有关计算机参与药物设计的综述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有关计算机参与药物设计的综述

天津市汉沽医院药剂科潘秋霞【摘要】

利用计算机辅助药物设计正离我们越来越近。无需很久,包括癌症、关节炎、艾滋病在内的众多疾病相关药物将完全产生于计算机,以往所依靠的经验式重复筛选法将被抛弃。将设计工具和设计方法进行集成是提高效率最有效途径。表现在药物研发领域即是创意问题解决理论与计算机辅助药物设计之间的结合。专家称这使新药开发全速奔向一个新时代,而这一时代正是科学界期待已久的。

从1894年Emil Fischer[1]提出药物作用的“锁钥原理”[2]开始,药物设计一直是药物研发人员的一个梦想。经过科学家多年的努力探索,特别是计算机和信息科学等学科的发展,计算机辅助药物设计方法[3]日趋成熟,技术日益丰富。通过与实验紧密结合,计算机辅助药物设计在药物研究中正发挥越来越重要的作用,已成为药物研究的核心技术之一。药物设计的梦想正在逐步实现[4]。

【关键词】计算机药物化学药物设计分析法

计算机辅助药物设计(computer aided drug design)是以计算机化学为基础,通过计算机的模拟、计算和预算药物与受体生物大分子之间的关系,设计和优化先导化合物的方法[5]。受体是指生物体的细胞膜上或细胞内的一种具有特异性功能的生物大分子,与内源性激素、递质或外源性药物结合后,发生一定的特定功能,如开启细胞膜上的离子通道,或激活特殊的酶,从而导致特定的生

理变化。能与受体产生特异性结合的生物活性物质称为配体(ligand)。配体与受体结合能产生与激素或神经递质等相似的生理活性作用的称为激动剂;若与受体集合后阻碍了内源性物质与受体结合,从阻断了其产生生理作用的,则称为拮抗剂。计算机辅助药物设计实际上就是通过模拟和计算受体与配体的这种相互作用,进行先导化合物的优化与设计[6]。

计算机辅助药物设计根据受体的结构是否已知,分为直接药物设计和间接药物设计。

计算机辅助药物设计的方法始于1980年代早期。当今,随着人类基因组计划的完成、蛋白组学的迅猛发展,以及大量与人类疾病相关基因的发现,药物作用的靶标分子急剧增加;同时,在计算机技术推动下,计算机药物辅助设计在近几年取得了巨大的进展[7]。

计算机辅助药物设计的一般原理是,首先通过X-单晶衍射技等技术获得受体大分子结合部位的结构,并且采用分子模拟软件分析结合部位的结构性质,如静电场、疏水场、氢键作用位点分布等信息[8]。然后再运用数据库搜寻或者全新药物分子设计技术[9],识别得到分子形状和理化性质与受体作用位点相匹配的分子,合成并测试这些分子的生物活性,经过几轮循环,即可以发现新的先导化合物。因此,计算机辅助药物设计大致包括活性位点分析法、数据

库搜寻、全新药物设计。

1.活性位点分析法:该方法可以用来探测与生物大分子的活性位点较好地相互作用的原子或者基团。用于分析的探针可以是一些简单的分子或者碎片,例如水或者苯环,通过分析探针与活性位点的相互作用情况,最终可以找到这些分子或碎片在活性部位中的可能结合位置[12]。由活性位点分析得到的有关受体结合的信息对于全新药物的设计具有指导性。目前,活性位点分析软件有DRID、GREEN、HSITE等。另外还有一些基于蒙特卡罗、模拟退火技术的软件如MCSS、HINT、BUCKETS等[10][11]。

