G所有结点的度之和为12,则G一定有 ( ) 条边。

A. 3B. 4C. 5D. 62.设G是一棵树,则G 的生成树有 ( B ) 棵A. 0B. 1C. 2D.不能确定3. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( )。

A. (1,2,2,3,4,5)B. (1,2,3,4,5,5)C. (1,1,1,2,3)D. (2,3,3,4,5,6).4. 命题∀xG(x)取真值1的充分必要条件是( )。

A.对任意x,G(x)都取真值1.B.有一个x0,使G(x0)取真值1.C.有某些x,使G(x0)取真值1.D.以上答案都不对.5.设集合A={2,{a},3,4},B = {{a},3,4,1},E为全集,则下列命题正确的是( )。

A. {2}∈AB. {a}⊆AC. ∅⊆{{a}}⊆B⊆ED. {{a},1,3,4}⊂B.6. 下列关于集合的表示中正确的为( )。

A.{a}∈{a,b,c}B. {a}⊆{a,b,c}C. ∅∈{a,b,c}D. {a,b}∈{a,b,c}7.下列式子正确的是 ( )。

A. p →q = q →pB. p →q = ⌝q ∨ pC. p →q,q →s ⇒ p →sD. p ↔q = (p → q) ∨ (q→ p)8.下列语句中,( )是命题。

A.请把门关上B.地球外的星球上也有人C. x + 5 > 6D. 下午有会吗?9.设G、H是一阶逻辑公式,P是一个谓词,G=∃xP(x), H=∀xP(x),则一阶逻辑公式G→H是( )。

A. 恒真的第 1 页共 13 页。

离散数学`试卷A

离散数学`试卷A

一、基础知识(40分)1.判断下列句子是否是命题,若是命题将其符号化。

(4分)①.李平虽然聪明,但不用功。

②.除非你陪伴我或代我雇辆车子,否则我不去。

2.在一阶逻辑中将下列命题符号化。

(4分)①.任何自然数不是奇数就是偶数,偶数均能被2整除,奇数均不能被2整除。

②.任意实数的平方都不小于0。

3.求下列集合的幂集。

(4分)①.A={φ,{φ}}②.B={{φ,a},{a}}4.设f,g,h∈R R,且有f(x)=x+3,g(x)=2x+1,h(x)=x/2。

求g◦g,h◦f,g◦h,f◦h,f◦h◦g.(6分)5.设集合A={0,1,2,3,4},定义A上的二元关系R为:R={<x,y>⎪x,y∈A∧(x=y∨x+y∈A)},请写出二元关系R的集合表达式,并判断R具有的性质。

(6分)6.已知图G中有10条边,4个3度顶点,其余顶点的度数均小于等于2,则G中至少有多少个顶点?(4分)7.在下面各图中,哪些是欧拉图,哪些是哈密尔顿图?(4分)8. 设代数系统<A,*>,其中A={a,b,c},A 上的二元运算*定义如下表:请分析*运算的封闭性、交换性、等幂性。

A 中关于*是否有幺元和零元?如有幺元,每个元素是否有逆元?如有,求出逆元。

(8分)二、理解运用(30分)9. 证明逻辑等价式A ↔B ⇔ (A ∧B)∨(┐A ∧┐B)成立。

(6分)10. 求下列命题公式的主析取范式和所有成假赋值。

)())((r q p r q p ∧∧→∧∨(6分)11. 求谓词公式的前束范式。

(6分)12. 令A={1,2,3,4,5,6}, 画出偏序集<A ,整除>的哈斯图,并求(1)集合A 的最大元、最小元、极大元和极小元;(2)集合B ={2,3,6}的上界、下界、最小上界、最大下界。

(6分)13. 求带权图1的最小生成树及权(6分)图1三、综合能力(30分)14.用推理理论证明下面结论是否有效?如果今天是星期三,那么我有一次离散数学或数字逻辑测验。

离散数学试题A卷及答案

离散数学试题A卷及答案

离散数学试题A卷及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}中,子集的个数是多少?A. 3B. 7C. 8D. 9答案:C2. 以下哪个命题是真命题?A. ∃x∈R, x^2 = -1B. ∀x∈R, x^2 ≥ 0C. ∀x∈R, x^2 = 1D. ∃x∈R, x^2 = 2答案:B3. 函数f: N → N定义为f(x) = 2x,该函数是:A. 单射B. 满射C. 双射D. 非函数答案:A4. 以下哪个逻辑表达式等价于p∧(q∨¬p)?A. p∧qB. p∨qC. ¬p∨qD. p∧¬p答案:A5. 以下哪个图是二分图?A. 完全图K5B. 完全二分图K3,3C. 环图C5D. 星形图K1,4答案:B二、填空题(每题3分,共15分)1. 若A={1,2,3},B={2,3,4},则A∩B=______。

