高中数学人教A版(2019)必修第一册第四章4.2《指数函数 》教 案
人教A版(2019)高中数学必修第一册4.2.1指数函数的概念教学设计

比较两地景区游客人次的变化情况,你发现了怎样的变化规律?追问:(1)能否作出A,B两地景区游客人次变化的图象,根据图象并结合年增加量,说明两地景区游客人次的变化情况?(2)我们发现,用“增加量”不能刻画B地景区人次的变化规律。
能不能换一个量来刻画?例如用“增长率”,即从2002年起,将B地景区每年的游客人次除以上一年的游客人次,看看能否发现什么规律?(3)能否求出两地景区游客人次随时间(经过的年数)变化的函数解析式,并根据解析式说明两地景区游客人次的变化情况?师生活动:教师给出问题,并通过追问引导学生对问题进行分析.首先通过画出图象直观感受A,B两地景区游客增长的情况;为进一步刻画和比较两地游客人次的变化规律,需要通过对相邻两年游客人次进行运算,从而得到B地景区游客人次年增长率为常数,进而将其用函数y=(x∈[0,+∞)描述.设计意图:通过刻画A,B两地景区游客人次增加的问题,引出用函数刻画指数增长的问题,为抽象得到指数函数做准备.问题2:当生物死亡后,它机体内原有的碳14含量会按确定的衰减比率(简称为衰减率)衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.按照上述变化规律,生物体内碳14含量与死亡年数之间有怎样的关系?追问:(1)能否求出生物体内碳14含量随死亡年数变化的函数解析式?(2)生物死亡后体内碳14含量每年衰减的比例是多少?师生活动:教师提出问题,并让学生类比问题1对提出的问题进行思考.通过对问题的分析,引导学生用函数(x∈[0,+∞))刻画碳14衰减的规律.设计意图:通过刻画碳14衰减的问题,引出用函数刻画指数衰减的问题,为抽象得到指数函数做准备.问题3:比较问题1,2中的两个实例:B地景区游客人次增长与碳14衰减,它们所描述的变化规律有什么共同特征?(3)B地景区游客人次增长的函数解析式y=与碳14衰减的函数解析式有什么共同特征?师生活动:教师引导学生从数据、图象、解析式等角度进行归纳概括,发现刻画问题1中的指数增长和问题2中的指数衰减的函数的共同特征.从解析式上来看,如果用字母a代替底数 1.11和,那么上述函数y=和就都可以表示为的形式,其中指数x是自变量,底数a是一个大于0且不等于1的常量.从而引出指数函数的概念:一般地,函数(a>0,且a≠1)叫做指数函数,其中指数x是自变量,定义域是R.并指出,指数函数中,当x∈N时,函数y=(a>1)还可以表示为,其中p(p>0)表示增长率;函数y=(0,其中p(p>0)表示衰减率.因此,指数函数是刻画呈指数增长或指数衰减变化规律的函数模型.例1:已知函数f(x)=(a>0,且a≠1),且f(3)=e,求f(0),f(1),f(-3)的值.师生活动:教师引导学生,要求出f(0),f(1),f(-3)的值,应先求出f(x)=的解析式,即先求a的值.而已知f(3)=e,可由此求出a的值.。
高中数学人教A版(2019)必修第一册:4.2.2 指数函数的图像和性质 教案

第四章 指数函数与对数函数4.2 指数函数4.2.2 指数函数的图像和性质教学设计一、教学目标1.运用描点法画指数函数的图象,用图象来研究指数函数的性质,达到直观想象和数学抽象核心素养学业质量水平一的层次.2.结合实例,体会从一般到特殊研究问题的方法,达到逻辑推理核心素养学业质量水平二的层次.3.能通过数形结合,解决定点、单调性等问题,达到直观想象和逻辑推理核心素养学业质量水平二的层次. 二、教学重难点 1.教学重点指数形式的函数的图象、性质的应用. 2.教学难点指数函数性质的归纳、概括及其实际应用. 三、教学过程 (一)新课导入复习指数函数的概念.一般的,函数( 0,1)xa a >≠且y=a 叫做指数函数,其中指数x 是自变量,定义域为R . 思考:指数函数对于底数的要求是什么?为什么要这样要求?0﹤a <1和a >1时的性质有什么不同呢?学生复习回顾指数函数的概念,明确对底数a 的限制条件.下面我们进一步研究指数函数.首先画出指数函数的图象,然后借助图象研究指数函数的性质.教师引导学生画出2xy =的图像,请同学们完成x ,y 的对应值表4.2-2,并用描点法画出函数2xy =的图像(图4.2-4).为了得到指数函数( 0,1)xa a >≠且y=a 的性质,我们还需要画出更多的具体指数函数的图像进行观察. (二)探索新知 探究一:指数函数的图像教师提问:画出函数1()2x y =的图象,并与函数2xy =的图象进行比较,它们有什么关系?能否利用函数2xy =的图象,画出函数1()2xy =的图象? 学生思考,教师引导学生画出图像.因为1()2x y ==-2x ,点(x ,y )与点(-x ,y )关于y 轴对称,所以函数2xy =图象上任意一点P (x ,y )关于y 轴的对称点P 1(-x ,y )都在函数1()2xy =的图象上,反之亦然. 由此可知,底数互为倒数的两个指数函数的图象关于y 轴对称.根据这种对称性,就可以利用一个函数的图象,画出另一个函数的图象,比如利用函数2xy =的图象,画出1()2xy =的图象(图4.2-5).探究二:指数函数的图像的性质教师提问:选取底数a (a >0,且a ≠1)的若干个不同的值,在同一直角坐标系内画出相应的指数函数的图象.观察这些图象的位置、公共点和变化趋势,它们有哪些共性?由此你能概括出指数函数( 0,1)xa a >≠且y=a 的值域和性质吗?教师总结,如图4.2-6,选取底数a 的若干值,用信息技术画图,发现指数函数y =a x 的图象按底数a 的取值,可分为0<a <1和a >1两种类型.因此,指数函数的性质也可以分0<a <1和a >1两种情况进行研究.一般地,指数函数的图象和性质如表4.2-3所示.探究三:指数函数的性质应用 例1:比较下列各题中两个值的大小. (1) 2.531.7,1.7;(2) 230.8--(3) 0.33.11.7,0.9.教师让学生完成例题,要求尽可能使用多种方法求解,看看哪种方法最简便,实用性最强.学生思考讨论 教师总结方法:分析:对于(1)(2),要比较的两个值可以看作一个指数函数的两个函数值,因此可以直接利用指数函数的单调性进行比较;对于(3),0.31.7和 3.10.9不能看作某一个指数函数的两个函数值,可以利用函数y=1.7x 和y=0.9x的单调性,以及“x=0时,y =1”这条性质把它们联系起来.解:(1) 2.51.7和31.7可以看作函数 1.7xy =当x 分别取2.5和3时所对应的两个函数值,因为底数1.7大于1,所以指数函数 1.7x y =为增函数,又因为2.5小于3,所以 2.531.7<1.7;(2)同理,因为0﹤0.8﹤1,所以指数函数0.8xy =是减函数.