GPS定位的坐标系统及时间系统解析
gps定位坐标
GPS定位坐标
1. 介绍
GPS(Global Positioning System)是一种全球定位系统,利用卫星信号来确定地球上任何一个点的位置。
它通过三个或更多的卫星发射的信号,用来测量接收器的距离和位置。
GPS定位坐标是通过这些卫星信号计算得出的经度和纬度坐标。
2. GPS的工作原理
GPS系统主要由三个部分组成:卫星系统、控制系统和用户接收器。
卫星系统由一组维持在大约20200公里轨道上的卫星组成,它们不断地向地面发射信号。
控制系统负责维护卫星的轨道、状态和时间的准确性。
用户接收器则接收来自卫星的信号,并通过计算接收器与卫星之间的距离来确定接收器的位置。
GPS定位坐标是通过测量接收器与至少四颗卫星之间的距离来计算得出的。
接收器接收到卫星发射的信号后,会测量信号发送和接收之间的时间延迟。
由于光速是已知的,接收器可以使用这个延迟时间来计算信号传播的距离。
通过测量与多个卫星的距离,接收器可以使用几何定位原理来计算自己的准确位置。
3. GPS定位坐标的表示方法
GPS定位坐标使用经度和纬度来表示一个地点的位置。
经度表示东西方向上的位置,范围从-180度到180度,以0度经线(本初子午线)为基准。
东经表示正数,西经表示负数。
纬度表示南北方向上的位置,范围从-90度到90度,以赤道为基准。
北纬表示正数,南纬表示负数。
GPS定位坐标通常使用度(°)、分(’)和秒(。
GPS导航定位原理以及定位解算算法
G P S导航定位原理以及定位解算算法TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-GPS导航定位原理以及定位解算算法全球定位系统(GPS)是英文Global Positioning System的字头缩写词的简称。
它的含义是利用导航卫星进行测时和测距,以构成全球定位系统。
它是由美国国防部主导开发的一套具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航定位系统。
GPS用户部分的核心是GPS接收机。
其主要由基带信号处理和导航解算两部分组成。
其中基带信号处理部分主要包括对GPS卫星信号的二维搜索、捕获、跟踪、伪距计算、导航数据解码等工作。
导航解算部分主要包括根据导航数据中的星历参数实时进行各可视卫星位置计算;根据导航数据中各误差参数进行星钟误差、相对论效应误差、地球自转影响、信号传输误差(主要包括电离层实时传输误差及对流层实时传输误差)等各种实时误差的计算,并将其从伪距中消除;根据上述结果进行接收机PVT(位置、速度、时间)的解算;对各精度因子(DOP)进行实时计算和监测以确定定位解的精度。
本文中重点讨论GPS接收机的导航解算部分,基带信号处理部分可参看有关资料。
本文讨论的假设前提是GPS接收机已经对GPS卫星信号进行了有效捕获和跟踪,对伪距进行了计算,并对导航数据进行了解码工作。
1 地球坐标系简述要描述一个物体的位置必须要有相关联的坐标系,地球表面的GPS接收机的位置是相对于地球而言的。
因此,要描述GPS接收机的位置,需要采用固联于地球上随同地球转动的坐标系、即地球坐标系作为参照系。
地球坐标系有两种几何表达形式,即地球直角坐标系和地球大地坐标系。
地球直角坐标系的定义是:原点O与地球质心重合,Z轴指向地球北极,X轴指向地球赤道面与格林威治子午圈的交点(即0经度方向),Y轴在赤道平面里与XOZ 构成右手坐标系(即指向东经90度方向)。
四种卫星定位导航系统的坐标系统与时间系统以及他们的转换关系
GLONASS
坐标系统名:PE-90 时间系统名:GLONASS时
-4-
定义
GLONASS坐标系统:采用的是基于Parameters of the Earth 1990框架的PE-90大地坐标系,其 几何定义为:原点位于地球质心,Z轴指向IERS 推荐的协议地球极(CTP)方向,即1900-1905年 的平均北极,X指向地球赤道与BH定义的零点子 午线交点,Y轴满足右手坐标系。 GLONASS时间系统:采用原子时AT1秒长作为 时间基准,是基于前苏联莫斯科的协调世界时 UTC(SU),采用的UTC时并含有跳秒改正。
GPS
坐标系统名:WGS-84 时间系统名:GPS时
-1-
定义
GPST规定它的起点在1980年1月6日UTC的0点, 它的秒长始终与主控站的原子钟同步,启动之后不 采用跳秒调整。根据对GPS时间系统起点的规定, 知道GPST与国际原子时有固定19秒的常数差,而 且在1980年之后与UTC另外还有随时间不断变化 的常数差。如1985年12月,常数差为4秒。 GPST=UTC十4秒 总结 原点:1980年1月6日UTC零时 秒长:原子时秒长 不跳秒
