高中数学必修1 第二章 方程与不等式微专题1

合集下载

高中数学第二章 一元二次函数、方程和不等式之 等式与不等式的性质(精讲)(必修第一册)

高中数学第二章 一元二次函数、方程和不等式之 等式与不等式的性质(精讲)(必修第一册)

2.1 等式与不等式的性质思维导图考点一 等式性质 【例1】(2019·全国高一课时练习)下列变形中错误的是( ) A .若x y =,则55x y +=+ B .若x ya a=,则x y = C .若33x y -=-,则x y = D .若x y =,则x ym m=【答案】D【解析】根据等式的性质易知A ,B ,C 正确;对于D ,当0m =时,x y =两边都除以m 无意义,故本选项错误.故选:D. 【举一反三】1.(2019·全国高一课时练习)根据等式的性质判断下列变形正确的是( ) A .如果23x =,那么23x a a= B .如果x y =,那么55x y -=- C .如果162x =,那么3x = D .如果x y =,那么22x y -=-【答案】D【解析】对于A ,没有0a ≠的条件,等式的两边不能都除以a ,故选项A 不正确;对于B ,等式的左边减去5,等式的右边乘以1-后加上5,等式不成立,故选项B 不正确;对于C ,等式的左边乘以2,等式的右常见考法边除以2,等式不成立,故选项C 不正确;对于D ,等式的两边都乘以2-,等式成立,故选项D 正确.故选:D. 2.(2019·全国高一课时练习)若a b =,则下列变形正确的是( ) A .33a b =+ B .22a b-=- C .55a b -=+ D .0a b +=【答案】B【解析】对于A ,根据等式的性质,得33a b =,故该选项错误;对于B ,根据等式的性质,得-22a b=-,故该选项正确;对于C ,根据等式的性质,得55a b +=+或55a b -=-,故该选项错误;对于D ,根据等式的性质,得0a b -=,故该选项错误.故选:B.考点二 不等式性质【例2】(2020·河北省曲阳县第一高级中学高一期末)对于任意实数a ,b ,c ,则下列四个命题: ①若a b >,0c ≠,则ac bc >; ②若a b >,则22ac bc >; ③若22ac bc >,则a b >;④若a b >,则11a b<.其中正确命题的个数为( ) A .3 B .2C .1D .0【答案】C【解析】a b >时,若0c <,则ac bc <,①错误; 若0c,则22ac bc =,②错误;若22ac bc >,则20c >,∴a b >,③正确; a b >,若0a b >>,仍然有11a b>,④错误. 正确的只有1个.故选:C .【举一反三】1.(2020·上海高一开学考试)下列命题正确的是( )本题考查不等式正误的判断,常用的判断方法有:不等式的基本性质、特殊值法以及比较法A .若>a b ,则11a b< B .若>a b ,则22a b > C .若>a b ,c d <,则>a c b d -- D .若>a b ,>c d ,则>ac bd【答案】C【解析】A.若>a b ,则11a b<,取1,1a b ==- 不成立 B.若>a b ,则22a b >,取0,1a b ==- 不成立 C. 若>a b ,c d <,则>a c b d --,正确D. 若>a b ,>c d ,则>ac bd ,取1,1,1,2a b c d ==-==- 不成立故答案选C 2.(2020·全国高一开学考试)若a 、b 、c 为实数,则下列命题正确的是( ) A .若a b >,则22ac bc > B .若0a b <<,则22a ab b >> C .若0a b <<,则11a b < D .若0a b <<,则b a a b> 【答案】B【解析】对于A 选项,若0c ,则22ac bc =,故A 不成立;对于B 选项,0a b <<,在不等式a b <同时乘以()0a a <,得2a ab >,另一方面在不等式a b <两边同时乘以b ,得2ab b >,22a ab b ∴>>,故B 成立;对于选项C ,在a b <两边同时除以()0ab ab >,可得11b a<,所以C 不成立; 对于选项D ,令2a =-,1b =-,则有221a b -==-,12b a =,b aa b <,所以D 不成立. 故选B.3.(2020·武汉外国语学校高一月考)下列结论正确的是( ) A .若a b >,则11b a> B .若22a b <,则a b < C .若a b >,c d >则a d b c ->- D .若a b >,则22ac bc >【答案】C【解析】对于A ,取1,1a b ==-时,11b a<,则A 错误; 对于B ,取0,1a b ==-时,a b >,则B 错误;对于C ,因为,a b d c >->-,所以由不等式的性质可知a d b c ->-,则C 正确; 对于D ,取0c时,22ac bc =,则D 错误;故选:C考点三 比较大小【例3】(2020·全国高一课时练习)已知a ,b 均为正实数,试利用作差法比较33+a b 与22a b ab +的大小. 【答案】3322a b a b ab +≥+ 【解析】∵()()()33223232a b a b abaa b b ab +-+=-+-()22222()()()()()a a b b b a a b a b a b a b =-+-=--=-+.又a ,b 均为正实数,当a b =时,33220,a b a b a b ab -=+=+; 当ab 时,2()0,0a b a b ->+>,则3322a b a b ab +>+. 综上所述,3322a b a b ab +≥+.【举一反三】1.(2020·全国高一课时练习)已知,那么,,,a b a b --的大小关系是( ) A .a b b a >>->- B .a b a b >->-> C .a b b a >->>- D .a b a b >>->-【答案】C 【解析】由,则0a b >->,所以a b -<,所以a b b a >->>-,故选C.一.作差法、作商法是比较两个实数(或代数式)大小的基本方法. ①作差法的步骤:作差、变形、判断差的符号、得出结论.②作商法的步骤:作商、变形、判断商与1的大小、得出结论. 二.介值比较法也是比较大小的常用方法,其实质是不等式的传递性:若a >b ,b >c ,则a >c ;若a <b ,b <c ,那么a <c .其中b 是介于a 与c 之间的值, 此种方法的关键是通过恰当的放缩,找出一个比较合适的中介值.三.比较大小时应注意:(1)比较代数式的大小通常采用作差法,如果含有根式,也可以先平方再作差,但此时一定要保证代数式大于零;(2)作差时应该对差式进行恒等变形(如配方、因式分解、有理化、通分等),直到能明显看出其正负号为止;2.(2020·浙江高一课时练习)设2,73,62a b c ==-=-,则,,a b c 的大小关系为( ).A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】B 【解析】47373b =-=+,46262c =-=+,7362+>+,447362∴<++,b c ∴<.又226860a c -=-=->,故a c >.综上可得:a c b >>.故选:B .考点四 代数式的取值范围【例4】(1)(2019·广东高考模拟(理))已知11x y -≤+≤,13x y ≤-≤,则182yx⎛⎫⋅ ⎪⎝⎭的取值范围是( )A .82,2⎡⎤⎣⎦B .81,22⎡⎤⎢⎥⎣⎦C .72,2⎡⎤⎣⎦D .71,22⎡⎤⎢⎥⎣⎦(2)(2019·浙江绍兴一中高一月考)已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( ) A .[7,26]- B .[1,20]- C .[4,15] D .[1,15]【答案】(1)C(2)B【解析】(1)令()()()()3x y s x y t x y s t x s t y -=++-=++-则31s t s t +=⎧⎨-=-⎩,∴12s t =⎧⎨=⎩,又11x y -≤+≤,…∴①13x y ≤-≤,∴()226x y ≤-≤…②∴①+②得137x y ≤-≤.则371822,22yxx y -⎛⎫⎡⎤⋅=∈ ⎪⎣⎦⎝⎭.故选C .(2)令m x y =-,4n x y =-,,343n m x n m y -⎧=⎪⎪⇒⎨-⎪=⎪⎩,则855520941,33333z x y n m m m =-=--≤≤-∴≤-≤ 又884015333n n -≤≤∴-≤≤,因此80315923z x y n m -=-=-≤≤,故本题选B.【举一反三】1.(2020·安徽金安.六安一中高一期中(文))已知二次函数()y f x =的图象过原点,且1(1)2,3(1)4f f ≤-≤≤≤,则(3)f 的取值范围为( )A .[6,10]B .[21,30]C .3963,22⎡⎤⎢⎥⎣⎦D .[4,12]【答案】B 【解析】二次函数()y f x =的图像过原点,设二次函数为:2()f x ax bx =+, 1(1)2f -≤-≤,3(1)4f ≤≤,∴ 12a b ≤-≤……①,34a b ≤+≤……②,则3①+6②得:219330a b ≤+≤即21(3)30f ≤≤,故选:B.2.(2020·山东济宁.高一月考)若25,310<<<<a b ,则2a b -的范围为_______________ 【答案】()18,1--【解析】依题意可知2026b -<-<-,由于25a <<,由不等式的性质可知1821a b -<-<-.故填:()18,1--.3.(2019·全国高一课时练习)已知26x y -=,34x y -=,则2256x xy y -+的值为____________.代数式的取值范围的一般思路:(1)借助性质,转化为同向不等式相加进行解答; (2)借助所给条件整体使用,切不可随意拆分所给条件; (3)结合不等式的传递性进行求解【答案】24【解析】由题得2256(2)(3)=6424x xy y x y x y -+=--⨯=.故答案为:2考点五 不等式证明【例5】(2020·全国高一课时练习)已知0a b >>,0c <,求证:c c a b>. 【答案】证明见解析. 【解析】()---==c b a c c bc ac a b ab ab, 因为0a b >>,0c <,所以0b a -<,()0->c b a ,0ab >故()0->c b a ab,即证:c ca b>. 【举一反三】1.(2020·全国高一课时练习)证明不等式22222a b a b ++⎛⎫≤⎪⎝⎭(,a b ∈R ). 【答案】证明见解析.【解析】证明:因为222a b ab +≥, 所以22222()2a b a b ab +≥++, 所以()()2222a ba b +≥+两边同除以4,即得22222a b a b ++⎛⎫≤⎪⎝⎭,当且仅当a b =时,取等号. 2.(2020·全国高一课时练习)如果0a b >>,0c d >>,证明:ac bd >. 【答案】证明见解析.【解析】证明:由0a b >>,0c >,则0ac bc >>, 又0c d >>,0b >,则bc bd >,又ac bc >,故ac bd >. 3.(2020·全国高一)已知0a b c d >>>>,ad bc =. (Ⅰ)证明:a d b c +>+; (Ⅰ)证明:a b c b c a a b c a b c >. 【答案】(Ⅰ)见解析;(Ⅰ)见解析【解析】(Ⅰ)由a >b >c >d >0得a -d >b -c >0,即(a -d )2>(b -c )2,由ad =bc 得(a -d )2+4ad >(b -c )2+4bc ,即(a +d )2>(b +c )2,故a +d >b +c .(Ⅰ)a b ca b b c c a b c a a b c a b c a b c---=⋅⋅()()a b b c a b b c --=⋅.因为0a b >>,所以1,0a a b b >->,故()1a b ab ->.同理,()1bc b c->.从而()()1a bb c abbc--⋅>.即a b c b c a a b c a b c >。

高中数学必修一第二章一元二次函数方程和不等式精品课件

高中数学必修一第二章一元二次函数方程和不等式精品课件

二、填空题(每小题 5 分,共 15 分) 8.给出下列结论: ①若 ac>bc,则 a>b; ②若 a<b,则 ac2<bc2; ③若1a<1b<0,则 a>b; ④若 a>b,c>d,则 a-c>b-d; ⑤若 a>b,c>d,则 ac>bd. 其中正确结论的序号是___③_____.
解析 ①当 c>0 时,由 ac>bc 可得 a>b,当 c<0 时,由 ac>bc 可得 a<b,故 ①错;
4.已知 a,b,c 为不全相等的实数,P=a2+b2+c2+3,Q=2(a+b+c),
那么 P 与 Q 的大小关系是( A )
A.P>Q
B.P≥Q
C.P<Q
D.P≤Q
解析 ∵P-Q=a2+b2+c2+3-2(a+b+c)=(a-1)2+(b-1)2+(c-1)2,且 a,b,c 不全相等,∴P-Q>0,∴P>Q.
12.(10
分)已知
a,b
为正实数,试比较
a+ b
b与 a
a+
b的大小. a
)

(
a+
b)=(
a- b
b)+(
b- a
a
)

a-b b

b-a a

(a-b)( a- ab
b)=(
a-
b)2( ab
a+
b) .
∵a,b 为正实数,
∴ a+ b>0, ab>0,( a- b)2≥0,
A类
1 2
7.5
B类
1 3
6
今制定计划欲使总产值最高,则 A 类产品应开发___2_0____件,最高产值为

人教版高中数学必修一第二章一元二次函数方程和不等式全套PPT课件

人教版高中数学必修一第二章一元二次函数方程和不等式全套PPT课件
[解析] , ,又 , ,即 .又 , ,即 .故 , .
【变式探究】
已知 且 ,求 的取值范围.
[解析] 令 , ,则 , .由 解得 ,又 , , , .
方法总结 不等式具有可加性(需同向)与可乘性(需同正),但不能相减或相除,应用时要充分利用所给条件进行适当变形来求范围,注意等价变形.
方法总结 应用基本不等式时,注意下列常见变形中等号成立的条件:
第二章 一元二次函数、方程和不等式
2.1 等式性质与不等式性质
学习目标
1.会用不等式(组)表示实际问题中的不等关系.(数学建模)
2.会运用作差法比较两个数或式子的大小.(数学运算)
3.梳理等式的性质,掌握不等式的性质,会用不等式的性质证明不等式或解决范围问题.(逻辑推理)
自主预习·悟新知
合作探究·提素养
(2)已知 , .求证: .

[解析] (1)对于①,若 , , , ,则 ,①错误;对于②,对于正数 , , ,若 ,则 ,所以 ,所以 ,又 ,所以 ,②正确.综上,正确结论的序号是②.(2)因为 ,所以 .所以 .又因为 ,所以 .所以 ,即 ,所以 .
探究2 重要不等式
设 , ,记 , , 分别为 , 的算术平均数、几何平均数、调和平均数.古希腊数学家帕波斯于公元4世纪在其名著《数学汇编》中研究过 时, , , 的大小关系.
问题1:.你能探究 , , 的大小关系吗?
[答案] 能,因为 , , ,所以 ,即 ; ,即 .所以 .所以 , , 中最大的为 ,最小的为 .
问题1:.小明的说法正确吗?用什么性质判断小明的说法是否正确?
[答案] 不正确,用等式的性质.当 时, 一定成立,反过来,当 时,不能推出 ,如当 时, 成立, 不成立.故“ 是 成立的充要条件”是错误的.