答案:{2,3}2. 命题“若x>0,则x^2>0”的逆否命题是:若x^2≤0,则______。

答案:x≤03. 在一个有向图中,若存在从顶点u到顶点v的有向路径,则称v可到达u,若图中每个顶点都可到达其他所有顶点,则称该有向图是______。

答案:强连通的4. 一个集合的幂集包含该集合的所有______。

答案:子集5. 在逻辑中,合取(AND)操作符用符号______表示。

答案:∧三、解答题(每题10分,共20分)1. 证明:若A⊆B且B⊆C,则A⊆C。

证明:设x∈A,则由A⊆B,可得x∈B。

又由B⊆C,可得x∈C。

因此,A⊆C。

2. 给定一个图G,包含顶点集V={v1, v2, v3, v4}和边集E={(v1,v2), (v2, v3), (v3, v4), (v4, v1), (v1, v3), (v2, v4)},请判断该图是否是欧拉图,并说明理由。

答案:该图是欧拉图。

因为该图是连通的,且每个顶点的度都是偶数。

结束语:本试题涵盖了离散数学中的基本概念和原理,通过这些题目的练习,可以加深对离散数学知识的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1学期
《离散数学》试卷 A
(试卷共6页,答题时间120分钟)
一、选择题(每小题 2分,共 20 分。

请将答案填在下面的表格内)
1、从集合分类的角度看,命题公式可分为( )
A.永真式、矛盾式
B. 永真式、可满足式、矛盾式
C. 可满足式、矛盾式
D. 永真式、可满足式 2、设B 不含有x ,))((B x A x →∃等值于 ( )
A.
B
x xA →∀)( B.))((B x A x ∨∃
C.B x xA →∃)(
D.))((B x A x ∧∃
3、设S,T,M 是集合,下列结论正确的是( )
A .如果S ∪T=S ∪M ,则T=M
B .如果S-T=Φ,则S=T
C .S S S =⊕
D .)(~T S T S I =- 4、设R 是集合A 上的偏序关系,则R 不一定是( )
A.自反的
B. 对称的
C. 反对称的
D. 传递的
5 设R 为实数集,定义R 上4个二元运算,不满足结合律的是( )。

A. f 1(x,y)= x+y B. f 2(x,y)=x-y C. f 3(x,y)=xy
D. f 4(x,y)=max{x,y}
6、设<L,∨∧,>是一个格,则它不满足( )
A.交换律
B. 结合律
C. 吸收律
D. 消去律 7、设A={1,2},则群>⋂<),(A P 的单位元和零元是( )
A. Φ与A
B. A 与Φ
C. {1}与Φ
D. {1}与A
8、下列编码是前缀码的是( ).
A.{1,11,101}
B.{1,001,0011}
C. {1,01,001,000}
D.{0,00,000}
9、下图中既是欧拉图又是哈密顿图的是( )
A . 9K
B .10K
C .3,2K
D .3,3K 10、下图所示的二叉树中序遍历的结果是( )
A .abcde
B .edcba
C .bdeca
D .badce
二、填空题(每题3分,共24分)
1、含3个命题变项的命题公式的主合取范式为76430M M M M M ∧∧∧∧, 则它的主析取范式为 。

(的形势表示成m m ∨)
2、〈4Z ,⊕〉模4加群, 则3是 阶元,3⊕3= ,3的逆元是 。

3、设V=<Z,+>,其中“+”是普通加法。

Z x ∈∀,
令ϕ1(x)=x, ϕ2(x)=-x,ϕ3(x)=x+5, ϕ4(x)=2x ,其中有 个自同构.
4、设⎪⎪⎭⎫ ⎝⎛=645132654321π是集合A={1,2,3,4,5,6}上的一个置换,则
把它表示成不相交的轮换的积是 。