其中,GRID[13]由Goodford研究小组开发,其基本原理是将受体蛋白的活性部位划分为有规则的网格点,将探针分子(水分子或甲基等)放置在这些网格点上,采用分子力场方法计算探针分子与受体活性部位各原子的相互作用能,这样便获得探针分子与受体活性部位相互作用的分布情况,从中可发现最佳作用位点[14]。GRID最初运算的例子是用水分子作为探针分子,搜寻到了二氢叶酸还原酶(DHFR)活性部位中水的结合位点以及抑制剂的氢键作用位点。由此软件成功设计的药物有抗A型感冒病毒药物4-胍基Neu5Ac2en (GG167,RelenzaTM)。该化合物有很强的抗感冒病毒能力,克服了以往抗感冒病毒药物的耐药性缺陷,具有很好的市场前景。

MCSS[15]是Miranker和Karplus在CHARMM力场基础上发展而来,它的基本要点是在运用CHARMM力场进行分子动力学模拟时,取消溶剂分子间的非键相互作用。这样,在分子动力学模拟时,溶剂在能量合适的区域叠合在一起,从而提高了搜寻溶剂分子与受体分子结合区域的效率。小分子碎片(如水和苯分子)可当作溶剂分子,运用上述动力学方法搜寻出分子碎片与受体的结合区域,然后对每个碎片选择100-1000个拷贝,在低能碎片结合域进行能量优化[16]。在最后的能量搜寻过程中,可以用随机取样或网格点的方法来实施。搜寻时每个碎片的各个拷贝可以作刚性转动,最后直接比较每个碎片各个拷贝与受体的结合能,以此选择碎片的最佳作用位点。2001年Adlington等利用MCSS对前列腺特异性免疫抗原(PSA)的活性位点进行了详细分析,以此对已有的PSA抑制剂进行结构优化,从而得到了迄今为止活性最高的PSA抑制剂。

2.数据库搜寻:目前数据库搜寻方法分为两类。一类是基于配体的,即根据药效基团模型进行三维结构数据库搜寻[17]。该类方法一般需先建立一系列活性分子的药效构象,抽提出共有的药效基团,进而在现有的数据库中寻找符合药效基团模型的化合物。该类方法中比较著名的软件有Catalyst和Unity,而以前者应用更普遍。另一类方法是基于受体的,也称为分子对接法,即将小分子配体对接到受体的活性位点,并搜寻其合理的取向和构象,使得配体与受体的形状和相互作用的匹配最佳。在药物设计中,分子对接方法主

要用来从化合物数据库中搜寻与受体生物大分子有较好亲和力的小分子,从而发现全新的先导化合物。分子对接由于从整体上考虑配体与受体的结合效果,所以能较好地避免其他方法中容易出现的局部作用较好,整体结合欠佳的情况[4]。目前具代表性的分子对接软件[18]主要有DOCK、F1exX和GOLD。

DOCK[19]由Kuntz小组于1982年开发,最新版本为DOCK 5.0。DOCK 的开发经历了一个由简单到复杂的过程:DOCK1.0考虑的是配体与受体间的刚性形状对接;DOCK2.0引入了“分而治之”算法,提高了计算速度;DOCK 3.0采用分子力场势能函数作为评价函数;DOCK 3.5引入了打分函数优化以及化学性质匹配等;DOCK4.0开始考虑配体的柔性;DOCK 5.0在前面版本基础上,采用C++语言重新编程实现,并进一步引入GB/SA打分。DOCK程序现已成功地应用于药物分子设计领域。Kuntz等利用DOCK程序研究HIV-1蛋白酶,根据分子相似性对剑桥晶体数据库进行搜寻,得到化合物haloperidol,通过测试,其对HIV-1蛋白酶的Ki值为100μmol /L;进一步的结构改造得到化合物thioletal,其IC50高达1 5μmol/L。DesJarlais利用DOCK程序的一个改进版target-DOCK 搜寻HIV-1蛋白酶抑制剂,得到一系列HIV-1蛋白酶抑制剂,其中活性最高的化合物其Ki值为7μmol/L。

F1exX[19]是一种快速、精确的柔性对接算法,在对接时考虑了配体分

相关文档
最新文档