必修一第二章-一元二次函数、方程和不等式全章讲解训练-(含答案)

必修一第二章-一元二次函数、方程和不等式全章讲解训练-(含答案)

第二章 一元二次函数、方程和不等式全章复习讲解 (含答案)【要点梳理】(不等式性质、解一元二次不等式、基本不等式) 一、不等式1.定义 不等式:用不等号(>,<,≥,≤,≠)表示不等关系的式子.2..不等式的性质不等式的性质可分为基本性质和运算性质两部分 基本性质有:性质1 对称性:a b b a >⇔<; 性质2 传递性:,a b b c a c >>⇒>;性质3 加法法则(同向不等式可加性):()a b a c b c c R >⇔+>+∈;;性质4 乘法法则:若a b >,则000c ac bc c ac bc c ac bc ,,.>⇒>⎧⎪=⇒=⎨⎪<⇒<⎩补充:除法法则:若a b >且0c =,则00a bc c ca b c c c⎧>⇒>⎪⎪⎨⎪<⇒<⎪⎩., 性质5 可加法则:,a b c d a c b d >>⇒+>+; 性质6 可乘法则:0,00a b c d a c b d >>>>⇒⋅>⋅>; 性质7 可乘方性:()*00n n a b n a b N >>∈⇒>>;可开方性:()01a b n n N 且+>>∈>⇒要点诠释:不等式的性质是不等式同解变形的依据. 二、比较两代数式大小的方法 作差法:1. 任意两个代数式a 、b ,可以作差a b -后比较a b -与0的关系,进一步比较a 与b 的大小.*①0a b a b ->⇔>; ②0a b a b -<⇔<; ③0a b a b -=⇔=. 作商法:任意两个值为正的代数式a 、b ,可以作商a b ÷后比较ab与1的关系,进一步比较a 与b 的大小. ①1a a b b >⇔>; ②1a a b b <⇔<; ③1aa bb =⇔=. 要点诠释:若代数式a 、b 都为负数,也可以用作商法. 中间量法:若两个代数式a 、b 不容易直接判断大小,可引入第三个量c 分别与a 、b 作比较,若满足a b >且b c >,则a c >. 第三个量就是中间量. 这种方法就是中间量法,其实质是不等式的传递性.一般选择0或1为中间量.三、一元二次不等式与相应函数、方程之间的联系设()2f x ax bx c =++(0)a >,判别式24b ac ∆=-,按照0∆>,0∆=,0∆<该函数图象(抛物线)与x 轴的位置关系也分为三种情况,相应方程的解与不等式的解集形式也不尽相同. 如下表所示:】24b ac ∆=-0∆>0∆=0∆<函数()y f x = 的图象方程()=0f x#的解有两相异实根 1212,()x x x x <有两相等实根 122b x x a==-无实根不等式()0f x >的解集 {}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭*R不等式()0f x <的解集{}12x xx x <<∅ ∅要点诠释:(1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线y =2ax bx c ++与x 轴的交点的横坐标;(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;(3)解集分0,0,0∆>∆=∆<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集.…四、解一元二次不等式1. 解一元二次不等式()2ax +bx+c a ≠>00的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程20ax bx c ++=(0)a >,计算判别式∆:①0∆>时,求出两根12x x 、,且12x x <(注意灵活运用因式分解和配方法);②0∆=时,求根122b x x a==-; ③0∆<时,方程无解 (3)根据不等式,写出解集. 五、基本不等式1.对公式222a b ab +≥及2a b+≥. `(1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数; (2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”. 2.由公式222a b ab +≥和2a b+≥ ①2b aa b +≥(,a b 同号); ②2b aa b+≤-(,a b 异号);③20,0)112a b a b a b+≤≤>>+或222()(0,0)22a b a b ab a b ++≤≤>> 要点诠释: 222a b ab +≥可以变形为:222a b ab +≤,2a b +≥可以变形为:2()2a b ab +≤.2a b+≤求最大(小)值 在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等. ① 一正:函数的解析式中,各项均为正数;-② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③ 三取等:函数的解析式中,含变数的各项均相等,取得最值. 要点诠释:1.基本不等式的功能在于“和积互化”.若所证不等式可整理成一边是和,另一边是积的形式,则考虑使用平均不等式;若对于所给的“和式”中的各项的“积”为定值,则“和”有最小值,对于给出的“积式”中的各项的“和”为定值,则“积”有最大值.2.利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③各项能取得相等的值.…【典型例题】类型一 不等式性质例1.对于实数a b c ,,判断以下说法的对错.(1)若a b >,则ac bc <; (2)若22ac bc >,则a b >; (3)若0a b <<, 则22a ab b >>; (4)若0a b <<, 则a b >; (5)若a b >,1a >1b, 则00a b ,><. ~举一反三:【变式1】如果a <b <0,那么下列不等式成立的是( ) A .B .a+c <b+cC .a ﹣c >b ﹣cD .a •c <b •c例2、比较下列两代数式的大小:(1)(5)(9)x x ++与2(7)x +;举一反三:—【变式1】比较22x x +与2x +的大小【变式2】已知0a b >>,则2222a b a b -+ _________a ba b-+ (填,,><=)类型二 解二次不等式例3. 解下列一元二次不等式(1)250x x -<; (2)2440x x -+>; (3)2450x x -+->:举一反三:【变式1】已知函数222,0,()2,0x x x f x x x x ⎧+≥⎪=⎨-+<⎪⎩解不等式f (x )>3.;【变式2】 不等式组⎩⎪⎨⎪⎧x 2-1<0x 2-3x <0的解集为( )A .{x |-1<x <1}B .{x |0<x <3}C .{x |0<x <1}D .{x |-1<x <3} 【变式3】下列选项中,使不等式x <1x<x 2成立的x 的取值范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)例4. 不等式20x mx n +-<的解集为(4,5)x ∈,求关于x 的不等式210nx mx +->的解集./【总结升华】二次方程的根是二次函数的零点,也是相应的不等式的解集的端点.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系,这一点是解此类题的关键. 举一反三:【变式1】不等式ax 2+bx+12>0的解集为{x|-3<x<2},则a=_______, b=________.【变式2】已知关于x 的不等式20x ax b ++<的解集为(1,2),求x 的不等式210bx ax ++>的解集."【变式3】 若关于x 的不等式2260ax x a -+<的解集为(1,)m ,则实数m 等于 . 【变式4】 已知关于x 的不等式x 2+bx +c >0的解集为{x |x <-1或x >2},则b 2+c 2=( )A .5B .4C .1D .2例5.已知不等式ax 2+4x +a >1-2x 2对一切实数x 恒成立,求实数a 的取值范围.【思路点拨】不等式对一切实数恒成立,即不等式的解集为R ,要解决这个问题还需要讨论二次项的系数。

全国通用2023高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳

全国通用2023高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳

全国通用2023高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳单选题1、已知关于x 的不等式mx 2−6x +3m <0在(0,2]上有解,则实数m 的取值范围是( )A .(−∞,√3)B .(−∞,127)C .(√3,+∞)D .(127,+∞)答案:A分析:分离参数,将问题转换为m <6x x 2+3在(0,2]上有解,设函数g(x)=6x x 2+3,x ∈(0,2],求出函数g(x)=6xx 2+3的最大值,即可求得答案.由题意得,mx 2−6x +3m <0,x ∈(0,2],即m <6x x 2+3 ,故问题转化为m <6x x 2+3在(0,2]上有解,设g(x)=6x x 2+3,则g(x)=6x x 2+3=6x+3x ,x ∈(0,2], 对于x +3x≥2√3 ,当且仅当x =√3∈(0,2]时取等号, 则g(x)max =2√3=√3, 故m <√3 ,故选:A2、已知a,b 为正实数且a +b =2,则b a +2b 的最小值为( )A .32B .√2+1C .52D .3 答案:D分析:由题知b a +2b =2(1a +1b )−1,再结合基本不等式求解即可.解:因为a,b 为正实数且a +b =2,所以b =2−a ,所以,b a +2b =2−a a +2b =2a +2b −1=2(1a +1b )−1 因为2a +2b =2(1a +1b )=(a +b )(1a +1b )=2+b a +a b ≥2+2=4,当且仅当a =b =1时等号成立;所以ba +2b=2−aa+2b=2a+2b−1≥3,当且仅当a=b=1时等号成立;故选:D3、下列命题中,是真命题的是()A.如果a>b,那么ac>bc B.如果a>b,那么ac2>bc2C.如果a>b,那么ac >bcD.如果a>b,c<d,那么a−c>b−d答案:D分析:根据不等式的性质和特殊值法,逐项验证可得出答案. 对于A,如果c=0,那么ac=bc,故错误;对于B,如果c=0,那么ac2=bc2,故错误;对于C,如果c<0,那么ac <bc,故错误;对于D,如果c<d,那么−c>−d,由a>b,则a−c>b−d,故正确.故选:D.4、当0<x<2时,x(2−x)的最大值为()A.0B.1C.2D.4答案:B分析:利用基本不等式直接求解.∵0<x<2,∴2−x>0,又x+(2−x)=2∴x(2−x)≤[x+(2−x)]24=1,当且仅当x=2−x,即x=1时等号成立,所以x(2−x)的最大值为1故选:B5、若不等式ax2+bx−2<0的解集为{x|−2<x<1},则a+b=()A.−2B.0C.1D.2答案:D分析:根据一元二次不等式与一元二次方程的关系以及韦达定理列方程组,可解出答案.不等式ax2+bx−2<0的解集为{x|−2<x<1},则方程ax2+bx−2=0根为−2、1,则{−b a =−2+1−2a =−2×1 ,解得a =1,b =1,∴a +b =2, 故选:D6、已知x >0,则下列说法正确的是( )A .x +1x −2有最大值0B .x +1x −2有最小值为0C .x +1x −2有最大值为-4D .x +1x −2有最小值为-4 答案:B分析:由均值不等式可得x +1x ≥2√x ×1x =2,分析即得解由题意,x >0,由均值不等式x +1x ≥2√x ×1x =2,当且仅当x =1x ,即x =1时等号成立故x +1x −2≥0,有最小值0 故选:B7、对∀x ∈R ,不等式(a −2)x 2+2(a −2)x −4<0恒成立,则a 的取值范围是( )A .−2<a ≤2B .−2≤a ≤2C .a <−2或a ≥2D .a ≤−2或a ≥2答案:A分析:对a 讨论,结合二次函数的图象与性质,解不等式即可得到a 的取值范围.不等式(a −2)x 2+2(a −2)x −4<0对一切x ∈R 恒成立,当a −2=0,即a =2时,−4<0恒成立,满足题意;当a −2≠0时,要使不等式恒成立,需{a −2<0Δ<0,即有{a <24(a −2)2+16(a −2)<0 , 解得−2<a <2.综上可得,a 的取值范围为(−2,2].故选:A.8、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位(x+600x−30)元(试剂的总产量为x单位,50≤x≤200),则要使生产每单位试剂的成本最低,试剂总产量应为()A.60单位B.70单位C.80单位D.90单位答案:D分析:设生产每单位试剂的成本为y,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y,然后利用基本不等式求解最值即可.解:设每生产单位试剂的成本为y,因为试剂总产量为x单位,则由题意可知,原料总费用为50x元,职工的工资总额为7500+20x元,后续保养总费用为x(x+600x−30)元,则y=50x+7500+20x+x 2−30x+600x =x+8100x+40≥2√x⋅8100x+40=220,当且仅当x=8100x,即x=90时取等号,满足50≤x≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.故选:D.9、若x<0,则x+14x−2有()A.最小值−1B.最小值−3C.最大值−1D.最大值−3答案:D分析:根据基本不等式,首先取相反数,再尝试取等号,可得答案.因为x<0,所以x+14x −2=−(−x+1−4x)−2≤−2√−x⋅1−4x−2=−3,当且仅当−x=1−4x,即x=−12时等号成立,故x+14x−2有最大值−3.故选:D.10、某公司准备对一项目进行投资,提出两个投资方案:方案A为一次性投资300万;方案B为第一年投资80万,以后每年投资20万.下列不等式表示“经过n年之后,方案B的投入不大于方案A的投入”的是()A.80+20n≥300B.80+20n≤300C.80+20(n−1)≥300D.80+20(n−1)≤300分析:由不等关系求解即可.经过n年之后,方案B的投入为80+20(n−1),故经过n年之后,方案B的投入不大于方案A的投入,即80+ 20(n−1)≤300故选:D填空题11、已知−1<x+y<4,2<x−y<4,则3x+2y的取值范围是_____.答案:(−32,12)解析:利用换元法,结合不等式的性质进行求解即可.设x+y=m,x−y=n,因此得:x=m+n2,y=m−n2,−1<m<4,2<n<4,3x+2y=3⋅m+n2+2⋅m−n2=5m2+n2,因为−1<m<4,2<n<4,所以−52<5m2<10,1<n2<2,因此−32<5m2+n2<12,所以−32<3x+2y<12.所以答案是:(−32,12)12、已知x,y为正数,且12+x +4y=1,则x+y的最小值为________.答案:7解析:由题设等式有x+y+2=5+y2+x +4(x+2)y,利用基本不等式可求x+y+2的最小值,从而可得x+y的最小值.x+y+2=[(x+2)+y]×(1x+2+4y)=5+y2+x+4(x+2)y,由基本不等式有y2+x +4(x+2)y≥4,当且仅当x=1,y=6时等号成立,故x+y+2的最小值为9即x+y的最小值为7.所以答案是:7.小提示:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.13、已知不等式x2+ax+b≥0的解集为{x|x≤2或x≥3},则a+b=_____.分析:根据不等式的解集可得方程x 2+ax +b =0的两根为x =2或x =3,最后利用根与系数的关系建立等式,解之即可.∵不等式x 2+ax +b ≥0解集为{x |x ≤2或x ≥3}, 故方程x 2+ax +b =0的两根为x =2或x =3,由根与系数的关系可得{−a =5b =6 ,∴{a =−5b =6,∴a +b =1. 所以答案是:1.解答题14、求实数m 的范围,使关于x 的方程x 2+2(m −1) x +2m +6=0.(1)有两个实根,且一个比2大,一个比2小;(2)有两个实根α , β,且满足0<α<1<β<4;(3)至少有一个正根.答案:(1)m <−1(2)−75<m <−54(3)m ≤−1分析:设y =f (x )=x 2+2(m −1)x +2m +6,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定.(1)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有f (2)<0,即4+4(m −1)+2m +6<0,得m <−1.(2)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有{f (0)=2m +6>0f (1)=4m +5<0f (4)=10m +14>0,解得−75<m <−54.(3)设y =f (x )=x 2+2(m −1)x +2m +6.方程至少有一个正根,则有三种可能:①有两个正根,此时可得{Δ≥0 f(0)>02(m−1)−2>0,即{m≤−1或m≥5m>−3m<1.∴−3<m≤−1.②有一个正根,一个负根,此时可得f(0)<0,得m<−3.③有一个正根,另一根为0,此时可得{6+2m=02(m−1)<0,∴m=−3.综上所述,得m≤−1.15、已知实数x>0,y>0.(1)若x+y+xy=3,求2xy的最大值与x+y的最小值;(2)若x>y,求xy 2x−y +xy+1y2的最小值.答案:(1)最小值为2;(2)最小值为4.分析:(1)由已知结合基本不等式x+y⩾2√xy,及不等式的性质即可求解;(2)先进行换元t=x−y,t>0,然后把x=t+y代入所求式子,进行合理的变形后结合基本不等式可求.解:(1)因为x+y≥2√xy,又因为x+y+xy=3,所以xy+2√xy≤3,解得−3≤√xy≤1,因为0<√xy,所以0<√xy≤1,所以0<xy≤1,所以2xy≤2,当且仅当x=y=1时等号成立,所以2xy最大值为2;因为xy≤(x+y2)2,所以(x+y2)2+(x+y)≥3,当且仅当x=y=1时等号成立,所以x+y≥2,所以x+y最小值为2;(2)xy 2x−y +xy+1y2=x2yx−y+1y2,令t=x−y,t>0,所以x=t+y,x2y x−y +1y2=(t+y)2yt+1y2=ty+y3t+2y2+1y2≥2√ty⋅y3t+2y2+1y2=4y2+1y2≥2√4y2⋅1y2=4;当且仅当ty=y 3t ,且4y2=1y2,即x=√2,y=√22时等号成立,所以xy 2x−y +xy+1y2最小值为4.。

高中数学新人教A版必修第一册 微专题1基本不等式的应用技巧 课件(16张)

高中数学新人教A版必修第一册  微专题1基本不等式的应用技巧 课件(16张)
第二章 一元二次函数、方程 和不等式
微专题1 根本不等式的应用技巧
在运用基本不等式求代数式的最值时,常常会用凑项、拆项、常 值的代换、消元代换、取平方等技巧,无论运用哪种方式,必须把握 三个条件:
(1)“一正”——各项为正数; (2)“二定”——“和”或“积”为定值; (3)“三相等”——等号一定能取到.
类型 4 消元代换 【例 4】 (1)已知 a>0,b>0,且 2a+b=ab-1,求 a+2b 的最小 值; (2)若实数 x,y 满足 xy+3x=30<x<12,求3x+y-1 3的最小值.
[解] (1)由 2a+b=ab-1 得 a=1+b-3 2>0,解得 b>2.所以 a+2b =5+b-3 2+2b-2≥5+2 b-3 2·2b-2=5+2 6,当且仅当b-3 2= 2b-2,即 b=2+ 26时等号成立.所以 a+2b 的最小值是 5+2 6.
2,当且仅
当 2a2=b2+1,即 a=b=1 时取“=”,故 a b2+1的最大值为 2.
类型 2 拆项
【例 2】 已知 x≥25,则x2-2x4-x+4 5有(
)
A.最大值45
B.最小值54
C.最大值 1
D.最小值 1
D [法一:∵x≥52,∴x-2>0,则x2-2x4-x+4 5=12x-2+x-1 2≥21 ×2 x-2·x-1 2=1,等号在 x-2=x-1 2,即 x=3 时取得.
(2)∵实数 x,y 满足 xy+3x=30<x<12, ∴x=y+3 3,∴0<y+3 3<21,解得 y>3. 则3x+y-1 3=y+3+y-1 3=y-3+y-1 3+6
≥2 y-3·y-1 3+6=8, 当且仅当 y=4,x=37时,等号成立. 所以3x+y-1 3的最小值为 8.