因为—2<3-,所以230.8<0.8--.(3)由指数函数的性质可知,0.303.101.7>1.71,0.9<0.91==,所以0.3 3.11.7<0.9.例2:如图4.2-7.某城市人口呈指数增长.(1)根据图象,估计该城市人口每翻一番所需的时间(倍增期); (2)该城市人口从80万人开始,经过20年会增长到多少万人?分析:(1)因为该城市人口呈指数增长,而同指数函数的倍增期是相同的,所以可以从图象中选取适当的点计算倍增期.(2)要计算20年后的人口数,关键是要找到20年与倍增期的数量关系.解:(1)观察图4.2-7.发现该城市人口经过20年约为10万人,经过40年约为20万人,即由10万人口增加到20万人口所用的时间约为20年,所以该城市人口每翻一-番所需的时间约为20年.(2)因为倍增期为20年,所以每经过20年,人口将翻一番.因此,从80万人开始,经过20年,该城市人口大约会增长到160万人.教师讲解:例2是针对指数函数的实际应用题,体现了指数函数与实际生活紧密结合的特点,使学生学习“有用的数学”. (三)课堂练习1.在同一直角坐标系中画出函数3xy =和1()3xy =的图像,并说明它们的关系. 2.比较下列各题中两个值的大小. (1) (2) 3.52.30.3,0.3--;(3)0.51.21.2,0.5. (四)小结作业 小结:本节课我们主要学习了哪些内容? 1.指数函数的图像和性质; 2.指数函数图像性质的应用. 四、板书设计1.复习指数函数的概念;2.指数函数的图像与性质;3.指数型函数的应用.。
高中数学人教A版(2019)必修第一册 4 函数的零点与方程的解(教案)

第四章 指数函数与对数函数4.5.1 函数的零点与方程的解教学设计一、教学目标1.结合函数图象,了解函数的零点与方程的解的关系.2.理解零点存在性定理,了解函数图象连续不断的意义及作用.3.能利用函数图象和性质判断某些函数的零点个数及所在区间.二、教学重难点1、教学重点零点存在性定理.2、教学难点函数的零点与方程的解的关系.三、教学过程1、新课导入我们已经学习了用二次函数的观点认识一元二次方程,知道一元二次方程的实数根就是相应二次函数的零点.不能用公式求解的方程,是否也能采用类似的方法,用相应的函数研究它的解的情况呢?这节课我们就来学习一下函数的零点与方程的解.2、探索新知知识点1 函数的零点对于一般函数()y f x =,使()0f x =的实数x 叫做函数()y f x =的零点.知识点2 方程、函数、图象之间的关系方程()0f x =有实数根⇔函数()y f x =有零点⇔函数()y f x =的图象与x 轴有交点.知识点3 函数零点存在定理如果函数()y f x =在区间[]a b ,上的图象是一条连续不断的曲线,且有()()0f a f b <,那么,函数()y f x =在区间()a b ,内至少有一个零点,即存在()c a b ∈,,使得()0f c =,这个c 也就是方程()0f x =的解.例题点拨例 求方程ln 260x x +-=的实数解的个数.分析:可以先借助计算工具画出函数ln 26y x x =+-的图象或列出x ,y 的对应值表,为观察、判断零点所在区间提供帮助.解:设函数()ln 26f x x x =+-,利用计算工具,列出函数()y f x =的对应值表如下表,并画出图象如图.xy 1-4 2-1.3069 31.0986 43.3863 55.6094 67.7918 79.9459 812.0794 9 14.1972由表和图可知,(2)0f <,(3)0f >,则(2)(3)0f f <.由函数零点存在定理可知,函数()ln 26f x x x =+-在区间(23),内至少有一个零点.容易证明,函数()ln 26f x x x =+-,(0)x ∈+∞,是增函数,所以它只有一个零点,即相应方程ln 260x x +-=只有一个实数解.3、课堂练习1.已知函数221,1()1log ,1x x f x x x ⎧-≤=⎨+>⎩,则函数()f x 的零点为( ) A.12,0 B.-2,0 C.12 D.0答案:D解析:当1x ≤时,令210x -=,得0x =;当1x >时,令21log 0x +=,得12x =(舍去).综上所述,函数()f x 的零点为0.故选D. 2.已知函数e ,0()ln ,0x x f x x x ⎧≤=⎨>⎩,()()g x f x x a =++.若()g x 存在2个零点,则a 的取值范围是( )A.[1,0)-B.[0,)+∞C.[1,)-+∞D.[1,)+∞答案:C解析:函数()()g x f x x a =++存在2个零点,即关于x 的方程()f x x a =--有2个不同的实根,即函数f x ()的图象与直线y x a =--有2个交点,作出直线y x a =--与函数f x ()的图象,如图所示,由图可知,1a -≤,解得1a ≥-,故选C.3.已知函数2121,1()log ,1x x f x x x ⎧-<⎪=⎨≥⎪⎩,若关于x 的方程()f x k =有三个不同的实根,则实数k 的取值范围是____________.答案:(1,0)-解析:关于x 的方程()f x k =有三个不同的实根,等价于函数()y f x =与函数y k =的图象有三个不同的交点,作出两函数的图象,如图所示,由图可知实数k 的取值范围是(1,0)-.4、小结作业小结:本节课学习了函数的零点与方程的解的关系以及零点存在性定理. 作业:完成本节课课后习题.四、板书设计4.5.1 函数的零点与方程的解1.函数的零点:对于一般函数()y f x =,使()0f x =的实数x 叫做函数()y f x =的零点.2.方程、函数、图象之间的关系:方程()0f x =有实数根⇔函数()y f x =有零点⇔函数()y f x =的图象与x 轴有交点.3.函数零点存在定理:如果函数()y f x =在区间[]a b ,上的图象是一条连续不断的曲线,且有()()0f a f b <,那么,函数()y f x =在区间()a b ,内至少有一个零点,即存在()c a b ∈,,使得()0f c =,这个c 也就是方程()0f x =的解.。
4.2 指数函数(共2课时课件)(人教A版2019高一数学必修第一册)

第四章 指数函数与对数函数
4.2.2 指数函数的图象与性质
高中数学/人教A版/必修一
……
4.2.2 指数函数的图象与性质
思维篇
素养篇
知识篇
让我们回顾一下前面研究幂函数性质的过程和
方法:
定义域?
值
图象
域?
单调性?
