用点差法解圆锥曲线的中点弦问题
点差法求椭圆中点弦
用点差法解圆锥曲线的中点弦问题与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。
解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”。
本文用这种方法作一些解题的探索。
一、以定点为中点的弦所在直线的方程例1、过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。
解:设直线与椭圆的交点为),(11y x A 、),(22y x B)1,2(M 为AB 的中点 ∴421=+x x 221=+y y又A 、B 两点在椭圆上,则1642121=+y x ,1642222=+y x两式相减得0)(4)(22212221=-+-y y x x于是0))((4))((21212121=-++-+y y y y x x x x ∴21244)(421212121-=⨯-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(211--=-x y ,即042=-+y x 。
例2、已知双曲线1222=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。
若存在这样的直线l ,求出它的方程,若不存在,说明理由。
策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。
本题属于中点弦问题,应考虑点差法或韦达定理。
解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B则221=+x x ,221=+y y122121=-y x ,122222=-y x 两式相减,得0))((21))((21212121=-+--+y y y y x x x x ∴22121=--=x x y y k AB 故直线)1(21:-=-x y AB 由⎪⎩⎪⎨⎧=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=⨯⨯--=∆这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。
“点差法”在圆锥曲线中的应用与推广
a2 b2
.接下来
我们看看高考真题中的“点差法”及其应用. 例 1 . ( 2015 全 国 卷 II , 理 科 20 ) 已 知 椭 圆
C : 9x2 y2 m2 (m 0) ,直线 l 不过原点 O 且不平行于坐 标轴, l 与 C 有两个交点 A , B ,线段 AB 的中点为 M .
证明:根据椭圆的对称性可知A、B关于原点对称,设
A(x1, y1), B(x2 , y2 ), P(x, y)
x12 a2
y12 b2
x2 1① a2
y2 b2
1②,
①-②可得如下表达式
( x1
x)( x1 a2
x)
( y1
y)( y1 b2
y)
0
,
两
边
同
除
(x1 x)(x1 x)
,
则
k
y2 x2
y1 x1
,
x2
x1
2x0
,
y2
y1
2 y0 .
将点A、B的坐标带入椭圆方程可得,
x12 a2
y12 b2
1
①,
x22 a2
y22 b2
1②
将
②
-
①
可
得: (x2 x1)(x2 x1) ( y2 y1)( y2 y1) 0
a2
b2
2x0 (x2 a2
1 k( )
1
b2
a2
,由点F及A、B中点可求出 k
1 2
浅谈“点差法”在求圆锥曲线范围问题中的应用
浅谈“点差法”在求圆锥曲线范围问题中的应用作者:张伟建来源:《中学教学参考·理科版》2012年第11期圆锥曲线问题是高中数学的难点之一,圆锥曲线的弦的中点有关问题是常考查的内容.解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解,过程繁琐,计算量大.“点差法”是由弦的两端点坐标代入圆锥曲线的方程,得到两个等式相减,可得一个与弦的斜率及中点相关的式子,再结合有关条件来求解.当题目涉及弦的中点、斜率,或借助曲线方程中变量的取值范围求其他变量的范围时,一般都可以用“点差法”来求解.这种方法对有关点的坐标设而不求,充分发挥整体思想在解题中的应用,起到简化和优化解题过程的作用.【例1】已知椭圆x2a2+y2b2=1(a>b>0)的一个顶点A的坐标为(0,-1),且右焦点到直线x-y+22=0的距离为3.(1)求a、b的值;(2)若存在斜率为k的直线l,使l与已知椭圆交于不同两点M、N,且满足|AM|=|AN|,求k的取值范围.解析:由于篇幅有限,常规解法不再赘述.下面使用点差法求解.设M(,),N(,),P(,).当k≠0时,由|AM|=|AN|知:;①;②;③;④---;⑤由①-②得()(-)+3()(-)=0.⑦将③④代入⑦,得-k;⑧将⑧和⑤联立得,-32k,将它们代入⑥得94k2+34解得k∈(-1,1)且k≠0.当k=0时显然成立.故k∈(-1,1).【例2】如图2所示,某椭圆的焦点是(-4,0)、(4,0),过点并垂直于x轴的直线与椭圆的一个交点为B,且,椭圆上不同的两点A(,)、C(,)满足条件:、、成等差数列.(1)求该椭圆方程;(2)求弦AC中点的横坐标;(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.解析:(1)由椭圆定义及条件得,∴a=5.又c=4,∴b2=a2-c2=9.故椭圆方程为x25+y29=1.(2)由a=5,c=4知离心率e=ca=45,-,-依焦半径公式:由、、成等差数列,得5--,解得,∴故弦AC中点的横坐标为4.(3)由第(2)问可知弦AC中点的横坐标,再由弦AC的垂直平分线方程,可表示出AC的方程,然后与椭圆方程联立可将k用AC中点坐标表示,再由中点在y=kx+m上,可将m用弦AC中点的纵坐标表示,然后结合弦AC中点在线段BB′上这一条件,求出m的取值范围.故设弦AC中点为P(4,),所以直线AC的方程为:y--1k(x-4)(x≠0).将上式代入椭圆方程得(9k2+25)x2-50()x+25()2-25×9k2=0,∴()9k2+25=8,解得(当k=0时也成立),∵点P(4,)在弦AC的垂直平分线上,∴,∴---∵点P(4,)在线段BB′的内部,于是有-95这道题表面上看与“点差法”没多大联系,第(2)问中既然出现了线段的垂直平分线,当然也就有了弦的中点,“点差法”也就有了用武之地.下面使用点差法求解.设弦AC中点为P(4,),由A(,)、C(,)知;①;②;③;④--;⑤;⑥-95由①-②得()(-)25-()(-)9=0,将③④代入上式得:---2=-1k,解得().又由-95且得-165(注:当k=0时,AC中点为(4,0),此时)综上,m∈(-165,165).圆锥曲线求参数取值范围问题,常有两种解题思路:1.先求出直线的斜率的变化范围,进而求参数的取值范围.2.借助曲线中变量的取值范围求参数的取值范围在椭圆中,直线与椭圆如果有两个交点,则等价于弦的中点在椭圆内部,换句话说,某点在圆锥曲线的内部,则被该点平分的弦一般存在.本题即根据AC的中点P在椭圆内部,求出的取值范围,进一步求出m的范围.由此可见,中点弦问题中判断“中点”的位置非常重要,而“点差法”是解决此类问题当之无愧的“利剑”.参考文献邵丽云.高中数学疑难全解放入书架[M].南京:南京师范大学出版社,2006.[2]曹兵.高中数学难题新题精讲精练300例[M].上海:上海交通大学出版社,2008.。
点差法求解中点弦问题
点差法求解中点弦问题点差法就是在求解圆锥曲线并且题目中交代直线与圆锥曲线相交被截的线段中点坐标的时候,利用直线和圆锥曲线的两个交点,并把交点代入圆锥曲线的方程,并作差。
求出直线的斜率,然后利用中点求出直线方程。
用点差法时计算量较少,解决直线与圆锥曲线的位置关系时非常有效,但有一个弊端,不能保证直线与圆锥曲线一定有两个交点,故有时要用到判别式加以检验。
【定理1】在椭圆12222=+by a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN -=⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=+=+)2(.1)1(,1222222221221 b y a x by a x )2()1(-,得.02222122221=-+-byy a x x.2212121212ab x x y y x x y y -=++⋅--∴又.22,21211212x y x y x x y y x x y y k MN ==++--=.22a b x y k MN -=⋅∴ 【定理2】在双曲线12222=-by a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN =⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x by a x )2()1(-,得.02222122221=---b y y a x x .2212121212ab x x y y x x y y =++⋅--∴ 又.22,000021211212x y x y x x y y x x y y k MN==++--= .2200a b x y k MN =⋅∴ 【定理3】 在抛物线)0(22≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k MN=⋅0.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎩⎪⎨⎧==)2(.2)1(,2222121 mx y mx y)2()1(-,得).(2212221x x m y y -=-.2)(121212m y y x x y y =+⋅--∴又01212122,y y y x x y y k MN =+--=.m y k MN =⋅∴0.注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在.一、椭圆1、过椭圆x 216+y 24=1内一点P (2,1)作一条直线交椭圆于A 、B 两点,使线段AB 被P 点平分,求此直线的方程.【解】 法一:如图,设所求直线的方程为y -1=k (x -2),代入椭圆方程并整理,得(4k 2+1)x 2-8(2k 2-k )x +4(2k -1)2-16=0, (*)又设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2), 则x 1、x 2是(*)方程的两个根,∴x 1+x 2=8(2k 2-k )4k 2+1.∵P 为弦AB 的中点,∴2=x 1+x 22=4(2k 2-k )4k 2+1.