Galileo
坐标系统名:ITRS 时间系统名:伽利略系统时间
-6-
定义
伽利略地球参考框架(Galileo Terrestrial Reference Frame,GTRF)是实现伽利略所有产品和服务的基础, 它由伽利略大地测量服务原型(GGSP)负责定义、建立、 维持与精化。GTRF符合ITRS定义,并与ITRF对准,它 的维持主要基于GTRF周解。除GTRF外,GGSP还提供 地球自转参数、卫星轨道、卫星和测站钟差改正等产品。 GTRF的发展早在2011年10月首批Galileo卫星升空前, GTRF就完成了它的初始实现(2007年)。它采用了42 个位于伽利略跟踪站(GSS)附近的IGS站、33个其他 IGS站和13个伽利略实验站(GESS)从2006年11月至 2007年6月的GPS观测数据。后续的GTRF将由使用 GPS/Galileo数据逐步过渡到只使用Galileo数据。从2013 年4颗Galileo卫星组网并开始提供导航服务以来,GTRF 每年都会发布新的版本并进行2~3次更新。
GPS定位坐标系统和时间系统分析
GPS定位坐标系统和时间系统分析
岁差(Precession)
•岁差:地球形状接近于一个两极扁平赤道隆起的椭球体,在 日月引力和其它天体引力的作用下,使得春分点在黄道上产生 缓慢西移现象,称为岁差
球坐标系,这种共同确定的坐标系就称为协议坐标系。 –协议惯性坐标系 –协议地球坐标系
GPS定位坐标系统和时间系统分析
2 GPS使用的时间系统
• 天体和卫星都是高速运行的运动体,时间系统是精确描述 天体和卫星运行位置及其相互关系的重要基准,也是利用 卫星进行导航定位的重要基准
• 测量时间也需要先定义时间基准,即定义时间的原点和单 位尺度
(1)GPS卫星作为高空已知点,其位置是瞬息万变的。时间度 量的精度就意味着空间位置精度。 例如,若定轨误差要小于1cm,则要求时间精度至少达到 2.6*10-6s
(2)GPS定位中站星距离是通过测定电磁波信号传播时间来确 定的。时间误差与站星距离误差之间的关系是一个线性函数
(3)惯性系与地固系之间的坐标转换需要精确的时间尺度。地 球在不断地作自转运动,地球上的点位在惯性坐标系中的坐 标也以相同的速度变化。 时间误差在0.01s,该坐标误差可以达到5m
•天 球 空 间 直 角 坐 标 系 定 义 : 原 点O位于天球中心;Z轴指向北天 极 ( NCP ) ; X 轴 指 向 春 分 点 ; Y 轴 垂 直 于 XOZ 平 面 , 与 X 和 Z 轴 构 成右手坐标系 •任意空间点的坐标可表达为 (x,y,z)
GPS定位坐标系统和时间系统分析
天球球面坐标系的定义
•天轴(Celestial Axis)—地球 自转轴所在的直线 •天极(Celestial Poles)—天 轴与天球的两个交点。
GPS测量原理及应用:02 时间系统与坐标系统
协调世界时(Universal Time Coordinated)
建立UTC的原因:
满足高精度时间间隔测量的要求 时刻与UT基本一致
定义
秒长与AT相同 通过跳(闰)秒,与UT的差值保持在0.9秒内(通常在6
月30日24h或12月31日24h进行跳秒) 正闰秒(增加1秒)与负闰秒(减少1秒)
2
1. 有关时间系统的一些基本概念
3
时间是什么?
是事物存在或延续的过程 与长度、质量一同称为宏观物质世界的三个基本量 是四维空间中的一维 具有绝对和相对两方面的特性
时刻(历元) 时间间隔
4
时间系统-规定时间测量的标准
时间系统的要素:参考基准(起点)、尺度 时间系统:由定义和相应的规定从理论上进行阐述 时间系统框架:通过守时、授时以及时间频率测量
17
世界时(Universal Time)
定义:格林尼治零子午线(本初子午线)处的民用 时称为世界时。
UT0、UT1、UT2
问题的引出:极移和地球自转的不均匀(长期趋势变缓, 且存在短周期变化和季节性变化)
UT0:未改正的世界时 UT1:引入极移改正的世界时 UT2:引入极移改正和地球自转速度的季节改正的世界
太阳时属于地方时
14
真太阳时与平太阳时
真太阳时
参考点:太阳中心 尺度定义:太阳中心连续两次经过当地上子午圈的时间
间隔为一个真太阳日。 数值定义:太阳中心相对于本地子午圈的时角,中午为
0h,子夜为12h 特点
优点:容易测定 缺点:尺度不稳定(由于地球绕日公转时的速度不同,以及黄
赤交角的存在,导致不同时间的真太阳时时长不同)
春分点两次经过地方上子午圈(上中天)的时间间隔为 一恒星日。并由此派生出“时”、“分”、“秒”等单 位。
2-1GPS定位的坐标系统(GPS)
}
Z − N (1 − e 2 ) sin B