数学人教A版必修第一册2.1等式性质与不等式性质课件

数学人教A版必修第一册2.1等式性质与不等式性质课件
样用不等式表示销售的总收入仍不低于20万元?
x-2.5
[解析] 提价后杂志的定价为 x 元,则销售的总收入为(8- 0.1 ×0.2)x 万元,
那么不等关系“销售的收入不低于 20 万元”用不等式可以表示为:
x-2.5
(8- 0.1 ×0.2)x≥20.
练一练
1.某工厂在招标会上,购得甲材料x t,乙材料y t,若维
0是相等与不等的分界
定号
定论
小提供了标杆.
练一练
2. 已知,均为正数,且 ≠ ,比较3 + 3与2 + 2的大小
【解】运用作差法:
3 + 3 − 2 + 2
= 3 − 2 + 3 − 2
= 2( − ) + 2( − )
= − 2 − 2
= −
2
+ .
∵ ≠ ∴ −
2
>0
又 ∵ + > 0, ∴ 3 + 3 > 2 + 2.
综上所述, 3 + 3 ≥ 2 + 2.
练一练
3.已知x<y<0,比较(x2+y2)(x-y)与
(x2-y2)(x+y)的大小.
[解析]
∵x<y<0,xy>0,x-y<0,
解析:各边都缩短 x 后,长度仍然为正数,只要最短边大于零即可,因此 5-x>0.而要构成三角形,
还要满足(5-x)+(12-x)>13-x.当三角形是钝角三角形时,应使最大角是钝角,此时只需最长边所
对的角是钝角即可,因此(5-x)2+(12-x)2<(13-x)2,
5- > 0,
故 x 应满足的不等关系为 (5-) + (12-) > 13-,

高中数学必修第一册人教A版第2章一元二次函数、方程和不等式课件

高中数学必修第一册人教A版第2章一元二次函数、方程和不等式课件
(1) 2 − 5 + 6 > 0
(2)9 2 − 6 + 1 > 0
(3)− 2 + 2 − 3 > 0
答案:(1) | < , 或 >

(2) | ≠

(3)∅
【变式训练3】
2.已知常数a∈R,解关于x的不等式ax2-2x+a<0.
解:(1)若a=0,则原不等式为-2x<0,故解集为{x|x>0}.
水生产的摩托车数量x(单位:辆)与创造的价值y(单位:元)之间
有如下的关系:
= −2 2 + 220.
若这家工厂希望在一个星期内利用这条流水线创收6000元以上,则在
一个星期内大约应该生产多少辆摩托车?
解 :设这家工厂在一个星期内大约应该利用这条流水线生产x辆摩托
车,根据题意,得
−2 2 + 220 > 6000.
数a的取值范围.
解法一∵1<x<4,
2-2
.
2
∴不等式 ax2-2x+2>0 可转化为 a>
2-2
1 1 2 1
1
+
.


2
2
2
2
1
1
1
1
1
1
<1,
,
x=2
,
,
a>
,即实数
∵4 < ∴当 = 2 即
时 函数取得最大值 ∴
2
2
1
的取值范围为 ,+∞ .
2
令 y=
=-2
a
1

解法二依据 a 的取值进行分类讨论:

2019新人教版高中数学必修第一册第二章一元二次函数方程和不等式知识点和题型总结

2019新人教版高中数学必修第一册第二章一元二次函数方程和不等式知识点和题型总结

第2章一元二次函数、方程和不等式2.1 等式和不等式性质课程标准:1.梳理等式的性质,理解不等式的概念,掌握不等式的性质,能运用不等式的性质比较大小.2.能运用不等式的性质证明不等式和解决简单的实际问题.教学重点:1.不等式的性质.2.用不等式的性质证明不等式.教学难点:用作差法比较代数式的大小.【知识导学】知识点一等式的性质(1)如果a=b,那么a+c=b+c.(2)如果a=b,那么ac=bc或ac=bc(c≠0).(3)如果a=b,b=c,那么a=c.知识点二作差比较法(1)□01a-b>0⇔a>b;□02a-b=0⇔a=b;□03a-b<0⇔a<b.(2)方法步骤:□04作差;②□05整理;③□06判断符号;④□07下结论.知识点三两个实数大小的比较(1)a>b□01a-b>0;(2)a=b⇔a-□02=0;(3)□03a<b⇔a-b<0.知识点四不等式的性质(1)如果a>b,那么b<a;如果b<a,那么□01a>b,即□02a>b⇔b<a.(2)如果a>b,且b>c,那么□03a>c,即a>b,b>c⇒□04a>c.(3)如果a>b,那么a+c□05>b+c.(4)如果a>b,c>0,那么ac□06>bc;如果a>b,c<0,那么ac□07<bc.(5)如果a>b,c>d,那么a+c□08>b+d.(6)如果a>b>0,c>d>0,那么ac□09>bd;如果a>b>0,c<d<0,那么ac□10<bd.(7)如果a>b>0,那么a n□11>b n(n∈N,n≥2).(8)□12a>b>0,那么n a>n b(n∈N,n≥2).【新知拓展】1.关于不等式性质的理解两个同向不等式可以相加,但不可以相减,如a>b,c>d不能推出a-c>b-d.2.常用的结论(1)a>b,ab>0⇒1a<1 b;(2)b<0<a⇒1a>1 b;(3)a>b>0,c>d>0⇒ad>bc;(4)若a>b>0,m>0,则ab>a+mb+m;ab<a-mb-m(b-m>0);ba<b+ma+m;ba>b-ma-m(b-m>0).3.比较大小的方法比较数(式)的大小常用作差与0比较.作差法中常用的变形手段是分解因式和配方等恒等变形,前者将“差”化为“积”,后者将“差”化为一个完全平方式或几个完全平方式的“和”,也可二者并用.4.利用不等式求范围应注意的问题求指定代数式的取值范围,必须依据不等式的性质进行求解,同向不等式具有可加性与可乘性,但是不能相减或相除,解题时必须利用性质,步步有据,避免改变代数式的取值范围.题型一作差法比较大小例1比较下列各组中两数的大小:(1)已知a ,b 为正数,且a ≠b ,比较a 3+b 3与a 2b +ab 2; (2)已知x <1,比较x 3-1与2x 2-2x ;(3)已知x ,y 均为正数,设m =1x +1y ,n =4x +y ,比较m 与n 的大小.[解] (1)(a 3+b 3)-(a 2b +ab 2) =a 3+b 3-a 2b -ab 2 =a 2(a -b )-b 2(a -b ) =(a -b )(a 2-b 2) =(a -b )2(a +b ).∵a >0,b >0且a ≠b ,∴(a -b )2>0,a +b >0, ∴(a 3+b 3)-(a 2b +ab 2)>0,即a 3+b 3>a 2b +ab 2. (2)x 3-1-(2x 2-2x )=x 3-2x 2+2x -1 =(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1)=(x -1)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫x -122+34. ∵x <1,∴x -1<0.又⎝ ⎛⎭⎪⎫x -122+34>0,∴(x -1)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫x -122+34<0,∴x 3-1<2x 2-2x . (3)∵m -n =1x +1y -4x +y =x +y xy -4x +y =(x +y )2-4xy xy (x +y )=(x -y )2xy (x +y ).又x ,y 均为正数,∴x >0,y >0,xy >0,x +y >0,(x -y )2≥0. ∴m -n ≥0,即m ≥n (当x =y 时,等号成立).金版点睛作差比较法的四个步骤题型二 不等式的性质及应用 例2 下列命题正确的是________. ①c a <cb 且c >0⇒a >b ; ②a >b 且c >d ⇒ac >bd ; ③a >b >0且c >d >0⇒ ad >b c ;④a c 2>bc 2⇒a >b .[解析] ①⎩⎪⎨⎪⎧c a <c b ,c >0⇒1a <1b ;当a <0,b >0时,满足已知条件,但推不出a >b ,∴①错误.②当a =3,b =1,c =-2,d =-3时,命题显然不成立.∴②错误. ③⎩⎨⎧a >b >0,c >d >0⇒a d >bc >0⇒ ad > bc 成立.∴③正确.④显然c 2>0,∴两边同乘以c 2得a >b .∴④正确.[答案] ③④ 金版点睛解决这类问题,主要是根据不等式的性质判定,其实质是看是否满足性质所需的条件,若要判断一个命题是假命题,可以从条件入手,推出与结论相反的结论,也可举出一个反例予以否定.题型三 利用不等式的性质证明不等式 例3 (1)已知a >b ,e >f ,c >0,求证:f -ac <e -bc ;(2)已知a >b >0,c <d <0,求证:b a -c <ab -d ;(3)已知bc -ad ≥0,bd >0.求证:a +b b ≤c +dd . [证明] (1)∵a >b ,c >0,∴ac >bc . ∴-ac <-bc .∵f <e ,∴f -ac <e -bc . (2)∵c <d <0,∴-c >-d >0. 又a >b >0,∴a -c >b -d >0.∴0<1a -c <1b -d .再由0<b <a ,∴b a -c <a b -d .(3)∵bc -ad ≥0,∴ad ≤bc ,又∵bd >0, ∴a b ≤c d .∴a b +1≤cd +1.∴a +b b ≤c +d d . 金版点睛利用不等式的性质证明不等式的实质与技巧(1)实质:就是根据不等式的性质把不等式进行变形,要注意不等式的性质成立的条件.(2)技巧:若不能直接由不等式的性质得到,可先分析需要证明的不等式的结构.然后利用不等式的性质进行逆推,寻找使其成立的充分条件.题型四 利用不等式的性质求取值范围 例4 (1)已知2<a ≤5,3≤b <10,求a -b ,ab 的取值范围; (2)已知-π2≤α<β≤π2,求α+β2,α-β3的取值范围. [解] (1)∵3≤b <10,∴-10<-b ≤-3. 又2<a ≤5,∴-8<a -b ≤2. 又110<1b ≤13,∴15<a b ≤53. (2)∵-π2≤α<β≤π2, ∴-π4≤α2<π4,-π4<β2≤π4. 两式相加得-π2<α+β2<π2.∵-π6≤α3<π6,-π6<β3≤π6,-π6≤-β3<π6,两式相加得-π3≤α-β3<π3.又α<β,∴α-β3<0,∴-π3≤α-β3<0.[变式探究]将本例(1)中,条件不变,求a+b,ab的取值范围.解由2<a≤5,3≤b<10得2+3<a+b<5+10,2×3<ab<5×10,即5<a+b<15,6<ab<50.金版点睛利用不等式的性质求取值范围应注意的问题本题中不能直接用a的范围去减或除b的范围,应严格利用不等式的性质去求范围;其次在有些题目中,还要注意整体代换的思想,即弄清要求的与已知的“范围”间的联系.如已知20<x+y<30,15<x-y<18,要求2x+3y的范围,不能分别求出x,y的范围,再求2x+3y的范围,应把已知的“x+y”“x-y”视为整体,即2x+3y=52(x+y)-12(x-y),所以需分别求出52(x+y),-12(x-y)的范围,两范围相加可得2x+3y的范围.“范围”必须对应某个字母变量或代数式,一旦变化出其他的范围问题,则不能再间接得出,必须“直来直去”,即直接找到要求的量与已知的量间的数量关系,然后去求.2.2 基本不等式课程标准:1.掌握基本不等式的内容.2.能熟练地运用基本不等式来比较两个实数的大小.3.能初步运用基本不等式来证明简单的不等式.4.熟练掌握基本不等式及变形的应用.5.会用基本不等式解决简单的最大(小)值问题.教学重点:1.理解基本不等式的内容及其证明过程.2.运用基本不等式来比较两个实数的大小及进行简单的证明.3.运用基本不等式解决简单的最大值或最小值问题.教学难点:基本不等式条件的创设.【知识导学】知识点一基本不等式如果a>0,b>0,则□01ab≤a+b2,当且仅当a=b时,等号成立.我们把这个不等式称为基本不等式.知识点二 算术平均数与几何平均数及相关结论 在基本不等式中,□01a +b 2叫做正数a ,b 的算术平均数,□02ab 叫做正数a ,b 的几何平均数.基本不等式表明:□03两个正数的算术平均数不小于它们的几何平均数. 知识点三 基本不等式与最大(小)值 当x ,y 均为正数时,下面的命题均成立:(1)若x +y =S (S 为定值),则当且仅当□01x =y 时,xy 取得最□02大值□03S 24;(简记:和定积有最大值)(2)若xy =P (P 为定值),则当且仅当□04x =y 时,x +y □05小值□062P .(简记:积定和有最小值)知识点四 基本不等式的实际应用基本不等式常用于求解与最值有关的实际问题,具体步骤如下:(1)先理解题意,设出变量,设变量时一般把□01要求最大值或最小值的变量定为因变量.(2)建立相应的函数关系式,把实际问题抽象为□02函数的最大值或最小值问题.(3)在定义域内,求出□03函数的最大值或最小值. (4)根据实际意义写出正确的答案.【新知拓展】1.由基本不等式变形得到的常见结论 (1)ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R );(2)ab ≤a +b2≤a 2+b 22(a ,b 均为正实数);(3)b a +ab ≥2(a ,b 同号); (4)(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4(a ,b 同号);(5)a 2+b 2+c 2≥ab +bc +ca (a ,b ,c ∈R ).2.利用基本不等式证明不等式时应注意的问题(1)注意基本不等式成立的条件;(2)多次使用基本不等式,要注意等号能否成立;(3)对不能直接使用基本不等式证明的可重新组合,形成基本不等式模型,再使用.3.利用基本不等式的解题技巧与易错点(1)利用基本不等式求最值常用构造定值的技巧:①加项变换;②拆项变换;③统一换元;④平方后再用基本不等式.(2)易错点①易忘“正”,忽略了各项均为正实数;②忽略忘记“定”,用基本不等式时,和或积为定值;③忽略忘记“等”,用基本不等式要验证等号是否可以取到;④忽略忘记“同”,多次使用基本不等式时,等号成立的条件应相同.题型一对基本不等式的理解例1给出下面三个推导过程:①因为a>0,b>0,所以ba+ab≥2ba·ab=2;②因为a∈R,a≠0,所以4a+a≥24a·a=4;③因为x,y∈R,xy<0,所以xy+yx=-⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫-xy+⎝⎛⎭⎪⎫-yx≤-2 ⎝⎛⎭⎪⎫-xy⎝⎛⎭⎪⎫-yx=-2.其中正确的推导过程为()A.①②B.②③C.②D.①③[解析]从基本不等式成立的条件考虑.①因为a>0,b>0,所以ba>0,ab>0,符合基本不等式成立的条件,故①的推导过程正确;②因为a∈R,a≠0不符合基本不等式成立的条件,所以4a+a≥24a·a=4是错误的;③由xy <0得x y ,y x 均为负数,但在推导过程中将x y +yx 看成一个整体提出负号后,⎝ ⎛⎭⎪⎫-x y ,⎝ ⎛⎭⎪⎫-y x 均变为正数,符合基本不等式成立的条件,故③正确.[答案] D 金版点睛基本不等式a +b2≥ab (a >0,b >0)的两个关注点(1)不等式成立的条件:a ,b 都是正实数. (2)“当且仅当”的含义:①当a =b 时,a +b2≥ab 的等号成立, 即a =b ⇒a +b2=ab ;②仅当a =b 时,a +b2≥ab 的等号成立, 即a +b2=ab ⇒a =b .题型二 利用基本不等式比较大小 例2 已知a >1,则a +12,a ,2aa +1三个数的大小顺序是( )A.a +12<a <2a a +1B.a <a +12<2aa +1C.2aa +1<a <a +12 D.a <2aa +1≤a +12 [解析] 当a ,b 均为正数时,有2aba +b ≤ab ≤a +b 2≤a 2+b 22,令b =1,得2aa +1≤a ≤a +12. 又a >1,即a ≠b ,故上式不能取等号,应选C. [答案] C[题型探究] 对一切正数m ,不等式n <4m +2m 恒成立,求常数n 的取值范围.解 当m >0时,由基本不等式,得 4m +2m ≥24m ·2m =42,且当m =2时,等号成立,故n 的取值范围为n <4 2.金版点睛利用基本不等式比较大小在利用基本不等式比较大小时,应创设应用基本不等式的使用条件,合理地拆项、配凑或变形.在拆项、配凑或变形的过程中,首先要考虑基本不等式使用的条件,其次要明确基本不等式具有将“和式”转化为“积式”或者将“积式”转化为“和式”的放缩功能.题型三利用基本不等式求函数的最值例3(1)求函数y=1x-3+x(x>3)的最小值;(2)已知0<x<13,求y=x(1-3x)的最大值;(3)已知x>-1,求y=x2+3x+4x+1的最小值.[解](1)∵y=1x-3+x=1x-3+(x-3)+3,又x>3,∴x-3>0,1x-3>0,∴y≥21x-3·(x-3)+3=5.当且仅当1x-3=x-3,即x=4时,y有最小值5.(2)∵0<x<13,∴1-3x>0,y=x(1-3x)=13·3x·(1-3x)≤13⎣⎢⎡⎦⎥⎤3x+(1-3x)22=112.当且仅当3x=1-3x,即x=16时,取等号,∴当x=16时,函数取得最大值112.(3)∵x>-1,∴x+1>0,y=x2+3x+4x+1=(x+1)2+(x+1)+2x+1=x +1+2x +1+1 ≥22+1, 当且仅当x +1=2x +1时, 即x =2-1时,函数y 的最小值为22+1.金版点睛利用基本不等式求函数的最值(1)利用基本不等式求函数最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创设应用基本不等式的条件.(2)等号取不到时,注意利用求函数最值的其他方法.题型四 利用基本不等式证明不等式例4 已知a ,b ,c 是不全相等的三个正数,求证:b +c -a a +a +c -b b +a +b -c c >3.[证明] b +c -a a +a +c -b b +a +b -c c =b a +c a +a b +c b +a c +b c -3=⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c -3. ∵a ,b ,c 都是正数,∴b a +a b ≥2 b a ·ab =2,同理c a +a c ≥2,c b +b c ≥2,∴⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥6. ∵a ,b ,c 不全相等,上述三式不能同时取等号,∴⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c >6, ∴b +c -a a +a +c -b b +a +b -cc >3.金版点睛利用基本不等式证明不等式(1)利用基本不等式证明不等式时,可依据求证式两端的式子结构,合理选择基本不等式及其变形不等式来证,如a 2+b 2≥2ab (a ,b ∈R ),可变形为ab ≤a 2+b 22;a +b 2≥ab (a >0,b >0)可变形为ab ≤⎝ ⎛⎭⎪⎫a +b 22等.同时要从整体上把握基本不等式,如a 4+b 4≥2a 2b 2,a 2b 2+b 2c 2≥2(ab )(bc ),都是对“a 2+b 2≥2ab ,a ,b ∈R ”的灵活应用.(2)在证明条件不等式时,要注意“1”的代换,另外要特别注意等号成立的条件.题型五 利用基本不等式求代数式的最值例5 (1)已知x >0,y >0且1x +9y =1,求x +y 的最小值;(2)已知正实数x ,y 满足2x +y +6=xy ,求xy 的最小值;(3)已知实数x ,y 满足x 2+y 2+xy =1,求x +y 的最大值.[解] (1)∵x >0,y >0,1x +9y =1,∴x +y =⎝ ⎛⎭⎪⎫1x +9y (x +y )=y x +9x y +10≥6+10=16,当且仅当y x =9x y ,又1x +9y =1, 即x =4,y =12时,上式取等号.故当x =4,y =12时,(x +y )min =16.(2)∵2x +y +6=xy ,∴y =2x +6x -1,x >1,xy =x (2x +6)x -1=2(x 2+3x )x -1=2[x 2-1+3(x -1)+4]x -1=2⎝ ⎛⎭⎪⎫x +1+4x -1+3=2⎝ ⎛⎭⎪⎫x -1+4x -1+5≥2×⎝⎛⎭⎪⎫2 x -1·4x -1+5=18. 当且仅当x =3时,等号成立.(3)因为1=x 2+y 2+xy =(x +y )2-xy ≥(x +y )2-⎝ ⎛⎭⎪⎫x +y 22,所以(x +y )2≤43, 即x +y ≤233,当且仅当x =y >0且x 2+y 2+xy =1,即x =y =33时,等号成立,x +y 的最大值为233.[结论探究] 若本例(1)中的条件不变,如何求xy 的最小值. 解 1x +9y =y +9x xy ≥2y ·9x xy =6xy xy =6xy ,又因为1x +9y =1,所以6xy≤1,xy ≥6,xy ≥36, 当且仅当y =9x ,即x =2,y =18时,等号成立.所以(xy )min =36.金版点睛利用基本不等式求代数式的最值(1)利用基本不等式求代数式的最值,要通过恒等变形以及配凑,使“和”或“积”为定值,从而求得代数式的最大值或最小值.(2)若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,解答技巧都是恰当变形、合理拆分项或配凑因式.题型六 利用基本不等式解决实际问题 例6 某投资公司计划投资A ,B 两种金融产品,根据市场调查与预测,A 产品的利润y 1与投资金额x 的函数关系为y 1=18-180x +10,B 产品的利润y 2与投资金额x 的函数关系为y 2=x 5(注:利润与投资金额单位:万元).(1)该公司已有100万元资金,并全部投入A ,B 两种产品中,其中x 万元资金投入A 产品,试把A ,B 两种产品利润总和表示为x 的函数,并写出x 的取值范围;(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?[解] (1)其中x 万元资金投入A 产品,则剩余的(100-x )万元资金投入B 产品,利润总和y =18-180x +10+100-x 5=38-x 5-180x +10(x ∈[0,100]). (2)∵y =40-x +105-180x +10,x ∈[0,100], ∴由基本不等式,得y ≤40-236=28,当且仅当x +105=180x +10,即x =20时,等号成立.答:分别用20万元和80万元资金投资A ,B 两种金融产品,可以使公司获得最大利润,最大利润为28万元.金版点睛利用基本不等式解决实际问题应遵循的三点(1)解应用题时,一定要注意变量的实际意义,从而指明函数的定义域;(2)一般利用基本不等式求解最值问题时,通常要指出取得最值时的条件,即“等号”成立的条件;(3)在求函数最值时,除应用基本不等式外,有时会出现基本不等式取不到等号,此时要利用其他方法求解.2.3 二次函数与一元二次方程、不等式课程标准:1.理解一元二次不等式和一元二次不等式的解集的概念.2.理解一元二次方程、一元二次不等式与一元二次函数的关系.3.熟练掌握一元二次不等式的两种解法.4.能从实际情境中抽象出一元二次不等式,并通过解一元二次不等式解决实际问题.教学重点:1.一元二次方程、一元二次不等式与一元二次函数之间的关系.2.一元二次不等式的解法.3.利用一元二次不等式解决实际问题.教学难点:1.一元二次方程、一元二次不等式与一元二次函数之间的关系.2.从实际问题中抽象出一元二次不等式模型.【知识导学】知识点一一元二次不等式的概念一般地,我们把只含有□01一个未知数,并且未知数的□02最高次数是2的不等式,称为一元二次不等式,即形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(其中a,b,c均为常数,a≠0)的不等式都是一元二次不等式.知识点二二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x 叫做二次函数y=ax2+bx+c□01零点.知识点三一元二次不等式的解集的概念使一元二次不等式成立的所有未知数的值组成的□01集合叫做这个一元二次不等式的□02解集.知识点四二次函数与一元二次方程、不等式的解的对应关系知识点五利用不等式解决实际问题的一般步骤(1)□01字母表示题中的□02未知数;(2)由题中给出的不等关系,列出□03关于未知数的不等式(组);(3)□04求解所列出的不等式(组);(4)□05实际意义确定答案.【新知拓展】1.解一元二次不等式的方法与步骤(1)解一元二次不等式的常用方法①图象法:由一元二次方程、一元二次不等式及二次函数的关系,可以得到解一元二次不等式的一般步骤:(ⅰ)化不等式为标准形式:ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0);(ⅱ)求方程ax2+bx+c=0(a>0)的根,并画出对应函数y=ax2+bx+c的图象简图;(ⅲ)由图象得出不等式的解集.②代数法:将所给不等式化为一般式后借助分解因式或配方法求解.当m<n时,若(x-m)(x-n)>0,则可得x>n或x<m;若(x-m)(x-n)<0,则可得m<x<n.有口诀如下:大于取两边,小于取中间.(2)含有参数的一元二次型的不等式在解含有参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑:①关于不等式类型的讨论:二次项系数a>0,a<0,a=0.②关于不等式对应的方程根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0).③关于不等式对应的方程根的大小的讨论:x1>x2,x1=x2,x1<x2.2.利用不等式解决实际问题需注意以下四点(1)阅读理解材料:应用题所用语言多为文字语言,而且不少应用题文字叙述篇幅较长.阅读理解材料要达到的目的是将实际问题抽象成数学模型,这就要求解题者领悟问题的实际背景,确定问题中量与量之间的关系,初步形成用怎样的模型能够解决问题的思路,明确解题方向.(2)建立数学模型:根据(1)中的分析,把实际问题用“符号语言”“图形语言”抽象成数学模型,并且,建立所得数学模型与已知数学模型的对应关系,以便确立下一步的努力方向.(3)讨论不等关系:根据(2)中建立起来的数学模型和题目要求,讨论与结论有关的不等关系,得到有关理论参数的值.(4)作出问题结论:根据(3)中得到的理论参数的值,结合题目要求作出问题的结论.题型一不含参数的一元二次不等式的解法例1求下列不等式的解集:(1)2x2+7x+3>0;(2)-x2+8x-3>0;(3)x2-4x-5≤0;(4)-4x2+18x-814≥0;(5)-12x2+3x-5>0;(6)-2x2+3x-2<0.金版点睛解不含参数的一元二次不等式的一般步骤(1)通过对不等式的变形,使不等式右侧为0,使二次项系数为正.(2)对不等式左侧因式分解,若不易分解,则计算对应方程的判别式.(3)求出相应的一元二次方程的根或根据判别式说明方程有无实根.(4)根据一元二次方程根的情况画出对应的二次函数的草图.(5)根据图象写出不等式的解集.题型二 含参数的一元二次不等式的解法例2 解关于x 的不等式(a ∈R ):(1)2x 2+ax +2>0;(2)ax 2-(a +1)x +1<0.[解] (1)Δ=a 2-16,下面分情况讨论:①当Δ<0,即-4<a <4时,方程2x 2+ax +2=0无实根,所以原不等式的解集为R .②当Δ≥0,即a ≥4或a ≤-4时,方程2x 2+ax +2=0的两个根为x 1=14(-a -a 2-16),x 2=14(-a +a 2-16).当a =-4时,原不等式的解集为{x |x ∈R ,且x ≠1};当a >4或a <-4时,原不等式的解集为{|x x <14(-a -a 2-16)或x >14(-a +a 2-16);当a =4时,原不等式的解集为{x |x ∈R ,且x ≠-1}.(2)若a =0,原不等式为-x +1<0,解得x >1;若a <0,原不等式可化为⎝ ⎛⎭⎪⎫x -1a (x -1)>0,解得x <1a 或x >1; 若a >0,原不等式可化为⎝ ⎛⎭⎪⎫x -1a (x -1)<0,(*) 其解的情况应由1a 与1的大小关系决定,故①当a =1时,由(*)式可得x ∈∅;②当a >1时,由(*)式可得1a <x <1;③当0<a <1时,由(*)式可得1<x <1a .综上所述,当a <0时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <1a 或x >1;当a =0时,解集为{x |x >1};当0<a <1时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 1<x <1a ;当a =1时,解集为∅;当a >1时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a <x <1. 金版点睛解含参数的一元二次不等式的一般步骤(1)讨论二次项系数:二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程根的个数:讨论判别式Δ与0的关系.(3)写出解集:确定无根时可直接写出解集;确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.题型三 “三个二次”之间的转化关系例3 若不等式ax 2+bx +c >0的解集为{x |-3<x <4},求不等式bx 2+2ax -c -3b <0的解集.[解] 因为ax 2+bx +c >0的解集为{x |-3<x <4},所以a <0且-3和4是方程ax 2+bx +c =0的两根,由一元二次方程根与系数的关系可得⎩⎪⎨⎪⎧ -3+4=-b a ,-3×4=c a ,即⎩⎨⎧b =-a ,c =-12a .所以不等式bx 2+2ax -c -3b <0, 即为-ax 2+2ax +15a <0,即x 2-2x -15<0,故所求的不等式的解集为{x |-3<x <5}.金版点睛三个“二次”之间的关系(1)三个“二次”中,一元二次函数是主体,讨论一元二次函数主要是将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的一元二次函数相联系,通过一元二次函数的图象及性质来解决问题,关系如下:题型四利用一元二次不等式判断车速例4某种汽车在水泥路面上的刹车距离(刹车距离是指汽车刹车后由于惯性往前滑行的距离)s m和汽车车速x km/h有如下关系:s=120x+1180x2.在一次交通事故中,测得这种车的刹车距离大于39.5 m,那么这辆汽车刹车前的车速至少为多少?(精确到0.01 km/h,28521≈168.88)[解]设这辆汽车刹车前的车速为x km/h,根据题意,得120x+1180x2>39.5.移项整理,得x2+9x-7110>0.显然Δ>0,x2+9x-7110=0有两个实数根,即x1≈-88.94,x2≈79.94.然后,根据二次函数y=x2+9x-7110的图象,得不等式的解集为{x|x<-88.94或x>79.94}.在这个实际问题中,x>0,所以这辆汽车刹车前的车速至少为79.94 km/h.金版点睛一元二次不等式的应用题常以二次函数为模型,解题时要审清题意,准确找出其中的不等关系,再利用一元二次不等式求解,确定答案时应注意变量具有的“实际含义”.题型五利用一元二次不等式解决利润问题例5某摩托车生产企业,上年度生产摩托车投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.75x,同时预计年销售量增加的比例为0.6x.设年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y与投入成本增加的比例x的关系式;(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x应在什么范围内?[解] (1)依题意,得y =[1.2(1+0.75x )-(1+x )]×1000×(1+0.6x )=1000(-0.06x 2+0.02x +0.2).∴所求关系式为y =1000(-0.06x 2+0.02x +0.2)(0<x <1).(2)依题意,得1000(-0.06x 2+0.02x +0.2)>(1.2-1)×1000.化简,得3x 2-x <0.解得0<x <13.∴投入成本增加的比例x 的范围是0<x <13.金版点睛解不等式应用题,一般可按四步进行:①审题,找出关键量和不等关系;②引进数学符号,用不等式表示不等关系(或表示成函数关系);③解不等式(或求函数最值);④回归到实际问题.【扩展】(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.2.分式不等式的解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)的形式,x)0)(0(0022110><>++++--a a x a x a x a n n n n )()(x g x f )()(x g x f )()(x g x f )()(x g x f(2)转化为整式不等式(组)3.含绝对值不等式的解法 (1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. ⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f c b ax <+)0(>>+c c b ax。

人教版高中数学必修第一册第二章2.1.1等式性质与不等式性质(1)【课件】

人教版高中数学必修第一册第二章2.1.1等式性质与不等式性质(1)【课件】
列、三角函数、解析几何和实际应用的背景呈现,考查大小比较
、不等式的证明、最值和范围的求解,考查学生对数形结合、分
类讨论、等价转,考查运算求解、推理论证和数学建模等数学素养.
3. 在呈现方式上,有单独以不等式相关知识为背景的试题,这类试
题通常以选择题或填空题的形式呈现;也有将不等式作为工具的
会用不等式(组)表示实际问题中
的不等关系
在实际问题中发现不等关系,并
表示出不等关系,发展数学抽象
及数学建模素养
会用比较法比较两数(式)的大小
借助比较两数(式)的大小,培养
逻辑推理及数学运算素养
情境导学
某学校组织老师去某地参观学习,需包车前往.甲车
队说:“若领队买全票一张,则其余人可享受七五折优
惠.”乙车队说:“你们属团体票,按原价的八折优惠。”
态氮含量为z g,非糖固形物含量为w g.则本题中的不等关系
0 x 15.0,
可用不等式组表示为
y 14.5%,

z 0.2,
w 5.0
.
【解】
设截得500 mm的钢管x根,截得600 mm的钢管y根,
课时1
等式性质与不等式性质(1)
教学目标
1. 通过实际问题情境,了解不等关系与不等式(组)的实际背
景,感受现实世界和日常生活中存在着不等关系,会用不等式
表示现实生活中的不等关系,培养数学抽象素养.
2. 正确理解不等式的意义,灵活运用作差法比较两数(式)的
大小,培养数学运算素养.
学习目标
课程目标
学科核心素养
用等于一体,体现数学知识之间的有机联系和不等式的广泛应用
性,充分地发挥出不等式的工具作用.运用导数研究函数的性质