解得k =-12,∴所求直线的方程为x +2y -4=0.法二:设直线与椭圆交点为A (x 1,y 1),B (x 2,y 2), ∵P 为弦AB 的中点,∴x 1+x 2=4,y 1+y 2=2.又∵A 、B 在椭圆上,∴x 21+4y 21=16,x 22+4y 22=16.两式相减,得(x 21-x 22)+4(y 21-y 22)=0,即(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0.∴y 1-y 2x 1-x 2=-(x 1+x 2)4(y 1+y 2)=-12,即k AB =-12.∴所求直线方程为y -1=-12(x -2),即x +2y -4=0.2、已知椭圆+=1,求它的斜率为3的弦中点的轨迹方程.【解答】解:设P (x ,y ),A (x 1,y 1),B (x 2,y 2). ∵P 为弦AB 的中点,∴x 1+x 2=2x ,y 1+y 2=2y .则+=1,①+=1,②②﹣①得,=﹣.∴﹣=3,整理得:x+y=0.由,解得x=所求轨迹方程为:x+y=0.(﹣<x <)∴点P 的轨迹方程为:x+y=0(﹣<x <);3、(2013秋•启东市校级月考)中心在原点,焦点坐标为(0,±5)的椭圆被直线3x ﹣y ﹣2=0截得的弦的中点的横坐标为,则椭圆方程为=1 .【解答】解:设椭圆=1(a >b >0),则a 2﹣b 2=50①又设直线3x ﹣y ﹣2=0与椭圆交点为A (x 1,y 1),B (x 2,y 2),弦AB 中点(x 0,y 0) ∵x 0=,∴代入直线方程得y 0=﹣2=﹣,由 ,得,∴AB 的斜率k==﹣•=﹣•=3∵=﹣1,∴a 2=3b 2②联解①②,可得a 2=75,b 2=25,∴椭圆的方程为:=1故答案为:=1.4、例1(09年四川)已知椭圆12222=+by a x (a >b >0)的左、右焦点分别为1F 、2F ,离心率22=e ,右准线方程为2=x .(Ⅰ) 求椭圆的标准方程;(Ⅱ) 过点1F 的直线l 与该椭圆相交于M 、N 两点,且3262||22=+N F M F ,求直线l 的方程. 解:(Ⅰ)根据题意,得⎪⎪⎩⎪⎪⎨⎧====.2,222c a x a c e ∴1,1,2===c b a .∴所求的椭圆方程为1222=+y x . (Ⅱ)椭圆的焦点为)0,1(1-F 、)0,1(2F . 设直线l 被椭圆所截的弦MN 的中点为),(y x P .由平行四边形法则知:P F N F M F 2222=+.由3262||22=+N F M F 得:326||2=P F .∴.926)1(22=+-y x ①y D若直线l 的斜率不存在,则x l ⊥轴,这时点P 与)0,1(1-F 重合,4|2|||1222==+F F N F M F ,与题设相矛盾,故直线l 的斜率存在.由22a b x y k MN -=⋅得:.211-=⋅+x y x y ∴).(2122x x y +-=② ②代入①,得.926)(21)1(22=+--x x x 整理,得:0174592=--x x . 解之得:317=x ,或32-=x .由②可知,317=x 不合题意. ∴32-=x ,从而31±=y .∴.11±=+=x yk∴所求的直线l 方程为1+=x y ,或1--=x y .6、(2009秋•工农区校级期末)已知椭圆的一条弦的斜率为3,它与直线的交点恰为这条弦的中点M ,则点M 的坐标为.【解答】解:设直线与椭圆的交点分别为(x 1,y 1),(x 2,y 2),则,两式相减,得=0,(y 1﹣y 2)(y 1+y 2)=﹣3(x 1﹣x 2)(x 1+x 2),=﹣3×,因为直线斜率为3,∴=3,∵两交点中点在直线x=,x 1+x 2=1,∴3=﹣3×1÷(y 1+y 2),∴=﹣.所以中点M 坐标为(,﹣).故答案为:(,﹣).7、如图,在DEF R t ∆中,25||,2||,90=+=︒=∠ED EF EF DEF ,椭圆C :12222=+by a x ,以E 、F为焦点且过点D ,点O 为坐标原点。
关于利用“点差法”求解中点弦所在直线斜率问题的教学案例(曹文红) (1)
关于利用“点差法”求解中点弦所在直线斜率问题的教学案例湖北省宜昌市夷陵中学 曹文红[问题背景]圆锥曲线的中点弦问题是解析几何中的一类常见问题。
对于求解以定点为中点的弦所在直线方程问题,许多同学习惯于利用“点差法”先求直线斜率:即首先设弦的两端点坐标为),(),,(2211y x B y x A ,代入圆锥曲线方程得到两方程后再相减,从而得到弦中点坐标与所在直线的斜率的关系,使问题得以解决。
此方法巧妙地将斜率公式和中点坐标公式结合起来,设而不求,代点作差,可以减少计算量,提高解题速度,优化解题过程,对解决此类问题确实具有很好的效果。
但在具体应用时,由于“点差法”所必须具备的前提条件是符合条件的直线确实存在,否则就会产生增根。
而学生由于认知方面的原因,对于此类问题往往只注意利用“点差法”先求直线斜率再求方程却常常忽略了检验符合条件的直线是否存在,从而走入“点差法”的误区,出现错误却无法察觉。
为此,我专门设计了一节利用“点差法”求直线斜率的习题课,通过师生互动、合作探究的方式,使教学过程生动活泼,一波三折,使学生加深了对求解以定点为中点的弦所在的直线方程问题的认识,认清了产生增根的根源,找到了简便易行的检验方法,收到了较好的教学效果。
[案例实录]1、 创设情景,提出问题师:前面,我们已经学习了椭圆、双曲线和直线的位置关系,知道了解决这类问题的主要方法。
下面请大家看问题1:已知点)2,4(M 是直线l 被椭圆193622=+y x 所截得的线段的中点,求直线l 的方程。
问题提出后,犹如一石激起千层浪,学生的探究热情被激发起来,开始了对问题的探索。
2、 自主探索,暴露思维学生求解的同时,教师在行间巡视,发现生1很快得出了结果,于是请生1上台板书:生1:解:设直线l 与椭圆交点为),(),,(2211y x B y x A ,则有3642121=+y x ,3642222=+y x ,两式相减,得:()()()()0421212121=-++-+y y y y x x x x ,因为)2,4(M 为AB 中点,所以有: 4,82121=+=+y y x x , 所以21)(4)(21212121-=++-=--=y y x x x x y y k AB ,故所求直线l 的方程为)4(212--=-x y ,即082=-+y x 。
用点差法巧解圆锥曲线问题
用“点差法”巧解圆锥曲线问题江苏省高淳中等专业学校 喻国忠解析几何是高考的重点内容,而圆锥曲线又是解析几何的重点、难点知识。
这里面,直线与圆锥曲线的位置关系问题综合性强,涉及知识面较多,运算量大,题型灵活多变,常常是打击学生们学习兴趣的罪魁祸首。
直线与圆锥曲线相交形成的弦中点、对称问题等,我们称之为圆锥曲线的“中点弦”问题。
解这类中点弦问题的常规做法是:联立直线和圆锥曲线的方程,借助根的判别式及韦达定理中根与系数的关系、中点坐标公式求解,但运算过程复杂,计算量偏大,解题效率低,尤其是对于基础较差、计算能力较弱的学生来说,很容易算错。
而使用“点差法”来进行求解中点弦问题,往往可以使解题过程化繁为简,优化解题过程,出奇制胜。
所谓“点差法”,就是在求解 “中点弦”问题时用到的一种“代点作差”的解题方法,其特点是代点作差后可巧代直线斜率和中点坐标,进而通过“设而不求”以达到减少计算量的目的。
使用“点差法”时,一般分三个步骤进行:设点、作差、检验。
下面试举几例,感受“点差法”在解题过程中的妙用。
例1.求以椭圆22185x y +=内的一点A(2,-1)为中点的弦所在的直线方程。
解法一:当直线斜率不存在时,A 点不可能为弦的中点,故可设直线方程为1(2)y k x +=-,它与椭圆的交点分别为11(,)M x y ,22(,)N x y ,则221(2)185y k x x y +=-⎧⎪⎨+=⎪⎩,消去y 得:222(85)16(21)8[(21)5]0k x k k x k +-+++-=12216(21)85k k x x k +∴+=+ ,A 2-1又(,)MN 为弦的中点,124x x ∴+=,即216(21)=485k k k ++,54k ∴=,从而直线方程为54140x y --=。
解法二:当直线斜率不存在时,A 点不可能为弦的中点,故可设直线方程为1(2)y k x +=-,它与椭圆的交点分别为11(,)M x y ,22(,)N x y ,则2211222258405840x y x y ⎧+=⎨+=⎩ (1)(2),(2)(1)-得222221215()8()0x x y y -+-=, A 2-1又(,)MN 为弦的中点,124x x ∴+=,122y y +=-,2121205=164y y x x -∴=-,即54k =,从而直线方程为54140x y --=。
点差法公式在抛物线中点弦问题中的妙用
点差法公式在抛物线中点弦问题中的妙用圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就抛物线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理 在抛物线)0(22≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k MN =⋅0.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎩⎪⎨⎧==)2(.2)1(,2222121 mx y mx y)2()1(-,得).(2212221x x m y y -=-.2)(121212m y y x x y y =+⋅--∴又01212122,y y y x x y y k MN =+--=.m y k MN =⋅∴0.注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在. 同理可证,在抛物线)0(22≠=m my x 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m x k MN=⋅01.注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在,且不等于零.典题妙解例1 抛物线x y 42=的过焦点的弦的中点的轨迹方程是( )A. 12-=x yB. )1(22-=x y C. 212-=x y D. 122-=x y 解:2=m ,焦点)0,1(在x 轴上. 设弦的中点M 的坐标为),(y x .由m y k MN =⋅得:21=⋅-y x y, 整理得:)1(22-=x y .∴所求的轨迹方程为)1(22-=x y .故选B.例2 抛物线22x y =上一组斜率为2的平行弦中点的轨迹方程是( ) A. 21=x (y >21) B. 21=y (x >21) C. x y 2=(x >1) D. 12+=x y 解:由22x y =得y x 212=,41=∴m ,焦点在y 轴上. 