在采用上式进行转换时, 需要采用迭代的方法, 在采用上式进行转换时 , 需要采用迭代的方法 , 先 求出,最后在确定H 将B求出,最后在确定H。
3、地心空间直角坐标系与站心(左手)地平直角坐标系 、地心空间直角坐标系与站心(左手) (1)地心空间直角坐标系与站心赤道直角坐标系关系 地心空间直角坐标系与站心赤道直角坐标系关系 O—XYZ:球心空间直角坐标系(地心) P1— X Y Z:站心赤道直角坐标系(站赤)
a = 6378245m f = 1 / 298.3
第二章 GPS 定位的坐标系统 §2-1 GPS坐标系统
该坐标系的高程异常是以前苏联1955年 该坐标系的高程异常是以前苏联1955年 大地水准面重新平差的结果为起算值, 大地水准面重新平差的结果为起算值, 该椭球并未依据当时我国的天文观测资 料进行重新定位, 料进行重新定位,而是由前苏联西伯利 亚地区的一等锁, 亚地区的一等锁,经我国的东北地区传 算过来的,1954年北京坐标系存在着很 算过来的,1954年北京坐标系存在着很 多缺点 。
第二章 GPS 定位的坐标系统 §2-1 GPS坐标系统
四、1980年西安坐标系 1980年西安坐标系
1980年西安大地坐标系统的地球椭球参数的 1980 年西安大地坐标系统的地球椭球参数的 四个几何和物理参数采用了IAG 1975年的推 四个几何和物理参数采用了IAG 1975年的推 a = 6378140m 荐值, 荐值,
(2)站心赤道直角坐标系与站心地平直角坐标系关系 ) P1— X Y Z:站心赤道直角坐标系(站赤) 站心赤道直角坐标系( 站心赤道直角坐标系 站赤) P1— xyz : 站心地平直角坐标系(地平) 站心地平直角坐标系(地平)
GPS测量坐标系
GPS测量坐标系GPS(全球定位系统)是一种全球性的卫星导航系统,广泛应用于定位、导航和时间同步等领域。
在GPS测量中,坐标系起着至关重要的作用。
本文将介绍GPS测量中常用的坐标系及其应用。
1. 地球坐标系(WGS84)地球坐标系是GPS测量中使用最广泛的坐标系,也是全球通用的地理坐标系。
它使用经度(longitude)和纬度(latitude)来描述地球上的位置。
经度指的是某位置距离本初子午线的东西方向距离,纬度指的是某位置距离地球赤道的南北方向距离。
WGS84坐标系是一种基于椭球面模型的坐标系,能够准确地描述地球上的各个位置。
它通常用于GPS设备和地理信息系统(GIS)中,用于定位和导航。
2. 地心坐标系(ENU)地心坐标系又称为局部大地坐标系,是一种以地球为中心的坐标系。
在地心坐标系中,地球的中心被定义为原点,x轴指向经度0°的点,y轴指向经度90°的点,z轴指向北极。
该坐标系在GPS测量中通常用于计算测量点之间的距离和方位角。
地心坐标系可以通过将地球坐标系(WGS84)中的经纬度转换为直角坐标来获得。
它具有较小的误差,适用于短距离测量和小范围应用。
3. 大地坐标系(Geodetic)大地坐标系是一种以地球为基准的坐标系,用于描述地球上的位置和形状。
它通过考虑地球的椭球形状和重力场来获得更准确的位置信息。
大地坐标系通常采用大地水准面和大地椭球体来描述地球表面的形状。
在GPS测量中,大地坐标系常用于计算测量点之间的高程差和斜距离。
4. 本地坐标系(Local)本地坐标系是一种以测量点为中心的坐标系,用于描述测量点周围的相对位置。
它是相对于地心坐标系或大地坐标系的一种局部坐标系。
本地坐标系通常用于图纸、工程测量和地理信息系统中,用于精确测量和定位。
它可以通过在地心坐标系中定义一个起始点和坐标轴方向来创建。
5. 投影坐标系(Projection)投影坐标系是将三维地理坐标映射到二维平面上的一种方式。
第二章GPS定位时间系统与坐标系统
(3)站心坐标系
(4)高斯平面直角坐标系等
如果测量工作以测站为原点,则所构成的坐标系称为测站中心
坐标系(简你站心坐标系)。站心坐标系分为站心地平直角
坐标系和站心极坐标系。
站心地平直角坐标系是以测站的椭球法线方向为Z轴,以测站
大地子午线北端与大地地平面的交线为X轴,大地平行圈(
东方向)与大地地平面的交线为Y轴,构成左手坐标系。
GPS相对定位确定的是点之问的相对位置,一般用空间直角
坐标差 X,Y,Z 或大地坐标差 B,L,H 表示。如果建立以
已知点为 X0,Y0, Z0 为原点的站心地平直角坐标系.则其他点
在该坐标系内的坐标 x, y, z 与基线向量的关系为
x
sin
B
L
sin
B
L
B
X
j
0cos
0
协议天球坐标系
影响的动坐标系,某时刻t对应所对应的瞬
时平北天极,瞬时平赤道,瞬时平春分点来
确定的天球坐标系。
瞬时真天球坐标系:既考虑岁差影响又考虑
章动影响。 t时刻对应所对应的瞬时真北天
极,瞬时真赤道,瞬时真春分点来确定的天
球坐标系.