奇偶性?
过定点?
1 指数函数的图象
首先画出指数函数的图象,然后借助图象研究指数函
令x=0.5n, 则n=2x
所以f(x)=3×4x
方法总结:连续两项数值之比为常数,可通过连乘得
到指数增长(衰减)模型.
课堂小结
一、本节课学习的新知识
指数函数的概念
指数增长(衰减)模型
课堂小结
二、本节课提升的核心素养
数学抽象
数学建模
数据分析
课堂小结
三、本节课训练的数学思想方法
转化与化归
方程思想
观察表格中的数据
比较两地景区游客人次每
年的变化情况
发现了怎样的变化规律?
时间/
A地景区
年份 人次/
B地景区
2001
2002
万次
600
609
人次/
万次
278
309
2003
620
344
2004
631
383
2005
641
427
2006
650
475
2007
2008
661
671
528
588
2009
681
655
范围是
答案:(1)4
.
(2)(3,4)∪(4,+∞)
4.2.1指数函数概念 教案-高中数学人教A版(2019)必修第一册

《4.2.1 指数函数的概念》教学设计教材内容:指数函数是在学生在初中学习了一次函数模型、二次函数模型、反比例函数模型等基础上要学习的一种具体的函数模型。
因此,学习指数函数模型的过程可借鉴初中学习一次函数模型等的学习过程。
本节课要学习的指数函数的概念上承初中函数学习基础,下接即将要学习的函数性质,体现了数学教学中类比的数学思想。
教学目标:1.通过实际问题提炼出指数函数的概念,达到数学抽象和直观想象核心素养的层次.2.理解指数函数中底数的取值范围,达到逻辑推理核心素养的要求.教学重点与难点:1、教学重点:理解指数函数的概念与意义,掌握指数函数的定义。
2、教学难点:将实际问题转化为数学模型,理解指数函数增长变化的特点。
教法学法1、教法分析:根据本节课的教学目标并结合教学内容的特点,课堂教学以讲授法为主,穿插恰当的师生互动,发散学生思维,引发学生思考.在引入环节利用直观教具,增加课堂的趣味性.2、学法指导:学生在学习过程中要. 学生在学习过程中要认真听讲、积极思考并适当做笔记;在师生互动环节要积极参与;深入体会“数形结合”、“分类讨论”的思想教学过程:(一)知识复习1.对于幂a x (a >0)的运算, 指数x 的范围是_______2.通过函数性质的学习和对幂函数的研究,我们了解了研究函数的一般方法___________(二)新课导入引例1.某企业响应政府号召,积极引进新科技,增加产量,提高效益。
现计划引入某项技术装备,预计能使年产量平均增长率达到11%,。
根据以下数据,试估计该企业年产量翻一番所用的时间。
分析出翻两番的含义,感受平均增长问题都有一个“倍增期”这一概念引例2.当生物死亡后,它机体内原有的碳14含量会按照确定的比率p 衰减(称为衰减率),大约经过5730年衰减为原来的一半,这个时间称为半衰期.按照上述变化规律,生物体内碳14与死亡年数之间有怎样的关系?分析:提炼解析式,解指数方程,一般性的表达式的描述都是难点,通过导学案填空的形式,慢慢突破难点。
4.2.1指数函数的概念+教学设计2023-2024学年高一上学期数学人教A版(2019)必修第一册

教学单元第四章指数函数与对数函数教学内容 4.2.1 指数函数的概念教学目标学习目标1.必备知识:(1)理解指数函数的概念和底数的取值范围。
(2)通过分析具体实例,了解指数函数的实际意义。
2.关键能力:发现情境中的规律,探究如何建立模型,并会用建立的数学模型分析,解决问题。
3.核心素养:(1)经历通过具体实例抽象为具体函数,再由具体函数概括为一般函数的过程,提升数学抽象素养。
(2)通过使用指数函数模型解决数学问题与实际问题,发展数学建模素养。
教学重难点重点:通过具体实例,了解指数函数的实际意义,理解指数函数的概念。
难点:从实际问题中归纳出函数表达式。
学情分析这堂课面对的是高一学生,他们在第三章中已经学习了函数的概念与基本性质,上一节学习了指数的运算,将指数的数系范围拓展到了全体实数。
同时从幂函数概念的学习中感受了从实际问题归纳推导函数的过程。
故通过前面的学习,学生具备了一定的基础知识、运算能力及思想方法,对于理解指数函数概念较为容易。
薄弱点在于归纳过程不够严谨和规范。
教学过程教学环节教师活动学生活动设计意图视频导入播放“村超”视频以“网友问观看“村超”需要门票吗?”贵州网友答“门都没有,哪来的门票”进行引入。
观看视频调动学生情绪,增强对家乡的自豪感。
【情境一:A.B两地游客增长人次变化】情景1. A、B两地景区自2001年起实行不同的门票改革措施,A地提高了景观察A、B两组数据,发现游客人次均在增长让学生从表格里提取关键信息,并会用语新知探究区门票价格,而B地则取消了景区门票。
在学案及ppt上呈现A、B两地景区2001年至2015年的游客人次。
探究1 让学生观察两组数据,发现虽然A.B两地的游客人次均在增长,但是A地增长速度慢一些,而B地则更快,引导学生发现研究对象?老师继续提问“现在只是得到了从01年到15年的游客人次,那老师还想继续研究16年,17年乃至后面的游客人次,怎么办呢?具体又怎么研究呢?老师追问“如果现在从这些表格上无法得到直观的结论,那又该采取什么方式呢”?探究2 ppt上呈现出用A地数据画出的图像,让学生观察图象呈什么变化,和以前学过的什么内容比较像?学生回答后,问道“那是否能找到一个表达式呢。
高中数学必修第一册人教A版(2019)第四章 《指数函数与对数函数》本章教材分析

《指数函数与对数函数》本章教材分析一、本章知能对标二、本章教学规划本章在研究指数幂和对数的基础上,以研究函数概念与性质的一般方法为指导,借鉴研究幂函数的过程与方法,学习指数函数和对数函数,帮助学生学会用函数图象和代数运算的方法研究它们的性质,理解这两类函数中蕴含的变化规律;运用函数思想和方法,探索用二分法求方程的近似解;通过建立指数函数、对数函数模型解决简单的实际问题,体会指数函数、对数函数在解决实际问题中的作用,从而进一步理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具,提升数学抽象、数学建模、数学运算、直观想象和逻辑推理等数学核心素养.三、本章教学目标1.指数函数:通过了解指数的拓展过程,让学生掌握指数幂的运算性质;了解指数函数的实际意义,理解指数函数的概念.能借助描点法、信息技术画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.2.对数函数:通过具体事例,让学生理解对数的概念和运算性质,掌握换底公式;了解对数函数的概念,能画对数函数的图象,了解对数函数的单调性与特殊点;知道对数函数y=log a x与指数函数y=a x互为反函数(a>0,且a≠1).3.二分法与求方程近似解:结合指数函数和对数函数的图象,让学生了解函数的零点与方程解的关系、函数零点存在定理,探索用二分法求方程近似解的思路并会画程序框图,能借助计算工具用二分法求方程近似解,了解用二分法求方程近似解具有一般性.4.函数与数学模型:利用计算工具,比较对数函数、线性函数、指数函数增长速度的差异,理解“对数增长”“直线上升”“指数爆炸”等术语的现实含义.在实际情境中,会选择合适的函数类型刻画现实问题的变化规律.四、本章教学重点难点重点:实数指数幂及其运算,对数及其运算,指数函数和对数函数的概念、图象、性质及其应用. 难点:抽象概括指数函数和对数函数的概念及性质.五、课时安排建议本章教学约需11课时,具体安排如下:六、本章教学建议1.注重引导学生按研究函数的基本思路展开研究本章教学要注重让学生再次经历研究函数的基本过程:背景—概念—图象和性质—应用.要注意引导学生通过计算分析具体实例的数据中蕴含的变化规律抽象形成相应的函数概念,利用教科书中的问题引导学生思考和总结.2.用函数的观点联系相关内容,培养学生的数学整体观本章的核心内容是指数函数和对数函数,全章都应该围绕核心内容展开教学,以更好地帮助学生形成函数观点和思想方法.指数幂的运算、对数的概念及其运算性质和公式、指数和对数的关系,是学习指数函数、对数函数必备的基础,运用这些运算性质,通过运算,解决具体的问题教学中要从整体上把握上述运算性质、函数概念、图象、性质以及应用的关系.3.加强“形”与“数”的融合,循序渐进地研究指数函数和对数函数为了能选择合适的函数类型构建数学模型,刻画现实问题的变化规律,教学时可以依据教科书,从两个方面帮助学生体会不同函数模型增长的差异:一是通过观察函数图象,利用图象直观比较指数函数与线性函数、对数函数与线性函数增长速度的差异;二是通过教科书中的实例,结合具体问题情境理解不同函数增长的差异,教学的关键是从局部到整体,从不同角度观察、比较不同函数图象增长变化的差异,从而直观体会直线的增长、指数爆炸、对数增长的含义4.加强背景和应用,发展学生数学建模素养数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的素养.教学中,应注意参考教科书,结合这些素材,引导学生从数学的视角发现问题、提出问题,构建指数函数和对数函数模型,确定模型中的参数,计算求解,检验结果,改进模型,最终解决问题,让学生体会数学的来源与应用,丰富学生对数学的认识,提升数学建模素养.5.注重借助信息技术工具研究指数函数和对数函数在不同函数增长差异的教学中,利用信息技术可以作出函数在两个不同范围的图象,帮助学生从不同角度观察到不同函数增长的差异.6.注意通过无理数指数幂的教学渗透极限思想教科书通过“用有理数指数幂逼近无理数指数幂”的思想方法引入无理数指数幂.教学中,可以类比初中用有理数逼近无理数,让学生充分经历从“过剩近似值”和“不足近似值”两个方向,用有理数指数幂逼近无理数指数幂的过程;通过在数轴上表示这些“过剩近似值”和“不足近似值”的对应点,发现这些点逼近一个确定的点,其对应的数就是这个无理数指数幂.这样从“数”与“形”的两个角度,加强了逼近和极限思想的渗透,有助于学生从中初步体会这一重要思想.。
4.2.1指数函数的概念+教案-2022-2023学年高一上学期数学人教A版(2019)必修第一册

教学课题:4.2.1 指数函数的概念课型:新授课课时:1课时课标要求:通过具体实例,了解指数函数的实际意义,理解指数函数的概念。
学习目标:1、通过具体实例,了解指数函数的实际意义,2、理解指数函数的概念,会辨析指数函数和幂函数,3、发展学生数学抽象,数学运算等核心素养。
重点:掌握指数幂的运算性质。
难点:了解指数幂的拓展过程。
教学方法:启发式、自主探究式相结合教学准备教师:多媒体课件学生:教学过程一、复习旧知,引入课题引入1:幂函数=叫做幂函数(power function),其中x是自变量,α为常数。
一般地,函数y xα引入2:研究一类函数的过程与方法通过背景抽象出概念,再通过作图研究函数的性质,最后再应用。
设计意图:学生对幂函数的概念应该可能存在遗忘的情况,教师应该引导学生进行复习,为后面与指数函数的概念区分作铺垫。
教师引导学生回顾研究函数的过程与方法,让学生理解学习新函数要从概念开始,进一步引入课题。
二、创设情境、提出问题情境1:随着中国经济告高速增长,人民生活水平不断提高,旅游成了越来越多家庭的重要生活方式。
由于旅游人数不断增加,A,B两地景区自2001年起采取了不同的应付措施,A地提高了门票景区价格,而B地则取消了景区门票。
表4.2-1给出了A,B两地景区2001年至2015年的游客人次以及逐年增加量。
(提示:年增加量=今年的量-去年的量,年增加率=今年的量去年的量去年的量,增加量和增加率是刻画事物变化规律两个重要的量。
)问题1:比较两地区游客人次的年增加量,你发现了什么变化规律?A地年增加量近似于10,B地年增加量越来越大,没有明显规律问题2:为了研究游客人次的变化趋势,可以采用什么方法?可以作图,为了便于观察,可以先根据表格中的数据描点,然后用光滑的曲线把散点连起来。
问题3:观察两个图象,A,B两地区旅游人次与时间的关系可以用什么函数模型来刻画A地旅游人次与时间t的关系可以用一次函数模型来刻画,B地的暂时不清楚。
高中数学人教A版 必修1《4.2.2指数函数的图象和性质》说课(23张PPT)教案(说课稿)

4.2.2 指数函数的图象和性质说课稿今天我说课的题目是《指数函数的图象和性质》,下面我将从说教材、说学情、说教法学法、说教学过程、说板书设计这五个方面进行我的说课。
一、说教材首先,教材的地位和作用。
本节课选自人民教育出版社2019版必修第一册第四章第二节第二课时。
前面幂函数的学习为指数函数的研究提供了方法和依据,也为后续对数的学习奠定基础,在知识系统中起了承上启下的作用。
同时,在实际生活中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材。
其次,教学目标。
根据数学核心素养的要求,制定如下目标:1.能画出具体指数函数的图象2.能根据指数函数的图象说明指数函数的性质3.掌握指数函数的性质并解决简单问题。
最后,教学重难点。
通过对教学目标的分析,确定本节课的重点为指数函数的图象、性质,难点为指数函数图象和性质的探索与概括的过程。
…………………………………………………………………………………第二,说学情通过前一阶段的教学,学生对函数和图象的认识有了一定的认知结构,主要体现在三个层面: 知识层面:学生已初步掌握了函数的基本性质和简单的指数运算技能。
能力层面:学生在初中已经掌握了用描点法描绘函数的图象,幂函数的学习提供了按“背景-概念-图象和性质-应用”的顺序研究函数。
情感层面:学生思维活跃,乐于合作,有探究问题的意识,但思维的严谨性和分类讨论、归纳推理等能力有待于提高。
…………………………………………………………………………………第三,说教法学法在教法上,本节课主要采用四个问题与两个探究为载体的任务驱动式教学方法,启发引导学生归纳总结。
德国教育家第斯多惠曾说过“一个坏的教师奉送知识,一个好的教师则教人发现知识。
”在终身学习的时代背景之下,这就要求教师在教学过程中不能仅仅教授学科专业知识,更加注重学生对学习方法的把握,培养学生独立获取知识的能力。
为此,在教学过程中我将从以下几个方面渗透学法:1.学会作图识图,培养学生从函数图象中归纳函数性质。
高一数学必修第一册2019(A版)_《指数函数》教材分析

4.2指数函数一、本节知识结构框图二、重点、难点重点:指数函数的概念、图象和性质.难点:指数函数概念及性质的理解.三、教科书编写意图及教学建议对于指数函数概念的介绍,教科书强调从实际问题中抽象出数量关系;并用一定的数学式子表达这种数量关系;在分析数学式子特征的基础上,归纳概括得到指数函数的定义.这个过程强调了指数函数概念的抽象概括.在研究指数函数性质的过程中,教科书强调数形结合思想方法的运用,利用指数函数的图象探究指数函数的性质,并用所得到的性质进一步理解指数函数的图象.本节教科书还充分关注了与实际问题的联系,体现数学应用的价值.例如,教科书从旅游人次的增长问题和碳14的衰减问题这两个实例引入指数函数的概念.这两个问题,一个是增长问题,一个是衰减问题.通过实例,有利于学生更好地感受指数函数模型,促进学生了解中国文化、关心社会.建议教学时结合具体的实际问题渗透数学思想方法和彰显人文价值.根据本节内容具有数形结合的特点和计算的需要,在教学过程中要充分发挥信息技术的作用,尽量利用信息技术创设教学情境,为学生的数学探究和数学思维提供支持,更好地克服可能遇到的困难,理解指数函数的概念、图象和性质.4.2.1指数函数的概念1.问题的提出问题1是旅游经济的问题,A,B两地游客人数的增长和经济指标都源于真实数据,贴近现在国内的实际,利于学生从实际出发体会函数是刻画实际问题变化规律的数学模型;两地游客人数的变化一个呈指数增长、另一个呈线性增长,这种对比有利于学生理解指数函数的概念.这样的背景实例还具有一定的教育意义,即促进学生了解国家经济的发展、关心社会.教学时,也要注意发挥这个问题的数学育人的功能.问题2是碳14衰减的问题,生物体内的碳14含量随时间呈连续的指数衰减变化,这是一个经典的指数函数实例,有利于指数函数概念的理解.问题1和问题2一个是增长问题,一个是衰减问题,两个问题有利于学生从实际出发全面地认识指数函数.实际上,科学研究表明,宇宙射线在大气中能够产生包括碳14在内的放射性物质,碳14的衰减非常有规律,其准确性可以称为自然界的“准确时钟”.动植物在生长过程中衰减的碳14,可以通过与大气的相互作用得到补充,所以活着的动植物体内的碳14含量不变.死亡后的动植物停止了与外界的相互作用,体内原有的碳14按确定的规律衰减,半衰期为5730年.这也是考古中常用碳14来推断年代的原因.教学中还可以让学生通过“阅读与思考”进一步了解放射性物质的衰减.2.指数函数概念的抽象概括教科书是通过问题1和问题2,分以下三步逐步抽象概括出指数函数的概念. 首先,从问题1出发,分别通过变量的数据和这些数据的图象初步抽象出实际问题的变化规律.教学中要先让学生观察数据的变化情况,当不能发现数据的变化规律时,引导学生采取其他方法发现变化规律,比如将数据转化为图象形式进行观察.通过图象可以直观地看到变化的趋势,但还不能准确地刻画这一变化规律.其次,引导学生利用已知数据来说明图象的变化规律,并从图象中得到启发去处理数据,从而数形结合地发现实际问题变化规律的本质.在问题1中,图象显示A 地景区的游客人次呈线性增长,B 地景区的游客人次呈非线性增长,这两种增长变化如何用数量表示?由此引出通过对数据进行运算来探究数据变化规律的一种基本方法.分别对A ,B 两地景区的数据做减法和除法运算可以发现,年增长率相等是B 地景区数据变化规律的本质.最后,给出具体问题变化规律的数学表示,并归纳概括出指数函数的一般表达式.根据问题1中B 地景区旅游人次年增长率相等的这一变化规律的本质,可以得到解析式 1.11x y =;由问题2可以得到解析式1573012xy ⎛⎫⎛⎫ ⎪= ⎪ ⎪⎝⎭⎝⎭.尽管两个问题的实际背景不同,但它们的解析式都具有x y a =的形式.所以,就可以抽象概括出“函数(0, 1)x y a a a =>≠且叫做指数函数,其中指数x 是自变量,定义域是R ”. 通过抽象和概括指数函数概念,可以帮助学生发展数学抽象的核心素养.3.指数增长和指数衰减的引入教科书在抽象概括指数函数概念的过程中,引入了指数增长和指数衰减.通过除法运算发现,B 地景区游客人次每年都以相同的增长率在增长,像这样增长率为常数的变化方式就是指数增长.同样地,死亡生物体内碳14含量每年都以相同的衰减率在衰减,像这样衰减率为常数的变化方式就是指数衰减.其实,增长率或衰减率相等在一定程度上体现了指数函数增长或衰减变化的本质.对于指数函数()(0, 1)x f x a a a =>≠且,其本质特征是:对任意x ,y ∈R , ()()()f x y f x f y +=.因此,两个实例中指数增长或指数衰减的本质可以用下列式子体现:()()()()()()()()00000000232(1)x f x x f x x f x x f x n x a f x f x x f x x f x n x ∆+∆+∆+∆+∆=====+∆+∆+-∆,0x ∆>,n ∈N . 当00x =,1x ∆=时,上式即(1)(2)(3)()(0)(1)(2)(1)f f f f n a f f f f n ===⋯==-,n ∈N . 可见,两个具体事例引入指数增长和指数衰减可以帮助学生更清楚地认识指数函数的概念,更好地把握指数函数变化规律的本质.4.例题教学例1不仅可以让学生熟悉指数函数的解析式和对应关系,还可以让学生学习利用函数解析式列方程求底数a 的值.例2通过利用指数函数概念解决问题1和问题2有关的问题,让学生进一步了解指数函数的实际意义,并理解指数函数的概念. 同时引出形如(,0,1)x y ka k a a =∈>≠R 且的刻画指数增长或指数衰减变化规律的函数模型.当初始量(0 )k x y =时的值不为1时,一般就用这种函数刻画具有指数增长或衰减变化规律的实际问题.结合例2,还可以让学生举出几个指数型函数的例子,这些例子可以是学生课外搜集的具有指数增长或衰减规律背景的具体实例,也可以是本章涉及的有关实际问题的具体实例,通过这些实例增强对指数函数模型的认识.4.2.2指数函数的图象和性质1.作出图象,概括指数函数的性质在幂函数的教学中,已经将函数图象作为研究函数性质的直观工具,学生在此过程中积累了利用函数图象研究函数性质的经验.在此基础上,指数函数的图象和性质的教学应该以学生为主,引导学生类比研究幂函数的图象和性质的过程和方法,从以下两个方面进行探究.(1)观察图象,概括性质这是本小节教学的重点,可以先让学生根据研究幂函数的经验思考:如何研究一个函数的性质?研究一个函数的性质主要是研究哪些方面?首先,作出函数的图象.教科书给出了两种作图方式,教学时可以在描点作图基础上,进一步介绍用信息技术根据函数解析式作图.第一种方式就是列表描点作图.由于图象是由点构成的,列表描点可以清楚地反映出各个点的坐标的变化情况,从而由点到线直观地发现函数图象所体现的性质.教学时可以从简单的指数函数2x y =开始,再到12xy ⎛⎫= ⎪⎝⎭,在研究了这一对函数之后,再研究具有类似对称关系的其他几对函数,从而概括它们的共同特征.列表描点作图也有两种方式;一种是通过人工计算各个点的坐标,然后列表描点作图;但最好是选择第二种方式,即利用计算工具直接计算各个点的坐标并列表,然后作图. 第二种方式就是根据函数解析式直接作图.这是画函数图象最便捷的方式,但只有利用具有函数作图功能的信息技术才能实现.为了更好地概括函数性质,应该对函数(0, 1)x y a a a =>≠且中的底数a 进行任意取值,作出大量相应的具体指数函数的图象,并通过跟踪图象上的点,观察点的坐标的变化.其次,根据图象概括函数的性质.先让学生根据所作的大量具体函数的图象,归纳其范围、公共点、增减性等共性,然后概括指数函数的定义域、值域、定点和单调性.(2)由性质进一步认识图象我们一般是先作函数的图象,然后由图象概括出函数的性质,在信息技术的帮助下,这样的研究既方便又直观.另外,我们也可以先研究函数的性质,然后由性质去进一步分析函数的图象,这样可以更好地培养学生的理性思维.在本小节的教学中,在由图象概括出函数的性质后,还可以让学生根据所得性质进一步分析函数的图象,从“以形助数”和“以数助形”两个方面体会数形结合的思想方法.2.“探究”的教学分析(1)教科书第116页的“探究”是让学生用一种作图的方式,首先获得“函数12x y ⎛⎫= ⎪⎝⎭的图象与函数2x y =的图象关于y 轴对称”的结论;然后利用这个结论,通过探究,让学生体会到可以用已知函数图象和对称性来作新函数的图象.其目的是让学生学习用联系的观点看问题,以及通过逻辑推理获得数学结论.这样探究的好处是便于将指数函数x y a =分为1a >和01a <<两类,从而分别对两类图象的共同特点进行归纳.直接引入函数12x y ⎛⎫= ⎪⎝⎭不够自然,只有在探究之后才能有所体会.(2)教科书第117页的“探究”是让学生利用信息技术得到a 取任意值时函数x y a =的大量图象,并根据所作的这些图象直观地归纳出它们的共同特点.这样探究的好处是底数a 的取值自然,所作函数的图象也是自然产生的,而非事先规定的,且用信息技术能便捷地作出大量图象,易于进行归纳.但要将指数函数x y a =分为1a >和01a <<两类进行讨论,还需要学生从所作图象的过程中去发现,或由教师进行引导.在上述探究过程中,要有意识地向学生渗透数形结合的思想方法,引导学生“以形助数”,先观察图象得到图象的特征,然后再将图象特征转化为函数性质,逐步完成表4.2-3的内容.3.信息技术的使用在不使用信息技术的条件下,只能人工列表描点作出有限的几个人为指定的特殊函数的图象,然后观察这几个图象来讨论指数函数的性质.但是,这会带来一系列的问题,比如,为什么要画这几个函数的图象?为什么少量的几个函数图象就可以代表一般的函数图象,由此得到的性质是否可靠?为什么要把底数a 分为1a >和01a <<这两类?利用信息技术,作图更加方便,学生能通过大量的函数图象看到其共性,更容易概括出函数的性质.信息技术在本小节的使用主要有以下两方面:(1)在同一平面直角坐标系内画出a 取任意值时函数x y a =的大量图象.可以设置a 的取值,然后通过控制a 的连续变化展示对应函数图象的分布情况;也可以逐个地取a 的值,然后分别作出对应函数的图象.(2)计算函数2x y =的自变量取值及其对应的函数值并列表,然后将所得有序实数对描点并画出函数的图象.同理,作出函数12xy ⎛⎫= ⎪⎝⎭的图象,跟踪函数2x y =图象上的点,观察这些点关于y 轴的对称点,发现所有的对称点均在函数12x y ⎛⎫= ⎪⎝⎭的图象上,并由相互对称的点的坐标关系分析函数2x y =与12xy ⎛⎫= ⎪⎝⎭的关系. 4.例题和练习的教学分析例3的主要目的是利用指数函数的单调性比较两个数的大小,根据问题的特点构造适当的指数函数是关键也是难点.本例能够帮助学生进一步熟悉指数函数的性质,并促使他们形成用函数观点解决问题的意识.例4的主要目的是利用指数函数的图象分析和解决问题,建立函数图象与概念、性质的联系,进一步促使学生形成用函数观点解决问题的意识.练习第1题,通过底数互为倒数的两个指数函数的关系,进一步熟悉指数函数的图象和性质,可结合本小节的“探究”完成.练习第2题,利用指数函数的单调性比较两个数的大小,进一步熟悉指数函数的性质,可结合例3完成.练习第3题,主要是利用图象体现实际问题的变化规律,建立与指数函数的概念、性质的联系.。
《4.2.1指数函数的概念》教学设计教案

究问题的能力以及合作交流等方面的发展不够均衡.