设平行弦的中点M 的坐标为),(y x .由m x k MN=⋅1得:4121=⋅x ,21=∴x . 在22x y =中,当21=x 时,21=y . ∴点M 的轨迹方程为21=x (y >21).故答案选A.例3 (03上海)直线1-=x y 被抛物线x y 42=截得的线段的中点坐标是___________. 解:2=m ,焦点)0,1(在x 轴上. 设弦MN 的中点P 的坐标为),(y x ,弦MN 所在的直线l 的斜率为MN k ,则.1=MN k 由m y k MN =⋅0得:20=y ,.120-=∴x 从而30=x .∴所求的中点坐标是)2,3(.例 4 抛物线的顶点在原点,焦点在x 轴上,它和直线1-=x y 相交,所得的弦的中点在522=+y x 上,求抛物线的方程.解:设抛物线的方程为)0(22≠=m mx y ,直线与抛物线的两个交点为M 、N ,弦MN 的中点P 的坐标为),(00y x .由m y k MN =⋅0得:m y =0,.1100+=+=∴m y x又 点),1(m m P +在圆522=+y x 上,.5)1(22=++∴m m解之得:,2-=m 或.1=m由⎩⎨⎧=-=.2,12mx y x y 得:.01)1(22=++-x m x 直线与抛物线有两个不同的交点,4)1(42-+=∆∴m >0.∴m <2-,或m >0. .1=∴m故所求的抛物线方程为.22x y =例5.已知抛物线x y 122=上永远有关于直线m x y l +=4:对称的相异两点,求实数m 的取值范围. 解:设抛物线上A 、B 两点关于直线l 对称,且弦AB 的中点为),(00y x P . 根据题意,点P 在直线l 上,l AB ⊥,∴41-=AB k . 又x y 122=,mx y 22=,∴6=m .由m y k AB =⋅0,得:6410=⋅-y ,∴240-=y . 又由m x y +=004,得:4240+-=m x .点),(00y x P 在抛物线的开口内,∴2)24(-<)424(12+-⨯m . 解之得:m <216-.故实数m 的取值范围)216,(--∞.例6. (05全国Ⅲ文22)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线. (Ⅰ)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论. (Ⅱ)当3,121-==x x 时,求直线l 的方程.解:(Ⅰ)y x 212=,∴)81,0(,41F p =. 设线段AB 的中点为),(00y x P ,直线l 的斜率为k ,则0212x x x =+.若直线l 的斜率不存在,当且仅当021=+x x 时,AB 的垂直平分线l 为y 轴,经过抛物线的焦点F. 若直线l 的斜率存在,则其方程为00)(y x x k y +-=,kk AB 1-=. 由p x k AB=⋅01得:410=-kx ,∴kx 410-=. 若直线l 经过焦点F ,则得:0004181y y kx +=+-=,410-=y ,与00≥y 相矛盾. ∴当直线l 的斜率存在时,它不可能经过抛物线的焦点F.综上所述,当且仅当021=+x x 时,直线l 经过抛物线的焦点F. (Ⅱ)当3,121-==x x 时,.102,12),18,3(),2,1(210210=+=-=+=-y y y x x x B A 由p x k AB=⋅01得:41=k . ∴所求的直线l 的方程为10)1(41++=x y ,即.0414=+-y x 金指点睛1. 已知直线02=--y x 与抛物线x y 42=交于A 、B 两点,那么线段AB 的中点坐标是________. 2. 直线2-=kx y 与抛物线x y 82=交于不同的两点P 、Q ,若PQ 中点的横坐标是2,则||PQ =____. 3. 已知抛物线C 的顶点在原点,焦点在x 轴的正半轴上,直线14:+-=x y l 被抛物线C 所截得的弦AB 的中点M 的纵坐标为2-,则抛物线C 的方程为____________.4. 设1P 2P 为抛物线y x =2的弦,如果这条弦的垂直平分线l 的方程为3+-=x y ,求弦1P 2P所在的直线方程.5. 过点)1,4(Q 作抛物线x y 82=的弦AB ,若弦AB 恰被Q 平分,则AB 所在的直线方程为_______. 6. 已知抛物线22x y =上有不同的两点A 、B 关于直线m x y l +=:对称,求实数m 的取值范围. 7. (05全国Ⅲ理21)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线. (Ⅰ)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论.(Ⅱ)当直线l 的斜率为2时,求l 在y 轴上的截距的取值范围.8. (08陕西文理20) 已知抛物线22x y C =:,直线2+=kx y 交C 于A 、B 两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N.(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0=⋅,若存在,求k 的值;若不存在,请说明理由.参考答案1. 解:x y 42=,mx y 22=,∴2=m . 直线的斜率为1. 由m y k MN =⋅0得:20=y . 代入0200=--y x 求得40=x .∴线段AB 的中点坐标是)2,4(.2. 解:x y 82=,mx y 22=,∴4=m .在2-=kx y 中,20=x 时,220-=k y ,∴若PQ 中点的纵坐标是220-=k y . 由m y k AB =⋅0得:4)22(=-k k ,即022=--k k . 解之得:2=k 或1-=k . 由⎩⎨⎧=-=.8,22x y kx y 得:04)2(422=++-x k x k .直线与抛物线交于不同的两点,∴⎪⎩⎪⎨⎧-+=∆≠.016)2(16,0222 k k k 解之得:k >1-且0≠k . ∴2=k .由⎩⎨⎧=-=.8,222x y x y 得:041642=+-x x . 即0142=+-x x . 设),(),,(2211y x Q y x P ,则1,42121==+x x x x .∴[]152)416(54)()1(||212212=-=-++=x x x x k PQ .3. 解:x y 82=,mx y 22=,∴4=m . 由m y k AB =⋅0得:4=AB k .∴AB 所在的直线方程为)4(41-=-x y ,即0154=--y x . 4. 解:设抛物线的方程为mx y 22=(m >0). 在14+-=x y 中,斜率为4-,2-=y 时,43=x . ∴弦AB 的中点M 的坐标为)2,43(--. 由m y k AB =⋅0得:m =-⨯-)2(4,∴8=m .∴所求的抛物线的方程为x y 162=.5. 解:y x =2,my x 22=,∴21=m . 弦1P 2P 所在直线的斜率为 1. 设弦1P 2P 的中点坐标为),(00y x .由m x k P P =⋅0211得:210=x . 弦1P 2P的中点也在直线3+-=x y 上,∴253210=+-=y .弦1P 2P 的中点坐标为)25,21(. ∴弦1P 2P所在的直线方程为)21(125-⋅=-x y ,即02=+-y x . 6. 解:设弦AB 的中点为),(00y x P . 根据题意,l AB ⊥,∴1-=AB k .又y x 212=,my x 22=,∴41=m . 由m x k AB=⋅01,得:4110=⋅-x ,∴410-=x . 又由m x y +=00,得:m y +-=410. 点),(00y x P 在抛物线的开口内,∴2)41(-<)41(21m +-⨯.解之得:m >83.故实数m 的取值范围),83(+∞.7. 解:(Ⅰ)y x 212= ,∴)81,0(,41F p m ==.设线段AB 的中点为),(00y x P ,直线l 的斜率为k ,则0212x x x =+.若直线l 的斜率不存在,当且仅当021=+x x 时,AB 的垂直平分线l 为y 轴,经过抛物线的焦点F.若直线l 的斜率存在,则其方程为00)(y x x k y +-=,kk AB 1-=. 由m x k AB=⋅01得:410=-kx ,∴kx 410-=. 若直线l 经过焦点F ,则得:0004181y y kx +=+-=,410-=y ,与00≥y 相矛盾. ∴当直线l 的斜率存在时,它不可能经过抛物线的焦点F.综上所述,当且仅当021=+x x 时,直线l 经过抛物线的焦点F.(Ⅱ)当2=k 时,由(Ⅰ)知,810-=x ,直线l 的方程为4120++=y x y , ∴它在y 轴上的截距410+=y b ,410-=b y . 直线AB 的方程为00)(21y x x y +--=,即16521-+-=b x y . 代入22x y =并整理得:085242=+-+b x x .直线AB 与抛物线有两个不同交点,∴)852(161+--=∆b >0,即932-b >0.∴b >329.故l 在y 轴上的截距的取值范围是),329(+∞.8.(Ⅰ)证明:41,212===p m y x ,设点M 的坐标为),(00y x .当0=k 时,点M 在y 轴上,点N与原点O 重合,抛物线C在点N 处的切线为x 轴,与AB 平行.当0≠k 时,由p x k AB=⋅01得:40k x =. ∴8222k x y N ==. 得点N 的坐标为)8,4(2k k . 设抛物线C 在点N 处的切线方程为)4(82k x m k y -=-,即8)4(2k k x m y +-=. 代入22x y =,得:8)4(222k k x m x +-=,整理得:084222=-+-k km mx x .0)(2)84(822222=-=+-=--=∆k m k km m k km m ,∴k m =,即抛物线C 在点N 处的切线的斜率等于直线AB故抛物线C 在点N 处的切线与AB 平行.(Ⅱ)解:若0=⋅,则⊥,即︒=∠90ANB .∴||2||2||2||MN BM AM AB ===.482200+=+=k kx y ,∴816848||2220+=-+=-=k k k y y MN N . 由⎩⎨⎧=+=.2,22x y kx y 得0222=--kx x . 设),(),,(2211y x B y x A ,则1,22121-==+x x kx x . ∴)16)(1(21)44)(1(]4))[(1(||2222212212++=++=-++=k k k k x x x x k AB . ∴8162)16)(1(21222+⨯=++k k k . 即4)16()16)(1(2222+=++k k k . 化简,得:416122+=+k k ,即42=k .∴2±=k .故存在实数2±=k ,使0=⋅.。