部编版高中数学必修一第二章一元二次函数方程和不等式知识点总结全面整理

部编版高中数学必修一第二章一元二次函数方程和不等式知识点总结全面整理

(名师选题)部编版高中数学必修一第二章一元二次函数方程和不等式知识点总结全面整理单选题1、已知a>1,则a+4a−1的最小值是()A.5B.6C.3√2D.2√2答案:A分析:由于a>1,所以a−1>0,则a+4a−1=(a−1)+4a−1+1,然后利用基本不等式可求出其最小值由于a>1,所以a−1>0所以a+4a−1=a−1+4a−1+1≥2√(a−1)⋅4(a−1)+1=5,当且仅当a−1=4a−1,即a=3时取等号. 故选:A.2、y=x+4x(x≥1)的最小值为()A.2B.3C.4D.5答案:C分析:利用均值不等式求解即可.因为y=x+4x (x≥1),所以x+4x≥2√x×4x=4,当且仅当x=4x即x=2时等号成立.所以当x=2时,函数y=x+4x有最小值4.故选:C.3、关于x的方程x2+(m−2)x+2m−1=0恰有一根在区间(0,1)内,则实数m的取值范围是()A.[12,32]B.(12,23]C.[12,2)D.(12,23]∪{6−2√7}答案:D分析:把方程的根转化为二次函数的零点问题,恰有一个零点属于(0,1),分为三种情况,即可得解. 方程x2+(m-2)x+2m-1=0对应的二次函数设为:f(x)=x2+(m-2)x+2m-1因为方程x 2+(m -2)x +2m -1=0恰有一根属于(0,1),则需要满足: ①f (0)⋅f (1)<0,(2m -1)(3m -2)<0,解得:12<m <23;②函数f (x )刚好经过点(0,0)或者(1,0),另一个零点属于(0,1), 把点(0,0)代入f (x )=x 2+(m -2)x +2m -1,解得:m =12,此时方程为x 2-32x =0,两根为0,32,而32⋅(0,1),不合题意,舍去 把点(1,0)代入f (x )=x 2+(m -2)x +2m -1,解得:m =23,此时方程为3x 2-4x +1=0,两根为1,13,而13⋅(0,1),故符合题意; ③函数与x 轴只有一个交点,Δ=(m -2)2-8m +4=0,解得m =6±2√7, 经检验,当m =6-2√7时满足方程恰有一根在区间 (0,1) 内; 综上:实数m 的取值范围为(12,23]⋅{6-2√7} 故选:D4、设m ,n 为正数,且m +n =2,则4m+1+1n+1的最小值为( ) A .134B .94C .74D .95答案:B分析:将m +n =2拼凑为m+14+n+14=1,利用“1”的妙用及其基本不等式求解即可.∵m +n =2,∴(m +1)+(n +1)=4,即m+14+n+14=1,∴4m+1+1n+1=(4m+1+1n+1)(m+14+n+14) =n+1m+1+m+14(n+1)+54≥2√n+1m+1⋅m+14(n+1)+54 =94,当且仅当n+1m+1=m+14(n+1),且m +n =2时,即 m =53,n =13时等号成立. 故选:B .5、若不等式组{x −1>a 2x −4<2a 的解集非空,则实数a 的取值范围是( )A .(−1,3)B .(−∞,−1)∪(3,+∞)C.(−3,1)D.(−∞,−3)∪(1,+∞)答案:A分析:分别解出两个不等式的解,再根据集合交集的概念求解.由题意{x>a 2+1x<2a+4,∴a2+1<2a+4,即a2−2a−3<0,解得−1<a<3.故选:A.小提示:本题考查不等式组的解,考查集合的交集运算,属于基础题.6、若a,b,c为实数,且a<b,c>0,则下列不等关系一定成立的是()A.a+c<b+c B.1a <1bC.ac>bc D.b−a>c答案:A分析:由不等式的基本性质和特值法即可求解.对于A选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则a<b⇒a+c<b+c,A选项正确;对于B选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若a=−2,b=−1,则1a >1b,B选项错误;对于C选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,c>0,0<a<b⇒ac<bc,C选项错误;对于D选项,因为a<b⇒b−a>0,c>0,所以无法判断b−a与c大小,D选项错误.7、小李从甲地到乙地的平均速度为a,从乙地到甲地的平均速度为b(a>b>0),他往返甲乙两地的平均速度为v,则()A.v=a+b2B.v=√abC.√ab<v<a+b2D.b<v<√ab答案:D分析:平均速度等于总路程除以总时间设从甲地到乙地的的路程为s,从甲地到乙地的时间为t1,从乙地到甲地的时间为t2,则t 1=s a,t 2=s b,v =2s t 1+t 2=2ss a +s b=21a +1b,∴v =21a +1b>21b +1b=b ,v =21a +1b=2ab a+b<2√ab=√ab ,故选:D.8、已知x >0,y >0,且x +y =2,则下列结论中正确的是( ) A .2x+2y 有最小值4B .xy 有最小值1C .2x +2y 有最大值4D .√x +√y 有最小值4 答案:A分析:利用基本不等式和不等式的性质逐个分析判断即可 解: x >0,y >0,且x +y =2,对于A ,2x +2y =12(x +y )(2x +2y )=2+xy +yx ≥2+2√xy ⋅yx =4,当且仅当x =y =1时取等号,所以A 正确,对于B ,因为2=x +y ≥2√xy ,所以xy ≤1,当且仅当x =y =1时取等号,即xy 有最大值1,所以B 错误, 对于C ,因为2x +2y ≥2√2x ⋅2y =2√2x+y =4,当且仅当x =y =1时取等号,即2x +2y 有最小值4,所以C 错误,对于D ,因为(√x +√y)2=x +y +2√xy ≤2(x +y)=4,当且仅当x =y =1时取等号,即√x +√y 有最大值4,所以D 错误, 故选:A 多选题9、若x ,y 满足x 2+y 2−xy =1,则( ) A .x +y ≤1B .x +y ≥−2 C .x 2+y 2≤2D .x 2+y 2≥1 答案:BC分析:根据基本不等式或者取特值即可判断各选项的真假. 因为ab ≤(a+b 2)2≤a 2+b 22(a,b ∈R ),由x 2+y 2−xy =1可变形为,(x +y)2−1=3xy ≤3(x+y 2)2,解得−2≤x+y≤2,当且仅当x=y=−1时,x+y=−2,当且仅当x=y=1时,x+y=2,所以A错误,B 正确;由x2+y2−xy=1可变形为(x2+y2)−1=xy≤x2+y22,解得x2+y2≤2,当且仅当x=y=±1时取等号,所以C正确;因为x2+y2−xy=1变形可得(x−y2)2+34y2=1,设x−y2=cosθ,√32y=sinθ,所以x=cosθ√3y=√3,因此x2+y2=cos2θ+53sin2θ√3=1√3−13cos2θ+13=43+23sin(2θ−π6)∈[23,2],所以当x=√33,y=−√33时满足等式,但是x2+y2≥1不成立,所以D错误.故选:BC.10、不等式ax2+bx+c≥0的解集是{x|−1≤x≤2},则下列结论正确的是()A.a+b=0B.a+b+c>0C.c>0D.b<0答案:ABC分析:根据二次函数图像与二次不等式关系求解即可.解:因为不等式ax2+bx+c≥0的解集是{x|−1≤x≤2},所以a<0,且{−ba=−1+2=1>0ca=−2<0,所以{b>0,b=−a,c>0,所以a+b=0,c>0,b>0,故AC正确,D错误.因为二次函数y=ax2+bx+c的两个零点为−1,2,且图像开口向下,所以当x=1时,y=a+b+c>0,故B正确.故选:ABC.11、对于实数a,b,c,下列说法正确的是()A.若a>b,则ac2>bc2B.若a>b>0,则1a <1bC.若a>0>b,则ab<a2D.若c>a>b,则ac−a >bc−b答案:BC分析:由特值法可判断A、D;由不等式的性质可判断B、C.解:对于A,当c=0时,ac2=bc2,故A错误;对于B,若a>b>0,则1a <1b,故B正确;对于C,若a>0>b,则a2>ab,故C正确;对于D,因为c>a>b,当c=0时,ac−a =bc−b=−1,故D错误.故选:BC.填空题12、不等式x2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞)分析:将x2+2x−3x+1≥0等价转化为{x2+2x−3≥0x+1>0或{x2+2x−3≤0x+1<0,解不等式组可得答案.原不等式等价于{x 2+2x−3≥0x+1>0或{x2+2x−3≤0x+1<0,解得x≥1或−3≤x<−1,所以答案是:[−3,−1)∪[1,+∞)。