协议天球坐标系:由国际协议规定确定
的特殊时刻t0作为标准历元,此时刻所
根据协议地球坐标系和协议天球坐标系的定义可知:
(1)两坐标系的原点均位于地球的质心,故其原点位置相
同。
(2)瞬时天球坐标系的z轴与瞬时地球坐标系的Z轴指向相
同。
(3)两瞬时坐标系x轴与X轴的指向不同,其间夹角为春分点
的格林尼治恒星时。
二者的转换过程如下:
此外,地球坐标系还有其它表示形式:
坐标系统与时间系统
Page
11
二
时间系统
Page
12
1.时间系统——GPS
GPS时间系统采用原子时AT1秒长作时间基准,秒长定义 为铯原子CS133基态的两个超精细能级间跃迁幅射振荡192631170 周所持续的时间,时间起算的原点定义在1980年1月6日世界协调时 UTC0时,启动后不跳秒,保证时间的连续。以后随着时间积累, GPS时与UTC时的整秒差以及秒以下的差异通过时间服务部门定期 公布。 目前,GPS卫星广播星历采用WGS-84(G873)世界大地 坐标系,其起始时元为1996年9月29日,而它的坐标基准时元是 1997.0。【6】
Page
3
1.坐标系统——GPS
WGS-84坐标系是目前GPS所采用的坐标系统,GPS所发布的 星历参数就是基于此坐标系统的。WGS-84坐标系统的全称是World Geodetic System(世界大地坐标系-84),它是一个地心地固坐标系统。 WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS 所采用的坐标系统―WGS-72坐标系统而成为GPS的所使用的坐标系统。 WGS-84坐标系的坐标原点位于地球的质心,Z轴指向BIH1984.0定义 的协议地球极方向,X轴指向BIH984.0的起始子午面和赤道的交点,Y 轴与X轴和Z轴构成右手系。采用椭球参数为: a=6 378 137m f=1/298.257 223 563 【2】
Page
7
5.坐标系统转换
在GPS与GLONASS之间的坐标系转换,即为WGS—84 与PE—90间的转换。俄罗斯MCC(Russian Mision Control Center)的Mitrikas等 人经过长期实验与精确计算,所提出的且已经应用于GPS/GLONASS组合型接 收机中的转换参数, 被认为是目前最精确的坐标转换参数,其表达式为:
GPS定位系统原理简明讲解
卫星越多,定位越准确;
一般, GPS接收机可同时收到的4-11颗卫星的。位置信息。
差分定位技术
• 如果使用载波差 分或同时使用载 波 差分 及 伪 距 差 分 则 定位 精 度 可 达 5 - 10 mm
A
B
什么是RTK技术
常规GPS的测量方法,如静态、快速静态、动态测量都需要事后进 行解算才能获得厘米级的精度,而RTK是能够在野外实时得到厘米级定位 精度的测量方法,它采用了载波相位动态实时差分(Real - time kinematic)方法,是GPS应用的重大里程碑,它的出现为工程放样、地形 测图,各种控制测量带来了新曙光,极大地提高了外业作业效率。RTK定 位时要求基准站接收机实时地把观测数据(伪距观测值,相位观测值)及已 知数据传输给流动站接收机。
三、GPS定位系统的应用
GPS在道路工程中的应用 随着高等级公路的迅速发展,对勘测技术提出了更高的要求,由于线 路长,已知点少,因此,用常规测量手段不仅布网困难,而且难以满足 高精度的要求。目前,国内已逐步采用GPS技术建立线路首级高精度控 制网,然后用常规方法布设导线加密。实践证明,在几十公里范围内的 点位误差只有2厘米左右,达到了常规方法难以实现的精度。 GPS技术也同样应用于特大桥梁的控 制测量中,可以提高点位精度,同时对 检测常规测量的支点也非常有效。
三、GPS定位系统的应用
GPS预警器 GPS预警器是通过GPS卫星在GPS预警器中设定坐标来完成的, 比如遇到一个电子眼,然后通过相关设备在电子眼的正下方设立一个坐 标,这样,使得装上这个坐标点数据的预警器到达这个点时,在达到坐 标点的前300米左右就会开始预警,告诉车主前面有电子眼测速,不能 超速驾驶,这样就起到一个预警作用。 GPStar智能GPS系统 主要由两大部分组成,即:本地的监控中心软件管理平台和远程 的GPS智能车载终端。远程的GPS智能车载终端将车辆所处的位置信 息、运行速度、运行轨迹等数据传回到监控中心,监控中心接收到这 些数据后,会立即进行分析、比对等处理,并将处理结果以正常信息 或者报警信息两类形式显示给管理员,由管理员决定是否要对目标车 辆采取必要措施。
GPS卫星定位坐标计算及程序设计
Ai X i li 0
(3-5)
对式(3-5)求解,便得到接收机地心坐标的唯一
解
X i Ai1li
4.程序设计
• 1、GPS时间转换程序 • 2、利用广播星历计算卫星坐标程序 • 3、地面点近似坐标计算程序
5.实例计算和精度分析
• 以2009年5月7日南京工业大学江浦校区控 制网20号控制点观测数据为例,来说明如 何利用该程序计算卫星坐标和地面点的近 似坐标。该数据利用华测GPS接收机观测, 观测时间为2小时。
• 3.新儒略日(Modified Julian Day-MJD):从儒略 日中减去2400000.5天来得到,给出的是从1858年11 月17日子夜开始的天数。特点是数值比儒略日小。
• 4.年积日(Day Of Year-DOY):从当前1月1日开始 的天数。