“点差法”解决圆锥曲线的中点弦问题
‘ ‘ 点茬法 ” 禳决圆锥曲线韵中 点弦 问题
韩 晓 刚 ( 山十 六 中 , 北 唐 河
摘 要 : 圆 锥 曲 线 的 弦 的 中点 有 关 的 问 题 。 们 称 之 为 与 我 圆锥 曲线 的 中 点 弦 问 题 涉 及 至 解 决 圆锥 曲 线 中 点 弦 的 问 4 题 . 采 用 “ 差 法 ” 求 解 “ 差 法 ” 利 用 直 线 和 圆 锥 曲 常 点 来 点 是 线 的 两个 交 点 。把 交 点 代 入 圆 锥 曲 线 的 方 程 .得 到 两 个 等 式 . 式 相 减 . 以得 到 一 个 与 弦 的 斜 率 及 中 点 相 关 的 式 子 两 可 ( 称 中点 和 斜 率 结 合 公 式 ) 再 结 合 已 知 条 件 , 用 学 过 的 也 。 运 知 识 使 问题 得 到 解 决 。 当 题 目涉 及 弦 的 中 点 、 率 时 . 般 斜 一 都 可 以 用 点 差 法 来 解 与 韦 达 定 理 法 纷 繁 冗 长 的 计 算 相 比 。 点 差 法 可 以 大 大 减 少 运 算 量 . 化 解 题 过 程 . 到 “ 而 不 优 达 设 求 ” 目的 本 文将 从 求 弦 的 斜 率 与 弦 的 中 点 问 题 、 弦 中 的 求 点 轨 迹 、 弦 的 垂 直 平 分 线 问 题 和 求 曲 线 的 方 程 四 个 方 面 举
m则 肿 = 。 ‘弦 中点 轨 迹 在 已 知 椭 圆 内 , x y+ y k 2, 0 . ‘ 所 求 弦 中 点 的轨 迹 方 程 为 ( 已知 椭 圆 内 ) 在 变 式 1 直 线 Z似 一 一 o 5 : 0是 参 数 ) 抛 物 线 y : : (+ ) 0( 与 = (+ ) 的 相 交 弦 是 A 则 弦 A 的 中 点 轨 迹 方 程 是 12 B. B 。 过定 点弦 的中点轨迹 方程 ) 分 析 : 线 Za - 一 n 5 = 方 程 中带 有 参 数 0 即 直 线 直 :x y (+ )0, 。 是 过 定 点 的 直 线 还 要 注 意 弦 中点 轨 迹 在 已知 抛 物 线 内 . 最 后 要 注 明 所 求 弦 中点 的 轨 迹 方 程 为 y 2 27 在 已 知 抛 物 线 = x— ( 内 ) 。 变 式 2 已 知 定 长 为 0 0 ) 线 段 AB 的 两 端 点 在 抛 : ( ≥1 的 物线 y 上 移动 , 动 弦 AB的 中点 Ⅳ 的轨 迹方程 。 ( 长 求 弦 为定 值的 弦的中点轨 迹方 程 ) 解 : 两 端 点 坐 标 为 A( , 曰(。Y) 设 Y ) ,2 , 的 中 点 为 (oy) 则 l 220 因 两 端 点 在 抛 物 线 上 , 以 y 1 Y: X o , = x, 所 l 2 2 ,
_点差法_解决圆锥曲线的中点弦问题
中来。 如我在教学《分数的基本性质》时,是这样导入的:唐僧师 话。 然后又让学生亲自验证,但验证的结果是:想唱歌的学生抽
徒走到半路上,口渴了,孙悟空摘了一个西瓜回来,把它平分成 到了跳舞,想跳舞的学生反而抽到了讲故事。 通过这样一系列
四块,一人一块,八戒大喊道:“猴哥,分给我太少了,我不干! ” 的活动, 让学生真正体验到在现实生活中存在着不确定的现
第一个音符就准确、悦耳、动听。 ”新课的导入就好比演奏家定 乐! 师:我想让大家通过抽签表演节目的形式为尚利明同学过
弦,音调定准了,就为整个演奏奠定了基础。 一堂课如果一开头 一次有意义的生日,你愿意吗? 这时孩子们兴奋极了,个个脸上
就讲得索然无味,如同嚼蜡,学生就难以提高兴趣。 所以一定要 乐开了花。 随后我往讲台桌上放了 4 个签,并向学生介绍:有唱
据 题 意 ,a2=(y1y2)2+(x1x2)2=(x1-x2)2=(x12-x22)2-(x1-x2)2
=(x1-x2)2[(x1+x2)2+1]=[(x1+x2)2-4x1x2]·[(x1+x2)2+1]
=[(2x0)2-4(2x02-y0)][(2x0)2+1]=4(y0+x02)(1+4x02),所 求 动
悟空又切了两刀,把西瓜平均分成八块,拿给八戒两块,八戒笑 象,随后导入新课。 选择学生熟悉的事物组织教学,学生积极性
着说:“这还差不多,能多吃一块。 ”讲完后我问学生:“八戒多吃 高,课堂气氛活跃,效果显而易见。
了吗? ”有的学生说多吃了,有的说没有。 我便及时导入:“今天,
四、通过动手操作,激发学生兴趣
可迎刃而解了。
二、求弦中点的轨迹方程
点差法计算方法
点差法计算方法解决圆锥曲线的中点弦问题的一般方法是联立直线和圆锥曲线的方程,利用一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法来求解。
点差法是一种代点作差的方法,可以将直线和圆锥曲线的方程中的点代入并作差,从而得到一个与弦的中点和斜率有关的式子,可以减少运算量。
对于以定点为中点的弦所在直线的方程,可以通过点差法来解决。
例如,在过椭圆$\frac{x^2}{4}+\frac{y^2}{9}=1$内一点M(2,1)引一条弦,使弦被M点平分的问题中,设直线与椭圆的交点为A(x1,y1)、B(x2,y2),利用中点坐标公式可得到$x_1+x_2=4$和$y_1+y_2=2$。
由于A、B两点在椭圆上,因此$x_1+4y_1=16$和$x_2+4y_2=16$。
将这两个式子相减得到$(x_1-x_2)^2+4(y_1-y_2)^2=4$,因此$k_{AB}=-\frac{1}{2}$,所求直线的方程为$y-1=-(x-2)$,即$x+2y-4=0$。
对于探索性问题,如已知双曲线$x^2-y^2=1$,点M(1,1)能否作一条直线l,使l与双曲线交于A、B,且点M是线段AB的中点,可以假设存在这样的直线,然后验证它是否满足题设的条件。
由于这是一道中点弦问题,可以考虑点差法或韦达定理。
假设存在被点M平分的弦AB,且A(x1,y1)、B(x2,y2),则$x_1+x_2=2$,$y_1+y_2=2$,$y_2=\frac{x_1-1}{x_2}$,$y_2=\frac{x_2+2}{x_1}$。
将这两个式子相减得到$2x^2-4x+3=0$,根据双曲线的方程$x^2-y^2=1$可知,直线AB与双曲线不相交,因此被点M平分的弦不存在,即不存在这样的直线l。
设弦端点P(x1,y1)、Q(x2,y2),弦PQ的中点M(x,y),则有:x = (x1 + x2)/2.y = (y1 + y2)/2又根据椭圆的性质可知,有:x1 - x2)^2/a^2 + (y1 - y2)^2/b^2 = 1又因为直线y = 3x - 2过点M,所以有:y = 3x - 2将y带入椭圆方程,得到:x1 - x2)^2/a^2 + (9x1 - 9x2 + 4)^2/b^2 = 1将x带入直线方程,得到:y = 3x - 2将y带入椭圆方程,得到:x^2/25 + (3x - 2)^2/75 = 1化简得到:4x^2 - 12x + 7 = 0解得x = 1/2或x = 7/4当x = 1/2时,y = 3x - 2 = -3/2,此时P在椭圆上,Q不在椭圆上,不符合题意。
运用点差法解答圆锥曲线中点弦问题的步骤
思路探寻中点弦问题是指与圆锥曲线的弦的中点有关的问题.这类问题通常要求我们求弦的中点的坐标、弦所在直线的方程、圆锥曲线的方程,侧重于考查一元二次方程的根与系数的关系、线段中点的坐标公式、直线的斜率公式的应用,以及直线与圆锥曲线的位置关系.解答圆锥曲线中点弦问题,通常运用点差法.若直线与椭圆x 2a 2+y 2b2=1(a >b >0)相交于点A (x 1,y 1)、B (x 2,y 2),且AB 的中点M (x 0,y 0),运用点差法解答中点弦问题的步骤为:1.把A 、B 两点的坐标代入椭圆的方程,得:x 12a 2+y 12b 2=1①,x 22a 2+y 22b2=1②;2.将①②两式作差,得x 12-x 22a 2+y 12-y 22b 2=1,即()x1-x 2()x 1+x 2a 2+()y1-y 2()y 1+y 2b 2=1,可得y 1-y 2x 1-x 2=()-b 2a 2(x 1+x 2y 1+y 2)=()-b 2a 2æèççççöø÷÷÷÷x 1+x 22y 1+y 22=()-b 2a2(x 0y 0)③;3.根据线段中点的坐标公式可得x 0=x 1+x 22,y 0=y 1+y 22,将其代入③得y 1-y 2x 1-x 2=()-b 2a 2()x 0y 0,即为直线AB 的斜率.类似地,对于焦点在y 轴上的椭圆y 2a 2+x 2b2=1(a >b >0),运用点差法可得直线AB 的斜率k AB =()-a 2b 2()x 0y 0;对于焦点在x 轴上的双曲线x 2a 2-y 2b2=1(a >0,b >0),由点差法可得直线AB 的斜率k AB =()b 2a 2()x 0y 0;焦点在y 轴上的双曲线y 2a 2-x2b2=1(a >0,b >0),由点差法可得直线AB 的斜率k AB =()a 2b 2()x 0y 0.利用点差法,由弦AB 所在直线的斜率和圆锥曲线的方程,可以得到弦AB 中点的横坐标x 0与纵坐标y 0之间的关系式.例1.在直角坐标系xOy 中,曲线C 的参数方程为ìíîx =2cos θ,y =4sin θ,其中θ为参数,直线l 的参数方程为ìíîx =1+t cos θ,y =2+t sin θ,其中t 为参数.若曲线C 截直线l 所得线段的中点为(1,2),求直线l 的斜率.解:由ìíîïïïïx2=cos θ,y 4=sin θ,可得曲线C 的直角坐标方程是y 216+x 24=1,当直线l 的倾斜角θ≠π2时,由ìíîx -1=t cos θ,y -2=t sin θ,得y -2x -1=tan θ,则直线l 的直角坐标方程是y =x tan θ+2-tan θ.当直线l 的倾斜角θ=π2时,直线l 的斜率不存在,其方程是x =1,设直线l 与曲线C 相交于点A (x 1,y 1)、B (x 2,y 2),因为AB 的中点的坐标为(1,2),所以x 1+x 22=2,y 1+y 22=4,把A 、B 两点的坐标代入椭圆的方程中,得x 1216+y 124=1①,x 2216+y 224=1②,将①②两式作差得x 12-x 2216+y 12-y 224=1,可得直线l 的斜率k AB=()-164()x 1+x 2y 1+y 2=()-164×()12=-2.运用点差法,由弦的中点坐标和曲线的方程,可以直接通过整体代换,快速求得弦所在直线的斜率,这样可以大大减少运算量.例2.已知双曲线x 2-y 22=1,那么过点P (1,1)能否45思路探寻作一条直线l 与双曲线交于A ,B 两点,且点P 是线段AB的中点.