新教材人教版高中数学必修第一册第二章一元二次函数、方程和不等式 知识点汇总及配套练习题

新教材人教版高中数学必修第一册第二章一元二次函数、方程和不等式 知识点汇总及配套练习题

第二章一元二次函数、方程和不等式2.1等式性质与不等式性质......................................................................................... - 1 - 2.2基本不等式 ............................................................................................................ - 8 -第一课时基本不等式.......................................................................................... - 8 - 第二课时基本不等式与最大值、最小值........................................................ - 13 - 2.3二次函数与一元二次方程、不等式(1) ................................................................. - 20 - 2.3二次函数与一元二次方程、不等式(2) ................................................................. - 30 -2.1等式性质与不等式性质内容标准学科素养1.通过具体情境,感受日常生活中的不等关系.数学抽象逻辑推理2.初步学会作差法比较两实数的大小.3.掌握不等式的基本性质,并能运用这些性质解决有关问题.授课提示:对应学生用书第18页[教材提炼]知识点一实数a、b大小预习教材,思考问题设a、b是两个实数,它们在数轴上所对应的点分别是A、B,那么A、B的位置与a、b的大小有什么关系?知识梳理关于实数a,b大小的比较,有以下基本事实:如果a-b是正数,那么a>b;如果a-b等于0,那么a=b;如果a-b是负数,那么a<b.反过来也对,这个基本事实可以表示为a>b⇔a-b>0;a=b⇔a -b=0;a<b⇔a-b<0.从上述基本事实可知,要比较两个实数的大小,可以转化为比较它们的差与0的大小.知识点二 等式的基本性质 预习教材,思考问题如果a =b ,那么a ±c 与b ±c 、ac 与bc 、a c 与bc 相等吗? 知识梳理 等式有下面的基本性质: 性质1 如果a =b ,那么b =a ; 性质2 如果a =b ,b =c ,那么a =c ; 性质3 如果a =b ,那么a ±c =b ±c ; 性质4 如果a =b ,那么ac =bc ; 性质5 如果a =b ,c ≠0,那么a c =b c . 知识点三 不等式的性质 预习教材,思考问题如果a >b ,那么a ±c 与b ±c ,ac 与bc 有什么关系? 知识梳理[自主检测]1.实数m不超过2,是指()A.m>2B.m≥ 2C.m< 2 D.m≤ 2答案:D2.已知a<b<0,c<d<0,那么下列判断中正确的是() A.a-c<b-d B.ac>bdC.ad<bc D.ad>bc答案:B3.设a>b,c>d,则下列不等式成立的是() A.a-c>b-d B.ac>bdC.ac>db D.b+d<a+c答案:D4.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是________.答案:f(x)>g(x)授课提示:对应学生用书第19页探究一作差法比较大小[例1]设x<y<0,试比较(x2+y2)(x-y)与(x2-y2)(x+y)的大小.[解析](x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)(x2+y2)-(x-y)(x+y)2=(x-y)[(x2+y2)-(x+y)2]=(x-y)(-2xy).由于x<y<0,所以x-y<0,-2xy<0,所以(x-y)(-2xy)>0,即(x2+y2)(x-y)>(x2-y2)(x+y).作差法比较两个数大小的步骤及变形方法(1)作差法比较的步骤:作差→变形→定号→结论.(2)变形的方法:①因式分解;②配方;③通分;④对数与指数的运算性质;⑤分母或分子有理化;⑥分类讨论.将本例中“x<y<0”变为“x>y>0”,这两个代数式的大小如何?解析:(x2+y2)(x-y)-(x2-y2)(x+y)=-2xy(x-y)由x>y>0得-2xy<0,x-y>0∴-2xy(x-y)<0∴(x2+y2)(x-y)<(x2-y2)(x+y)探究二用不等式的性质证明不等式[例2][教材P42例2拓展探究](1)已知a>b>0,c<d<0,e<0,求证:ea-c >eb-d.[证明]∵c<d<0,∴-c>-d>0,又∵a>b>0,∴a+(-c)>b+(-d)>0,即a-c>b-d>0,∴0<1a-c<1b-d,又∵e<0,∴ea-c >eb-d.(2)已知b克糖水中含有a克糖(b>a>0),再添加m克糖(m>0)(假设全部溶解),糖水变甜了.请将这一事实表示为一个不等式,并证明这个不等式成立.[证明]ab-a+mb+m=a(b+m)-b(a+m)b(b+m)=m(a-b)b(b+m),∵b>a>0,m>0,∴a-b<0,m(a-b)b(b+m)<0,∴ab<a+mb+m.利用不等式的性质证明不等式注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.探究三求表达式的范围[例3]已知30<x<42,16<y<24,分别求x+y,x-3y及xx-3y的范围.[解析]因为30<x<42,16<y<24,所以30+16<x+y<42+24,故46<x+y<66.又30<x<42,-72<-3y<-48,所以30-72<x-3y<42-48,故-42<x-3y<-6.又30<x<42,-42<x-3y<-6,所以-16<1x-3y<-142,所以0<142<-1x-3y<16,所以3042<-xx-3y<426,故-426<xx-3y<-3042,得-7<xx-3y<-57.根据某些代数式的范围求其它代数式的范围,要整体应用已知的代数式,结合不等式的性质进行推理.已知1<a <2,3<b <4,求下列各式的取值范围. (1)2a +b ;(2)a -b ;(3)ab .解析:(1)∵1<a <2,∴2<2a <4.又3<b <4,∴5<2a +b <8; (2)∵3<b <4,∴-4<-b <-3.又∵1<a <2,∴-3<a -b <-1; (3)3<b <4;∴14<1b <13.又∵1<a <2,∴14<a b <23.授课提示:对应学生用书第20页一、借不等式性质之根“移花接木”——不等式性质的拓展►逻辑推理 1.由不等式性质4:a >b ,c >0,那么ac >bc 拓展为倒数性质:若⎩⎨⎧a >bab >0,则1a <1b .证明:∵ab >0,∴1ab >0 由a >b 得a ×1ab >b ×1ab . ∴1b >1a ,即1a <1b .2.由性质7:如果a >b >0,那么a n >b n .(n ∈N 且n ≥1). 拓展为开方性质:如果a >b >0,那么n a >nb .(n ∈N 且n ≥2). 证明:假设0<n a ≤nb .由性质7得(n a )n ≤(nb )n ∴a ≤b 与a >b 矛盾. ∴n a >n b .[典例] 已知a >b >0,求证a >b . [证明] ∵a =(a )2,b =(b )2. 由a >b 得:(a )2>(b )2>0 ∴a >b .二、同样正确用不等式性质,差别这么大[典例] 已知1≤a -b ≤2,2≤a +b ≤4,求4a -2b 的范围. [解析] 设4a -2b =m (a -b )+n (a +b ) =(m +n )a +(n -m )b ,于是得⎩⎨⎧ m +n =4n -m =-2,解得⎩⎨⎧m =3n =1, ∴4a -2b =3(a -b )+(a +b ) 1≤a -b ≤2,2≤a +b ≤4 ∴5≤3(a -b )+(a +b )≤10 ∴4a -2b 范围是[5,10].纠错心得 (1)使用不等式的性质时,一定要注意它们成立的前提条件,不可强化或弱化它们成立的条件,盲目套用.(2)注意同一个问题中应用同向不等式相加性质时不能多次使用(因多次使用时取等号的条件会发生改变),否则不等式范围将会扩大.2.2基本不等式第一课时基本不等式内容标准学科素养1.探索并了解基本不等式的证明过程.直观想象逻辑推理2.能熟练运用基本不等式来比较两个实数的大小.3.能初步运用基本不等式证明简单的不等式.授课提示:对应学生用书第20页[教材提炼]知识点基本不等式预习教材,思考问题(1)对∀a、b∈R.a2+b2与2ab的大小如何?在右图中,AB是圆的直径,点C是AB上一点,AC=a,BC=b.过点C作垂直于AB的弦DE,连接AD,BD.可得到CD=ab,12AB=a+b2,由CD小于或等于圆的半径,可得出什么样的不等关系?知识梳理(1)∀a,b∈R,有a2+b2≥2ab,当且仅当a=b时,等号成立.(2)如果a>0,b>0,我们用a,b分别代替上式中的a,b,可得ab≤a+b 2,①当且仅当a=b时,等号成立.通常称不等式①为基本不等式(basic inequality).其中,a +b2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.[自主检测]1.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( ) A .a 2+b 2≥2|ab | B .a 2+b 2=2|ab | C .a 2+b 2≤2|ab | D .a 2+b 2>2|ab |答案:A2.若a ,b ∈R 且ab >0,则下列不等式中恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2ab D.b a +a b ≥2答案:D3.若x >0,y >0且x +y =4,则下列不等式中恒成立的是( ) A.1x +y >14B.1x +1y ≥1C.xy ≥2D.1xy ≥1 答案:B授课提示:对应学生用书第21页探究一 用基本不等式判断不等式的成立[例1] 有下列式子:①a 2+1>2a ;②⎪⎪⎪⎪⎪⎪x +1x ≥2;③a +b ab ≥2;④x 2+1x 2+1≥1,其中正确的个数是( )A .0B .1C .2D .3[解析] ∵a 2-2a +1=(a -1)2≥0,∴a 2+1≥2a ,故①不正确;对于②,当x >0时,⎪⎪⎪⎪⎪⎪x +1x =x +1x ≥2(当且仅当x =1时取“=”);当x <0时,⎪⎪⎪⎪⎪⎪x +1x =-x -1x ≥2(当且仅当x =-1时取“=”),∴②正确;对于③,若a =b =-1,则a +b ab =-2<2,故③不正确;对于④,x 2+1x 2+1=x 2+1+1x 2+1-1≥1(当且仅当x =0时取“=”),故④正确.∴选C.[答案] C利用基本不等式比较实数大小的注意事项(1)利用基本不等式比较大小,常常要注意观察其形式(和与积),同时要注意结合函数的性质(单调性).(2)利用基本不等式时,一定要注意条件是否满足a >0,b >0.设M =a +1a -2(2<a <3),N =x (43-3x )⎝⎛⎭⎪⎫0<x <433,则M ,N 的大小关系为( )A .M >NB .M <NC .M ≥ND .M ≤N解析:M =a +1a -2=a -2+1a -2+2>4, N =x (43-3x )=13×3x (43-3x )≤13×⎝⎛⎭⎪⎫3x +43-3x 22=4. ∴M >N . 答案:A探究二 用基本不等式证明不等式[例2] [教材P 44由公式a +b2≥ab 的证明过程探究](1)证明不等式a 2+b 2+c 2≥ab +bc +ca . [证明] ∵a 2+b 2≥2ab b 2+c 2≥2bc c 2+a 2≥2ac .∴2(a 2+b 2+c 2)≥2(ab +bc +ca )(当且仅当a =b =c 取等号) ∴a 2+b 2+c 2≥ab +bc +ca .(2)已知a >0,b >0,c >0,求证:bc a +ac b +abc ≥a +b +c . [证明] ∵a >0,b >0,c >0,∴bc a >0,ac b >0,abc >0. 则bc a +ac b ≥2abc 2ab =2c ,bc a +ab c ≥2b ,ac b +abc ≥2a .由不等式的性质知,2⎝ ⎛⎭⎪⎫bc a +ac b +ab c ≥2(a +b +c ),∴bc a +ac b +abc ≥a +b +c .利用基本不等式证明不等式的注意事项(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”.(2)注意事项:①多次使用基本不等式时,要注意等号能否成立;②累加法是不等式证明中的一种常用方法,在证明不等式时注意使用条件; ③对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型再使用.授课提示:对应学生用书第21页一、千变万化,不离其宗►逻辑推理 基本不等式的几种常见变形及结论 (1)a +b ≥2ab (a >0,b >0); (2)ab ≤a 2+b 22(a ,b ∈R ); (3)ab ≤⎝⎛⎭⎪⎫a +b 22,(a ,b ∈R ); (4)b a +ab ≥2(ab >0); (5)a +ka ≥2k (a >0,k >0); (6)21a +1b≤ab ≤a +b2≤ a 2+b 22(a ,b 都是正实数).[典例] 已知a ,b ,c ∈R ,a +b +c =1,求证:ab +ac +bc ≤1. [证明] ∵ab ≤a +b 2,bc ≤b +c 2,ac ≤a +c2, ∴ab +ac +bc ≤2(a +b +c )2=1. 故原不等式成立.二、忽视基本不等式的条件►逻辑推理 [典例] 设y =x +1x ,求y 的取值范围. [解析] 当x >0时,y =x +1x ≥2x ·1x =2.当且仅当x =1x ,即x =1时取“=”. 当x <0时,y =x +1x =-[(-x )+1-x ]∵(-x )+1-x≥2 ∴-[(-x )+1-x]≤-2. 当且仅当x =1x 时,即x =-1时取“=”.∴y的取值范围为{y|y≤-2或y≥2}.第二课时基本不等式与最大值、最小值内容标准学科素养1.熟练掌握基本不等式及变形的应用.逻辑推理、数学运算、数学建模2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题.授课提示:对应学生用书第22页[教材提炼]知识点基本不等式求最大值、最小值预习教材,思考问题(1)当x>0,y=x+1x的最小值是几?(2)当x>0,y>0,x+y=1,xy的最大值是几?知识梳理(1)用基本不等式求最值.①设x,y为正实数,若x+y=s(s为定值),则当x=y=s2时,积xy有最大值为s24.②设x,y为正实数,若xy=p(p为定值),则当x=y=p时,和x+y有最小值为2p.(2)基本不等式求最值的条件①x,y必须是正数.②求积xy的最大值时,应看和x+y是否为定值;求和x+y的最小值时,应看积xy是否为定值.③等号成立的条件是否满足.[自主检测]1.x 2+y 2=4,则xy 的最大值是( ) A.12 B .1 C .2 D .4答案:C2.已知-1≤x ≤1,则1-x 2的最大值为________. 答案:13.当x >1时,x +1x -1的最小值为________. 答案:3授课提示:对应学生用书第22页探究一 用基本不等式求最值[例1] [教材P 45例1探究拓展](1)若x >0,求函数y =x +4x 的最小值,并求此时x 的值; [解析] ∵x >0. ∴x +4x ≥2x ·4x =4当且仅当x =4x ,即x 2=4,x =2时取等号. ∴函数y =x +4x (x >0)在x =2时取得最小值4. (2)设0<x <32,求函数y =4x (3-2x )的最大值; [解析] ∵0<x <32,∴3-2x >0, ∴y =4x (3-2x )=2[2x (3-2x )] ≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92.当且仅当2x =3-2x ,即x =34时,等号成立. ∵34∈⎝ ⎛⎭⎪⎫0,32, ∴函数y =4x (3-2x )⎝ ⎛⎭⎪⎫0<x <32的最大值为92.(3)已知x >2,求x +4x -2的最小值; [解析] ∵x >2,∴x -2>0, ∴x +4x -2=x -2+4x -2+2 ≥2(x -2)·4x -2+2=6,当且仅当x -2=4x -2, 即x =4时,等号成立.∴x +4x -2的最小值为6. (4)已知x >0,y >0,且1x +9y =1,求x +y 的最小值. [解析] ∵x >0,y >0,1x +9y =1, ∴x +y =⎝ ⎛⎭⎪⎫1x +9y (x +y )=y x +9x y +10≥2y x ·9xy +10=6+10=16,当且仅当y x =9x y ,1x +9y =1, 即x =4,y =12时,上式取等号. 故当x =4,y =12时,(x +y )min =16.应用基本不等式的常用技巧(1)常值代替这种方法常用于“已知ax +by =m (a ,b ,x ,y 均为正数),求1x +1y 的最小值”和“已知a x +by =1(a ,b ,x ,y 均为正数),求x +y 的最小值”两类题型.(2)构造不等式当和与积同时出现在同一个等式中时,可利用基本不等式构造一个不等式从而求出和或积的取值范围.(3)利用基本不等式求最值的关键是获得定值条件,解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创设应用基本不等式的条件.设x>0,y>0,且2x+y=1,求1x+1y的最小值.解析:∵x>0,y>0,2x+y=1,∴1x+1y=2x+yx+2x+yy=3+yx+2xy≥3+2yx·2xy=3+22,当且仅当yx=2xy,即y=2x时,等号成立,解得x=1-22,y=2-1,∴当x=1-22,y=2-1时,1x+1y有最小值3+2 2.探究二基本不等式的实际应用[例2]如图,汽车行驶时,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们把这段距离叫做“刹车距离”.在某公路上,“刹车距离”s(米)与汽车车速v(米/秒)之间有经验公式:s=340v2+58v.为保证安全行驶,要求在这条公路上行驶着的两车之间保持的“安全距离”为“刹车距离”再加25米.现假设行驶在这条公路上的汽车的平均身长5米,每辆车均以相同的速度v行驶,并且每两辆车之间的间隔均是“安全距离”.(1)试写出经过观测点A的每辆车之间的时间间隔T与速度v的函数关系式;(2)问v为多少时,经过观测点A的车流量(即单位时间通过的汽车数量)最大?[解析](1)T=s+25+5v=3v240+5v8+30v=3v40+30v+58.(2)经过A点的车流量最大,即每辆车之间的时间间隔T最小.∵T=3v40+30v+58≥230v·3v40+58=298,当且仅当3v40=30v,即v=20时取等号.∴当v=20米/秒时,经过观测点A的车流量最大.利用基本不等式解决实际问题时,一般是先建立关于目标量的函数关系,再利用基本不等式求解目标函数的最大(小)值及取最大(小)值的条件.某公司一年需要一种计算机元件8 000个,每天需同样多的元件用于组装整机,该元件每年分n次进货.每次购买元件的数量均为x,购一次货需手续费500元.已购进而未使用的元件要付库存费,假设平均库存量为12x件,每个元件的库存费为每年2元,如果不计其他费用,请你帮公司计算,每年进货几次花费最小?解析:设每年购进8 000个元件的总花费为S,一年总库存费用为E,手续费为H,每年分n次进货,则x=8 000n,E=2×12×8 000n,H=500 n.所以S=E+H=2×12×8 000n+500n=8 000n+500n=500⎝⎛⎭⎪⎫16n+n≥4 000.当且仅当16n=n,即n=4时总费用最少,故以每年进货4次为宜.授课提示:对应学生用书第23页一、用基本不等式求最值的策略►逻辑推理、数学运算1.配凑以拼凑出和是定值或积是定值的形式为目标,根据代数式的结构特征,利用系数的变化或对常数的调整进行巧妙变形,注意做到等价变形.一般地,形如f(x) =ax+b+ecx+d的函数求最值时可以考虑配凑法.[典例]函数y=x2x+1(x>-1)的最小值为________.[解析]因为y=x2-1+1x+1=x-1+1x+1=x+1+1x+1-2,因为x>-1,所以x+1>0,所以y≥21-2=0,当且仅当x=0时,等号成立.[答案]02.常值代换利用“1”的代换构造积为定值的形式,一般形如“已知ax+by(或ax+by)为定值,求cx+dy(或cx+dy)的最值(其中a,b,c,d均为常参数)”时可用常值代换处理.[典例]若正数x,y满足3x+y=5xy,则4x+3y的最小值是() A.2B.3C.4 D.5[解析]由3x+y=5xy,得3x+yxy=3y+1x=5,所以4x+3y=(4x+3y)·15(3y+1x)=15(4+9+3yx+12xy)≥15(4+9+236)=5,当且仅当3yx=12xy,即y=2x时,等号成立,故4x+3y的最小值为5.[答案] D3.探究通过换元法使得问题的求解得到简化,从而将复杂问题化为熟悉的最值问题处理,然后利用常值代换及基本不等式求最值.[典例] 设x ,y 是正实数,且x +y =1,则x 2x +2+y 2y +1的最小值为________.[解析] 令x +2=m ,y +1=n ,则m +n =4,且m >2,n >1, 所以x 2x +2+y 2y +1=(m -2)2m +(n -1)2n=4m +1n -2=(4m +1n )(m 4+n4)-2 =m 4n +n m -34≥2m 4n ·n m -34=14,当且仅当⎩⎪⎨⎪⎧m 4n =n m,m +n =4即m =83,n =43时取等号.所以x 2x +2+y 2y +1的最小值为14.[答案] 14 4.减元当题中出现了三个变元,我们要利用题中所给的条件构建不等关系,并减元,在减元后应注意新元的取值范围.[典例] 已知x ,y ,z 均为正实数,且x -2y +3z =0,则y 2xz 的最小值为________. [解析] 由x -2y +3z =0得y =x +3z 2,所以y 2xz =x 2+9z 2+6xz 4xz =x 4z +9z 4x +32.又x ,z 均为正实数,所以x 4z >0,9z 4x >0,所以y 2xz =x 4z +9z 4x +32≥2x 4z ·9z 4x +32=3,当且仅当x 4z =9z4x 即x =3z 时取等号. 所以y 2xz 的最小值为3. [答案] 3二、忽视基本不等式的应用条件►逻辑推理、数学运算[典例] 已知一次函数mx +ny =-2过点(-1,-2)(m >0,n >0).则1m +1n 的最小值为( )A .3B .2 2 C.3+222D.3-222[解析] 由题意得m2+n =1,所以1m +1n =(1m +1n )(m 2+n )=32+m 2n +n m ≥32+212=3+222,当且仅当m 2n =n m 即m =2n 时取等号.故选C.[答案] C纠错心得 应用基本不等式求最值时,必须遵循“一正、二定、三相等”的顺序.本题中求出m2+n =1后,若采用两次基本不等式,有如下错解:m2+n =1≥2mn 2,所以mn ≤22,1mn ≥2,① 又1m +1n ≥21mn ,②所以1m +1n ≥2 2.选B.此错解中,①式取等号的条件是m 2=n ,②式取等号的条件是1m =1n 即m =n ,两式的等号不可能同时取得,所以22不是1m +1n 的最小值.2.3二次函数与一元二次方程、不等式(1)2.掌握图象法解一元二次不等式.逻辑推理、数学运算3.会对含参数的一元二次不等式分类讨论.授课提示:对应学生用书第24页[教材提炼]知识点一一元二次不等式的概念预习教材,思考问题我们知道,方程x2=1的一个解是x=1,解集是{1,-1},解集中的每一个元素均可使等式成立.那么什么是不等式x2>1的解?你能举出一个解吗?你能写出不等式x2>1的解集吗?知识梳理(1)一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式(quadric inequality in one unknown).一元二次不等式的一般形式是ax2+bx+c>0或ax2+bx+c<0,其中a,b,c均为常数,a≠0.(2)一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x 叫做二次函数y=ax2+bx+c的零点.即一元二次方程的根是相应一元二次函数的零点.知识点二二次函数与一元二次方程、不等式的解的对应关系预习教材,思考问题函数y=x2-1的零点与方程x2-1=0及不等式x2-1>0解之间有什么关系?知识梳理(1)Δ=b2-4ac Δ>0Δ=0Δ<0y=ax2+bx+c(a>0)的图象ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根(2)不等式ax 2+bx +c >0(a >0)的求解方法将原不等式化成ax 2+bx +c >0(a >0)的形式计算Δ=b 2-4ac 的值Δ>0方程ax 2+bx +c =0有两个不相等的实数根,解得x 1,x 2(x 1<x 2) Δ=0方程ax 2+bx +c =0有两个相等的实数根,解得x 1=x 2=-b2a原不等式的解集为{x |x ≠-b 2aΔ<0方程ax 2+bx +c =0没有实数根原不等式的解集为R[自主检测]1.不等式x>x2的解集是()A.{x|x>1}B.{x|x<0}C.{x|0<x<1} D.R答案:C2.不等式x2+6x+10<0的解集是()A.∅B.RC.{x|x>5} D.{x|x<2}答案:A3.二次方程ax2+bx+c=0的两根为-2,3,a<0,那么ax2+bx+c>0的解集为()A.{x|x>3或x<-2} B.{x|x>2或x<-3}C.{x|-2<x<3} D.{x|-3<x<2}答案:C4.不等式-x2+x-2<0的解集为________.答案:R授课提示:对应学生用书第25页探究一一元二次不等式的解法[例1]解下列不等式.(1)-x2+2x-23>0;(2)-12x2+3x-5>0;(3)4x2-18x+814≤0.[解析](1)两边都乘以-3,得3x2-6x+2<0,∵3>0,Δ=36-24=12>0,且方程3x2-6x+2=0的根是x1=1-33,x2=1+33.∴原不等式的解集是{x |1-33<x <1+33}. (2)不等式可化为x 2-6x +10<0, Δ=(-6)2-4×10=-4<0, ∴原不等式的解集为∅.(3)不等式可化为16x 2-72x +81≤0, 即(4x -9)2≤0,∵4x -9=0时,x =94.∴原不等式的解集为{x |x =94}.解一元二次不等式的一般步骤(1)通过对不等式变形,使二次项系数大于零; (2)计算对应方程的判别式;(3)求出相应的一元二次方程的根,或根据判别式说明方程没有实根; (4)根据函数图象与x 轴的相关位置写出不等式的解集.1.求不等式2x 2-3x -2≥0的解集.解析:∵2x 2-3x -2=0的两解为x 1=-12,x 2=2,且a =2>0, ∴不等式2x 2-3x -2≥0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-12,或x ≥2. 2.解不等式-x 2+2x -3>0. 解析:不等式可化为x 2-2x +3<0. 因为Δ=(-2)2-4×3=-8<0, 方程x 2-2x +3=0无实数解, 而y =x 2-2x +3的图象开口向上, 所以原不等式的解集是∅.探究二 含参数的一元二次不等式[例2] 解关于x 的不等式x 2-(a +a 2)x +a 3>0(a ∈R ). [解析] 原不等式可化为(x -a )(x -a 2)>0.当a <0时,a <a 2,原不等式的解集为{x |x <a ,或x >a 2}; 当a =0时,x 2>0,原不等式的解集为{x |x ≠0};当0<a <1时,a 2<a ,原不等式的解集为{x |x <a 2,或x >a }; 当a =1时,a 2=a ,原不等式的解集为{x |x ≠1};当a >1时,a <a 2,原不等式的解集为{x |x <a ,或x >a 2}. 综上所述:当a <0或a >1时,原不等式的解集为{x |x <a ,或x >a 2}; 当0<a <1时,原不等式的解集为{x |x <a 2,或x >a }; 当a =0时,解集为{x |x ≠0}; 当a =1时,解集为{x |x ≠1}.解含参数的不等式,可以按常规思路进行:先考虑开口方向,再考虑判别式的正负,最后考虑两根的大小关系,当遇到不确定因素时再讨论.将本例不等式变为:解关于x 的不等式ax 2-(a +1)x +1<0(a ∈R ,a >0). 解析:因为a >0,所以原不等式等价于⎝ ⎛⎭⎪⎫x -1a (x -1)<0.①当a =1时,1a =1,⎝ ⎛⎭⎪⎫x -1a (x -1)<0无解;②当a >1时,1a <1,解⎝ ⎛⎭⎪⎫x -1a (x -1)<0,得1a <x <1;③当0<a <1时,1a >1,解⎝ ⎛⎭⎪⎫x -1a (x -1)<0,得1<x <1a . 综上,a >1时,不等式的解集为{x |1a <x <1}; a =1时,不等式的解集为∅;0<a <1时,不等式的解集为{x |1<x <1a }. 探究三 三个二次之间的关系[例3] [教材P 52例1、例2的拓展探究] (1)已知解集求函数若不等式y =ax 2-x -c >0的解集为(-2,1),则函数的图象为( )[解析] 因为不等式的解集为(-2,1),所以a <0,排除C ,D ;又与坐标轴交点的横坐标为-2,1,故选B.[答案] B(2)已知方程的根或函数零点求不等式若函数y =x 2-ax +1有负数零点,则a 的范围为________. [解析] 有零点, ∴Δ=a 2-4≥0, ∴a ≥2或a ≤-2,∵f (0)=1,要使x 2-ax +1=0有负根,则对称轴x =a2<0,即a <0.∴a ≤-2. [答案] a ≤-2 (3)已知解集求不等式 已知x 2+px +q <0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,解关于x 的不等式qx 2+px +1>0.[解析]由已知得,x1=-12,x2=13是方程x2+px+q=0的根,∴-p=-12+13,q=-12×13,∴p=16,q=-16.∵不等式qx2+px+1>0,∴-16x2+16x+1>0,即x2-x-6<0,∴-2<x<3,故不等式qx2+px+1>0的解集为{x|-2<x<3}.应用三个“二次”之间的关系解题的思想一元二次不等式与其对应的函数与方程之间存在着密切的联系,即给出了一元二次不等式的解集,则可知不等式二次项系数的符号和相应一元二次方程的根.在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.授课提示:对应学生用书第26页分久必合——分类讨论思想解含参数不等式►逻辑推理含有参数的一元二次不等式,因为含有参数,便大大增加了问题的复杂程度.分类讨论是解决这类问题的主要方法,确定分类讨论的标准时,要着重处理好以下三点:(1)讨论的“时刻”,即在什么时候才开始进行讨论.要求转化必到位,过早或过晚讨论都会使问题更加复杂化.(2)讨论的“点”,即以哪个量为标准进行讨论.若把握不好这一类,问题就不能顺利解决.(3)考虑要周到,即讨论对象的各种情况都要加以分析,给出结论.1.讨论二次项系数型为主当二次项系数为字母时,首先要讨论二次项系数是否为0,若二次项系数为0,则该不等式变为一次不等式;若二次项系数不为0,解集则与二次项系数的正负相关.[典例]解关于x的不等式,ax2+(1-a)x-1>0.[解析]原不等式化为(x-1)(ax+1)>0(1)当a=0时,原不等式为x-1>0,∴x>1,(2)当a>0时,原不等式为(x-1)(x+1a)>0.两根为1与-1a且1>-1a,∴得x>1或x<-1 a;(3)当a<0时,原不等式化为(x-1)(x+1a)<0两根为1与-1 a,又∵当-1<a<0时,-1a>1,∴得1<x<-1 a.当a=-1时,不等式为(x-1)2<0,解集为∅,当a<-1时,-1a<1,∴得-1a<x<1.综上,当a>0时,解集为{x|x>1,或x<-1 a};当a=0时,解集为{x|x>1};当-1<a<0时,解集为{x|1<x<-1 a};当a=-1,解集为∅;当a<-1时,解集为{x|-1a<x<1}.规律总结解二次项含参数的一元二次不等式一定要对参数大于0,等于0和小于0展开讨论.2.讨论判别式型为主当二次不等式中有字母,且不易观察出所对应方程是否有实根,此时应对方程有无实根进行讨论.[典例] 解关于x 的不等式:2x 2+ax +2>0. [解析] Δ=a 2-16=(a -4)(a +4).(1)当a >4或a <-4时,Δ>0,方程2x 2+ax +2=0的两根为x 1=14(-a -a 2-16),x 2=14(-a +a 2-16). 原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <14(-a -a 2-16)或x >14(-a +a 2-16).(2)当a =±4时,Δ=0,方程只有一根x =-a4,∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ∈R 且x ≠-a4. (3)当-4<a <4时,Δ<0,方程无根,∴原不等式的解集为R . 规律总结若一元二次方程判别式符号不确定,应分Δ>0、Δ=0、Δ<0讨论. 3.讨论根的大小型为主当一元二次不等式中有字母,而导致根的大小不易区别时,应通过作差法,由根的大小确定字母范围.[典例] 解关于x 的不等式:x 2-2x +1-a 2≥0. [解析] 原不等式等价于(x -1-a )(x -1+a )≥0.①当a >0时,1+a >1-a ,所以原不等式的解集为{x |x ≥1+a ,或x ≤1-a }. ②当a =0时,原不等式的解集为全体实数R .③当a <0时,1-a >1+a ,原不等式的解集为{x |x ≥1-a ,或x ≤1+a }. 规律总结当不等式对应方程根的大小不确定时,必须讨论根的大小,以确定不等式的解集.在解关于含参数的一元二次不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑:(1)关于不等式类型的讨论:二次项系数a>0,a<0,a=0.(2)关于不等式对应的方程是否有根的讨论:二根(Δ>0),一根(Δ=0),无根(Δ<0).(3)关于不等式对应的方程根的大小的讨论:x1>x2,x1=x2,x1<x2.2.3二次函数与一元二次方程、不等式(2)内容标准学科素养1.会解简单的分式不等式.数学运算数学建模2.通过三个“二次间的关系”解简单一元二次不等式恒成立问题.3.能够从实际生活和生产中抽象出一元二次不等式的模型,并加以求解.授课提示:对应学生用书第27页[教材提炼]知识点一分式不等式的解法预习教材,思考问题不等式1x>1与x<1等价吗?1x>1的解集应是什么?知识梳理一般的分式不等式的同解变形法则(1)f(x)g(x)>0⇔f(x)·g(x)>0;(2)f(x)g(x)≤0⇔⎩⎨⎧f(x)·g(x)≤0,g(x)≠0;(3)f (x )g (x )≥a ⇔f (x )-ag (x )g (x )≥0. 知识点二 一元二次不等式ax 2+bx +c >0(a ≠0)恒成立问题 预习教材,思考问题(1)∀x ∈R ,x 2-c >0,c 取何值?(2)∀x ∈R ,ax 2+1>0,a 取何值? 知识梳理 一元二次不等式恒成立的情况: (1)ax 2+bx +c >0(a ≠0)恒成立⇔⎩⎨⎧ a >0Δ<0;(2)ax 2+bx +c ≤0(a ≠0)恒成立⇔⎩⎨⎧a <0Δ≤0.[自主检测]1.已知不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( ) A .-4≤a ≤4 B .-4<a <4 C .a ≤-4或a ≥4 D .a <-4或a >4答案:A2. 不等式1x >1的解集为________. 答案:{x |0<x <1}3.对∀x ∈R ,x 2-a >0恒成立,则a 的取值范围为________. 答案:a <04.要使x 2-4x +9有意义,则x 的取值集合为________. 答案:R授课提示:对应学生用书第28页探究一 解简单的分式不等式 [例1] 解不等式. (1)x +21-x<0;(2)x +1x -2≤2. [解析] (1)由x +21-x <0,得x +2x -1>0.此不等式等价于(x +2)(x -1)>0.∴原不等式的解集为{x |x <-2或x >1}. (2)法一:移项,得x +1x -2-2≤0,左边通分并化简,得-x +5x -2≤0,即x -5x -2≥0,它的同解不等式为⎩⎨⎧(x -2)(x -5)≥0,x -2≠0,∴x <2或x ≥5.原不等式的解集为{x |x <2或x ≥5}. 法二:原不等式可化为x -5x -2≥0.此不等式等价于⎩⎨⎧x -5≥0,x -2>0,①或⎩⎨⎧x -5≤0,x -2<0.② 解①,得x ≥5. 解②,得x <2.∴原不等式的解集为{x |x <2或x ≥5}.1.对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零.2.对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.解不等式 (1)x 2-x -6x -1>0;(2)2x -13-4x>1. 解析:(1)原不等式等价于⇔⎩⎨⎧ x 2-x -6>0x -1>0,或⎩⎨⎧x 2-x -6<0x -1<0. 解得x >3或-2<x <1.∴原不等式的解集为{x |x >3,或-2<x <1}.(2)原不等式可化为2x -13-4x -1>0,即3x -24x -3<0,等价于(3x -2)(4x -3)<0.∴23<x <34.∴原不等式的解集为⎩⎨⎧⎭⎬⎫x |23<x <34. 探究二 不等式恒成立问题[例2] [教材P 52例3拓展探究] (1)不等式x 2-2x +3>0的解集是什么?[解析] 由于x 2-2x +3=(x -1)2+2>0恒成立. ∴x ∈R .解集为R .(2)若不等式x 2+ax +3>0的解集为R ,求a 的范围. [解析] 设y =x 2+ax +3, 要使x 2+ax +3>0的解集为R∴Δ=a 2-4×3<0,解得-23<a <2 3.(3)若不等式ax 2+2ax +3>0的解集为R ,求a 的范围. [解析] 当a =0时,3>0,x ∈R . 当a >0时,Δ=4a 2-12a <0 ∴0<a <3.当a <0时,不成立. 综上,0≤a <3.对于一元二次型不等式恒成立,注意参数的讨论 ax 2+bx +c >0, ①a =0时,有c >0. ②⎩⎨⎧ a >0,Δ<0. ax 2+bx +c <0, ①a =0时,c <0. ②⎩⎨⎧a <0,Δ<0.探究三 一元二次不等式的实际应用[例3] 某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏.为了使这批台灯每天能获得400元以上的销售收入,应怎样制订这批台灯的销售价格?[解析] 设每盏台灯售价x 元,则x ≥15,并且日销售收入为x [30-2(x -15)]元,由题意知,当x ≥15时,有x [30-2(x -15)]>400,解得15≤x <20.所以为了使这批台灯每天获得400元以上的销售收入,应当制订这批台灯的销售价格控制在集合{x |15≤x <20}.用一元二次不等式解决实际问题的操作步骤(1)理解题意,搞清量与量之间的关系;(2)建立相应的不等关系,把实际问题抽象为数学中的一元二次不等式问题; (3)解这个一元二次不等式,得到实际问题的解.某电动车生产企业,上年度生产电动车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应的提高比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x 应在什么范围内?解析:(1)由题意,得y =[1.2×(1+0.75x )-1×(1+x )]×1 000×(1+0.6x )(0<x <1),整理得y =-60x 2+20x +200(0<x <1).(2)要保证本年度的年利润比上年度有所增加, 当且仅当⎩⎨⎧y -(1.2-1)×1 000>0,0<x <1,即⎩⎨⎧-60x 2+20x >0,0<x <1,解不等式,得0<x <13,所以为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足0<x <13.授课提示:对应学生用书第29页一、一元二次不等式有解问题►逻辑推理 直观想象 一元二次不等式的有解(能成立)问题不等式ax 2+bx +c >0(a ≠0)有解的条件为a >0,或⎩⎨⎧a <0,Δ=b 2-4ac >0;不等式ax 2+bx +c <0(a ≠0)有解的条件为a <0,或⎩⎨⎧a >0,Δ=b 2-4ac >0. [典例] 若不等式x 2-ax +4<0有负数解,求a 的范围. [解析] 设y =x 2-ax +4,其抛物线开口向上,过定点(0,4).。

人教A版2019高一数学必修1第一学期第二章2.1等式性质与不等式性质

人教A版2019高一数学必修1第一学期第二章2.1等式性质与不等式性质
解:
如图,设C是直线AB外的任意一点,CD⊥AB于点D,E是直线AB上不同于D的任意一点,连接线段CE,则CD<CE.
知识讲解
知识讲解
问题2:你能用不等式表示并解决下面的问题吗?
某种杂志原以每本2.5元的价格销售,可以售出8万本,据市场调查,杂志的单价每提高0.1元,销售就可能减少2000本. 如何定价才能使提价后的销售总收入不低于20万?
你能计算出n在哪个范围内变化吗?
两个实数a,b,其大小关系有三种可能,即a>b,a=b,a<b.
若a-b>0,则______;
若a-b=0,则______;
若a-b<0,则______.

0
实数大小关系的基本事实
a>b
a=b
a<b
反过来也对。这样,我们就得到了不等式的基本原理
a - b > 0 <=> a > ba - b = 0 <=> a = ba - b < 0 <=> a < b
教学目标
教学重点:会用比较法比较两实数的大小.
教学难点:会用不等式(组)表示实际问题中的不等关系.
情境导入
在现实世界和日常生活中,大量存在着相等关系和不等关系,例如多与少、大与小、长与短、高与矮、远与近、快与慢、涨与跌、轻与重、不超过或不少于等,类似于这样的问题,反映在数量关系上,就是相等与不等,相等用等式表示,不等用不等式表示.
分析:若杂志的定价为x元,则销售量减少:
因此,销售总收入为:
用不等式表示为:
知识讲解Βιβλιοθήκη 3知识讲解变式:如果设杂志的单价提高了0.1n元(n∈N*),如何用不等式表示销售的总收入仍不低于20万元呢?

新教材高中数学第二章一元二次函数方程和不等式1第1课时不等关系与比较大形件新人教A版必修第一册ppt

新教材高中数学第二章一元二次函数方程和不等式1第1课时不等关系与比较大形件新人教A版必修第一册ppt
(a2 2a 15) (a2 2a 8) 7,
所以 (a 3)(a 5) (a 2)(a 4) <0, 所以 (a 3)(a 5) (a 2)(a 4).
证明:
例 已知 a ,b ,m 都是正数,且 a b ,求证: b m b .
am a
因为 b m b (b m)a (a m)b
【解析】(x2-x)-(x-2)=x2-2x+2 =(x-1)2+1,
因为(x-1)2≥0,
作差,变
形,判断
所以(x2-x)-(x-2)>0,
因此x2-x > x-2.
5.某人为自己制定的月支出计划中,规定手机费不超 过150元,他所选用的中国电信卡的收费标准为:
名称
月租费
中国电信卡 30元
每分钟通话费 0.40元
抽象 概括
刻画
数学问题:不等式
【即时练习】 写出满足下列条件的不等式: (1)今天的天气预报说:明天早晨的最低温度为 7 ℃,明天白天的最高温度为13 ℃.
7 ℃≤t≤13 ℃
(2)某公路立交桥对通过车辆的 高度h“限高5m”.
h 5m
微课2 作差法比较两个实数大小
关于实数a,b大小的比较,有以下事实:
求这个人月通话时间的取值范围.
【解析】设月通话时间为x分钟, 由30+0.4x≤150,解得x≤300.
逆境是成长必经的过程,能勇于接受 逆境的人,生命就会日渐的茁壮。
3.某高速公路对行驶的各种车辆的最大限速为120km/h. 行驶过程中,同一车道上的车间距d不得小于10 m,用不 等式表示为( B )
A.v≤120 (km/h)或 d≥10 (m) v≤120 km/h

2019新版高中数学必修一第二章 第1节 等式与不等式性质

2019新版高中数学必修一第二章  第1节  等式与不等式性质

练习:(1)若 x≠-2 且 y≠1,则 M=x2+y2+4x-2y 的值与-5 的大小关系是( )
A.M>-5
B.M<-5
C.M≥-5
D.M≤-5
解析:选 A M-(-5)=x2+y2+4x-2y+5=(x+2)2+(y-1)2,
∵x≠-2,y≠1,∴(x+2)2>0,(y-1)2>0,因此(x+2)2+(y-1)2>0.故 M>-5.
比较两个实数a,b大小的依据
例 2:比较下列各组中两个代数式的大小: (1)x2+3 与 2x; (2)已知 a,b 为正数,且 a≠b,比较 a3+b3 与 a2b+ab2 的大小.
解:(1)(x2+3)-2x=x2-2x+3=(x-1)2+2≥2>0,∴x2+3>2x.
(2)(a3+b3)-(a2b+ab2)=a3+b3-a2b-ab2=a2(a-b)-b2(a-b)=(a-b)(a2-b2) =(a-b)2(a+b),∵a>0,b>0,且 a≠b,∴(a-b)2>0,a+b>0. ∴(a3+b3)-(a2b+ab2)>0,即 a3+b3>a2b+ab2.
分,体育成绩 z 超过 45 分,用不等式(组)表示就是( )
x≥95 A.y≥380
z>45
x≥95 B.y>380
z≥45
x>95 C.y>380
z>45
x≥95 D.y>380
z>45
解析:选 D 由题中 x 不低于 95 即 x≥95,y 高于 380 即 y>380,z 超过 45 即 z>45.
例 5:(多选)对于任意实数 a,b,c,d,则下列命题正确的是( )
A.若 a+d
C.若 a>b,c>d,则 ac>bd

(2019)新版高中数学必修一第二章 一元二次函数、方程和不等式 基本不等式第1课时

(2019)新版高中数学必修一第二章  一元二次函数、方程和不等式  基本不等式第1课时

(2019新版)高中数学人教A版必修一第二章一元二次函数、方程和不等式2.2 基本不等式(一)例1:(1)已知x>0,则的最小值为()A.3B.C.3D.2解:因为x>0,所以=2,当且仅当3x=即x=时取等号,故选:D.(2)已知m>0,n>0,且mn=2,则2m+n的最小值为()A.4 B.5 C.D.解:根据题意,若mn=2,则n=,则2m+n=2m+=2(m+)≥2(2)=4,当且仅当m=1时等号成立;故选:A.练习:(1)函数取得最小值时,x的值为()A.B.C.1 D.2解:∵x>0,∴x+≥2=1,当且仅当x=时取等号,此时x=,故选:B.(2)若正实数a,b满足ab=10,则+的最小值为()A.B.2C.D.2解:因为正实数a,b满足ab=10,所以+≥2=2,当且仅当且ab=10即b=5,a=2时取等号,故选:D.作业:1.(1)已知x>0,则x+﹣1的最小值是()A.4 B.3 C.2 D.1解:∵x>0,∴x+﹣1=3,当且仅当x=2时取等号.x+﹣1的最小值为3.故选B.(2)若正实数a,b满足ab=32,则2a+b的最小值为.解:∵正实数a,b满足ab=32,∴2a+b=16,当且仅当2a=b=8时取等号.∴2a+b的最小值为16.故答案为:16.例2:函数y=2﹣3x﹣(x>0)的最值情况是()A.有最小值2﹣4B.有最大值2﹣4C.有最小值2+4D.有最大值2+4解:∵x>0,∴≥2=4.当且仅当x=时取等号.∴y≤2﹣4,即函数y=2﹣3x﹣(x>0)有最大值2﹣4,而无最小值.故选:B.练习:(1)若﹣4<x<1,则的()A.有最小值2B.有最大值2C.有最小值﹣2D.有最大值﹣2解:因为﹣4<x<1,所以x﹣1<0,则x﹣1+=﹣(1﹣x+)=﹣2,当且仅当1﹣x=即x=0时取等号,此时取得最大值﹣2.故选:D.(2)函数y=x+(x≥1)的最小值是()A.5B.4C.3D.2解:y=x+==3,当且仅当即x=2时取等号,此时取得最小值3.故选:C.作业:2.已知x<0,则函数有()A.最小值6B.最大值6C.最小值﹣2D.最大值﹣2解:∵x<0,∴=2+(﹣x)+(﹣)=6当且仅当﹣x=﹣即x=﹣2时取等号,故函数的最小值为6故选:A.例3:(1)已知x>﹣2,则x+的最小值为()A.﹣B.﹣1 C.2 D.0解:∵x>﹣2,则x+=x+2+﹣2≥﹣2=0,当且仅当x=﹣1时取等号.∴x+的最小值为0.故选:D.(2)函数y=2x+(x>1)的最小值是()A.4B.2﹣2C.2+2D.2解:∵x>1,∴x﹣1>0,∴y=2x+=2(x﹣1)++2≥2+2,当且仅当x=1+时取“=“,即y min=2+2,故选:C.练习:已知x>2,则函数的最小值为()A.B.C.2D.解:∵x>2,∴2x﹣4>0,=(2x﹣4)++2≥2+2=2+,当且仅当(2x﹣4)=时取得最小值2+.故选:A.即函数f(x)有最小值7.故选:B.作业:3.(1)已知函数f(x)=x+(x>1),则()A.f(x)的最大值为2 B.f(x)的最大值为3C.f(x)的最小值为2 D.f(x)的最小值为3解:函数f(x)=x+=(x﹣1)++1,当x>1时,x﹣1>0,∴(x﹣1)+≥2=2,当且仅当x﹣1=,即x=2时取“=”,∴f(x)的最小值为2+1=3.故选:D.(2)若x>1,则的最小值为()A.4B.9C.6D.8解:由x>1可得x﹣1>0,则=4(x﹣1)++4+4=8,当且仅当4(x﹣1)=即x=时取等号,此时取得最小值8.故选:D.例4:(1)已知m>0,n>0,2m+n=1,则+的最小值为()A.4 B.2C.8 D.16解:∵m>0,n>0,2m+n=1,则+=(2m+n)=4+≥4+2=8,当且仅当n=2m=时取等号.故选:C.(2)若a,b为正实数,且,则3a+b的最小值为()A.2B.C.3D.4解:,当且仅当=时,即a=,b=1时,取得最小值2,故选:A.练习:(1)已知a,b∈R+,2a+b=2,则的最小值为()A.B.C.D.解:由a,b∈R+,2a+b=2,∴,(当且仅当即,时取等号),故则的最小值为+1,故选:B.(2)已知x>0,y>0且x+y=4,若不等式+≥m恒成立,则m的取值范围是()A.{m|m>}B.{m|m≥}C.{m|m<}D.{m|m≤}解:x>0,y>0且x+y=4,则:,那么(+)()=+1≥=,当且仅当2x=y=时取等号.∴+的最小值为.要使不等式+≥m恒成立,∴m.故选D.作业:4.(1)若a>0,b>0且直线ax+by﹣2=0过点P(2,1),则的最小值为()A.B.4 C.D.6解:由已知直线ax+by﹣2=0过点P(2,1),得到2a+b=2,a>0,b>0,所以()(a+)=2+≥2+2=4,当且仅当b=2a时,等号成立;故选:B.(2)x >0,y >0且满足x +y =6,则使不等式+≥m 恒成立的实数m 的取值范围为 .解:∵x >0,y >0,x +y =6,∴+=×(x +y )×(+)=×(10)≥×(10+2)==,当且仅当y =3x 时取等号.∴(+)min =不等式(+)≥m 恒成立时,m ,∴实数m 的取值范围是(﹣∞,].例5:(1)如果a +b=1,那么ab 的最大值是( ) A . B . C . D .1解:由于求ab 的最大值,只考虑a ,b >0时即可.∵a +b=1,∴,解得ab ≤,当且仅当a=b=时取等号.那么ab 的最大值是.故选:B . (2)已知a >0,b >0,且满足=1,则ab 的最大值是( )A .2B .3C .4D .6 解:∵a >0,b >0,且满足=1,∴1≥,化为:ab ≤3,当且仅当a=,b=2时取等号.则ab 的最大值是3.故选:B .练习:(1)已知0<x <1,则x (3﹣3x )取最大值时x 的值为( ) A . B . C . D . 解:∵0<x <1,∴x (3﹣3x )=3x (1﹣x )=,当且仅当x=时取等号.∴x (3﹣3x )取最大值时x 的值为,故选:B . (2)已知x >0,y >0,且2x +3y =6,求xy 的最大值.解:∵x >0,y >0,2x +3y =6,∴xy =16(2x ·3y )≤16·⎝ ⎛⎭⎪⎫2x +3y 22=16·⎝⎛⎭⎫622=32, 当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32.作业: 5.(1)已知,则函数y=x (1﹣2x )的最大值是( ) A . B .C .D .没有最大值解:∵,∴函数y=x (1﹣2x )=•2x (1﹣2x )≤=.当且仅当x=时取等号.∴函数y=x (1﹣2x )的最大值是.故选:A . (2)已知m ,n >0,且m +n =16,求12mn 的最大值.解:∵m ,n >0且m +n =16,所以由基本不等式可得mn ≤⎝ ⎛⎭⎪⎫m +n 22=⎝⎛⎭⎫1622=64, 当且仅当m =n =8时,mn 取到最大值64.∴12mn 的最大值为32.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微专题1 基本不等式的应用技巧
在解答基本不等式的问题时,常常会用加项、凑项、常数的代换、代换换元等技巧,而且在通常情况下往往会考查这些知识的嵌套使用.
一、加项变换
例1 已知关于x 的不等式x +1x -a
≥7在x >a 上恒成立,则实数a 的最小值为________. 答案 5
解析 ∵x >a ,
∴x -a >0,
∴x +1x -a =(x -a )+1x -a
+a ≥2+a , 当且仅当x =a +1时,等号成立,
∴2+a ≥7,即a ≥5.
反思感悟 加上一个数或减去一个数使和(积)为定值,然后利用基本不等式求解.
二、平方后使用基本不等式
例2 若x >0,y >0,且
2x 2+y 23=8,则x 6+2y 2的最大值为________. 答案 92
3 解析 (x 6+2y 2)2=x 2(6+2y 2)=3·2x 2
⎝⎛⎭⎫1+y 23 ≤3·⎝ ⎛⎭
⎪⎫2x 2+1+y 2322=3×⎝⎛⎭⎫922. 当且仅当
2x 2=1+y 23,即x =32,y =422时,等号成立. 故x 6+2y 2的最大值为92
3. 三、展开后求最值
例3 若a ,b 是正数,则⎝⎛⎭⎫1+b a ⎝
⎛⎭⎫1+4a b 的最小值为( ) A .7 B .8 C .9 D .10
答案 C
解析 ∵a ,b 是正数,
∴⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =1+4a b +b a +4=5+4a b +b a
≥5+24a b ·b a
=5+4=9, 当且仅当b =2a 时取“=”.
四、常数代换法求最值
例4 已知x ,y 是正数且x +y =1,则4x +2+1y +1的最小值为( ) A.1315 B.94
C .2
D .3 答案 B
解析 由x +y =1得(x +2)+(y +1)=4,
即14
[(x +2)+(y +1)]=1, ∴4x +2+1y +1=⎝ ⎛⎭⎪⎫4x +2+1y +1·14
[(x +2)+(y +1)] =14⎣⎢⎡⎦
⎥⎤4+1+4(y +1)x +2+x +2y +1 ≥14(5+4)=94
, 当且仅当x =23,y =13
时“=”成立,故选B. 反思感悟 通过常数“1”的代换,把求解目标化为可以使用基本不等式求最值的式子,达到解题的目的.
五、代换减元求最值
例5 若实数x ,y 满足xy +3x =3⎝⎛⎭⎫0<x <12,则3x +1y -3
的最小值为________. 答案 8
解析 ∵实数x ,y 满足xy +3x =3⎝⎛⎭⎫0<x <12, ∴x =3y +3,∴0<3y +3<12
,解得y >3. 则3x +1y -3=y +3+1y -3=y -3+1y -3+6≥2(y -3)·1y -3
+6=8,当且仅当y =4,x =37时
取等号.
反思感悟 在解含有两个以上变元的最值问题时,通过代换的方法减少变元,把问题化为两个或一个变元的问题,再使用基本不等式求解.
六、建立求解目标不等式求最值
例6 已知a ,b 是正数,且(a +b )(a +2b )+a +b =9,则3a +4b 的最小值等于________. 答案 62-1
解析 a ,b 是正数,且(a +b )(a +2b )+a +b =9,
即有(a +b )(a +2b +1)=9,
即(2a +2b )(a +2b +1)=18,
可得3a +4b +1=(2a +2b )+(a +2b +1)
≥2(2a +2b )(a +2b +1)=62,
当且仅当2a +2b =a +2b +1时,上式取得等号,
即有3a +4b 的最小值为62-1.
例7 已知a >0,b >0,且a +b +1a +1b =5,则a +b 的取值范围是(
) A .1≤a +b ≤4 B .a +b ≥2
C .1<a +b <4
D .a +b >4
答案 A
解析 ∵a +b +1a +1b =5,
∴a +b +a +b ab =5.
∵a >0,b >0,ab ≤⎝ ⎛⎭⎪⎫
a +
b 22,
∴1ab ≥4
(a +b )2,
∴a +b +a +b ab ≥a +b +4
a +
b ,
∴a +b +4
a +
b ≤5,
即(a +b )2-5(a +b )+4≤0,
∴(a+b-4)(a+b-1)≤0,
即1≤a+b≤4,
时,左边等号成立,
当a=b=1
2
当a=b=2时,右边等号成立,故选A.
反思感悟利用基本不等式与已知条件建立求解目标的不等式,求出不等式的解集即得求解目标的最值.。

相关文档
最新文档