• 5.GPS时(GPS Time):以1980年1月6日子夜为起点, 用周数和周内秒数来表示,为GPS系统内部计时法。
2.3GPS卫星的信号
• 导航电文 导航电文是包含有关卫星的星历、卫星工作状态 时间系统、卫星钟运行状态、轨道摄动改正、大 气折射改正和C/A码捕获P码等导航信息的数据码 (或D码),是利用GPS进行定位的数据基础。 导航电文的内容包括遥测码(TLW)、转换码 (HOW)、第一数据块、第二数据块和第三数据块 5部分。
RINEX数据格式
目前,RINEX格式已成为各厂商、学校、研究单 位在编制软件时采用的标准输入格式。RINEX格式 是纯ASCII码文本文件,共包含4个文件:
(1)观测数据文件:ssssdddf.yyo (2)导航文件:ssssdddf.yyn (3)气象数据文件:ssssdddf.yym (4)GLONASS数据文件:ssssdddf.yyg 其中:ssss——4个字母的测站名;
全球定位系统概论之坐标系统和时间系统
– 定义:以大地基准为基础建立的坐标系被称为大地 坐标系,由于大地基准又是以参考椭球为基础,因 此,又被ቤተ መጻሕፍቲ ባይዱ为椭球坐标系。
– 大地坐标
• 大地纬度(B) • 大地经度(L) • 大地高/椭球高(H)
13
大地坐标系
• 大地坐标系 参考面长半轴为a,短半轴b为旋转轴的
椭球面;椭球面几何中心与直角坐标系原 点重合,短半轴与直角坐标系Z轴重合。
全球旋转; CGCS 2000大地坐标系是右手地固直角坐标系。原点在地
心; 轴为国际地球自转局(IERS)参考极(IRP)方向, 轴为IERS的参考子午面(IRM)与垂直于 轴的赤道面的 交线, 轴与 轴和 轴构成右手正交坐标系。
24
2000国家大地坐标系
• 经国务院批准,根据《中华人民共和国测绘法》, 中国自2008年7月1日起启用2000国家大地坐标系。 为此,国家测绘局6月18日发布公告。
32
时间基准的要求
• 运动应该是连续的周期的。
• 运动的周期应该由充分的稳定性。
• 运动的周期必须具有复现性。
• 对于GPS最重要的时间系统有三种:恒
25
2000国家大地坐标系(CGCS 2000 )
• 2000国家大地坐标系(CGCS 2000 )
– 椭球参数
• 长半轴:
a 6378137m
• 地球(包括大气)引力常数: GM 3.9860044181014 m3s2
• 地球动力形状因子:
J2 0.001082629832258
• 地球自转速度:
• 在空间固定的坐标系统:与地球自转无 关,对于描述卫星的运动位置和状态极 其方便
• 与地球体固联的坐标系统:对于表达地 面观测站的位置和处理GPS观测数据尤 为方便
GPS全球定位系统原理与应用解析
第三代卫星尚在设计中,以取代第二代卫 星,改善全球定位系统。其特点是:可对自己 进行自主导航;每颗卫星将使用星载处理器, 计算导航参数的修正值,改善导航精度,增强 自主能力和生存能力。椐报道,该卫星在没有 与地面联系的情况下可以工作6个月,而其精 度可与有地面控制时的精度相当。
Block Ⅰ卫星
为使GPS具有高精度连续实时三维导航和定 位能力,以及良好的抗干扰性能,在设计上采 取了若干改善措施。
Slide 6
GPS系统的特点
全球性连续覆盖,全天候工作 定位精度高 观测时间短 测站间无需通视 可提供三维坐标 操作简便 功能多,用途广
Slide 7
GPS定位系统的组成
GPS定位技术是利用高空中的GPS卫星,向 地面发射L波段的载频无线电测距信号,由地 面上用户接收机实时地连续接收,并计算出接 收机天线所在的位置。因此,GPS定位系统是 由以下三个部分组成: (1)GPS卫星星座(空间部分) (2)地面监控系统(地面控制部分) (3)GPS信号接收机(用户设备部分)
双频接收机
双频接收机可以同时接收L1,L2载波信 号。利用双频对电离层延迟的不一样,可以消除 电离层对电磁波信号延迟的影响,因此双频接收 机可用于长达几千公里的精密定位。
按接收机通道数分类:
GPS接收机能同时接收多颗GPS卫星的信号, 为了分离接收到的不同卫星的信号,以实现对卫 星信号的跟踪、处理和量测,具有这样功能的器 件称为天线信号通道。根据接收机所具有的通道 种类可分为:
Slide 5
卫星定位技术发展的回顾
为满足军事和民用对连续实时和三维导航 的迫切要求,1973年美国国防部开始组织陆海 空三军,共同研究建立新一代卫星导航系统的 计划,这就是目前所称的“导航卫星授时测距/ 全球定位系统”(Navigation Satellite Timing and ranging / Global Positioning System)简称全球定位系统(GPS)。
全球定位系统(GPS)详解
全球定位系统(GPS)详解全球定位系统(Global Positioning System - GPS)是美国从本世纪70年代开始研制,历时20年,耗资200亿美元,于1994年全面建成,具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统。
经近10年我国测绘等部门的使用表明,GPS以全天候、高精度、自动化、高效益等显著特点,赢得广大测绘工作者的信赖,并成功地应用于大地测量、工程测量、航空摄影测量、运载工具导航和管制、地壳运动监测、工程变形监测、资源勘察、地球动力学等多种学科,从而给测绘领域带来一场深刻的技术革命。
全球定位系统(Global Positioning System,缩写GPS)是美国第二代卫星导航系统。