解:设直线l 与双曲线相交于点A (x 1,y 1)、B (x 2,y 2),因为AB 的中点的坐标为(1,1),所以x 1+x 22=2,y 1+y 22=2,把A 、B 两点的坐标代入双曲线的方程,得x 12+y 122=1①,x 22+y 222=1②,将①②两式作差得()x 12-x 22+y 12-y 222=1,可得k AB =2()x 1+x 2y 1+y 2=2.得直线l 的方程为y -1=2(x -1),即y =2x -1.联立直线与双曲线的方程,得ìíîïïy =2x -1,x 2-y 22=1,消去y ,得2x 2-4x +3=0,所以△=16-24=-8<0,则方程无解.所以直线l :y =2x -1与双曲线x 2-y 22=1相离,故不存在直线l 与双曲线交于A ,B 两点,且点P 是线段AB 的中点.本题涉及了双曲线的弦、中点,属于中点弦问题,需运用点差法求解.将直线与双曲线的两个交点的坐标分别代入双曲线的方程中,并作差,从而求得弦所在直线的斜率和方程.最后还需构造出一元二次方程,根据方程的判别式来判断直线与双曲线是否有两个交点,检验所求的直线方程是否满足题意.例3.已知椭圆x 22+y 2=1上的两点A 、B 关于直线y =mx +12对称,求实数m 的取值范围.解:设A (x 1,y 1)、B (x 2,y 2),把A 、B 两点的坐标代入椭圆的方程,得x 122+y 12=1①,x 222+y 22=1②,将①②两式作差得()x12-x 222+()y 12-y 22=1,可得-1m =()-12()x 1+x 2y 1+y 2.设弦AB 的中点M (x 0,y 0),则y 0=mx 0+12③,可得-1m =(-12)(x 0y 0)④,由③④可得ìíîïïïïx 0=-1m,y 0=-12,即M (-1m ,-12),因为弦AB 的中点M 必在椭圆内部,所以()-1m22+()-122<1,解得mm <由于A 、B 两点关于直线对称,所以A 、B 两点的中点在直线上.本题实质上是中点弦问题,需运用点差法求解.先将两点的坐标代入椭圆的方程中,并作差,即可求出直线的斜率;然后建立关于AB 中点坐标的方程组,求得中点的坐标;再将其代入椭圆的方程中,根据椭圆与点的位置关系,求得参数m 的取值范围.例4.已知直线AB 与椭圆x 2a 2+y 2b2=1交于A 、B 两点,B 与B '关于原点O 对称,证明:直线AB 与直线AB '的斜率之积为定值.证明:设A (x 1,y 1)、B (x 2,y 2),把A 、B 两点的坐标代入椭圆的方程中,得:x 12a 2+y 12b 2=1①,x 22a 2+y 22b2=1②,将①②两式作差,得x 12-x 22a 2+y 12-y 22b 2=1,即y 1-y 2x 1-x 2=()-b 2a2(x 1+x 2y 1+y 2),变形得y 1-y 2x 1-x 2⋅y 1-(-y 2)x 1-(-x 2)=-b 2a2,而直线AB 的斜率为k AB =y 1-y 2x 1-x 2,直线AB '的斜率为k AB '=y 1-(-y 2)x 1-(-x 2),所以k AB ⋅k AB '=y 1-y 2x 1-x 2⋅y 1-(-y 2)x 1-(-x 2)=-b 2a2.解答本题,需灵活运用点差法和直线的斜率公式,建立关于直线AB 和直线AB '的斜率的关系式,从而证明结论.运用点差法解题,只需通过简单的整体代换,即可求得直线的斜率、弦中点的坐标,这样可以有效地提升解题的效率.但是点差法的适用范围较窄,只适用于求解中点弦问题,且其中的x 1、x 2、y 1、y 2不一定是实数,有可能是虚数,因此在运用点差法解题时,还需检验所得的结果是否满足题意.(作者单位:陕西省宝鸡市岐山县蔡家坡高级中学)46。
巧用点差法公式解决中点弦问题
二、 椭 圆
所求的直线 A B方程为 Y 一 2 = 1・ ( X 一 1 ) , 即x — Y + 1 = 0 。 ( 2 ) 设直线 C D的方程为 x Y + m= 0 , 点N ( 1 , 2 ) 在直线 C D上 , 1 + 2+ m= O , m=一 3 。. 。 . 直线 C D的方程为 x + Y = 0 。
中点。
y 0
( 2 ) 当X 1 :1 , X 2=一3时 , A( 1 , 2 ), B(一3, 1 8 ) , x o:苎 L 2 1 : 一1
,
=
: o .
( 1 ) 求直线 A B的方程 ; ( 2 )  ̄ I I 果线段 A B的垂 直平分线 与双 曲线相交于 C 、 D两点 , 那么A 、 B 、 c 、 D四点是否共 圆, 为什么 ?
② 代 人 ① , 得 ( 一 1 ) 一 — 1 ( 2 + ) = 等 .
整 理 , 得 : 9 2 — 4 5 一 1 7 : 0 ; 解 之 得 : x : 早, 或 : 一 寻。
由 ② 可 知, : 旱不 合 题 意 。 .
・
. .
若直线z 的 斜率存在, 则其方程为Y = k ( x — x 0 ) Y 0 , k A B =一 ÷。
・ .
.
.
…
…
…
…
…
…
…
…
・
・
解 析 : ( 1 ) 。 ・ ‘ X 2
, ・ ・ p ÷, F ( 0 , 寺) 。
②
设线段 A B的中点为 P ( 0 , Y o ), 直线 f 的斜率为 , 则 l + 2=2 x 0 若直线 f 的斜率不存在 , 当且仅 当 x l +x 2=0时 , AB的垂直平分线 z 为 Y轴 , 经过抛物线的焦点 F 。
利用点差法处理圆锥曲线的“中点弦问题”
专题复习:利用点差法处理圆锥曲线的“中点弦问题”【知识要点】已知直线与圆锥曲线交于,A B 两点,点00(,)P x y 为弦AB 的中点,由点差法可得出以下公式:1. 椭圆:(1)焦点x 在轴上:22221x y a b += 2020AB x b k a y =-⋅(2)焦点y 在轴上:22221y x a b += 2020AB x a k b y =-⋅2. 双曲线:(1)焦点x 在轴上:22221x y a b -= 2020AB x b k a y =⋅(2)焦点y 在轴上:22221y x a b -= 2020AB x a k b y =⋅3. 抛物线: (1)焦点x 在轴上:2y mx = 02AB mk y =(2)焦点y 在轴上:2x my = 02AB m k x =【例题分析】类型1:已知曲线及弦的中点,求直线【例1】 已知直线l 与椭圆22164x y +=交于过点,A B 两点,若线段AB 的中点恰好为点(21)P ,, 则直线l 的方程为 .【实战演练】(2009新课标全国卷)已知抛物线C 的顶点在坐标原点,焦点为(1,0)F ,直线l 与抛物线C 相交于,A B 两点,若AB 的中点为(2,2),则直线l 的方程为 .类型2:已知直线及弦的中点,求曲线【例2】已知双曲线中心在原点且一个焦点为F 0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程为 .【实战演练1】(2014江西高考)过点(1,1)M 作斜率为12-的直线与椭圆22221(0)x y a b a b +=>>交于,A B 两点,若M 是的中点,则椭圆的离心率为 .【实战演练2】(2013新课标全国I 卷)已知椭圆E :22221(0)x y a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交E 于,A B 两点,若AB 的中点为(1,1)-,则E 的方程为 . 类型3:已知曲线及直线,求弦的中点【例3】已知直线3y x =-+与抛物线22y x =交于,A B 两点,则AB 中点坐标为 . 【实战演练】(2013浙江高考)设F 为抛物线2:4C y x =的焦点,过点(1,0)P -的直线l 交抛物线于,A B 两点,点Q 为AB 的中点,若2FQ =,则直线l 的斜率为 .【题型强化训练】1.(1)若椭圆2212x y +=的弦被点)21,21(-平分,则这条弦所在直线方程为 . (2)若直线1y x =+与椭圆22142x y +=相交于,A B 两点,则AB 中点坐标为 . 2. 已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点横坐标为21,则该椭圆的方程为 .3.已知直线3y x =-+与椭圆22221(0)x y a b a b+=>>交于,A B 两点,若AB 中点为(2,1),则该椭圆的离心率为 .4. 直线():50l ax y a --+=(a 是参数)与抛物线()2:1f y x =+的相交弦是AB ,则弦AB 的中点轨迹方程是 .5.已知抛物线2:4C y x =,直线l 与抛物线C 交于,A B 两点,若线段AB 的中点坐标为(2,2),则直线l 的方程为 .6. 已知直线l 与抛物线28y x =交于,A B 两点,点(2,2)M 为AB 中点,则AOB S ∆= .7.过抛物线22(0)y px p =>的焦点F ,且倾斜角为4π的直线与抛物线交于,A B 两点,若弦AB 的垂直平分线过点(0,2),则AOB ∆的面积AOB S ∆= .8. 已知椭圆13422=+y x 上总有不同的两点关于直线m x y +=4对称,则实数m 的取值范围为 .9.已知椭圆C: 22221x y a b+= (0a b >>)的右焦点为F(2,0),且过点). 直线l 过点F 且交椭圆C 于A 、B 两点.若线段AB 的垂直平分线与x 轴的交点为M(1,02),则直线l 的方程为 . 11.已知双曲线2222:1(0,0)x y T a b a b-=>>的右焦点为(2,0)F,且经过点(3R ,ABC ∆的三顶点都在双曲线T 上,O 为坐标原点,设ABC ∆三条边,,AB BC AC 的中点分别为,,M N P ,且三条边所在直线的斜率分别为123,,k k k ,若1OM ON OP k k k++=-,则123111k k k ++= . 12. 已知ABC ∆的三个顶点都在抛物线232y x =上,其中()2,8A ,且ABC ∆的重心G 是抛物线的焦点,求直线BC 的方程.13.过点()0,2的直线l 与中心在原点,焦点在x轴上且离心率为2的椭圆C 相交于A 、B 两点,直线12y x =过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称. (1)求直线l 的方程; (2)求椭圆C 的方程.14.已知椭圆221259x y +=上三点()()11229,,4,,,5A x y B C x y ⎛⎫ ⎪⎝⎭与焦点()4,0F 的距离成等差数列.(1)求证:128x x +=;(2)若线段AC 的垂直平分线与x 轴交于点T ,求直线BT 的斜率k .15. 已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为12,F F,离心率为2,短轴长为2。
“点差法”,差在哪?