4、已知n 阶无向简单图G 有m 条边,则G 的补图有 条边。

5、一个有向图是强连通的充分必要条件是 。

7、已知n 阶无向图G 中有m 条边,各顶点的度数均为3。

又已知2n-3=m , 则m= .
8、在下图中从A 点开始,用普里姆算法构造最小生成树,加入生成树的第三条边是 ( )。

A B
C 24
三、计算题(每题9分,共 36分)
1、已知命题公式)()(p q q p ∨⌝→→⌝,
(1) 构造真值表。

(2) 求主析取范式(要求通过等值演算推出)。

2、R 1={<1,2>,<1,3>,<2,3>}, R 2={<2,2>,<2,3>,<3,4>},求:
(1)21R R - (2)11-R (3) 求12R R ο 3、设<A,R>为一个偏序集,其中,A={1,2,3,4,6,9,12,24},R 是A 上的整除关系。

(1)画R 出的哈斯图;
(2)求A 的极大元和极小元; (3)求B={4,6}的上确界和下确界。

4、画一棵带权为1,1,1,3,3,5,8的最优二叉树T ,并计算它的权W (T )。

四、证明题(共 20分)
1、(7分)前提: r p q s q p ⌝∨→→,),(
结论: s r →
2、(7分)A={(0,0),(0,1),(1,0),(1,3),(2,2),(2,3),(3,1)}, R={<(a,b),(c,d)>| (a,b),(c,d)∈A 且a+b=c+d }. (1)证明:R 是A 上的等价关系. (2)给出R 确定的对A 的划分(分类).
3、(6分)设><ο,G 是群, },|{x y y x G y G x x S οο=∈∀∈=且对于, 证明S 是G 的子群.
《离散数学》试卷 A
参考答案
一、选择题(每小题 2分,共 20 分。

请将答案填在下面的表格内)
二、填空题(每题3分,共24分) 1、521m m m ∨∨ 2、4,2,1
3、2
4、(123)(45)。

4、
n n n --2
)
1( 5、存在经过每个顶点的回路 7、 9 . 8、 d,c 或 c ,d
三、计算题(每题9分,共 36分)
1
(2) 主析取范式(5分):
)()()()()()(p q q p p q q p p q q p ∨⌝∨∨⌝⇔∨⌝→∨⇔∨⌝→→⌝ ⇔∧∨⌝∧∨⌝∧⌝⇔∨⌝∨⌝∧⌝⇔)()()()()(q p q p q p p q q p )3,2,0(320∑⇔∨∨⇔m m m
2、(每小题3分)
(1)21R R -= {<1,2>,<1,3>}
(2)11-R ={<2,1>,<3,1>,<3,2>}
(1) 求12R R ο={<1,2>,<1,3>,<1,4>,<2,4>}
3、 (每小题3分)
(1)(4分)
49
(2)(3分)A 的极大元9,24; 极小元1; (3)(2分)B={4,6}的上确界12 下确界2。

4、画图(7分) W (T )=55(2分
)
3
1
122
四、证明题(共 20分)
1、(7分)证明:附加前提证明法..1分 ① r ② r p ⌝∨
③ p ①②………….. 3分 ④ )(s q p →→
⑤ s q → ③④ ………….. 5分 ⑥ q
⑦ s ⑤⑥ …………. 7分 2、证明:(1)(5分)
自反性。

对于),(),(,
),(b a R b a b
a b a A b a +=+∈∀ 自反性成立
对称性。

对于d c b a d c R b a A d c b a +=+∈∀),,(),(,),(),,(如果
),(),(b a R d c b a d c 所以+=+ 对称性成立 传递性。

),,(),(),
,(),(,),(),,(),,(y x R d c d c R b a A y x d c b a 如果∈∀ ),(),(,
,,y x R b a y x b a y x d c d c b a 从而
所以
+=++=++=+
传递性成立
(2)A/R={{(0,0)},{(0,1),(1,0)},{(1,3),(2,2),(3,1)},{(2,3)}}
(2分)
3、证明:(每步各2分)
(1)S 不空:><ο,G 是群,设e 是><ο,G 的单位元,那么 S e ye ey G y ∈=∈∀,,都有,所以 S 不空。

(2)221121,,,,yx y x yx y x G y S x x ==∈∀∈∀都有那么对于
)()()()()()(212121212121x x y x yx x y x yx x y x x y x x =====那么
所以,,21S x x ∈
(3)1111,
,,----==∈∀∈∀yxx x xyx x yx xy S y S x 都有那么对于
y x yx 11--=即
所以,S x ∈-1 S 是G 的子群.。

相关文档
最新文档