四、教学重难点
重点:指数函数的概念及其应用.
难点:从实际问题中,发现问题变化规律的本质,抽象出指数函数的概念.
五、教学设计
教学环节
环节一
环节目标
自主学习成果
分享
教学活动(师生活动)
媒体作用及设计意图
教师在课前给学生布置自主学习任务.
教师从学生上传的作业中,
(详见课前学习任务单)任务一:探究三
挑出典型错误或优秀答案,在
个不同背景的函数模型.任务二:归纳三个
课堂上进行展示.
函数的共同特征.
学生通过平板上传作业,提交后,即可
将学习任务前置,培养学生
观看答案自己订正.有不能独立解决的问
数函数的教学,体会“背景——概念——图象与性质——应用”的研究具体函数的一般思路.
三、学情分析
从知识方面看,学生已经学习了函数概念及其性质,掌握了一些初等函数的基本性质;并且对于指数幂的运
算,学生已经学习了将指数运算扩充到实数范围内,掌握了基本的指数运算技能.这些都为指数函数的学习奠定
了良好基础.
从能力方面看,学生初步具备了数形结合的思想,初步具备了研究具体函数的一般思路和方法.
达成上述目标的标志是:
①能够结合教科书中问题 1 的游客增长模型和问题 2 的碳 14 衰减模型,通过运算发现其中具体的增长或衰
减的规律,并从中体会实际问题中变量间的关系.在了解指数函数的实际意义的基础上,理解指数函数所刻画
的变化规律,清楚其定义域和底数的取值范围.
②经历由具体实例抽象为具体函数、再由具体函数概括为指数函数的过程,提升数学抽象的素养.并结合指
人教A版(2019)高中数学必修第一册第四章4.2.1-指数函数的概念教案

第四章 指数函数与对数函数指数函数指数函数的概念教学设计一、教学目标1.通过实际问题提炼出指数函数的概念,达到数学抽象和直观想象核心素养学业质量水平一的层次.2.理解指数函数中底数的取值范围,达到逻辑推理核心素养学业质量水平一的要求.二、教学重难点|1.教学重点指数函数的概念及其应用.2.教学难点将实际问题转化为数学模型.三、教学过程(一)新课导入问题1:随着中国经济高速增长,人民生活水平不断提高,旅游成了越来越多家庭的重要生活方式,由于旅游人数不断增加,A ,B 两地景区自2001年起采取了不同的应对措施,A 地提高了景区门票价格,而B 地则取消了景区门票,表(见教材)给出了A ,B 两地景区2001 年至2015年的游客人次以及逐年增加量.比较两地景区游客人次的变化情况,你发现了怎样的变化规律|问题2:当生物死亡后,它机体内原有的碳14含量会按确定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.按照上述变化规律,生物体内碳14含量与死亡年数之间有怎样的关系学生讨论思考,总结关系式[)[)1573011.110,+0,+2xx y x y x =∈∞=∈∞ (),(()) (). (二)探索新知指数函数的定义提问: [)[)1573011.110,+0,+2xx y x y x =∈∞=∈∞ (),(()) ().这类函数的解析式有何共同特征学生回答:函数解析式都是指数形式,底数为定值,且自变量在指数位置.思考:若用a 代替两个式子中的底数,并将自变量的取值范围扩展到实数集则得到什么 学生讨论总结.¥教师讲解,指数函数的定义:一般地,函数( 0,1)xa a >≠且y=a 叫做指数函数,其中指数x 是自变量,定义域为R .思考:指数函数的定义域是什么其定义中指明了底数a >0且a ≠1,为什么会有这样的限制条件根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,xa 是一个确定的实数,所以函数的定义域为实数集R .教师提问1:当a =0时,指数函数还有没有意义 教师提问2:当a <0时,有哪些自变量取值对应的函数值不存在教师提问3:当a =1时,指数函数还有没有研究价值学生举例说明.教师总结:,{>=000,x x x a x a a ≤=当0,当时,无意时,义.若若<0a ,如x y=(-2),当11,68x x ==等时,在实数范围内的函数值不存在. 若a =1,11x y ==,是一个常量,没有研究的意义.故只有满足( 0,1)x a a >≠且y=a 的形式才能称为指数函数,a 为常数.如:123,2,,31x x xx y y y x y =-===+都不符合( 0,1)x a a >≠且y=a 的形式,所以都不是指数函数.(三)课堂练习例1 已知指数函数f(x)=a x(a>0且a≠1),且f(3)= ,求f(0),f(1),f(-3)的值.分析:要求f(0),f(1),f(-3)的值,首先求出f(x)=a x的解析式,再把0,1,-3分别代入,即可求得.?例2 (1)在教材问题1中,如果平均每位游客出游一次可给当地带来1000元门票之外的收入,A地景区的门票价格为150元,比较这15年间AB两地旅游收人变化情况.(2)教材问题2中,生物死亡10 000年后,它体内碳14的含量衰减为原来的百分之几分析:可将AB两地这15年间的旅游收人变化情况在图形上表示出来,根据图象进行比较,然后把相关数据代人指数函数解析式中进行计算即可,注意要使用计算器辅助解题.教师通过对教材中两个问题的详细解答,指出像这样呈指数增长的情况在实际生活中是十分常见的,需要我们掌握这种指数函数模型的建构方法.(四)小结作业小结:本节课我们主要学习了哪些内容1.指数函数的概念(形式定义);)2.指数函数底数的要求.四、板书设计1.指数函数的概念;2.指数函数底数的要求.。
高一数学必修第一册2019(A版)_4.2.1_指数函数的概念_教学设计(2)

【新教材】4.2.1 指数函数的概念(人教A 版)指数函数与幂函数是相通的,本节在已经学习幂函数的基础上通过实例总结归纳指数函数的概念,通过函数的三个特征解决一些与函数概念有关的问题.课程目标1、通过实际问题了解指数函数的实际背景;2、理解指数函数的概念和意义.数学学科素养1.数学抽象:指数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用指数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结指数函数概念.重点:理解指数函数的概念和意义;难点:理解指数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、 情景导入在本章的开头,问题(1)中时间与GDP 值中的 ,请问这两个函数有什么共同特征. 要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、 预习课本,引入新课x 1.073(20)xy x x =∈≤与问题(2)中时间t 和C-14含量P的对应关系t 1P=[(2y =a x (a >0,且a ≠1) 阅读课本111-113页,思考并完成以下问题1. 指数函数的概念是什么?2. 指数函数解析式的特征?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、 新知探究1.指数函数的定义函数叫做指数函数,其中x 是自变量,函数的定义域为R. 2.指数函数解析式的3个特征(1)底数a 为大于0且不等于1的常数.(2)自变量x 的位置在指数上,且x 的系数是1.(3)a x 的系数是1.四、典例分析、举一反三题型一 判断一个函数是否为指数函数例1 判断下列函数是否为指数函数(1)22x y += (2)(2)x y =-(3)2x y =- (4)x y π=【答案】由指数函数的定义易知(1)(2)(3)不是指数函数,(4)是指数函数.解题技巧:(判断一个函数是否为指数函数)(1)需判断其解析式是否符合y =a x (a >0,且a ≠1)这一结构特征.(2)看是否具备指数函数解析式具有的三个特征.只要有一个特征不具备,则该函数不是指数函数. 跟踪训练一1. 判断下列函数是否为指数函数(1)2y x = (2)24y x =(3)x y x = (4)(1)x y a =- (a >1,且2a ≠) 【答案】(1)(2)(3)不是指数函数,(4)是指数函数.题型二 指数函数的概念例2 (1)已知指数函数(>0且≠1)的图象过点(3,π),求(2)已知函数y=(a 2-3a+3)a x是指数函数,求a 的值.()x f x a =a a (0),(1),(3)f f f -的值.【答案】(1),, (2) 2【解析】(1)将点(3,π),代入得到,即,解得:,于是,所以,,.(2)由y=(a 2-3a+3)a x是指数函数,可得{a 2-3a +3=1,a >0,且a ≠1,解得{a =1或a =2,a >0,且a ≠1,故a=2.解题技巧:(利用指数函数定义求参数)跟踪训练二1. 已知指数函数图象经过点P(-1,3),则f(3)= .2. 已知函数f(x)=(a 2-2a+2)(a+1)x 为指数函数,则a= .【答案】1. 127 2. 1【解析】1. 设指数函数为f (x )=a x (a>0且a ≠1),由题意得 a -1=3,解得a=13,所以f (x )=(13)x ,故f (3)=(13)3=127. 2. 函数f (x )=(a 2-2a+2)(a+1)x是指数函数,∴{a 2-2a +2=1,a +1>0,a +1≠1,解得a=1.五、课堂小结让学生总结本节课所学主要知识及解题技巧 0(0)1f π==13(0)f π==11(3)f ππ--==()x f x a =(3)f π=3a π=13a π=3()x f x π=0(0)1f π==13(0)f π==11(3)f ππ--==六、板书设计七、作业课本118页习题4.2中 1题2题5题本节主要学习了一类新的函数:指数函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《指数函数及其性质》
教材分析
本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图像研究指数函数的性质)等,同时,编写时充分关注与实际问题的结合,体现数学的应用价值.
根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情景,为学生的数学探究与数学思维提供支持.
教学目标
1.理解指数函数的概念和意义,能画出具体指数函数的图像,掌握指数函数的性质.
2.采用具体到一般、数形结合的思想方法,体会研究具体函数的性质.
3.使学生了解指数函数模型的实际背景,认识数学与现实其他学科的联系;感受探究未知世界的乐趣,从而培养学生对数学的热爱情感.
教学重难点
【教学重点】
掌握指数函数的概念和性质.
【教学难点】
用数形结合的方法从具体到一般地探索、概括指数函数的性质.
课前准备
引导学生通过实际问题了解指数函数的实际背景,通过本节课导学案的使用和预习,初步理解指数函数的概念和意义,根据图像理解指数函数的性质,带着问题学习.
教学过程
(一)创设情景,揭示课题
1.对任意实数x,3x的值存在吗?(-3)x的值存在吗?1x的值存在吗?
2.y=3x是函数吗?若是,这是什么类型的函数?
3.(备选引例)
(1)思考1:用清水漂洗含1个质量单位污垢的衣服,若每次能洗去残留污垢的,则漂洗x次后,衣服上的残留污垢y与x的函数关系是什么?
(2)(合作讨论)人口问题是全球性问题,由于全球人口迅猛增加,已引起全世界关注.世界人口2000年大约是60亿,而且以每年1.3%的增长率增长,按照这种增长速度,到2050年世界人口将达到100多亿,大有“人口爆炸”的趋势.为此,全球范围内敲起了人口警钟,并把每年的7月11日定为“世界人口日”,呼吁各国要控制人口增长.
○1按照上述材料中的1.3%的增长率,从2000年起,x年后我国的人口将达到2000年的多少倍?
○2到2050年我国的人口将达到多少?
○3你认为人口的过快增长会给社会的发展带来什么样的影响?
(3)上一节中GDP问题中时间x与GDP值y的对应关系y=1.073x(x∈N*,x≤20)能否构成函数?
(4)一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么?
提出问题:上面的几个函数有什么共同特征?
(二)研探新知
1.指数函数的概念
一般地,函数(0,1)x
y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R .
注意:
○
1 指数函数的定义是一个形式定义,要引导学生辨析; ○
2 注意指数函数的底数的取值范围,引导学生分析底数为什么不能是负数、零和1. 巩固练习:利用指数函数的定义解决.(教材P 68例2.3)
2.指数函数的图像和性质
问题:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗? 研究方法:画出函数的图像,结合图像研究函数的性质.
研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 探索研究:
思考1:在同一坐标系中画出下列函数的图像: (1)1
()3
x y =
(2)1()2
x y =
(3)2x
y =
(4)3x
y =
(5)5x
y =
思考2:从画出的图像中你能发现函数2x
y =的图像和函数1
()2
x y =的图像有什么关系?可否利用2x
y =的图像画出1()2
x y =的图像?
思考3:从画出的图像(2x y =、3x y =和5x
y =)中,你能发现函数的图像与其底数之间有什么样的规律?
思考4:你能根据指数函数的图像的特征归纳出指数函数的性质吗?
思考5:利用函数的单调性,结合图像还可以看出:
(1)在[a ,b ]上,()(01)x
f x a a a =>≠且值域是[(),()]f a f b 或[(),()]f b f a ;
(2)若0x ≠,则()1f x ≠;()f x 取遍所有正数当且仅当x R ∈;
(3)对于指数函数()(01)x
f x a a a =>≠且,总有(1)f a =; (三)例题讲解
例1.判断下列函数是否为指数函数?
321(1)(2)(1)(3)2x x y x y a y +==+=
2
(4)5
(5)3(6)41x x
x y y y -===+
问题:你能根据本例说出确定一个指数函数需要几个条件吗? 例2.已知函数f (x )=a x (a >0,a ≠1)的图像过点(3, π),求f (0), f (1), f
(-3)的值.
问题:你能根据本例说明怎样利用指数函数的性质判断两个幂的大小? 说明:规范利用指数函数的性质判断两个幂的大小方法、步骤与格式. (四)课堂练习
教材对应习题. (五)课堂小结
本节主要学习了指数函数的图像,及利用图像研究函数性质的方法. (六) 布置作业 教材对应习题. 教学反思
略.。