“点差法”,差在哪?中点弦问题是解析几何听重点、热点问题。
解圆锥曲线的中点弦问题,很多学生习惯于用所谓“点差法”:首先设出弦的两端点坐标,然后代入圆锥曲线方程相减,得到弦中点的坐标与所在直线的斜率的关系,从而求出直线方程。
但是,有时候符合条件的直线是不存在的,这时使用“点差法”便会走入“误区”。
下面问题中便有学生经常掉入“陷阱”。
题目:已知双曲线1222=-y x ,问是否存在直线l ,使M(1,1)为直线l 被双曲线所截弦AB 的中点。
若存在,求出直线l 的方程;若不存在请说明理由。
错误解法1:(点差法)设直线与双曲线两交点A 、B 的坐标分别为(x 1, y 1), (x 2, y 2),M 点的坐标为(x M , y M )。
由题设可知直线l 不可能垂直于x 轴,所以x 1≠x 2。
因此,有⎪⎪⎩⎪⎪⎨⎧=-=-,12,1222222121y x y x 两式相减可得.0))((21))((21212121=-+--+y y y y x x x x又因为⎪⎪⎩⎪⎪⎨⎧+=+=,2,22121y y y x x x M M 所以⎩⎨⎧=+=+,2,22121M M y y y x x x 而由题设可知M 点的坐标为(1,1)。
故2)(221211212=++=--=y y x x x x y y k AB .所以,直线l 存在,其方程为2x-y-1=0.错误解法2:(联立法)由题知直线l 不可能垂直于x 轴,又由于直线过M 点,因此,可设直线l 的方程为y-1=k(x-1),与双曲线的方程1222=-y x 联立可得②①y x x k y ⎪⎩⎪⎨⎧=--=-,12),1(122将①代入②式,化简可得到,032)1(2)2(222=-+----k k x k k x k当k ≠± 2 时,由韦达定理可知)2(2)1(2221k k k x x --=+,而1221=+=x x x M , 可得1)2(2)1(22=--k k k ,此时k=2。
点差法与圆锥曲线第三定义的应用举例
点差法与圆锥曲线第三定义的应用举例尹伟云(贵州省仁怀市周林高中ꎬ贵州仁怀564599)摘㊀要:点差法是解决圆锥曲线中点弦问题的有效工具ꎬ亦是高考的常考对象.本文从点差法入手ꎬ探究点差法与圆锥曲线第三定义的联系ꎬ给出5个经典结论及其证明ꎬ并以实例阐述其应用.关键词:点差法ꎻ中点弦ꎻ圆锥曲线第三定义中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)19-0086-05收稿日期:2023-04-05作者简介:严伟云ꎬ从事高中数学教学研究.㊀㊀圆锥曲线中的中点弦和直径问题是高考经常考查的对象.在某些与中点及直径有关的相交弦问题中ꎬ利用点差法或圆锥曲线第三定义可快速得到两直线的斜率之积ꎬ尤其是在小题中ꎬ直接利用结论求解ꎬ可大大地节省解题时间.下面就这些问题进行探讨.1点差法的原理1.1点差法在椭圆中点弦问题中的应用结论1㊀设直线l(不与坐标轴垂直且不过原点)与椭圆x2a2+y2b2=1(a>b>0)相交于A(x1ꎬy1)ꎬB(x2ꎬy2)两点ꎬP(x0ꎬy0)为弦AB的中点ꎬ如图1ꎬ则kOP kAB=y0x0 kAB=-b2a2=e2-1ꎻ若椭圆方程为y2a2+x2b2=1(a>b>0)ꎬ如图2ꎬ则kOP kAB=y0x0 kAB=-a2b2=1e2-1.证明㊀由x21a2+y21b2=1ꎬx22a2+y22b2=1ꎬìîíïïïï两式相减ꎬ得图1㊀椭圆焦点在x轴㊀㊀㊀㊀㊀图2㊀椭圆焦点在y轴x21-x22a2+y21-y22b2=0.即(x1+x2)(x1-x2)a2+(y1+y2)(y1-y2)b2=0.化为(y1+y2)/2(x1+x2)/2 y1-y2x1-x2=-b2a2.所以y0x0 kAB=-b2a2.故kOP kAB=-b2a2=-a2-c2a2=e2-1.如图2ꎬ当椭圆的焦点在y轴上时ꎬ同理得kOP kAB=y0x0 kAB=-a2b2=1e2-1.1.2点差法在双曲线中点弦问题中的应用结论2㊀设直线l(不与坐标轴垂直且不过原点)与双曲线x2a2-y2b2=1(a>0ꎬb>0)相交于A(x1ꎬy1)ꎬB(x2ꎬy2)两点ꎬP(x0ꎬy0)为弦AB的中点ꎬ如图3和图4ꎬ仿照结论1的证明方法ꎬ容易得到kOP kAB=y0x0 kAB=b2a2=e2-1.若双曲线方程为y2a2-x2b2=1(a>0ꎬb>0)ꎬ则kOP kAB=y0x0 kAB=a2b2=1e2-1.图3㊀双曲线中点弦问题㊀㊀㊀㊀图4㊀双曲线中点弦问题根据结论1和结论2ꎬ容易知道椭圆㊁双曲线中点差法的统一公式:设曲线C:x2m+y2n=1ꎬ其中mnʂ0ꎬ直线l(不与坐标轴垂直且不过原点)与曲线C相交于A(x1ꎬy1)ꎬB(x2ꎬy2)两点ꎬP(x0ꎬy0)为弦AB的中点ꎬ则kOP kAB=-nm.①当m=n>0时ꎬ方程x2m+y2n=1表示圆ꎬ由垂径定理可知ꎬkPA kPB=-1ꎻ②当mʂn且m>0ꎬn>0时ꎬ方程x2m+y2n=1表示椭圆ꎻ③当mn<0时ꎬ方程x2m+y2n=1表示双曲线ꎻ④当m<0ꎬn<0时ꎬ方程x2m+y2n=1不表示任何曲线.1.3点差法在抛物线中点弦问题中的应用结论3㊀设直线l(不与抛物线对称轴垂直)与抛物线y2=2px(p>0)相交于A(x1ꎬy1)ꎬB(x2 y2)两点ꎬP(x0ꎬy0)为弦AB的中点ꎬ如图5ꎬ则y0 kAB=p.若抛物线方程为x2=2py(p>0)ꎬ则x0kAB=p.图5㊀抛物线中点弦问题证明㊀由y21=2px1ꎬy22=2px2ꎬ{两式相减ꎬ得y21-y22=2p(x1-x2).化简为y1+y22 y1-y2x1-x2=p.即得y0 kAB=p.若抛物线方程为x2=2py(p>0)ꎬ同理可证x0kAB=p.2圆锥曲线的第三定义已知AꎬB是x轴上关于原点O对称的两点ꎬ设|AB|=2a.若平面内异于AꎬB的动点P满足kPA kPB为定值λꎬ则当-1<λ<0时ꎬ点P的轨迹为椭圆(不含长轴端点AꎬB)ꎬ设短轴长为2bꎬ则λ=-b2a2ꎻ当λ>0时ꎬ点P的轨迹为双曲线(不含实轴端点AꎬB)ꎬ设虚轴长为2bꎬ则λ=b2a2.由上知ꎬλ=e2-1ꎬ其中e为对应轨迹的离心率.将圆锥曲线第三定义进行推广ꎬ得到如下结论:结论4㊀如图6ꎬ过原点的直线与椭圆x2a2+y2b2=1(a>b>0)相交于AꎬB两点ꎬP为椭圆上异于AꎬB的动点ꎬ当直线PAꎬPB的斜率均存在时ꎬ有kPA kPB=e2-1=-b2a2.当椭圆的焦点在y轴上时ꎬ有kPA kPB=1e2-1=-a2b2.证法1㊀设P(x0ꎬy0)ꎬA(x1ꎬy1)ꎬ则B(-x1ꎬ图6㊀结论4图-y1)ꎬ从而直线PAꎬPB的斜率之积为kPA kPB=y0-y1x0-x1y0+y1x0+x1=y20-y21x20-x21=b21-(x20/a2)[]-b21-(x21/a2)[]x20-x21=-b2a2.证法2㊀取AP的中点Mꎬ连接OMꎬ由点差法ꎬ得kPA kPB=kPA kOM=e2-1=-b2a2.当椭圆的焦点在y轴上时ꎬ同理可证kPA kPB=1e2-1=-a2b2.结论5㊀如图7ꎬ过原点的直线与双曲线x2a2-y2b2=1(a>0ꎬb>0)相交于AꎬB两点ꎬP为双曲线上异于AꎬB的动点ꎬ当直线PAꎬPB的斜率均存在时ꎬ有kPA kPB=e2-1=b2a2.图7㊀结论5图当双曲线的焦点在y轴上时ꎬ有kPA kPB=1e2-1=a2b2.证法1㊀设P(x0ꎬy0)ꎬA(x1ꎬy1)ꎬ则B(-x1ꎬ-y1)ꎬ则kPA kPB=y0-y1x0-x1y0+y1x0+x1=b2(x20/a2)-1[]-b2(x21/a2)-1[]x20-x21=b2a2.证法2㊀取PA的中点Mꎬ连接OMꎬ由点差法ꎬ得kPA kPB=kPA kOM=e2-1=b2a2.当椭圆的焦点在y轴上时ꎬ同理可证kPA kPB=1e2-1=a2b2.3实例分析例1㊀已知椭圆C:x24+y2=1上存在两点AꎬB关于直线l:x=my+1对称ꎬ则实数m的取值范围是.解析㊀由题意知ꎬ直线AB与l互相垂直ꎬ所以kAB kl=-1ꎬ得kAB=-m.设线段AB的中点为M(x0ꎬy0)ꎬ由点差法ꎬ得kAB kOM=-b2a2.即(-m)y0x0=-14.与x0=my0+1联立ꎬ得x0=43ꎬy0=13m.ìîíïïïï因为点M43ꎬ13mæèçöø÷在椭圆C的内部ꎬ所以164ˑ9+13mæèçöø÷2<1.解得m>55ꎬ或m<-55.所以实数m的取值范围是-¥ꎬ-55æèçöø÷ɣ55ꎬ+¥æèçöø÷.评注㊀在椭圆中ꎬ由点差法得到的式子 kABkOM=-b2a2 是相交弦中点与原点连线的斜率与弦所在直线斜率的一个等量关系.kAB与直线AB直接相关联ꎬ-b2a2与椭圆C相关联ꎬ因此ꎬ点差法搭建了直线与椭圆之间的桥梁.在本题中ꎬ点差法为弦中点的表示创造了重要条件ꎬ从而通过中点与椭圆的位置关系建立不等关系.例2㊀已知F1(-cꎬ0)ꎬF2(cꎬ0)分别为双曲线C:x2a2-y2b2=1(a>0ꎬb>0)的左㊁右焦点ꎬ直线l:xc+yb=1与C交于MꎬN两点ꎬ线段MN的垂直平分线与x轴交于点T(-5cꎬ0)ꎬ则C的离心率为.解析㊀设线段MN与其垂直平分线交于点Pꎬ连接OPꎬ如图8.图8㊀例2解析图则kPT kMN=-1ꎬkOP kMN=b2a2.ìîíïïï①②两式相比ꎬ得kPTkOP=-a2b2.即y0x0+5c x0y0=-a2b2ꎬ解得x0=-5a2c.又由①得y0x0+5c -bcæèçöø÷=y0-5a2/c+5c -bcæèçöø÷=-1.解得y0=5b.将x0=-5a2cꎬy0=5bꎬìîíïïï代入xc+yb=1中ꎬ得-5a2c2+5bb=1.化简为c2a2=54.所以e=ca=52.评注㊀求离心率的关键是找到关于aꎬbꎬc的一个齐次等量关系ꎬ而点差法的结论 kOP kMN=b2a2 中恰好含有a与b的齐二次关系.对于结论中两直线的斜率ꎬ一般有两种转化途径:一是转化为点的坐标ꎬ二是利用几何图形的特征或位置关系进行转化.本题就是通过点的坐标以及两直线的垂直关系与点的共线关系进行转化.例3㊀抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后ꎬ沿平行于抛物线对称轴的方向射出.今有抛物线C:x2=8yꎬ如图9ꎬ一平行于y轴的光线从上方射向抛物线上的点Pꎬ经抛物线2次反射ꎬ最后从抛物线上的点Q沿平行于y轴方向射出.若直线l:y=x+m与抛物线C交于AꎬB两点ꎬ在坐标平面内作әABNꎬ使әABN的外接圆圆心的坐标为I-12ꎬ11æèçöø÷ꎬ求弦AB的长度.图9㊀例3解析图解析㊀设A(x1ꎬy1)ꎬB(x2ꎬy2)ꎬ线段AB的中点为M(x0ꎬy0)ꎬ则x21=8y1ꎬx22=8y2.两式相减ꎬ得x21-x22=8(y1-y2).