是在子午仪卫星导航系统的基础上发展起来的,它采纳了子午仪系统的成功经验。
和子午仪系统一样,全球定位系统由空间部分、地面监控部分和用户接收机三大部分组成。
按目前的方案,全球定位系统的空间部分使用24颗高度约2.02万千米的卫星组成卫星星座。
21+3颗卫星均为近圆形轨道,运行周期约为11小时58分,分布在六个轨道面上(每轨道面四颗),轨道倾角为55度。
卫星的分布使得在全球的任何地方,任何时间都可观测到四颗以上的卫星,并能保持良好定位解算精度的几何图形(DOP)。
这就提供了在时间上连续的全球导航能力。
地面监控部分包括四个监控间、一个上行注入站和一个主控站。
监控站设有GPS用户接收机、原子钟、收集当地气象数据的传感器和进行数据初步处理的计算机。
监控站的主要任务是取得卫星观测数据并将这些数据传送至主控站。
主控站设在范登堡空军基地。
它对地面监控部实行全面控制。
主控站主要任务是收集各监控站对GPS卫星的全部观测数据,利用这些数据计算每颗GPS卫星的轨道和卫星钟改正值。
上行注入站也设在范登堡空军基地。
它的任务主要是在每颗卫星运行至上空时把这类导航数据及主控站的指令注入到卫星。
这种注入对每颗GPS卫星每天进行一次,并在卫星离开注入站作用范围之前进行最后的注入。
第二章GPS定位的坐标系统和时间系统 第一节参心坐标系
GPS测量定位技术
1.椭球的参数 这四个量通常称为基本大地参数,在四个基本参数
中,长半径 a 通常由几何大地测量提供,地球自转角速 度 由天文观测确定,它们的精度都比较好。地球的质
量M虽难测定,但是(是地球引力常数)利用卫星大地 测量学可精确测定至千万分之一。通过观测人造地球卫
星,确定与 a 等价的二阶带谐系数 J,2 其精确度提高了
U
GM
1
n1
J 2n
a
2n
P2n
c
os
2 2
2
sin 2
(2-1)
式中为 地心矢径, 为 余纬度, P2n cos为 勒让德多项
式; 、a 、J 2 和GM为正常椭球的四个参数,式中其它的偶阶 带谐系数 、 …等J 4可根J 6 据这四个参数按一定的公式算得。 1967年国际大地测量与地球物理联合会(IUGG)第十四 届大会上,开始采用这四个参数全面描述地球的几何特 性和物理特性。
在经典大地测量中,为了处理观测成果和传算地面控制网的坐 标,通常须选取一参考椭球面作为基本参考面,选一参考点作为 大地测量的起算点(大地原点),利用大地原点的天文观测量来 确定参考椭球在地球内部的位置和方向。参心坐标系中的“参心” 二字意指参考椭球的中心,所以参心坐标系和参考椭球密切相关。 由于参考椭球中心无法与地球质心重合,故又称其为非地心坐标 系。参心坐标系按其应用又分为参心大地坐标系和参心空间直角 坐标系两种。
显然,起始子午线或经度零点,只靠一个天文台是难以保持的。所以国际 时间局的1968BIH系统是由分布在世界各地的许多天文台所观测的经度,反求 出各自的经度原点,取它们的权中数,作为平均天文台所定义的经度原点。国 际时间局再根据1954~1956年的观测资料求出格林尼治天文台所定义的经度 零点E与平均天文台所定义的经度原点的经度差值,来修定各天文台的经度值, 从而保持了用E点作为经度零点。
GPS测量的坐标系统与时间系统
GPS测量的坐标系统与时间系统全球定位系统(GPS)是一种由美国政府运营的卫星导航系统,可提供全球定位、导航和时间服务。
它是许多现代技术和应用的基础,例如车辆导航、飞行导航、航海、地图绘制等。
GPS测量提供了一种在地球上确定位置的精确方法,但是它的坐标系统和时间系统需要特定的标准和约定来确保精度。
本文将介绍GPS测量中使用的坐标系统和时间系统,并讨论它们与其他GPS应用和技术的关系。
坐标系统GPS测量使用经纬度和高度来确定位置,这是因为它可以提供全球范围内的定位。
经度是一个位置相对于本初子午线的度数,可以从0度到360度,东经为正,西经为负。
纬度是一个位置相对于赤道的度数,可以从-90度到90度,北纬为正,南纬为负。
高度是一个位置相对于海平面的高度。
GPS测量使用的坐标系统是WGS 84(World Geodetic System 1984),这是一种由美国国防部和国家海洋和大气管理局发展的全球定位系统坐标系统。
WGS 84使用地球模型作为椭球体,将地球视为一个近似椭球体。
这个椭球体的参数被称为参考椭球体,在WGS 84中,参考椭球体的参数为a=6378137.0 m,f=1/298.257223563。
WGS 84是GPS定位用的最通用的地理坐标系,在大多数现代地图上都采用了WGS 84坐标。
此外,许多其他地理信息系统(GIS)和工程应用也使用WGS 84坐标系来表示地球上的位置。
时间系统在GPS测量中,时间系统也是至关重要的。
GPS测量使用一个基于原子钟的时间系统来测量信号的传播时间,并计算出接收器的位置。
原子钟比基于机械振荡器的钟表更为精确,可以维持极高的准确性。
GPS测量使用的时间系统是GPS时间,它是由GPS卫星提供的21个原子钟的平均值。
GPS时间以UTC(协调世界时)为基础,但它使用了其他一些修正来保持与UTC同步。
UTC是一个国际标准时间系统,它基于原子钟的时间,但考虑了地球自转的变化。
gps时间原理
gps时间原理
GPS时间是指全球定位系统(GPS)卫星中的原子钟所显示的时间。
GPS卫星通过发送信号到地面接收器上的定位设备,
来确定地球上的位置和时间。
在GPS系统中,时间是一项非
常关键的因素,因为它需要提供高精度的位置信息。
GPS时间的原理可以概括为以下几点:
1.原子钟:GPS卫星上搭载着高精度的原子钟,一般为铷原子钟。
原子钟的稳定性非常高,可以提供非常准确的时间信号。
2.时间戳:每当GPS卫星发送一个信号到地面接收器时,信
号中都包含一个时间戳。
时间戳是一个记录了卫星发送信号时刻的时间信息。
地面接收器接收到信号后会解析该时间戳,并将其与接收到信号的本地时间进行比较。
3.纠正差距:由于GPS卫星上的原子钟与地面接收器上的时
钟可能存在微小的误差,地面接收器需要对这些误差进行纠正。
地面接收器会使用GPS卫星网络中的其他卫星信号来计算出
综合时间误差,并校正接收器的本地时钟。
4.GPS时间标准:GPS系统中有一个参考时间标准,称为GPS 系统时(GPS Time),它是由卫星上的原子钟所提供的精确
时间。
然而,由于GPS设备上的时钟可能存在漂移或不准确
的情况,因此还会有一个本地时钟,称为卫星导航定时(Satellite Navigation Timing,简称SNT)。
通过以上机制,GPS系统可以提供高精度的时间信息,以及
准确的位置信息。
这对于很多应用来说都非常重要,比如导航、时钟同步、地震监测等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图2-2 直角坐标系和大地坐标系
第五章 GPS定位的坐标系统及时间系统
直角坐标系与大地坐标系参数间的转换
对同一空间点,直角坐标系与大地坐标系参数间有如下转 换关系:
X ( N H ) cos B cos L Y ( N H ) cos B sin L
L arctan(Y / X )
天球球面坐标系的定义 : 地球质心O为坐标原点,春分 点轴与天轴所在平面为天球经度 (赤经)测量基准——基准子午面, 赤道为天球纬度测量基准而建立球 面坐标。空间点的位置在天球坐标 系下的表述为(r,α,δ)。 天球空间直角坐标系与天球球面坐 标系的关系可用图2-1表示:
第五章 GPS定位的坐标系统及时间系统
第五章 GPS定位的坐标系统及时间系统
1980年国家大地坐标系(GDZ80) 坐标原点:陕西省泾阳县永乐镇。 参考椭球:1975年国际椭球。 平差方法:天文大地网整体平差。 特点: (1)采用1975年国际椭球。 (2)参心大地坐标系是在1954年北京坐标系基础上建 立起来的。 (3)椭球面同似大地水准面在我国境内最 为密合,是多点定位。 (4)定向明确。 (5)大地原点地处我国中部。 (6)大地高程基准采用1956年黄海高程。
固定极天球坐标系——平天球坐标系
选择某一历元时刻,以此瞬间的地球自转轴和春分点方向分别扣除此瞬间的 章动值作为z轴和x轴指向,y轴按构成右手坐标系取向,建立天球坐标系—— 平天球坐标系,坐标系原点与真天球坐标系相同。瞬时极天球坐标系与历元平 天球坐标系之间的坐标变换通过下面两次变换来实现。 岁差旋转变换 ZM(t0)表示历元J2000.0年平天球坐标系z轴指向,ZM(t)表示所论历元时 刻t真天球坐标系z轴指向。两个坐标系间的变换式为: x x (2-11)
Rz ( Z A ) Ry ( A ) Rz ( A ) y y z M (t ) z M ( t0 )
式中:ζA ,θA,ZA为岁差参数。 章动旋转变换 x 类似地有章动旋转变换式:
y z c (t )
x Rx ( ) Rz ( ) Rx ( ) 及时间系统
新1954年北京坐标系(BJ54新)
新1954年北京坐标系(BJ54新)是由1980年国家大地坐标 (GDZ80)转换得来的。 坐标原点:陕西省泾阳县永乐镇。 参考椭球:克拉索夫斯基椭球。 平差方法:天文大地网整体平差。 BJ54新的特点 : (1)采用克拉索夫斯基椭球。 (2)是综合GDZ80和BJ54旧 建立起来的参心坐标系。 (3)采用多点定位。但椭球面与大地水准面在我国境内不是最佳拟合。 (4)定向明确。 (5)大地原点与GDZ80相同,但大地起算数据不同。 (6)大地高程基准采用1956年黄海高程。 (7)与BJ54旧 相比,所采用的椭球参数相同,其定位相近,但定向不同。 (8) BJ54旧 与BJ54新 无全国统一的转换参数,只能进行局部转换。
(2-3)
式中,N a / 1 e2 sin 2 B,N 为该点的卯酉圈半径; e2 (a 2 b 2 ) / a 2,a, e分别为该大地坐标系对应椭球的长半径和第一扁心率。
第五章 GPS定位的坐标系统及时间系统
(3)、站心赤道直角坐标系与站心地平直角坐标系
站心赤道直角坐标系 如图2-3, P1 _ _ _ 是测站点,O为球心。以O为原点建立球心空间直角 坐标系 P1 X Y Z 。以P1 为原点建立与 O XYZ 相应坐标轴平行的 坐标系 O _ _XYZ 叫站心赤道直角坐标系。 _ 显然, P1 X Y Z同 O XYZ 坐标系有简单 的平移关系:
直角坐标系与其等效的天球球面坐标系参数间的转换 对同一空间点,天球空间直角坐标系与其等效 的天球球面坐标系参数间有如下转换关系:
X r cos cos Y r sin cos Z r sin
arct an( Y / X) 2 2 arct an( Z / X Y r X 2 Y 2 Z2
(2-12) 式中:ε为所论历元的平黄赤交角,⊿ψ,⊿ε分别为黄经章动和交角章动参数。
第五章 GPS定位的坐标系统及时间系统
固定极地球坐标系——平地球坐标系 极移:地球瞬时自转轴在地球上随时间而变,称为地极移动,简称 极移。 瞬时极:与观测瞬间相对应的自转轴所处的位置,称为该瞬时的 地 球极轴,相应的极点称为瞬时极。 国际协定原点CIO:采用国际上5个纬度服务站的资料,以1900.00至 1905.05年地球自转轴瞬时位置的平均位置作为 地球的固定极称为国际协定原点CIO。 图2-5为瞬时极与平极关系。
x x y R ( ) y z G z et z ct
(2-10)
下标et表示对应t时刻的瞬时极地球坐标系, ct表示对应t时刻的瞬时极天球坐标系。θG 为对应平格林尼治子午面的真春分点时角。
第五章 GPS定位的坐标系统及时间系统
坐标系。
由于坐标系相对于时间的依赖性,每一类坐
标系又可划分为若干种不同定义的坐标系。 不管采用什 么形式,坐标系之间通过坐标平移、旋转和尺度转换,
可以将一个坐标系变换到另一个坐标系去。
第五章 GPS定位的坐标系统及时间系统
(1)天球坐标系
天球空间直角坐标系的定义: 地球质心O为坐标原点,Z轴指向天球北极,X轴指向春 分点,Y轴垂直于XOZ平面,与X轴和Z轴构成右手坐标系。 在此坐标系下,空间点的位置由坐标(X,Y,Z)来描述。
_ X X ( N H ) cos B cos L Y _ ( N H ) cos B sin L Y 2 Z _ N (1 e ) H sin B Z
(2-5)
2 2 2 B arctan Z ( N H ) /[ X Y ( N (1 e ) H )] (2-4) 2 H Z / sin B N (1 e )
2 Z N (1 e ) H sin B
第五章 GPS定位的坐标系统及时间系统
站心地平直角坐标系
以P1 为原点,以P1 点的法线为z轴(指向天顶为正),以子午线方向为x 轴(向北为正),y轴与x,z垂直(向东为正)建立的坐标系叫站心地平直 角坐标系。站心地平直角坐标系与站心赤道直角坐标系的转换关系如下:
_ X x sin B cos L sin L cos B cos L _ y sin B sin L cos L cos B sin L R z 180 L R( 90 B ) P Y y y _ 0 sin B z 地平 cos B Z 站赤
第五章 GPS定位的坐标系统及时间系统
第五章 GPS定位的坐标系统及时间系统
1、天球坐标系和地球坐标系
全球定位系统(GPS)的最基本任务是确定用户在
空间的位置。而所谓用户的位置,实际上是指该用户在
特定坐标系的位置坐标,位置是相对于参考坐标系而言 的,为此,首先要设立适当的坐标系。坐标系统是由原 点位置、3个坐标轴的指向和尺度所定义,根据坐标轴指 向的不同,可划分为两大类坐标系:天球坐标系和地球
第五章 GPS定位的坐标系统及时间系统
平地球坐标系:取平地极为坐标原点,z轴指向CIO,x轴指向协定赤道 面与格林尼治子午线的交点,y轴在协定赤道面里,与 xoz构成右手系统而成的坐标系统称为平地球坐标系。 平地球坐标系与瞬时地球坐标系的转换公式:
x x y R ( x ) R ( y ) y y p x p z em z et
第五章 GPS定位的坐标系统及时间系统
3、坐标系统之间的转换
(2-13)
, yp 为t时刻 xp 下标em表示平地球坐标系,et表示t 时的瞬时地球坐标系, 以角度表示的极移值。
第五章 GPS定位的坐标系统及时间系统
2 WGS-84坐标系和我国大地坐标系
(1)、WGS-84坐标系
WGS-84的定义:WGS-84是修正NSWC9Z-2参考系的原点和尺度变化, 并旋转其参考子午面与BIH定义的零度子午面一致而得到的一个新参考 系,WGS-84坐标系的原点在地球质心,Z轴指向BIH1984.0定义的协定 地球极(CTP)方向,X轴指向BIH1984.0的零度子午面和CTP赤道的交 点,Y轴和Z、X轴构成右手坐标系。它是一个地固坐标系。 WGS84椭球及其有关常数:WGS-84采用的椭球是国际大地测量与地球物理 联合会第17届大会大地测量常数推荐值,其四个基本参数 长半径:a=6378137±2(m); 地球引力常数:GM=3986005×108m3s-2±0.6×108m3s-2; 正常化二阶带谐系数:C20= -484.16685×10-6±1.3×10-9;
第五章 GPS定位的坐标系统及时间系统
(4) 卫星测量中常用坐标系
瞬时极天球坐标系与地球坐标系 瞬时极天球坐标系:原点位于地球质心,z轴指向瞬时地球自转方 向(真天极),x轴指向瞬时春分点(真春分点),y轴按构成右手坐标 系取向。 瞬时极地球坐标系:原点位于地球质心,z轴指向瞬时地 球自转轴方向,x轴指向瞬时赤道面和包含瞬时地球自转轴与平均天文 台赤道参考点的子午面之交点,y轴构成右手坐标系取向。瞬时极天球 坐标系与瞬时极地球坐标系的关系如图2-4所示。 瞬时极天球坐标系与瞬时极地球坐标系的 转换关系为:
J2=108263×10-8 地球自转角速度:ω=7292115×10-11rads-1±0.150×10-11rads-1
第五章 GPS定位的坐标系统及时间系统
(2)、国家大地坐标系 1954年北京坐标系(BJ54旧) 坐标原点:前苏联的普尔科沃。 参考椭球:克拉索夫斯基椭球。 平差方法:分区分期局部平差。 存在的问题: (1)椭球参数有较大误差。 (2)参考椭球面与我国大地水准面存在着自西向东明 显的系统性倾斜。 (3)几何大地测量和物理大地测量应用的参考面不统 一。 (4)定向不明确。