化简为x1+x22=4(y1-y2)x1-x2.解得x0=4kAB=4.即得kAB=1ꎬ从而y0=4+m.由垂径定理ꎬ得ABʅMI.所以kAB kMI=-1.即1 4+m-114+1/2=-1ꎬ解得m=52.联立y=x+52与x2=8yꎬ消去yꎬ得x2-8x-20=0.从而|AB|=k2+1 |x1-x2|=k2+1(x1+x2)2-4x1x2=12+1 82-4ˑ(-20)=122.评注㊀抛物线中点差法的结论x0k=p 体现了相交弦中点横坐标与弦所在直线斜率的等量关系.本题中ꎬ求直线l方程中m的值是关键.点差法与垂径定理的联合ꎬ将问题转化为点的坐标运算ꎬ从而求出m的值.应注意ꎬ对于解答题ꎬ需写出点差法的推导过程ꎬ即先将弦的两端点坐标代入曲线方程中ꎬ作差后再利用平方差公式和中点坐标公式化为中点坐标与斜率的关系[1].例4㊀已知椭圆C:x216+y212=1ꎬ点A(-4ꎬ0)ꎬB(4ꎬ0)ꎬ点P和Q分别是椭圆C和圆M:x2+y2=16上不同于AꎬB的两点ꎬ设直线PBꎬQB的斜率分别为k1ꎬk2ꎬ且k1=34k2ꎬ求证:AꎬPꎬQ三点共线.解析㊀在椭圆C中ꎬ由椭圆第三定义ꎬ得kPB kPA=-b2a2.即k1 kPA=-34.又k1=34k2ꎬ所以34k2 kPA=-34ꎬ得kPA=-1k2.在圆M中ꎬ由kQA kQB=-1ꎬ即kQA k2=-1ꎬ得kQA=-1k2.所以kPA=kQA.又直线PA与QA共点Aꎬ所以AꎬPꎬQ三点共线.评注㊀如果圆的弦经过该圆圆心ꎬ则称该弦为该圆的直径ꎬ类似地ꎬ椭圆的弦经过该椭圆的中心ꎬ则称该弦为该椭圆的直径.本题中ꎬ线段AB是椭圆的直径ꎬ通过椭圆第三定义得到椭圆上一点与另两点连线的两斜率之积.如果把圆看作是特殊的椭圆ꎬ那么在圆中 kQB kQA=-1 可看作是椭圆中kPB kPA=-b2a2 的特殊情形ꎬ由这两组斜率关系和条件中的斜率关系推出的新的斜率关系ꎬ恰好达到证明的目的.例5㊀在平面直角坐标系xOy中ꎬ已知直线l:3x+y+m=0与双曲线C:x2a2-y2b2=1(a>0ꎬb>0)的右支交于MꎬN两点(点M在第一象限).若点Q满足OMң+OQң=0ꎬ且øMNQ=30ʎꎬ则双曲线C的渐近线方程为.解析㊀由3x+y+m=0ꎬ得l的斜率为-3ꎬ故l的倾斜角为120ʎ.又øMNQ=30ʎꎬ所以直线QN的倾斜角为120ʎ+30ʎ=150ʎꎬ如图10.图10㊀例5解析图由OMң+OQң=0知ꎬO为线段MQ的中点.由双曲线第三定义得kMN kQN=b2a2.即b2a2=-3 tan150ʎ=1ꎬ即ba=1.所以双曲线C的渐近线方程为y=ʃx.评注㊀本题由双曲线第三定义快速得到关于aꎬb的齐次分式与kMNꎬkQN的等量关系ꎬ再由直线MN的倾斜角及条件中的已知角求得kQNꎬ从而得到关于aꎬb的齐次方程ꎬ即得双曲线的渐近线方程.利用双曲线第三定义解题ꎬ首先要寻找过双曲线中心的相交弦ꎬ其次在双曲线上另找一点ꎬ向弦两端点引直线ꎬ再将这两直线的斜率转化为可求的量.参考文献:[1]任栋.圆锥曲线第三定义及点差法的应用[J].中学数学ꎬ2019(15):48-49.[责任编辑:李㊀璟]。
高中数学中点弦问题的解题方法
高中数学中点弦问题的解题方法会泽县茚旺高级中学 杨顺武解析几何中与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。
“中点弦”问题是一类很典型、很重要的问题.一、方法介绍(解圆锥曲线的中点弦问题的方法有): 第一种方法:联立消元法即联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
第二种方法:点差法即设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子, 可以大大减少运算量。
我们称这种代点作差的方 法为“点差法”。
第三种方法:导数法即如果以圆、椭圆等图形的中心为中心,按比例缩小图形,则一定存在同类的圆、椭圆等与弦AB 中点M 相切(如下图)。
此时缩小的曲线方程如()()()222tR b x a x =-+-,()()12222=±tb y ta x ,两边对x 求导,可发现并不改变原方程求导的结果。
因此,利用导数法求中点弦的斜率,就是x y '在中点处的值。
二、题型示例题型一 以定点为中点的弦所在直线的方程例1、过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。
解法一:设直线与椭圆的交点为),(11y x A 、),(22y x B)1,2(M 为AB 的中点 ∴421=+x x 221=+y y 又A 、B 两点在椭圆上,则1642121=+y x ,1642222=+y x两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x∴21244)(421212121-=⨯-=++-=--y y x x x x y y即21-=AB k ,故所求直线的方程为)2(211--=-x y ,即042=-+y x 。
中学数学利用点差法处理圆锥曲线的“中点弦问题”
专题复习:利用点差法处理圆锥曲线的“中点弦问题”【知识要点】已知直线与圆锥曲线交于,A B 两点,点00(,)P x y 为弦AB 的中点,由点差法可得出以下公式:1. 椭圆:(1)焦点x 在轴上:22221x y a b += 2020AB x b k a y =-⋅(2)焦点y 在轴上:22221y x a b += 2020AB x a k b y =-⋅2. 双曲线:(1)焦点x 在轴上:22221x y a b -= 2020AB x b k a y =⋅(2)焦点y 在轴上:22221y x a b -= 2020AB x a k b y =⋅3. 抛物线: (1)焦点x 在轴上:2y mx = 02AB mk y =(2)焦点y 在轴上:2x my = 02AB m k x =【例题分析】类型1:已知曲线及弦的中点,求直线【例1】 已知直线l 与椭圆22164x y +=交于过点,A B 两点,若线段AB 的中点恰好为点(21)P ,, 则直线l 的方程为 .【实战演练】(2009新课标全国卷)已知抛物线C 的顶点在坐标原点,焦点为(1,0)F ,直线l 与抛物线C 相交于,A B 两点,若AB 的中点为(2,2),则直线l 的方程为 .类型2:已知直线及弦的中点,求曲线【例2】已知双曲线中心在原点且一个焦点为F 0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程为 .【实战演练1】(2014江西高考)过点(1,1)M 作斜率为12-的直线与椭圆22221(0)x y a b a b +=>>交于,A B 两点,若M 是的中点,则椭圆的离心率为 .【实战演练2】(2013新课标全国I 卷)已知椭圆E :22221(0)x y a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交E 于,A B 两点,若AB 的中点为(1,1)-,则E 的方程为 . 类型3:已知曲线及直线,求弦的中点【例3】已知直线3y x =-+与抛物线22y x =交于,A B 两点,则AB 中点坐标为 . 【实战演练】(2013浙江高考)设F 为抛物线2:4C y x =的焦点,过点(1,0)P -的直线l 交抛物线于,A B 两点,点Q 为AB 的中点,若2FQ =,则直线l 的斜率为 .【题型强化训练】1.(1)若椭圆2212x y +=的弦被点)21,21(-平分,则这条弦所在直线方程为 . (2)若直线1y x =+与椭圆22142x y +=相交于,A B 两点,则AB 中点坐标为 . 2. 已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点横坐标为21,则该椭圆的方程为 .3.已知直线3y x =-+与椭圆22221(0)x y a b a b+=>>交于,A B 两点,若AB 中点为(2,1),则该椭圆的离心率为 .4. 直线():50l ax y a --+=(a 是参数)与抛物线()2:1f y x =+的相交弦是AB ,则弦AB 的中点轨迹方程是 .5.已知抛物线2:4C y x =,直线l 与抛物线C 交于,A B 两点,若线段AB 的中点坐标为(2,2),则直线l 的方程为 .6. 已知直线l 与抛物线28y x =交于,A B 两点,点(2,2)M 为AB 中点,则AOB S ∆= .7.过抛物线22(0)y px p =>的焦点F ,且倾斜角为4π的直线与抛物线交于,A B 两点,若弦AB 的垂直平分线过点(0,2),则AOB ∆的面积AOB S ∆= .8. 已知椭圆13422=+y x 上总有不同的两点关于直线m x y +=4对称,则实数m 的取值范围为 .9.已知椭圆C: 22221x y a b+= (0a b >>)的右焦点为F(2,0),且过点). 直线l 过点F 且交椭圆C 于A 、B 两点.若线段AB 的垂直平分线与x 轴的交点为M(1,02),则直线l 的方程为 . 11.已知双曲线2222:1(0,0)x y T a b a b-=>>的右焦点为(2,0)F,且经过点(3R ,ABC ∆的三顶点都在双曲线T 上,O 为坐标原点,设ABC ∆三条边,,AB BC AC 的中点分别为,,M N P ,且三条边所在直线的斜率分别为123,,k k k ,若1OM ON OP k k k++=-,则123111k k k ++= . 12. 已知ABC ∆的三个顶点都在抛物线232y x =上,其中()2,8A ,且ABC ∆的重心G 是抛物线的焦点,求直线BC 的方程.13.过点()0,2的直线l 与中心在原点,焦点在x轴上且离心率为2的椭圆C 相交于A 、B 两点,直线12y x =过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称. (1)求直线l 的方程; (2)求椭圆C 的方程.14.已知椭圆221259x y +=上三点()()11229,,4,,,5A x y B C x y ⎛⎫ ⎪⎝⎭与焦点()4,0F 的距离成等差数列.(1)求证:128x x +=;(2)若线段AC 的垂直平分线与x 轴交于点T ,求直线BT 的斜率k .15. 已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为12,F F,离心率为2,短轴长为2。
基于核心素养的教学案例《用点差法解圆锥曲线问题》
基于核心素养的教学案例《用点差法解圆锥曲线问题》作者:杨竹青来源:《学校教育研究》2020年第09期涉及圆锥曲线的弦的中点、斜率时,一般都可以用点差法来解,但高中人教版课本并没有直接出现“点差法”。
为此,在讲完数学选修2—1双曲线的性质后,我专门设计了一节点差法解决圆锥曲线问题的拓展课,现把 2019年12月中旬我上课的案例实录如下:一、创设情景,引发思维教师:解析几何是高中数学的一个重要内容,历来是高考的重点内容,在近几年的高考都是2小1大。
圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
前面,我们已经学习了椭圆、双曲线和直线的位置关系,知道了解决这类问题的主要方法。
下面我们先来看一道例题:例1、过椭圆内一点引一条弦,使弦被点平分,求这条弦所在直线的方程。
师:怎样求这条直线的方程?二、自主探索,暴露思维问题提出后,犹如一石激起千层浪,学生的探究热情被激发起来,开始了对问题的探索。
教师巡视后请学生说例1的解题思路。
学生1:将直线方程与圆锥曲线方程联立。
通过研究联立之后的方程的解来研究直线与圆锥曲线的问题。
学生2:老师,涉及到解决圆锥曲线中点弦的问题,可采用"点差法"来求解。
师:有的同学可能第一次听到点差法,不知道点差法解题方法,我们今天就通过这节课来解决。
下面请同学1和同学2板演解答。
两位同学用了二种方法,一种韦达定理,一种点差法。
解法1:当直线斜率不存在时,A点不可能为弦的中点,故可设直线方程为y-1=k(x-2),联立方程组,将直线方程代入椭圆方程,消去y得并整理得显然此方程的根的判别式大于0.又设直线与椭圆的交点为,则是方程的两个根,于是又因为M为AB的中点,所以,解得故所求直线方程为x+2y-4=0.师:以上两种解法就是求解以定点为中点的弦所在直线方程的常用方法,我们不妨称之为“点差法”和“联立法”(又叫韦达定理法)。
那么,使用“点差法”时要注意什么问题呢?请同学们按学习小组分组讨论上述解法的優劣。
运用点差法巧解椭圆的中点弦问题
x2 y2 2 1 a2 b
基本步骤:三步 走
1.设点:
2.作差:
3.求k:
点差法一般性结论
遇到弦中点,两式减一减;
例1
x y 过椭圆 1 内一点 M (2,1) 引一 16 4 条弦,使弦被点 M 平分,求这条弦所在
直线的方程.
y
2
2
B (x2 , y2)
o
M
A ( x1 , x
(2)设两端点坐标,代入曲线方程相减可求出弦的斜率 和弦的中点坐标(点差法)。
遇到弦中点,两式减一减;
y
A
O
M B
x
点差法步骤: 1.设点A(x1,y1),B(x2,y2); 2.代入圆锥曲线方程作差; 3.利用平方差公式变形,把中点坐标与直线 斜率代入得到式子.
点差法用途:可以解决与中点弦有关的一切问题.
y
A
O
M B
x
点差法用途:可以9y2=45,椭圆的右焦点为F, (1)求过点F且斜率为1的直线被椭圆截得的弦长.
x y 直线l:y x 2 解 : (1)椭圆 1 F (2, 0) 9 5 2 得: 14 x 36 x 9 0 y x 2 由 2 18 9 2 x1 x2 , x1 x2 5 x 9 y 45 7 14 6 11 2 2 弦长 1 k ( x1 x2 ) 4 x1 x2 7
2
2
小结:弦中点、弦斜率问题的两种处理方法
1.点差法:设弦的两端点坐标,代入曲线方程相减后分解 因式,便可与弦所在直线的斜率及弦的中点联系起来.
2.联立方程组,消去一个未知数,利用韦达定理解决.
练习: 已知椭圆5x2+9y2=45,椭圆的右焦点为F, (2)判断点A(1,1)与椭圆的位置关系,并求以A为中点 椭圆的弦所在的直线方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用点差法解圆锥曲线的中点弦问题
与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。
解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”。
一、 以定点为中点的弦所在直线的方程
例1、过椭圆14
162
2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。
解:设直线与椭圆的交点为),(11y x A 、),(22y x B
Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y
Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642
222=+y x
两式相减得0)(4)(22212221=-+-y y x x
于是0))((4))((21212121=-++-+y y y y x x x x ∴
2
1244)(421212121-=⨯-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2
11--=-x y ,即042=-+y x 。
例2、已知双曲线12
2
2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。
若存在这样的直线l ,求出它的方程,若不存在,说明理由。
策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。
本题属于中点弦问题,应考虑点差法或韦达定理。
解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B
则221=+x x ,221=+y y
122121=-y x ,122
222=-y x 两式相减,得
0))((2
1))((21212121=-+--+y y y y x x x x ∴22121
=--=x x y y k AB 故直线)1(21:-=-x y AB 由⎪⎩
⎪⎨⎧=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=⨯⨯--=∆
这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。
评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。
由此题可看到中点弦问题中判断点的M 位置非常重要。
(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。
二、 过定点的弦和平行弦的中点坐标和中点轨迹
例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2
1=x 的交点恰为这条弦的中点M ,求点M 的坐标。
解:设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(00y x M ,则2
10=x 12021==+x x x , 0212y y y =+
又 125752121=+x y ,125
752
222=+x y 两式相减得0))((75))((2521212121=-++-+x x x x y y y y
即0)(3)(221210=-+-x x y y y ∴0212123y x x y y -=-- Θ 32121=--=
x x y y k ∴ 3230=-y ,即2
10-=y ∴点M 的坐标为)2
1,21(-。
例4、已知椭圆125
752
2=+x y ,求它的斜率为3的弦中点的轨迹方程。
解:设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(y x M ,则
x x x 221=+, y y y 221=+ 又 125752121=+x y ,125
752222=+x y 两式相减得0))((75))((2521212121=-++-+x x x x y y y y
即0)(3)(2121=-+-x x x y y y ,即y
x x x y y 32121
-=-- Θ 32121=--=x x y y k ∴33=-y
x ,即0=+y x 由⎪⎩⎪⎨⎧=+=+125
7502
2x y y x ,得)235,235(-P )235,235(-Q Θ点M 在椭圆内
∴它的斜率为3的弦中点的轨迹方程为)2
35235(0<<-=+x y x 三、 求与中点弦有关的圆锥曲线的方程
例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为
2
1,求椭圆的方程。
解:设椭圆的方程为122
22=+b
x a y ,则5022=-b a ┅┅① 设弦端点),(11y x P 、),(22y x Q ,弦PQ 的中点),(00y x M ,则
210=x ,2
12300-=-=x y ∴12021==+x x x ,12021-==+y y y 又1221221=+b x a y ,1222222=+b
x a y 两式相减得0))(())((2121221212=-++-+x x x x a y y y y b
即0)()(212
212=-+--x x a y y b
∴ 2
2
2121b a x x y y =-- ∴ 322=b a ┅┅② 联立①②解得752=a ,252
=b ∴所求椭圆的方程是125
752
2=+x y 四、圆锥曲线上两点关于某直线对称问题
例6、已知椭圆13
42
2=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。
解:设),(111y x P ,),(222y x P 为椭圆上关于直线m x y +=4的对称两点,),(y x P 为弦21P P 的中点,
则12432121=+y x ,12432
222=+y x
两式相减得,0)(4)(322212221=-+-y y x x
即0))((4))((321212121=-++-+y y y y x x x x Θx x x 221=+,y y y 221=+,4
12121-=--x x y y ∴x y 3= 这就是弦21P P 中点P 轨迹方程。
它与直线m x y +=4的交点必须在椭圆内
联立⎩⎨⎧+==m x y x y 43,得⎩⎨⎧-=-=m
y m x 3 则必须满足22433x y -<, 即224
33)3(m m -<,解得1313213132<<-m 五、注意的问题
(1)双曲线的中点弦存在性问题;(2)弦中点的轨迹应在曲线内。
利用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴趣。