中国石油大学(华东)__大学物理课后习题答案
中国石油大学(华东)油层物理课后题问题详解
简要说明为什么油水过渡带比油气过渡带宽?为什么油越稠,油水过渡带越 宽?答:过渡带的高度取决于最细的毛细管中的油(或水)柱的上升高度。
由于油藏中的油气界面张力受温度、压力和油中溶解气的影响,油气界面张力很 小,故毛管力很小,油气过渡带高度就很小。
因为油水界面张力大于油气界 面张力,故油水过渡带的毛管力比油气过渡带的大,而且水油的密度差小于 油的密度,所以油水过渡带比油气过渡带宽,且油越稠,水油密度差越小, 油水过渡带越宽 四、简答题1、简要说明油水过渡带含水饱和度的变化规律,并说明为什么油越稠油水过渡带越宽? 由于地层中孔隙毛管的直径大小是不一样的,因此油水界面不是平面,而是一个过渡带。
从地层底层到顶层,油水的分布一般为:纯水区——油水过渡区——纯油区。
由下而上,含水饱和度逐渐降低。
由式:,在PcR 一定时,油水的密度差越小,油水的过渡带将越宽。
油越稠,油水密度 差越小,所以油越稠,油水过渡带越宽。
来源于骄者拽鹏 习题11.将气体混合物的质量组成换算为物质的量的组成。
气体混合物的质量组成如下:%404-CH ,%1062-H C ,%1583-H C ,%25104-H C ,%10105-H C 。
解:按照理想气体计算:2.已知液体混合物的质量组成:%.55%,35%,1012510483---H C H C H C 将此液体混合物的质量组成换算为物质的量的组成。
解:3.已知地面条件下天然气各组分的体积组成:%23.964-CH ,%85.162-H C ,%83.083-H C ,%41.0104-H C , %50.02-CO ,%18.02-S H 。
若地层压力为15MPa ,地层温度为50C O 。
求该天然气的以下参数:(1)视相对分子质量;(2)相对密度;(3)压缩因子;(4)地下密度;(5)体积系数;(6)等温压缩系数;(7)粘度;(8)若日产气为104m 3,求其地下体积。
解:(1)视相对分子质量836.16)(==∑i i g M y M(2)相对密度58055202983616..M M ag g ===γ (3)压缩因子244.3624.415===c r p p p 648.102.19627350=+==c r T T T3.2441.6480.84(4)地下密度)(=)(3/95.11127350008314.084.0836.1615m kg ZRT pM V m g g +⨯⨯⨯===ρ (5)体积系数)/(10255.6202735027315101325.084.0333m m T T p p Z p nRT pZnRTV V B sc sc scsc gscgf g 标-⨯=++⨯⨯=⋅⋅===(6)等温压缩系数3.2441.6480.52[])(==1068.0648.1624.452.0-⨯⋅⋅=MPa T P T C C rc rgrg(7)粘度16.836500.01171.41.6483.244[])(01638.00117.04.1/11s mPa g g g g ⋅=⨯=⨯=μμμμ(8)若日产气为104m 3,求其地下体积。
中国石油大学(华东)大学物理2-1第八章习题答案
习题 88-1.选择题1.一定量的理想气体,分别经历习题8-1(1)(a) 图所示的abc 过程(图中虚线ac 为等温线)和习题8-1(1)(b) 图所示的def 过程(图中虚线df 为绝热线),试判断这两过程是吸热还是放热( )(A) abc 过程吸热,def 过程放热 (B) abc 过程放热,def 过程吸热 (C) abc 过程def 过程都吸热 (D) abc 过程def 过程都放热2.如习题8-1(2) 图所示,一定量的理想气体从体积V 1膨胀到体积V 2分别经历的过程是:A-B 等压过程;A-C 等温过程; A-D 绝热过程。
其中,吸热最多的过程( )(A) A-B (B) A-C(C) A-D(D) 既是A-B ,也是A-C ,两者一样多3.用公式E =νC V ,m T (式中C V ,m 为定容摩尔热容量,ν为气体的物质的量)计算理想气体内能增量时,此式( )(A) 只适用于准静态的等容过程 (B) 只适用于一切等容过程(C) 只适用于一切准静态过程 (D) 适用于一切始末态为平衡态的过程4.要使高温热源的温度T 1升高ΔT ,或使低温热源的温度T 2降低同样的ΔT 值,这两种方法分别可使卡诺循环的效率升高Δ1和Δ2。
两者相比有( )(A) Δ1>Δ2 (B) Δ1<Δ2(C) Δ1= Δ2 (D) 无法确定哪个大 5. 理想气体卡诺循环过程的两条绝热线下的面积大小(如习题8-1(5)图中阴影所示)分别为S 1和S 2,则两者的大小关系是( )(A) S 1 > S 2 (B) S 1 = S 2 (C) S 1 < S 2 (D) 无法确定 6. 热力学第一定律表明( )(A) 系统对外做的功不可能大于系统从外界吸收的热量 (B) 系统内能的增量等于系统从外界吸收的热量(C) 不可能存在这样的循环过程,在此循环过程中,外界对系统做的功不等于系统传给外界的热量 (D) 热机的效率不可能等于1 7. 根据热力学第二定律可知( )(A) 功可以全部转换为热,但热不能全部转换为功(B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体 (C) 不可逆过程就是不能向相反方向进行的过程 (D) 一切宏观的自发过程都是不可逆的 8.不可逆过程是( ) (A) 不能反向进行的过程(B) 系统不能回复到初始状态的过程 (C) 有摩擦存在的过程或者非准静态过程 (D) 外界有变化的过程习题8-1(1)图习题8-1(2)图习题8-1(5)图9. 关于热功转换和热量传递过程,有下列叙述: (1) 功可以完全变为热量,热量不可以完全变为功 (2) 一切热机的效率都只能小于1 (3) 热量不能从低温物体向高温物体传递 (4) 热量从高温物体向低温物体的传递是不可逆的 以上这些叙述中正确的是( ) (A) 只有(2),(4)正确 (B) 只有(2),(3),(4)正确 (C) 只有(1),(3),(4)正确 (D) 全部正确 8-2.填空题1.一定量的理想气体处于热动平衡状态时,此热力学系统的不随时间变化的三个宏观量是 ,而随时间变化的微观是 。
大学物理课后习题详解(第十章)中国石油大学
根据高斯定理可得 方向由的正负确定
10-22 如图所示,在xOy平面内有与y轴平行、位于和处的两条无限长平 行均匀带电直线,电荷线密度分别为和。求z轴上任一点的电场强度。
[解] 无限长带电直线在线外任一点的电场强度 所以 P点的场强 由对称性知合场强的z方向分量为零,x方向分量 而
所以 方向指向x轴负方向 10-23 如图所示,在半径为R,体电荷密度为的均匀带电球体内点处放
所以 证毕。
10-27 电量q均匀分布在长为2l的细杆上,求在杆外延长线上与杆端距离 为a的点P的电势(以无穷远为零电势点)。 [解] 取如图所示的电荷元dq,,它在P点产生的电势为
则整个带电直线在P点产生的电势为
10-28 如图所示,在点电荷+q的电场中,若取图中点P处为电势零点, 则点M的电势为多少? [解] 取P点为电势零点,则M点电势为
10-10 如图所示,一厚度为b的无限大带电平板,其体电荷密度为 (0≤x≤b),式中k为正常量。求:(1)平板外两侧任一点和处的场强大小; (2)平板内任一点P处的电场强度; (3)场强为零的点在何处? [解] (1)过点作一圆柱体穿过无限大带电平板,由高斯定理
即 所以 因此平板外一点的场强与距平板的距离无关, (2)板内(即0≤x≤b区域) (3)若电场强度为0,则 此时,此即为场强为0的点。
10-1l 一半无限长的均匀带电直线,线电荷密度为。试证明:在通过带 电直线端点与直线垂直的平面上,任一点的电场强度 E的方向都与这直 线成45°角。 [解] 如图选择直角坐标系,在棒上取电荷元
它在过棒端的垂直面上任意点贡献场强为
由于
且
所以
总场强的分量为 它与负y方向的夹角是
10-12 一带电细线弯成半径为R的半圆形,线电荷密度,式中为一常 量,为半径R与x轴所成的夹角,如图所示。试求环心O处的电场强度。 [解] 取电荷元
中国石油大学大学物理实验课后习题_答案
Gb 第一章误差估算与数据处理方法课后习题答案1.指出下列各量有效数字的位数。
(1)kV 有效位数:4(2)mm 有效位数:3 (3)kg 有效位数:5(4)自然数有效位数:无限位2.判断下列写法是否正确,并加以改正。
(1)A mA错,0.0350A 有效位数为3位,而35mA 有效位数为2位,二者物理意义不同,不可等同,应改为A mA 。
(2)kg错,测量结果(即最佳估计值)有效数字的最后一位应与不确定度的末位对齐。
测量结果有效数字取位时,应遵循“四舍六入五凑偶”的原则;而且,不确定度应记为“”的形式。
故应将上式改成kg 。
(3)km 错,当采用科学计数法表示测量结果时,最佳估计值与不确定度应同时用科学计数法表示,并且10的指数应取一致,还要保证最佳估计值的最后一位与不确定度的末位对齐。
因此,上式应改为。
(4)A正确。
3.试按有效数字修约规则,将下列各数据保留三位有效数字。
3.8547,2.3429,1.5451,3.8750,5.4349,7.6850,3.6612,6.26383.85 2.34 1.54 3.88 5.43 7.68 3.66 6.26 4.按有效数字的确定规则,计算下列各式。
(1)000.1=U 000123.0=L 010.10=m 40350.0=I 35=0350.0=I 11050.3⨯=()3.0270.53+=m 270.53=m ±()3.03.53±=m ()2000103.274±⨯=h ()km h 4102.03.27⨯±=()004.0325.4±=x ?6386.08.7537.343=++解:原式 (2)解:原式 (3)解:原式(4)解:原式5.分别写出下列各式的不确定度传播公式。
(1)(K 为常数)解:(a )绝对不确定度:(b )相对不确定度:其中,、分别表示A 、B 量的合成不确定度。
中国石油大学(华东)油层物理课后题答案
来源于骄者拽鹏 习题11.将气体混合物的质量组成换算为物质的量的组成。
气体混合物的质量组成如下:%404-CH ,%1062-H C ,%1583-H C ,%25104-H C ,%10105-H C 。
解:按照理想气体计算:2.已知液体混合物的质量组成:%.55%,35%,1012510483---H C H C H C 将此液体混合物的质量组成换算为物质的量的组成。
解:3.已知地面条件下天然气各组分的体积组成:%23.964-CH ,%85.162-H C ,%83.083-H C ,%41.0104-H C , %50.02-CO ,%18.02-S H 。
若地层压力为15MPa ,地层温度为50C O 。
求该天然气的以下参数:(1)视相对分子质量;(2)相对密度;(3)压缩因子;(4)地下密度;(5)体积系数;(6)等温压缩系数;(7)粘度;(8)若日产气为104m 3,求其地下体积。
解:(1)视相对分子质量836.16)(==∑i i g M y M(2)相对密度58055202983616..M M ag g ===γ (3)压缩因子 244.3624.415===c r p p p 648.102.19627350=+==c r T T T(4)地下密度)(=)(3/95.11127350008314.084.0836.1615m kg ZRT pM V m g g +⨯⨯⨯===ρ(5)体积系数)/(10255.6202735027315101325.084.0333m m T T p p Z p nRT pZnRTV V B sc sc scsc gscgf g 标-⨯=++⨯⨯=⋅⋅===(6)等温压缩系数3.2441.6480.52[])(==1068.0648.1624.452.0-⨯⋅⋅=MPa T P T C C rc rgrg(7)粘度16.836500.01171.41.6483.244[])(01638.00117.04.1/11s mPa g g g g ⋅=⨯=⨯=μμμμ(8)若日产气为104m 3,求其地下体积。
大学物理课后习题详解(第九章)中国石油大学
习 题 九9-1 一系统由图示的状态a 经acb 到达状态b ,系统吸收了320J 热量,系统对外作功126J . (1)若adb 过程系统对外作功 42J ,问有多少热量传入系统? (2)当系统由b 沿曲线ba 返回状态a ,外界对系统作功84 J ,试问系统是吸热还是放热? 热量是多少? [解] 由热力学第一定律A E Q +∆=得 A Q E -=∆ 在acb 过程中,E E E ∆=-a b J 19412632011=-=-=A Q在adb 过程中,内能变化量与acb 过程相同 因此 J 2364219422=+=+∆=A E Q 在ba 过程中J 2788419433b a 3-=--=+∆-=+-=A E A E E Q由于热量为负值,所以本过程中系统放热.9-2 2mol 氮气由温度为 300K ,压强为510013.1⨯Pa (1atm )的初态等温地压缩到 510026.2⨯Pa (2atm ).求气体放出的热量. [解] 在等温过程中气体吸收的热量等于气体对外做的功,所以J 1046.321ln30031.82ln321T ⨯-=⨯⨯⨯===p p RT A Q ν即气体放热为J 1046.33⨯.9-3 一定质量的理想气体的内能E 随体积的变化关系为E - V图上的一条过原点的直线,如图所示.试证此直线表示等压过程.[证明] 设此直线斜率为k ,则此直线方程为kV E = 又E 随温度的关系变化式为 T k T C MM E '=⋅=v m o l所以 T k kV '= 因此 C kk T V ='=(C 为恒量)又由理想气体的状态方程知,C T pV'= (C '为恒量)所以 p 为恒量,即此过程为等压过程.9-4 2mol 氧气由状态1变化到状态2所经历的过程如图所示:(1)沿l →m →2路径.(2)1→2直线.试分别求出两过程中氧气对外作的功、吸收的热量及内能的变化.[解] (1) 在1→m →2这一过程中,做功的大小为该曲线下的面积,氧气对外做负功.()()J 1010.81010013.11050204352121⨯-=⨯⨯⨯-⨯-=--=-V V p A由气体的内能公式T C E V ν=和理想气体的状态方程RT pV ν=得pV i RR i pVRpVC RpVC E 22VV====νν对于氧气5=i ,所以其内能的变化为 ()()J 1027.11010013.15051020252543511221⨯-=⨯⨯⨯⨯-⨯⨯=-=∆-V p V p E此过程吸收的热量为 J 1037.91010.81027.1444111⨯-=⨯-⨯-=+∆=A E Q (2)在从1→2过程中,由图知氧气对外作功为()()()()J 1007.51010013.11050520212143521122⨯-=⨯⨯⨯-⨯+⨯-=-+-=-V V p p A内能的变化 J 1027.1412⨯-=∆=∆E E吸收的热量 J 1034.61007.51027.1444222⨯-=⨯-⨯-=+∆=A E Q9-5 10mol 单原子理想气体在压缩过程中外界对它作功209J ,其温度上升1K ,试求:(1)气体吸收的热量与内能的增量.(2) 此过程中气体的摩尔热容量.[解] (1) 内能的增量为 J 65.124131.82310V =⨯⨯⨯=∆=∆T C E ν气体吸收的热量 J 35.8420965.124-=-=+∆=A E Q (2) 由气体摩尔热容量知 ())K mol J 44.835.841011⋅-=-⨯=∆=TQC ν9-6 将压强为1atm ,体积为33m 101-⨯的氧气(25V R C =)从0℃加热到100℃.试分别求在等体(积)过程和等压过程中各需吸收多少热量.[解] 由理想气体状态方程 RT pV ν= 00RT V p RTpV ==ν在等容过程中吸收的热量为 J 77.9210027310110013.1252535000V V =⨯⨯⨯⨯⨯=∆=∆=-T R RT V p T C Q ν在等压过程中吸收的热量为J 88.12977.92575727V p p =⨯==∆=∆=Q T R T C Q νν9-7 已知氩气的定体(积)比热为)K kg J 314V ⋅=c ,若将氩气看作理想气体,求氩原子的质量.(定体(积)摩尔热容V mol V c M C =).[解] 由定容摩尔热容量的定义知 R R i C 232V ==因此 VVV m o l 23c Rc C M==氩原子的质量为 kg 1059.63141002.631.823232623V A Amol-⨯=⨯⨯⨯===c N RN Mm9-8 为测定气体的γ(V p C C =)值有时用下列方法:一定量的气体的初始温度、体积和压强为0T 、0V 和0p ,用一根电炉丝对它缓慢加热.两次加热的电流强度和时间相同,第一次保持体积0V 不变,而温度和压强变为1T 和1p .第二次保持压强0p 不变,而温度和体积变为2T 和1V .试证明 ()()001001p V V V p p --=γ[证明] 两次加热气体吸收的热量相同,等容过程吸收的热量为()01V 1T T C Q -=ν 等压过程吸收的热量为 ()02p 2T T C Q -=ν 由 21Q Q =可得 ()()02p 01V T T C T T C -=-νν所以 0201Vp T T T T C C --==γ由理想气体状态方程 000RT V p ν= 101RT V p ν= 210RT V p ν= 因此 00101V R p p T T ν-=- 00102p RV V T T ν-=-所以得到 ()()001001p V V V p p --=γ9-9 已知1mol 固体的状态方程为bp aT v v ++=0,内能apT cT E +=,式中0v 、a 、b 、c 均为常量,求该固体的p C 、V C .[解] 由热力学第一定律可得 V p E A E Q d d d d d +=+= (1) 由已知条件可得 p b T a V d d d += (2) T ap p aT T c E d d d d ++= (3)将(2)、(3)代入(1)得 ()p b T a p T ap p aT T c Q d d d d d d ++++= (4) 在等压过程中,0d =p所以 ()T ap c Q d 2d += 因此 ap c TQ C 2d d p +==在等容过程中 0d =V代入(2)式得 0d d =+p b T a 因此 T ba p d d -=代入(4)式得Tb T a apc T b a b T a p T ap T b a aT T c Qd d d d d d d 2⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-+++⎪⎭⎫ ⎝⎛-+= 所以 bT a ap c TQ C 2V d d -+==9-10 已知范德瓦尔斯气体的内能0V E Va T C E +-=.其中V C 、a 、0E 为常数,试证明其绝热过程方程为()常数=-VC R b V T[证明] 范德瓦尔斯气体的状态方程为 ()RT b V V a p =-⎪⎭⎫⎝⎛+2 (1) 又由已知条件可得 V Va T C E d d d 2V += (2)绝热过程 0d =Q ,由热力学第一定律得 V p A E d d d -=-= (3) 由(2)、(3)式可得 V p V Va T C d d d 2V -=+ (4)由 (1)式可得 2Va bV RT p --=(5)将(5)代入(4)式有 V bV RT V Va V Va T C d d d d 22V --=+整理得 V bV T RTC d 1d V --=积分得()常数=-+b V T RC ln ln V即 ()常数=-RCVT b V这就是范德瓦尔斯气体的绝热过程方程.9-11 如图所示是氮气循环过程,求:(1)一次循环气体对外作的功;(2)循环效率. [解] (1) 一次循环过程气体对外作功的大小为闭合曲线所包围的面积,由图知,其包围的面积为1()()1412V V p p S --= ()()J 100.2101015510335⨯=⨯⨯-⨯-=-该循环对外作功为正,所以 J 100.23⨯=A(2) 该循环过程中,从1→2,2→3为吸收热量过程 1→2为等容过程,吸收热量为()()112212V 125V p V p T T C Q -=-=ν()J 1025.110101511025335⨯=⨯⨯⨯-⨯⨯=-2→3为等压过程,吸收热量为 ()()223323p 227V p V p T T C Q -=-=ν()J 104.1101011051027435⨯=⨯⨯⨯-⨯⨯=-因此吸收的总热量为 J 10525.1421⨯=+=Q Q Q 该循环的效率为 %1.13%10010525.1100.243=⨯⨯⨯==Q A η9-12 一理想气体的循环过程如图所示,其中ca 为绝热过程,点 a 的状态参量为()11,V T ,点b 的状态参量为()22,V T ,理想气体的热容比为γ,求(1)气体在ab 、bc 过程中与外界是否有热交换? 数量是多少?(2)点c 的状态参量;(3)循环的效率.[解] (1) ab 过程是等温过程,系统吸收热量为121T lnV V RT A Q ν==因12V V >,故该过程是吸热过程.bc 过程是等容过程,系统吸收热量为 ()2c V V T T C Q -=ν 因 c T <2T ,故该过程是放热过程. (2) 从图上可看到 2c V V =又 ac 为绝热过程,故根据绝热方程 112111c1c T VV T VV T --⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=γγ又有 γγ11c c V p V p =得到 121211121211c -⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=γγγννV V V RT V RT V V V V p p(3) ()()[]()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⋅-=--=--=-=--12121V 12111212V 121C 2V TV ln 11ln1ln11V V V V RC V V RT T V V T C V V RT T T C Q Q γγννη9-13 图中闭合曲线为一理想气体的循环过程曲线,其中ab 、cd 为绝热线,bc 为等体(积)线,da 为等压线,试证明其效率为bc ad T T T T ---=γη1式中a T 、b T 、c T 、d T 分别为a 、b 、c 、d 各状态的温度,V p C C =γ.[证明] da 为放热过程,其放出的热量为()a d p 2T T C Q -=νbc 为吸热过程,其吸收的热量为 ()b c V 1T T C Q -=ν 所以其效率为 ()()bc ad b c V a d p 12111T T T T T T C T T C Q Q ---=---=-=γννη9-14 如图所示,AB 、DC 为绝热线,COA 是等温线. 已知系统在COA 过程中放热J 100,OAB 的面积是J 30,ODC 的面积为 J 70,试问在BOD 过程中系统是吸热还是放热?热量是多少?[解] 因COA 是等温线,COA 过程中J 100CA CA -==Q A 又因AB 、DC 为绝热线,AB AB A E -=∆ DC DC A E -=∆ OAB 过程系统作负功,ODC 过程系统作正功,整个循环过程系统作功 3070CA DC BD AB -=+++A A A ABOD 过程中系统吸热A C BD DC AB BD BD 140140E E E E E E A Q -+=∆+∆+∆+=∆+=由于COA 是等温过程,过程中系统内能变化为零,即 0A C =-E E 因此BOD 过程中系统吸热 J 140=Q9-15 一制冷机进行如图所示的循环过程,其中ab 、cd 分别是温度为1T 、2T 的等温线,bc 、da 为等压过程,设工作物质为理想气体.证明这制冷机制冷系数为:12121ln22p p i T T T ++-=ω[证明] ab 为等温过程,吸收热量为12111lnp p RT A Q ν==cd 为等温过程,其放出的热量大小为12222lnp p RT A Q ν==bc 为等压过程,吸收的热量为 ()12p 3T T C Q -=ν da 为等压过程,放出的热量大小为 ()12p 4T T C Q -=ν所以致冷系数 ()()12121314231ln22p p i T T T Q Q Q Q Q Q Q Q Q AQ ++-=+-++=-==吸放吸吸ω9-16 mol 1单原子理想气体,初态压强为1p ,体积为1V ,经等温膨胀使体积增加一倍,然后保持压强不变,使其压缩到原来的体积,最后保持体积不变,使其回到初态. (1)试在V p -图上画出过程曲线;(2)求在整个过程中内能的改变,系统对外作的净功、从外界吸收的净热量以及循环效率.[解] (1) 过程曲线(2) 系统经过循环又回到初态,所以其内能改变量0=∆E a →b 为等温过程,系统对外作正功2ln ln11121V p V V RT A ==νa2p 1p 2V 1V OVb →c 为等压过程,系统对外作负功,其数值大小为()()122111222V V V V p V V p A -=-=过程中总功 ()1112211112119.02ln V p V V V V p V p A A A =--=-=系统从外界吸收的净热量 1119.0V p A Q == a →b 过程吸热为 2ln 1111V p A Q ==c →a 过程中吸收的热量为 ()c a V 2T T C Q -=ν()V p V V V p p V p p 112111121432323=⎪⎪⎭⎫ ⎝⎛-=-=所以 %2.13432ln 19.011111121=+=+=V p V p V p Q Q A η9-17 一可逆卡诺热机低温热源的温度为27℃,热机效率为 40%,它的高温热源的温度是多少? 今欲将热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加多少度?[解] 可逆卡诺循环的效率为121T T -=η所以 K 5004.01300121=-=-=ηT T若 %50='η,则 K 6005.01300121=-='-='ηT T所以 K 10050060011=-=-'=∆T T T9-18 有一卡诺热机,用29kg 空气为工作物质,高温热源和低温热源的温度分别为C 27o 和C 73-o ,求此热机的效率.若在等温膨胀过程中工作物质的体积增大到2.718倍,则此热机每一循环所作的功是多少?[解] 此热机的效率为 %3.333002001112=-=-=T T η在等温膨胀过程中,吸收的热量为J 1049.2718.2ln 30031.8291029ln631211⨯=⨯⨯⨯⨯==V V RT Q ν又 1Q A =η所以 J 103.81049.231561⨯=⨯⨯==Q A η9-19 在高温热源为127℃、低温热源为27℃之间工作的卡诺热机,一次循环对外作净功为8000J ,今维持低温热源温度不变,提高高温热源的温度,使其一次循环对外做功10000J ,若两次循环该热机都工作在相同的两条绝热线之间,试求: (1)后一卡诺循环的效率.(2)后一卡诺循环的高温热源的温度.[解] (1) 设前一卡诺循环从高温热源吸收热量为1Q ,则有11Q A =η又 414003001112=-=-=T T η所以 J 320004800011=⨯==ηA Q 后一卡诺循环从高温热源吸收热量为J 34000800010000320001211=-+=-+='A A Q Q所以第二个卡诺循环的效率为 %4.29%100340001000012=⨯='='Q A η(2) 第二个卡诺循环的高温热源温度为 K 425294.01300121=-='-='ηT T9-20 一台家用冰箱,放在气温为300K 的房间内,做一盘C 13-o 的冰需从冷冻室取走J 1009.25⨯的热量.设冰箱为理想卡诺制冷机. (1)求做一盘冰所需要的功;(2)若此冰箱能以s J 1009.22⨯的速率取走热量,求所要求的电功率是多少瓦? (3)做一盘冰需时若干?[解] (1) 致冷系数为 2122T T T A Q -==ω因此 ()()J 1022.32602603001009.2452212⨯=-⨯⨯=-=T T T Q A(2) 取走制一盘冰的热量所需要的时间为 s 101009.21009.2325=⨯⨯=t所以电功率为 W 2.32101022.334=⨯==tA P(3) 做一盘冰所需要的时间为 s 103.9-21 绝热容器中间有一无摩擦、绝热的可动活塞,如图所示,活塞两侧各有mol ν的理想气体,5.1=γ,其初态均为0p 、0V 、0T .现将一通电线圈置入左侧气体中,对气体缓慢加热,左侧气体吸热膨胀推动活塞向右移,使右侧气体压强增加为0375.3p ,求; (1)左侧气体作了多少功?(2)右侧气体的终态温度是多少?(3)左侧气体的终态温度是多少? (4)左侧气体吸收了多少热量?[解] (1) 右侧气体所发生的过程为绝热过程.它对外所做的功的负值就是左侧气体所作的功.所以左侧气体作功为 12200---='-=γV p V p A A又对右侧气体: γγγ202200375.3V p V p V p == 因此 γ102375.3V V =所以 000000122001375.3375.31V p V p V p V p V p A =--=---=γγγ(2) 对右侧气体,由绝热方程知 ()γγγγ----=210010375.3T p T p得到 00325.1375.3T T T ===(3) 左侧气体末态体积为 γ1002001375.32V V V V V V -=-+=得到 00000010011125.525.212375.3375.312375.3T T T V p V V p RV p T =⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫⎝⎛-==γν(4) 左侧气体吸收热量()()0000V 01V 1125.5V p T T C A T T C A E Q +-=+-=+∆=νν由 000RT V p ν= 知 RV p T ν000=又由 5.1VV Vp =+==C R C C C γ, 得到 R C 2V =所以 00000015.925.42V p V p RV p R Q =+⨯⨯⨯=νν9-22 如图所示,在刚性绝热容器中有一可无摩擦移动而且不漏气的导热隔板,将容器分为A 、B 两部分,各盛有1mol 的He 气和2O 气.初态He 、2O 的温度各为K 300A =T ,K 600B =T ;压强均为atm 1.求:(1)整个系统达到平衡时的温度T 、压强p (氧气可视为刚性理想气体); (2)He气和2O 气各自熵的变化,系统的熵变.[解] (1) 因中间是导热隔板,过程中两部分气体热量变化和作功的数值都相等,所以内能变化量的数值也相等,且由于初温度不同而末温度相同所以一正一负.因此 ()()T T C T T C '-=-'B VB B A VA A νν解得 K 5.487536005300325232523BA VBVA BVB A VA =+⨯+⨯=++=++='RR RT RT C C T C T C T因平衡时温度、压强都相等,且都是1mol ,所以体积也相等.()A B A A B B B A AA BA B A45021212p RT T p R p RT p RT V V V V =+=⎪⎪⎭⎫ ⎝⎛+=+='='νν 根据理想气体状态方程得到压强为atm 08.114505.478450A =⨯=⋅'=''='p T V T R p ν(2) He 气熵变⎰⎰⎰⎰''+=+==∆T T V V VVR TTC TVp E TQ S AAAd d d d d A VA A He He He ννK J 42.93002600300ln31.83005.487ln31.8232lnln23ABA A=⨯+⨯+⨯⨯=++'=T T T R T T R氧气熵变⎰⎰⎰⎰''+=+==∆T T V V VVR TTC TVp E TQ S BBB222d d d d d B VB B O O O ννK J 70.66002600300ln31.86005.487ln31.8252lnln25-=⨯+⨯+⨯⨯=++'=BBA BT T T R T T R系统的熵变 K J 72.270.642.92O He =-=∆+∆=∆S S S9-23 已知在0℃1mol 的冰溶化为0℃的水需要吸收热量 6000 J ,求: (1)在0℃条件下这些冰化为水时的熵变;(2)0℃时这些水的微观状态数与冰的微观状态数的比. [解] (1) 温度不变时,熵变为 K J 0.222736000d 1d 0====∆⎰⎰Q T TQ S(2) 根据玻尔兹曼熵公式 冰冰Ω=ln k S 水水Ω=ln k S冰水冰水冰水ΩΩ=Ω-Ω=-=∆lnln ln k k k S S S根据(1)结果,得2423106.11038.10.22⨯⨯∆===ΩΩ-ee ekS 冰水9-24 把2mol 的氧从40℃冷却到0℃,若(1)等体(积)冷却;(2)等压冷却.分别求其熵变是多少?[解] 在等容压缩过程中 T C Q d d V ν= 因此 K J 68.5313273ln252d d d 273313VV -=⨯====∆⎰⎰⎰R TT C TTC TQ S νν在等压冷却过程中, T C Q d d p ν=K J 95.7313273ln272d d d 273313pp -=⨯====∆⎰⎰⎰R TT C TTC TQ S νν9-25 取1mol 理想气体,按如图所示的两种过程由状态A 到达状态C . (1)由A 经等温过程到达状态 C ;(2)由A 经等体(积)过程到达状态B ,再经等压过程到达状态C . 按上述两种过程计算该系统的熵变A C S S -.已知A C 2V V =,A C 21p p =.[解] (1) 根据理想气体状态方程得 RV p RV p T A A AA A ==ν因此等温过程中熵变为⎰⎰⎰⎰====∆V VRTT T Vp T QTQS C Ad 1d d d AAAν2ln lnd AC AA CAR V V R VV T RT V V ===⎰(2) A →C 与A →B →C 两过程初末状态相同,熵是状态函数,只与初末位置有关,因此两过程熵变相同等于2ln R .或:根据理想气体状态方程得 A A BB B 211V p RRV p T ⋅==νA →B →C 过程熵变等于A →B 等容过程和B →C 等压过程中熵变的和⎰⎰⎰⎰+=+=+=∆CBB ACBB ATTC TTC TQ TQ S S S d d d d p V 21νν2ln 2ln 2ln p V R C C =+-=。
大学物理(2-2)智慧树知到答案章节测试2023年中国石油大学(华东)
绪论单元测试1.大学物理是面向理工科大学生的一门重要的必修基础课,该课程讲授的物理学知识、思想和方法是构成学生科学素养的重要组成部分.A:错B:对答案:B第一章测试1.关于试验电荷以下说法正确的是A:试验电荷是体积极小的正电荷B:试验电荷是体积和电量都极小的正电荷C:试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场。
同时是体积足够小,以至于它所在的位置真正代表一点的正电荷D:试验电荷是电量极小的正电荷答案:C2.试验电荷q在电场中受力大小为f ,其电场强度的大小为f/q,以下说法正确的是A:E正比于f 且反比于qB:E正比于fC: 电场强度E是由产生电场的电荷所决定的,不以试验电荷q及其受力的大小决定D:E反比于q答案:C3.下列说法正确的是A:若通过高斯面的电通量为零,则高斯面内的净电荷一定为零B:若高斯面上E处处不为零,则该面内必有净电荷C:若高斯面内无净电荷,则高斯面上E处处为零D:若高斯面内有净电荷,则高斯面上E处处不为零答案:A4.以下各种说法正确的是A:场强相等的地方,电势相同。
电势相等的地方,场强也都相等B:场强为零的地方,电势也一定为零。
电势为零的地方,场强也一定为零C:电势不变的空间内,场强一定为零D:电势较高的地方,场强一定较大。
场强较小的地方,电势也一定较低答案:C5.关于静电场中某点电势值的正负,下列说法中正确的是A: 电势值的正负取决于电势零点的选取B:电势值的正负取决于置于该点的试验电荷的正负C:电势值的正负取决于电场力对试验电荷做功的正负D:电势值的正负取决于产生电场的电荷的正负答案:A6.库仑定律反映的是静止带电体之间的相互作用力.A:对B:错答案:B7.有两个带电量不相等的点电荷,它们相互作用时,电量大的电荷受力大,电量小的电荷受力小.A:错B:对答案:A8.在任意电场中,沿电场线方向,场强一定越来越小.A:对B:错答案:B9.一点电荷q 处在球形高斯面的中心,当将另一个点电荷置于高斯球面外附近,此高斯面上任意点的电场强度是发生变化,但通过此高斯面的电通量不变化A:错B:对答案:B10.电势为零处,电场强度一定为零.A:错B:对答案:A第二章测试1.习惯上把从负极经电源内部指向正极的方向规定为电动势的方向.A:错B:对答案:B2.电流表明在导体截面上的某处通过了多少电荷量,能够反映电流在导体中的具体分布情况.A:错B:对答案:A3.位移电流由变化电场形成,它能产生普通电流相同的磁效应.A:对B:错答案:A4.导体中某点的电流密度矢量,其方向沿该点电场强度的方向,即沿该点电流的方向.A:错B:对答案:B5.导体中任意一点的电流方向为沿该点的电场强度的方向,均从高电势处指向低电势处.A:对B:错答案:A第三章测试1.如图所示,电流从a点分两路通过对称的圆环形分路,汇合于b点.若ca、bd都沿环的径向,则在环形分路的环心处的磁感强度A:为零B:方向在环形分路所在平面内,且指向aC:方向垂直环形分路所在平面且指向纸内D:方向垂直环形分路所在平面且指向纸外E:方向在环形分路所在平面,且指向b答案:A2.下列说法正确的是A:磁感应强度沿闭合回路积分不为零时,回路上任意一点的磁感应强度都不可能为零B:闭合回路上各点的磁感应强度都为零时,回路内一定没有电流穿过C:闭合回路上各点的磁感应强度都为零时,回路内穿过的电流的代数和必定为零D:磁感应强度沿闭合回路积分为零时,回路上各点的磁感应强度必定为零答案:C3.一电荷为q的粒子在均匀磁场中运动,下列说法正确的是A:在速度不变的前提下,若电荷q变为-q,则粒子受力反向,数值不变B: 粒子进入磁场后,其动能和动量都不变C:只要速度大小相同,粒子所受的洛伦兹力就相同D:洛伦兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆答案:A4.一运动电荷q,质量为m,进入均匀磁场中A:其动能不变,动量改变B:其动能改变,动量不变C:其动能、动量都不变D:其动能和动量都改变答案:A5.顺磁物质的磁导率A:远大于真空的磁导率B:比真空的磁导率略大C:比真空的磁导率略小D:远小于真空的磁导率答案:B6.闭合曲线当中没有包含电流,说明闭合曲线中的磁感应强度处处为零A:错B:对答案:A7.洛仑兹力和安培力分别是运动电荷和载流导线在磁场中受力的规律,尽管它们都是磁力,但本质是不同的A:错B:对答案:A8.一个带电粒子在电磁场中不可能作匀速直线运动,而只能是直线加速运动或曲线运动A:对B:错答案:B9.闭合回路上各点磁感应强度都为零,回路内一定没有电流.A:错B:对答案:A10.电介质的相对相对电容率总是大于1,磁介质的磁导率也总是大于1.A:错B:对答案:A第四章测试1.两个彼此无关的闭合回路,其中之一的磁通量发生了7.5Wb的改变,另一发生了7.2Wb的改变,前者的感应电动势一定大于后者.A:对B:错答案:B2.在国际单位制中,磁通量单位用高斯.A:错B:对答案:A3.产生动生电动势的非静电场力是洛伦兹力,所以洛伦兹力对运动电荷不做功的说法是错误的.A:错B:对答案:A4.尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,当不计环的自感时,环中A:感应电动势相同,感应电流不同B:感应电动势不同C:感应电动势相同,感应电流相同D:感应电动势不同,感应电流相同答案:A5.将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时A:铜环中有感应电动势,木环中无感应电动势B:两环中感应电动势相等C:铜环中感应电动势大,木环中感应电动势小D:铜环中感应电动势小,木环中感应电动势大答案:B6.对于位移电流,有下述四种说法,正确的是A:位移电流产生的磁场是有源无旋场B:位移电流产生的磁场不服从安培环路定理C:位移电流是由线性变化的磁场产生的D:位移电流就是变化的电场答案:D第五章测试1.若入射光的频率均大于一给定金属的红限,则该金属分别受到不同频率的光照射时,释出的光电子的最大初动能也不同.A:对B:错答案:A2.康普顿效应结果表明,经典力学的动量守恒定律需要修正.A:对B:错答案:B3.光子具有波粒二象性,电子只具有粒子性.A:对B:错答案:B4.微观粒子满足不确定关系是由于粒子具有波粒二象性.A:错B:对答案:B5.在量子力学中,电子的运动没有轨道的概念,取而代之的是空间概率分布的概念.A:对B:错答案:A6.钾金属表面被蓝光照射时有光子逸出,若增大蓝光光强,则A:逸出的光电子动能增大B:发射光电子所需的时间减少C:单位时间内逸出的光电子数增加D:光电效应的红限频率增高答案:C7.由氢原子理论知,当大量氢原子处于n = 3的激发态时,原子跃迁将发出A:一种波长的光B:连续光谱C:三种波长的光D:两种波长的光答案:C8.如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的A:动能相同B:速度相同C:动量相同D:能量相同答案:C9.下列各组量子数中,哪一组可以描述原子中电子的状态?A:(3,1,-1,1/2)B:(1,2,1,1/2)C:(1,0,1,-1/2)D:(2,2,0,1/2)答案:A第六章测试1.本征半导体是电子与空穴两种载流子同时参与导电,而杂质半导体(n型或p型)只有一种载流子(电子或空穴)参与导电,所以本征半导体导电性能比杂质半导体好.A:错B:对答案:A2. p型半导体的导电机构完全决定于半导体中空穴载流子的运动.A:错B:对答案:A3.世界上第一台激光器是红宝石激光器.A:对B:错答案:A4.n型半导体中杂质原子所形成的局部能级靠近空带(导带)的底部,使局部能级中多余的电子容易被激发跃迁到空带中去,大大提高了半导体导电性能.A:错B:对答案:B5.激光是基于受激辐射的基本原理而发光的.A:对B:错答案:A6.如果(1)锗用锑(五价元素)掺杂,(2)硅用铝(三价元素)掺杂,则分别获得的半导体属于下述类型A:(1)为n型半导体,(2)为p型半导体B:(1),(2)均为n型半导体C: (1)为p型半导体,(2)为n型半导体D:(1),(2)均为p型半导体答案:A7.激光全息照相技术主要是利用激光的哪一种优良特性A:抗电磁干扰能力强B:亮度高C:方向性好D:相干性好答案:D8.按照原子的量子理论,原子可以通过自发辐射和受激辐射的方式发光,它们所产生的光的特点是A:两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光是相干的B:两个原子自发辐射的同频率的光是相干的,原子受激辐射的光与入射光是相干的C:两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光是不相干的D:两个原子自发辐射的同频率的光是相干的,原子受激辐射的光与入射光是不相干的答案:A9.在激光器中利用光学谐振腔A:既不能提高激光束的方向性也不能提高其单色性B:可提高激光束的单色性,而不能提高激光束的方向性C:可同时提高激光束的方向性和单色性D:可提高激光束的方向性,而不能提高激光束的单色性答案:C。
大学物理课后习题详解(第三章)中国石油大学
3-1 以速度0v 前进的炮车,向后发射一炮弹,已知炮车的仰角为θ,炮弹和炮车的质习题3-1图量分别为m 和M ,炮弹相对炮车的出口速率为v ,如图所示。
求炮车的反冲速率是多大?[解] 以大地为参照系,取炮弹与炮弹组成的系统为研究对象,系统水平方向的动量守恒。
由图可知炮弹相对于地面的速度的水平分量为v v '-θcos ,根据动量守恒定律()()v M v v m v m M '-'-=+-θcos 0所以 ()mM mv v m M v +++='θcos 0此即为炮车的反冲速率。
3-2 质量为M 的平板车,在水平地面上无摩擦地运动。
若有N 个人,质量均为m ,站在车上。
开始时车以速度0v 向右运动,后来人相对于车以速度u 向左快跑。
试证明:(1)N 个人一同跳离车以后,车速为NmM Nmuv v ++=0(2)车上N 个人均以相对于车的速度u 向左相继跳离,N 个人均跳离后,车速为()mM mum N M mu Nm M mu v v +++-++++=' 10[证明] (1) 取车和人组成的系统为研究对象,以地面为参照系,系统的水平方向的动量守恒。
人相对于地面的速度为u v -,则()()Mv u v Nm v Nm M +-=+0所以 NmM Nmuv v ++=0(2) 设第1-x 个人跳离车后,车的速度为1-x v ,第x 个人跳离车后,车的速度为x v ,根据动量守恒定律得()[]()()[]x x 1x 1v m x N M u v m v m x N M -++-=+-+-所以 ()Mm x N muv v ++-+=-11x x此即车速的递推关系式,取N x ,,2,1 =得Mm muv v ++=-1N NMm muv v ++=--22N 1N……………………()M m N muv v +-+=112 MNm muv v ++=01将上面所有的式子相加得()Mm muM m mu M m N mu M Nm mu v v ++++++-+++=210N 此即为第N 个人跳离车后的速度,即()mM mum N M mu Nm M mu v v +++-++++=' 103-3 质量为m =0.002kg 的弹丸,其出口速率为300m ,设弹丸在枪筒中前进所受到的合力800400x F -=。
中国石油大学物理答案9章习题解答.docx
习题99-3. 一轻弹簧在60N 的拉力下伸长30cm 。
现把质量为4kg 物体悬挂在该弹簧的下端,并 使之静止,再把物体向下拉10cm,然后释放并开始计吋。
求:(1)物体的振动方程;(2)物 体在平衡位置上方5cm 时弹簧対物体的拉力;(3)物体从笫一次越过平衡位置时刻起,到它 运动到上方5cm 处所需要的最短时间。
[解](1)取平衡位置为坐标原点,竖直向下为正方向,建立坐标系=200N/m A = 0.1m设振动方程为O ・l = O ・lcos0 0 = 0(2)设此时弹簧对物体作用力为凡则(3)设第一次越过平衡位置时刻为则第一次运动到上方5cm 处时刻为匚,则一 0.05 = 0.1 cos (7.07r 2) t 2 = 2刃(3 x 7.07)故所需最短时间为:△f =為—心=0.074s9-4. 一质量为M 的物体在光滑水平面上作谐振动,振幅12cm,在距平衡位置6cm 处, 速度为24cm-s'1,求:⑴ 周期T ; (2)速度为12cm ・s"时的位移。
[解]⑴ 设振动方程为x = Acos@f+ 0)cm 以 A = 12cm 、x = 6cm 、v = 24cm • s"1 代入,得:6 = 12cos(er + 0) 24 = -1269 sin (cot + cp)利用 sin 2(twt + ^) + cos 2(ax +(p)=\ 则因而有F = 200x(0.2-0.05)= 30N0 = 0」cos (7.07f Jr, =0.5龙/7・0730x1 O'2k 200解得:0 =-龙/4 A= 10.6cm故振动方程为:x = 10.6 cos(10z 一 ^/4)cm解得473 co- -------⑵以v = 24cm-s _l 代入,得:解得: 所以故2+(24、 11<-1269>12 = -12tysin (69/ + ^) = -16^/3 sin (69/ + °) sin{cot + 切= cos 伽 + 卩)=土乎卜 ±10.8cm兀=12 cos (0f + 切=12 x ±9-5. 一谐振动的振动曲线如图9-5所示,[解]设振动方程为 x = A cos {a )t + °)根据振动曲线可画出旋转矢量图由图可得:0) = —^- =Ar故振动方程为%=,0COSl?9-6. 一质点沿x 轴作简谐振动,其角频率^10 rad s'',试分别写出以下两种初始状态的 振动方程:(1)其初始位移兀o=7.5 cm,初始速度心二75.0 cm s'1;⑵ 其初始位移也=7.5 cm, 初速度 v 0=-75.0cm-s _l o[解]设振动方程为兀=4cos(10/ + 0)7.5 = Acos0 75 = -lO4sin0T 巫co71 +39-7. 一轻弹簧在60 N 的拉力作用下可伸长30cm,现将一物体悬挂在弹簧的下端并在它 上面放一小物体,它们的总质量为4kg 。
大学物理课后习题详解(第六章)中国石油大学
习 题 六6-1 一轻弹簧在60N 的拉力下伸长30cm .现把质量为4kg 物体悬挂在该弹簧的下端,并使之静止,再把物体向下拉10cm ,然后释放并开始计时.求:(1)物体的振动方程;(2)物体在平衡位置上方5cm 时弹簧对物体的拉力;(3)物体从第一次越过平衡位置时刻起,到它运动到上方5cm 处所需要的最短时间.[解] (1)取平衡位置为坐标原点,竖直向下为正方向,建立坐标系N/m 2001030602=⨯=-k设振动方程为 ()ϕω+=t A x cosrad/s 07.74200===m k ω m 1.0=A 0=t 时 m 1.0=x ϕc o s1.01.0= 0=ϕ 故振动方程为 ()m 07.7cos 1.0t x = (2)设此时弹簧对物体作用力为F ,则()()x x k x k F +=∆=0其中 m 196.02008.940=⨯==k mg x 因而有 ()N 2.2905.0196.0200=-⨯=F (3)设第一次越过平衡位置时刻为1t ,且速度小于零,则()107.7cos 1.00t = 07.75.01π=t第一次运动到上方5cm 处时刻为2t ,且速度小于零,则()207.7cos 1.005.0t =- )07.7322⨯=πt故所需最短时间为:s 074.012=-=∆t t t6-2 一质点在x 轴上作谐振动,选取该质点向右运动通过点 A 时作为计时起点(t =0),经过2s 后质点第一次经过点B ,再经 2s 后,质点第二次经过点B ,若已知该质点在A 、B 两点具有相同的速率,且10cm =AB ,求:(1)质点的振动方程;(2)质点在A 点处的速率.[解] 由旋转矢量图和||||b a v v =可知421=T s 由于42s 81,s 81ππνων====-T(1)以AB 的中点为坐标原点,x 轴指向右方.0=t 时, ϕcos 5A x =-=2s =t 时, ()ϕϕωs i n 2c o s 5A A x -=+== 由以上二式得 1tan =ϕ因为在A 点质点的速度大于零,所以43πϕ-= cm 25cos /==ϕx A所以,运动方程为:()m 4/34/cos 10252ππ-⨯=-t x(2)速度为: ⎪⎭⎫ ⎝⎛-⨯-==-434sin 41025d d 2πππt t x v 当2s =t 时 m/s 1093.3432sin 4102522--⨯=⎪⎭⎫ ⎝⎛-⨯-=πππv6-3 一质量为M 的物体在光滑水平面上作谐振动,振幅为 12cm ,在距平衡位置6cm 处,速度为24s cm ,求:(1)周期T ;(2)速度为12s cm 时的位移.[解](1)设振动方程为()cm cos ϕω+=t A x 以cm 12=A 、cm 6=x 、1s cm 24-⋅=v 代入,得:()ϕω+=t c o s 126 (1)()ϕωω+-=t sin 1224 (2)由(1)、(2)得1122412622=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛ω 解得 334=ω s 72.2232===πωπT (2) 以1s cm 12-⋅=v 代入,得:()()ϕωϕωω+-=+-=t t sin 316sin 1212解得: ()43sin -=+ϕωt 所以 ()413cos ±=+ϕωt故 ()cm 8.1041312cos 12±=⎪⎪⎭⎫ ⎝⎛±⨯=+=ϕωt x6-4 一谐振动的振动曲线如图所示,求振动方程.[解] 设振动方程为: ()ϕω+=t A x cos 根据振动曲线可画出旋转矢量图由图可得: 32πϕ=125223πππϕω=⎪⎭⎫ ⎝⎛+=∆∆=t故振动方程为 cm 32125cos 10⎪⎭⎫⎝⎛+=ππt x6-5 一质点沿x 轴作简谐振动,其角频率s rad 10=ω,试分别写出以下两种初始状态的振动方程:(1)其初始位移0x =7.5 cm ,初始速度s cm 0.750=v ;(2)其初始位移0x =7.5 cm ,初速度s cm 0.750-=v .[解] 设振动方程为 ()ϕ+=t A x 10cos (1) 由题意得: ϕcos 5.7A = ϕsin 1075A -= 解得: 4πφ-= cm 6.10=A 故振动方程为:()cm 410cos 6.10π-=t x(2) 同法可得: ()cm 410cos 6.10π+=t x6-6 一轻弹簧在60 N 的拉力作用下可伸长30cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4k 。
大学物理课后习题详解(第十三章)中国石油大学
习 题 十 三13-1 求各图中点P 处磁感应强度的大小和方向。
[解] (a) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此a I B πμ401=对于导线2:πθθ==21,因此02=BaIB B B πμ4021p =+= 方向垂直纸面向外。
(b) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此rI a I B πμπμ44001==,方向垂直纸面向内。
对于导线2:21πθ=,πθ=2,因此rI a I B πμπμ44002==,方向垂直纸面向内。
半圆形导线在P 点产生的磁场方向也是垂直纸面向内,大小为半径相同、电流相同的圆形导线在圆心处产生的磁感应强度的一半,即rIr I B 4221003μμ==,方向垂直纸面向内。
所以,rIr I r I r I r I B B B B 4244400000321p μπμμπμπμ+=++=++=(c) P 点到三角形每条边的距离都是a d 63=o 301=θ,o 1502=θ每条边上的电流在P 点产生的磁感应强度的方向都是垂直纸面向内,大小都是()aI d IB πμπμ23150cos 30cos 400000=-=故P 点总的磁感应强度大小为aIB B πμ29300== 方向垂直纸面向内。
13-2 有一螺线管长L =20cm ,半径r =2.0cm ,导线中通有强度为I =5.0A 的电流,若在螺线管轴线中点处产生的磁感应强度B =310166-⨯.T 的磁场,问该螺线管每单位长度应多少匝?[解] 已知载流螺线管轴线上场强公式为()120cos cos 2θθμ-=nIB由图知: 10410cos 2=θ,10410cos 1-=θ,所以,⎪⎪⎭⎫ ⎝⎛⨯=10410220nI B μ, 所以,匝=1000101040IBn μ=13-3 若输电线在地面上空25m 处,通以电流31081⨯.A 。
中国石油大学(华东) 大物2-1 历年期末考试习题及答案
1. (本题 3 分)(0602) 质点作曲线运动, r 表示位置矢量, v 表示速度, a 表示加速度,S 表示路程, a t 表示切 向加速度,下列表达式中, (1) dv / d t a , (3) dS / d t v , (C) 只有(2)是对的. 2. (本题 3 分)(5030) 关于力矩有以下几种说法: (1) 对某个定轴而言,内力矩不会改变刚体的角动量. (2) 作用力和反作用力对同一轴的力矩之和必为零. (3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一 定相等. 在上述说法中, (A) 只有(2) 是正确的. (C)(2) 、(3) 是正确的. 3. (本题 3 分)(4057) 有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有 0.1 kg 某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气的质量为: (A)( 1 / 16 )kg. (C) 1.6 kg. 4. (本题 3 分)(5332) 若 f (v ) 为气体分子速率分布函数,N 为分子总数,m 为分子质量,则 的物理意义是 (A) 速率为 v 2 的各分子的总平动动能与速率为 v 1 的各分子的总平动动能之差. (B) 速率为 v 2 的各分子的总平动动能与速率为 v 1 的各分子的总平动动能之和. (C) 速率处在速率间隔 v 1 ~ v 2 之内的分子的平均平动动能. (B) 0.8 kg. (D) 3.2 kg. (B) (1) 、(2) 是正确的. (D) (1) 、(2) 、(3)都是正确的. (2) dr / dt v , (4) dv / dt a t . (B) 只有(2)、(4)是对的. (D) 只有(3)是对的.
大学物理下课后题答案12章中国石油大学(华东)
12章习题参考答案12-1答案:1-5 DBADC 6-10 CDDAD 11-15 DDDAB 12-2 1、E R 221π 2、Sq 022ε3、略4、3028Rqdεπ,方向为从O 点指向缺口中心点5、aq 08πε-12-3真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上到杆的一端距离为d 的点P 的电场强度。
[解] 建立如图所示的坐标系Ox ,在距O 点为x 处取电荷元x Lqx q d d d ==λ,它在P 点产生的电场强度为()()x x d L Lq x d L qrq E d 41d 414d d 202020-+=-+==πεπεπε则整个带电直导线在P 点产生的电场强度为()d L d q x x d L Lq E L+=-+=⎰2041d 41πεπε故 ()i d L d qE+=04πε12-4用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心处点O 的电场强度。
[解] 建立坐标系如图,在半圆环上取微元d l ,θd d R l =,则 l RQq d d π=, q d 在O 点的场强 20204d 4d d R lR Q R q E πεππε== 从对称性分析,y 方向的场强相互抵消,只存在x 方向的场强Ed Oxxq d d λ=θεπθθεπθd 4sin d sin 4sin d d 202302x RQ l RQ E E =⋅=⋅= 2020202x x 2d 4sin d R QR Q E E επθεπθπ===⎰⎰i R Q E o 222επ=12-5一半径为R 的无限长半圆柱面形薄筒,均匀带电,单位长度上的带电量为λ,试求圆柱面轴线上一点的电场强度E 。
[解] 建立坐标系如图,在无限长半圆柱面形薄筒上取l d 的窄条,l d 对应的无限长直线单位长度所带的电量为θπλθπλd d d ==R R q 它在轴线O 产生的场强的大小为RR qE 0202d 2d d επθλπε==因对称性y d E 成对抵消。
大学物理课后习题详解(第十一章)中国石油大学
习 题 十 一11-1 如图所示,在点电荷+Q 的电场中放置一导体球。
由点电荷+Q 到球心的径矢为r ,在静电平衡时,求导体球上的感应电荷在球心O 点处产生的场强E 。
[解] 静电平衡时,导体内任一点的场强为零,O 点的场强是点电荷+Q 及球面上感应电荷共同贡献的,由场强叠加原理有0Q 0='+=E E E r E E 20Q 4r Q πε-=-='11-2 一带电量为q 、半径为r 的金属球A ,放在内外半径分别为1R 和2R 的不带电金属球壳B 内任意位置,如图所示。
A 与B 之间及B 外均为真空,若用导线把A ,B 连接,求球A 的电势。
[解] 以导线把球和球壳连接在一起后,电荷全部分布在球壳的外表面上(或者说导体球的电荷与球壳内表面电荷中和),整个系统是一个等势体,因此20B A 4R q U U πε==11-3 如图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。
设两板面积都是S ,板间距为d ,忽略边缘效应,求:(1)板B 不接地时,两板间的电势差;(2)板B 接地时,两板间的电势差。
[解] (1) 由61页例1知,两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为因而板间电场强度为 SQ E 02ε=电势差为 SQdEd U 0AB 2ε== (2) 板B 接地时,在B 板上感应出负电荷,电荷分布为B A-Q/2Q/2Q/2Q/2A B -QQ故板间电场强度为 SQ E 0ε=电势差为 SQdEd U 0AB ε==11-4 如图所示,有三块互相平行的导体板,上导体板到中间导体板的距离为5.0cm ,上导体板到下导体板的距离为8.0cm ,外面的两块用导线连接,原来不带电。
中间一块两面上带电,其面电荷密度之和为25m C 103.1-⨯=σ。
求每块板的两个表面的面电荷密度各是多少(忽略边缘效应)?[解] 因忽略边缘效应,可把三个导体板看作无限大平板,由例1知32σσ-= (1) 45σσ-= (2)忽略边缘效应,则导体板可看成无限大的,具有屏蔽性,在相邻导体板之间的电场只由相对于二表面上电荷决定。
中国石油大学 大物2-1 9章习题解答03--
习题99-1.选择题1.一质点作简谐振动,振动方程为x =Acos(t +),当时间t =T 2(T 为周期)时,质点的速度为( )(A) A sin(B) A sin(C) A cos(D) Acos2.两个质点各自作简谐振动,它们的振幅相同、周期相同, 第一个质点的振动方程为x 1=A cos(t +)。
当第一个质点从相对平衡位置的正位移处回到平衡位置时, 第二个质点正在最大位移处, 则第二个质点的振动方程为( )(A) x 2=A cos(t ++/2) (B) x 2=A cos(t +/2) (C) x 2=A cos(t +3/2)(D) x 2=A cos(t ++)3.轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1的下边又系一质量为m 2的物体,于是弹簧又伸长了Δx ,若将m 2移去,并令其振动,则振动周期为( )(A) T=2 gm x m 12∆ (B) T=2 gm x m 21∆ (C) T=1212m x m gπ∆ (D) T=2()gm m x m 212+∆ 4.一个质点作简谐振动,振辐为A ,在起始时刻质点的位移为A /2,且向x 轴的正方向运动,此简谐振动的旋转矢量图为( )5.用余弦函数描述一简谐振动,已知振幅为A ,周期为T ,初位相=-/3,则振动曲线为下图中的( )6.一质点作谐振动,振动方程为x=A cos(t +),在求质点振动动能时,得出下面5个表达式:(A) O xA /2ωA OxA /2A ωOx ω-A /2A OxAω-A /2 xtOAA/2-A/2T/2(A) T/2txOA A/2-A/2(C) xtT/2 (B) A OA/2-A/2t (D)T/2 txO -AA/2 -A/2(1) (1/2) m 2A 2sin 2 (t+)(2) (1/2) m2A 2cos 2 (t+)(3) (1/2) kA 2 sin (t+) (4) (1/2) kA 2 cos 2 (t+)(5) (22/T 2) mA 2 sin 2 (t+)其中m 是质点的质量,k 是弹簧的倔强系数,T 是振动的周期。
大学物理课后习题详解(第五章)中国石油大学
5-14 要使电子的速率从增加到必须做多少功? [解] 由动能定理,外力所作的功为
代入数据,得
5-15 某粒子的静止质量为,当其动能等于其静能时,其质量和动量 各等于多少? [解] 动能为 由已知条件
,故 解出 所以有 因此
(2)如果火箭A向正北飞行,火箭B仍然向西飞行,则由火箭B测得火 箭A的速率大小中方向又如何?
[解] (1)选地球为S系,火箭B为系,并设正东为x轴正向,则对A 有:
由速度变换公式,得:
方向为正东。 (2) 坐标系仍如(1)问, 由速度变换公式,有 有正东方向夹角为
5-10 一空间飞船以0.5c的速率从地球发射,在飞行中飞船又向前方
相对自己以0.5c的速率发射一火箭,问地球上的观测者测得火箭的速率 是多少? [解] 地面取为S系,飞船取为系,则,。对地面观测者而言火箭速率
5-11 半人马星座的口星距地球为m,设有一飞船以0.999c的速率往 返于。星与地球之间。由地球上观测,飞船往返一次需多少时间?若在 飞船上观测,往返一次需多少时间? [解]取地球为S系,飞船为系,地球上观测飞船往返一次需时:
故有 由动量守恒、能量守恒定律,得
可解得
5-19 在北京的正负光速相差多大?一个电子的动量是多大?(电子的静止能量)。
[解] 因为 所以
5-20 静止质量为的粒子在静止时衰变为静止质量为和的两个粒子。试 求静止质量为的粒子的能量和速度。 [解] 根据动量、能量守恒定律列出方程 令、,上两式化为 从(4)式得
5-1 设有一宇宙飞船,相对于地球作匀速直线运动,若在地球上测 得飞船的长度为其静止长度的一半,问飞船相对地球的速度是多少? [解] 飞船静止长度为其固有长度,地球上测得其长度为运动长度,由长 度收缩公式,有:
大学物理课后习题详解(第九章)中国石油大学
习 题 九9-1 一系统由图示的状态a 经acb 到达状态b ,系统吸收了320J 热量,系统对外作功126J . (1)若adb 过程系统对外作功 42J ,问有多少热量传入系统? (2)当系统由b 沿曲线ba 返回状态a ,外界对系统作功84 J ,试问系统是吸热还是放热? 热量是多少? [解] 由热力学第一定律A E Q +∆=得 A Q E -=∆ 在acb 过程中,E E E ∆=-a b J 19412632011=-=-=A Q在adb 过程中,内能变化量与acb 过程相同 因此 J 2364219422=+=+∆=A E Q 在ba 过程中J 2788419433b a 3-=--=+∆-=+-=A E A E E Q由于热量为负值,所以本过程中系统放热.9-2 2mol 氮气由温度为 300K ,压强为510013.1⨯Pa (1atm )的初态等温地压缩到 510026.2⨯Pa (2atm ).求气体放出的热量. [解] 在等温过程中气体吸收的热量等于气体对外做的功,所以J 1046.321ln30031.82ln321T ⨯-=⨯⨯⨯===p p RT A Q ν即气体放热为J 1046.33⨯.9-3 一定质量的理想气体的内能E 随体积的变化关系为E - V图上的一条过原点的直线,如图所示.试证此直线表示等压过程.[证明] 设此直线斜率为k ,则此直线方程为kV E = 又E 随温度的关系变化式为 T k T C MM E '=⋅=v m o l所以 T k kV '= 因此 C kk T V ='=(C 为恒量)又由理想气体的状态方程知,C T pV'= (C '为恒量)所以 p 为恒量,即此过程为等压过程.9-4 2mol 氧气由状态1变化到状态2所经历的过程如图所示:(1)沿l →m →2路径.(2)1→2直线.试分别求出两过程中氧气对外作的功、吸收的热量及内能的变化.[解] (1) 在1→m →2这一过程中,做功的大小为该曲线下的面积,氧气对外做负功.()()J 1010.81010013.11050204352121⨯-=⨯⨯⨯-⨯-=--=-V V p A由气体的内能公式T C E V ν=和理想气体的状态方程RT pV ν=得pV i RR i pVRpVC RpVC E 22VV====νν对于氧气5=i ,所以其内能的变化为 ()()J 1027.11010013.15051020252543511221⨯-=⨯⨯⨯⨯-⨯⨯=-=∆-V p V p E此过程吸收的热量为 J 1037.91010.81027.1444111⨯-=⨯-⨯-=+∆=A E Q (2)在从1→2过程中,由图知氧气对外作功为()()()()J 1007.51010013.11050520212143521122⨯-=⨯⨯⨯-⨯+⨯-=-+-=-V V p p A内能的变化 J 1027.1412⨯-=∆=∆E E吸收的热量 J 1034.61007.51027.1444222⨯-=⨯-⨯-=+∆=A E Q9-5 10mol 单原子理想气体在压缩过程中外界对它作功209J ,其温度上升1K ,试求:(1)气体吸收的热量与内能的增量.(2) 此过程中气体的摩尔热容量.[解] (1) 内能的增量为 J 65.124131.82310V =⨯⨯⨯=∆=∆T C E ν气体吸收的热量 J 35.8420965.124-=-=+∆=A E Q (2) 由气体摩尔热容量知 ())K mol J 44.835.841011⋅-=-⨯=∆=TQC ν9-6 将压强为1atm ,体积为33m 101-⨯的氧气(25V R C =)从0℃加热到100℃.试分别求在等体(积)过程和等压过程中各需吸收多少热量.[解] 由理想气体状态方程 RT pV ν= 00RT V p RTpV ==ν在等容过程中吸收的热量为 J 77.9210027310110013.1252535000V V =⨯⨯⨯⨯⨯=∆=∆=-T R RT V p T C Q ν在等压过程中吸收的热量为J 88.12977.92575727V p p =⨯==∆=∆=Q T R T C Q νν9-7 已知氩气的定体(积)比热为)K kg J 314V ⋅=c ,若将氩气看作理想气体,求氩原子的质量.(定体(积)摩尔热容V mol V c M C =).[解] 由定容摩尔热容量的定义知 R R i C 232V ==因此 VVV m o l 23c Rc C M==氩原子的质量为 kg 1059.63141002.631.823232623V A Amol-⨯=⨯⨯⨯===c N RN Mm9-8 为测定气体的γ(V p C C =)值有时用下列方法:一定量的气体的初始温度、体积和压强为0T 、0V 和0p ,用一根电炉丝对它缓慢加热.两次加热的电流强度和时间相同,第一次保持体积0V 不变,而温度和压强变为1T 和1p .第二次保持压强0p 不变,而温度和体积变为2T 和1V .试证明 ()()001001p V V V p p --=γ[证明] 两次加热气体吸收的热量相同,等容过程吸收的热量为()01V 1T T C Q -=ν 等压过程吸收的热量为 ()02p 2T T C Q -=ν 由 21Q Q =可得 ()()02p 01V T T C T T C -=-νν所以 0201Vp T T T T C C --==γ由理想气体状态方程 000RT V p ν= 101RT V p ν= 210RT V p ν= 因此 00101V R p p T T ν-=- 00102p RV V T T ν-=-所以得到 ()()001001p V V V p p --=γ9-9 已知1mol 固体的状态方程为bp aT v v ++=0,内能apT cT E +=,式中0v 、a 、b 、c 均为常量,求该固体的p C 、V C .[解] 由热力学第一定律可得 V p E A E Q d d d d d +=+= (1) 由已知条件可得 p b T a V d d d += (2) T ap p aT T c E d d d d ++= (3)将(2)、(3)代入(1)得 ()p b T a p T ap p aT T c Q d d d d d d ++++= (4) 在等压过程中,0d =p所以 ()T ap c Q d 2d += 因此 ap c TQ C 2d d p +==在等容过程中 0d =V代入(2)式得 0d d =+p b T a 因此 T ba p d d -=代入(4)式得Tb T a apc T b a b T a p T ap T b a aT T c Qd d d d d d d 2⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-+++⎪⎭⎫ ⎝⎛-+= 所以 bT a ap c TQ C 2V d d -+==9-10 已知范德瓦尔斯气体的内能0V E Va T C E +-=.其中V C 、a 、0E 为常数,试证明其绝热过程方程为()常数=-VC R b V T[证明] 范德瓦尔斯气体的状态方程为 ()RT b V V a p =-⎪⎭⎫⎝⎛+2 (1) 又由已知条件可得 V Va T C E d d d 2V += (2)绝热过程 0d =Q ,由热力学第一定律得 V p A E d d d -=-= (3) 由(2)、(3)式可得 V p V Va T C d d d 2V -=+ (4)由 (1)式可得 2Va bV RT p --=(5)将(5)代入(4)式有 V bV RT V Va V Va T C d d d d 22V --=+整理得 V bV T RTC d 1d V --=积分得()常数=-+b V T RC ln ln V即 ()常数=-RCVT b V这就是范德瓦尔斯气体的绝热过程方程.9-11 如图所示是氮气循环过程,求:(1)一次循环气体对外作的功;(2)循环效率. [解] (1) 一次循环过程气体对外作功的大小为闭合曲线所包围的面积,由图知,其包围的面积为1()()1412V V p p S --= ()()J 100.2101015510335⨯=⨯⨯-⨯-=-该循环对外作功为正,所以 J 100.23⨯=A(2) 该循环过程中,从1→2,2→3为吸收热量过程 1→2为等容过程,吸收热量为()()112212V 125V p V p T T C Q -=-=ν()J 1025.110101511025335⨯=⨯⨯⨯-⨯⨯=-2→3为等压过程,吸收热量为 ()()223323p 227V p V p T T C Q -=-=ν()J 104.1101011051027435⨯=⨯⨯⨯-⨯⨯=-因此吸收的总热量为 J 10525.1421⨯=+=Q Q Q 该循环的效率为 %1.13%10010525.1100.243=⨯⨯⨯==Q A η9-12 一理想气体的循环过程如图所示,其中ca 为绝热过程,点 a 的状态参量为()11,V T ,点b 的状态参量为()22,V T ,理想气体的热容比为γ,求(1)气体在ab 、bc 过程中与外界是否有热交换? 数量是多少?(2)点c 的状态参量;(3)循环的效率.[解] (1) ab 过程是等温过程,系统吸收热量为121T lnV V RT A Q ν==因12V V >,故该过程是吸热过程.bc 过程是等容过程,系统吸收热量为 ()2c V V T T C Q -=ν 因 c T <2T ,故该过程是放热过程. (2) 从图上可看到 2c V V =又 ac 为绝热过程,故根据绝热方程 112111c1c T VV T VV T --⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=γγ又有 γγ11c c V p V p =得到 121211121211c -⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=γγγννV V V RT V RT V V V V p p(3) ()()[]()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⋅-=--=--=-=--12121V 12111212V 121C 2V TV ln 11ln1ln11V V V V RC V V RT T V V T C V V RT T T C Q Q γγννη9-13 图中闭合曲线为一理想气体的循环过程曲线,其中ab 、cd 为绝热线,bc 为等体(积)线,da 为等压线,试证明其效率为bc ad T T T T ---=γη1式中a T 、b T 、c T 、d T 分别为a 、b 、c 、d 各状态的温度,V p C C =γ.[证明] da 为放热过程,其放出的热量为()a d p 2T T C Q -=νbc 为吸热过程,其吸收的热量为 ()b c V 1T T C Q -=ν 所以其效率为 ()()bc ad b c V a d p 12111T T T T T T C T T C Q Q ---=---=-=γννη9-14 如图所示,AB 、DC 为绝热线,COA 是等温线. 已知系统在COA 过程中放热J 100,OAB 的面积是J 30,ODC 的面积为 J 70,试问在BOD 过程中系统是吸热还是放热?热量是多少?[解] 因COA 是等温线,COA 过程中J 100CA CA -==Q A 又因AB 、DC 为绝热线,AB AB A E -=∆ DC DC A E -=∆ OAB 过程系统作负功,ODC 过程系统作正功,整个循环过程系统作功 3070CA DC BD AB -=+++A A A ABOD 过程中系统吸热A C BD DC AB BD BD 140140E E E E E E A Q -+=∆+∆+∆+=∆+=由于COA 是等温过程,过程中系统内能变化为零,即 0A C =-E E 因此BOD 过程中系统吸热 J 140=Q9-15 一制冷机进行如图所示的循环过程,其中ab 、cd 分别是温度为1T 、2T 的等温线,bc 、da 为等压过程,设工作物质为理想气体.证明这制冷机制冷系数为:12121ln22p p i T T T ++-=ω[证明] ab 为等温过程,吸收热量为12111lnp p RT A Q ν==cd 为等温过程,其放出的热量大小为12222lnp p RT A Q ν==bc 为等压过程,吸收的热量为 ()12p 3T T C Q -=ν da 为等压过程,放出的热量大小为 ()12p 4T T C Q -=ν所以致冷系数 ()()12121314231ln22p p i T T T Q Q Q Q Q Q Q Q Q AQ ++-=+-++=-==吸放吸吸ω9-16 mol 1单原子理想气体,初态压强为1p ,体积为1V ,经等温膨胀使体积增加一倍,然后保持压强不变,使其压缩到原来的体积,最后保持体积不变,使其回到初态. (1)试在V p -图上画出过程曲线;(2)求在整个过程中内能的改变,系统对外作的净功、从外界吸收的净热量以及循环效率.[解] (1) 过程曲线(2) 系统经过循环又回到初态,所以其内能改变量0=∆E a →b 为等温过程,系统对外作正功2ln ln11121V p V V RT A ==νa2p 1p 2V 1V OVb →c 为等压过程,系统对外作负功,其数值大小为()()122111222V V V V p V V p A -=-=过程中总功 ()1112211112119.02ln V p V V V V p V p A A A =--=-=系统从外界吸收的净热量 1119.0V p A Q == a →b 过程吸热为 2ln 1111V p A Q ==c →a 过程中吸收的热量为 ()c a V 2T T C Q -=ν()V p V V V p p V p p 112111121432323=⎪⎪⎭⎫ ⎝⎛-=-=所以 %2.13432ln 19.011111121=+=+=V p V p V p Q Q A η9-17 一可逆卡诺热机低温热源的温度为27℃,热机效率为 40%,它的高温热源的温度是多少? 今欲将热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加多少度?[解] 可逆卡诺循环的效率为121T T -=η所以 K 5004.01300121=-=-=ηT T若 %50='η,则 K 6005.01300121=-='-='ηT T所以 K 10050060011=-=-'=∆T T T9-18 有一卡诺热机,用29kg 空气为工作物质,高温热源和低温热源的温度分别为C 27o 和C 73-o ,求此热机的效率.若在等温膨胀过程中工作物质的体积增大到2.718倍,则此热机每一循环所作的功是多少?[解] 此热机的效率为 %3.333002001112=-=-=T T η在等温膨胀过程中,吸收的热量为J 1049.2718.2ln 30031.8291029ln631211⨯=⨯⨯⨯⨯==V V RT Q ν又 1Q A =η所以 J 103.81049.231561⨯=⨯⨯==Q A η9-19 在高温热源为127℃、低温热源为27℃之间工作的卡诺热机,一次循环对外作净功为8000J ,今维持低温热源温度不变,提高高温热源的温度,使其一次循环对外做功10000J ,若两次循环该热机都工作在相同的两条绝热线之间,试求: (1)后一卡诺循环的效率.(2)后一卡诺循环的高温热源的温度.[解] (1) 设前一卡诺循环从高温热源吸收热量为1Q ,则有11Q A =η又 414003001112=-=-=T T η所以 J 320004800011=⨯==ηA Q 后一卡诺循环从高温热源吸收热量为J 34000800010000320001211=-+=-+='A A Q Q所以第二个卡诺循环的效率为 %4.29%100340001000012=⨯='='Q A η(2) 第二个卡诺循环的高温热源温度为 K 425294.01300121=-='-='ηT T9-20 一台家用冰箱,放在气温为300K 的房间内,做一盘C 13-o 的冰需从冷冻室取走J 1009.25⨯的热量.设冰箱为理想卡诺制冷机. (1)求做一盘冰所需要的功;(2)若此冰箱能以s J 1009.22⨯的速率取走热量,求所要求的电功率是多少瓦? (3)做一盘冰需时若干?[解] (1) 致冷系数为 2122T T T A Q -==ω因此 ()()J 1022.32602603001009.2452212⨯=-⨯⨯=-=T T T Q A(2) 取走制一盘冰的热量所需要的时间为 s 101009.21009.2325=⨯⨯=t所以电功率为 W 2.32101022.334=⨯==tA P(3) 做一盘冰所需要的时间为 s 103.9-21 绝热容器中间有一无摩擦、绝热的可动活塞,如图所示,活塞两侧各有mol ν的理想气体,5.1=γ,其初态均为0p 、0V 、0T .现将一通电线圈置入左侧气体中,对气体缓慢加热,左侧气体吸热膨胀推动活塞向右移,使右侧气体压强增加为0375.3p ,求; (1)左侧气体作了多少功?(2)右侧气体的终态温度是多少?(3)左侧气体的终态温度是多少? (4)左侧气体吸收了多少热量?[解] (1) 右侧气体所发生的过程为绝热过程.它对外所做的功的负值就是左侧气体所作的功.所以左侧气体作功为 12200---='-=γV p V p A A又对右侧气体: γγγ202200375.3V p V p V p == 因此 γ102375.3V V =所以 000000122001375.3375.31V p V p V p V p V p A =--=---=γγγ(2) 对右侧气体,由绝热方程知 ()γγγγ----=210010375.3T p T p得到 00325.1375.3T T T ===(3) 左侧气体末态体积为 γ1002001375.32V V V V V V -=-+=得到 00000010011125.525.212375.3375.312375.3T T T V p V V p RV p T =⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫⎝⎛-==γν(4) 左侧气体吸收热量()()0000V 01V 1125.5V p T T C A T T C A E Q +-=+-=+∆=νν由 000RT V p ν= 知 RV p T ν000=又由 5.1VV Vp =+==C R C C C γ, 得到 R C 2V =所以 00000015.925.42V p V p RV p R Q =+⨯⨯⨯=νν9-22 如图所示,在刚性绝热容器中有一可无摩擦移动而且不漏气的导热隔板,将容器分为A 、B 两部分,各盛有1mol 的He 气和2O 气.初态He 、2O 的温度各为K 300A =T ,K 600B =T ;压强均为atm 1.求:(1)整个系统达到平衡时的温度T 、压强p (氧气可视为刚性理想气体); (2)He气和2O 气各自熵的变化,系统的熵变.[解] (1) 因中间是导热隔板,过程中两部分气体热量变化和作功的数值都相等,所以内能变化量的数值也相等,且由于初温度不同而末温度相同所以一正一负.因此 ()()T T C T T C '-=-'B VB B A VA A νν解得 K 5.487536005300325232523BA VBVA BVB A VA =+⨯+⨯=++=++='RR RT RT C C T C T C T因平衡时温度、压强都相等,且都是1mol ,所以体积也相等.()A B A A B B B A AA BA B A45021212p RT T p R p RT p RT V V V V =+=⎪⎪⎭⎫ ⎝⎛+=+='='νν 根据理想气体状态方程得到压强为atm 08.114505.478450A =⨯=⋅'=''='p T V T R p ν(2) He 气熵变⎰⎰⎰⎰''+=+==∆T T V V VVR TTC TVp E TQ S AAAd d d d d A VA A He He He ννK J 42.93002600300ln31.83005.487ln31.8232lnln23ABA A=⨯+⨯+⨯⨯=++'=T T T R T T R氧气熵变⎰⎰⎰⎰''+=+==∆T T V V VVR TTC TVp E TQ S BBB222d d d d d B VB B O O O ννK J 70.66002600300ln31.86005.487ln31.8252lnln25-=⨯+⨯+⨯⨯=++'=BBA BT T T R T T R系统的熵变 K J 72.270.642.92O He =-=∆+∆=∆S S S9-23 已知在0℃1mol 的冰溶化为0℃的水需要吸收热量 6000 J ,求: (1)在0℃条件下这些冰化为水时的熵变;(2)0℃时这些水的微观状态数与冰的微观状态数的比. [解] (1) 温度不变时,熵变为 K J 0.222736000d 1d 0====∆⎰⎰Q T TQ S(2) 根据玻尔兹曼熵公式 冰冰Ω=ln k S 水水Ω=ln k S冰水冰水冰水ΩΩ=Ω-Ω=-=∆lnln ln k k k S S S根据(1)结果,得2423106.11038.10.22⨯⨯∆===ΩΩ-ee ekS 冰水9-24 把2mol 的氧从40℃冷却到0℃,若(1)等体(积)冷却;(2)等压冷却.分别求其熵变是多少?[解] 在等容压缩过程中 T C Q d d V ν= 因此 K J 68.5313273ln252d d d 273313VV -=⨯====∆⎰⎰⎰R TT C TTC TQ S νν在等压冷却过程中, T C Q d d p ν=K J 95.7313273ln272d d d 273313pp -=⨯====∆⎰⎰⎰R TT C TTC TQ S νν9-25 取1mol 理想气体,按如图所示的两种过程由状态A 到达状态C . (1)由A 经等温过程到达状态 C ;(2)由A 经等体(积)过程到达状态B ,再经等压过程到达状态C . 按上述两种过程计算该系统的熵变A C S S -.已知A C 2V V =,A C 21p p =.[解] (1) 根据理想气体状态方程得 RV p RV p T A A AA A ==ν因此等温过程中熵变为⎰⎰⎰⎰====∆V VRTT T Vp T QTQS C Ad 1d d d AAAν2ln lnd AC AA CAR V V R VV T RT V V ===⎰(2) A →C 与A →B →C 两过程初末状态相同,熵是状态函数,只与初末位置有关,因此两过程熵变相同等于2ln R .或:根据理想气体状态方程得 A A BB B 211V p RRV p T ⋅==νA →B →C 过程熵变等于A →B 等容过程和B →C 等压过程中熵变的和⎰⎰⎰⎰+=+=+=∆CBB ACBB ATTC TTC TQ TQ S S S d d d d p V 21νν2ln 2ln 2ln p V R C C =+-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ax
az 0
d2 x r 2 cost 2 dt
ay
d2 y r 2 s i n t 2 dt
7-2
所以
a ax i a y j az k r 2 costi r 2 sin tj
(3) 由式(1) 、 (2) 、 (3)得运动方程的矢量式 r xi yj zk r costi r sin tj ctk 1-8 质点沿 x 轴运动,已知 v 8 2t 2 ,当 t 8 s 时,质点在原点左边 52m 处(向右为 x 轴正向) .试求: (1)质点的加速度和运动学方程; (2)初速度和初位置; (3)分析质点的 运动性质. [解] (1) 质点的加速度 a d v /d t 4t 又 v d x /d t 所以 d x vdt 对上式两边积分,并考虑到初始条件得
vx dx r sin t dt
dy r cost dt dz vz c dt vy
所以
v vx i v y j vz k r sin ti r costj ck
由式(1) 、 (2) 、 (3)两边对时间求二阶导数,可得质点的加速度
所以, t 时刻齿尖 P 的加速度为
2 a a t2 an b2
(v0 bt) 4 R2
1-17 火车在曲率半径 R=400m 的圆弧轨道上行驶. 已知火车的切向加速度 a t 0.2 m s 2 , 求火车的瞬时速率为 10 m s 时的法向加速度和加速度. [解] 火车的法向加速度 火车的总加速度
y x2
7-4
对时间 t 求导数
vy
dy dx 2x 2 xvx dt dt
(1)
再对时间 t 求导数,并考虑到 v x 是恒量
a
把x
d vy dt
2 2v x
(2)
2 2 vy 2 3 4 m s m 代入式(1)得 3 3 2 所以,粒子在 x m 处的速度为 3
x v
0
对上式两边积分
0 d x v
化简得
v dv v dv v0 kv a
1 v x ln k v0
v v0 e kx
所以
l-13 一粒子沿抛物线轨道 y x 2 运动,且知 vx 3 m s .试求粒子在 x 速度. [解] 由粒子的轨道方程
2 m 处的速度和加 3
dx 3t 2 6t 9 3t 3t 1 dt dv a 6t 1 dt 当 t 3s 时, v 0 ,粒子沿 x 轴正向运动; 当 t 3s 时, v 0 ,粒子沿 x 轴负向运动. 当 t 1s 时, a 0 ,粒子的加速度沿 x 轴正方向; 当 t 1s 时, a 0 ,粒子的加速度沿 x 轴负方向. v
vy
dy 2t 1 dt
(3)
v vx i v y j 2ti 2t 1 j
ax
所以
d2 x 2 dt2
a 2i 2 j
ay
d2 y 2 dt2
(4)
把 t 2s 代入式(3) 、 (4) ,可得该时刻质点的速度和加速度. a 2i 2 j v 4i 2 j 1-5 质点的运动学方程为 x A sin t , y B cost ,其中 A、B、 为正常数,质点的轨 道为一椭圆.试证明质点的加速度矢量恒指向椭圆的中心. [证明] 由质点的运动方程 x A s i n t y B cost 对时间 t 求二阶导数,得质点的加速度 (1) (2)
an
v 2 102 0.25 m s 2 R 400
方向指向曲率中心
2 a an a t2 0.252 0.2 2 0.32 m s 2
7-6
设加速度 a 与速度 v 之间的夹角为 ,则
arctan
an 0.25 arctan 51.340 510 20 at 0.2
2 x0 457.3 8 0 0 3 457.3m 3
(3) 质点沿 x 轴正方向作变加速直线运动,初速度为 8m/s,初位置为 457.3 m. 1-9 一物体沿 x 轴运动,其加速度与位置的关系为 a 2 6 x .物体在 x 0 处的速度为
10 m s ,求物体的速度与位置的关系.
1-12 一艘正以速率 v0 匀速行驶的舰艇, 在发动机关闭之后匀减速行驶. 其加速度的大小与 速度的平方成正比,即 a kv 2 , k 为正常数.试求舰艇在关闭发动机后行驶了 x 距离时 速度的大小. [解] 根据链式法则
a
dv dv d x dv v dt d x dt dx v d x dv a
x 2t
消去参数 t,可得轨道方程
y 2 t2
y 2
1 2 x 4
(2) 由速度、加速度定义式,有 v dr / dt 2i 2tj
a d 2 r / dt 2 2 j
将 t 2s 代入上两式,得
v 2i 4 j
a 2 j
1-7 已知质点的运动学方程为 x r cost ,y r sin t ,z ct , 其中 r、 c 均为常量. 试 、 求: (1)质点作什么运动?(2)其速度和加速度? (3)运动学方程的矢量式. [解] (1) 质点的运动方程 xrc o st y r sin t (1) (2) (3)
z ct
由(1) 、 (2)消去参数 t 得
x2 y2 r 2
此方程表示以原点为圆心以 r 为半径的圆,即质点的轨迹在 xoy 平面上的投影为圆. 由式(2)可以看出,质点以速率 c 沿 z 轴匀速运动. 综上可知,质点绕 z 轴作螺旋线运动. (2) 由式(1) 、 (2) 、 (3)两边对时间 t 求导数可得质点的速度
B
联立上述三式得
a nB
(6)
B
2 v0 g cos
1-15 一物体作如图所示的抛体运动,测得轨道的点 A 处,速度的大小为 v,其方向与水平 线的夹角为 300 ,求点 A 的切向加速度和该处的曲率半径. [解] 设 A 点处物体的切向加速度为 a t ,法向加速度为 a n ,曲 率半径为,则 由图知
dv 得 dt
dv dt g Bv
两边分别积分,得
Байду номын сангаас
v 0
dv g Bv
t 0
dt
7-3
所以,物体的速率随时间变化的关系为:
g 1 e Bt B (2) 当 a 0 时 有 a g Bv 0 (或以 t 代入) v
由此得收尾速率
v
g B
1-11 一物体悬挂于弹簧上沿竖直方向作谐振动,其加速 a ky ,k 为常数,y 是离开平衡 位置的坐标值.设 y 0 处物体的速度为 v0 ,试求速度 v 与 y 的函数关系. [解] 根据链式法则
vA v0 cos a nA =g
2 vA
(1) (2)
A
联立上述三式得
an A
(3)
2 v0 cos 2 A g
物体在 B 点的速度设为 v B ,法向加速度为 a nB ,曲率半径为 B ,由题图显然有
v B v0 a nB g cos
7-5
(4) (5)
2 vB
(1) (2)
因为粒子的加速度与速度同方向时,粒子加速运动,反向时,减速运动,所以,当 t 3s 或 0 t 1s 间隔内粒子加速运动,在 1s t 3s 间隔内里粒子减速运动. 1-4 一质点的运动学方程为 x t 2 , y t 1 (S1) .试求: (1)质点的轨迹方程;(2)
1-10 在重力和空气阻力的作用下,某物体下落的加速度为 a g Bv ,g 为重力加速度,B 为与物体的质量、形状及介质有关的常数.设 t 0 时物体的初速度为零. (1)试求物体的 速度随时间变化的关系式; (2)当加速度为零时的速度(称为收尾速度)值为多大? [解] (1) 由 a
所以
x 52
dx
t 8
vdt
8 2t d t
t 2 8
2 x 8t t 3 457.3 3 2 3 t 3
因而质点的运动学方程为 x 457.3 8t
(2) 将 t 0 代入速度表达式和运动学方程,得
v0 8 2 0 2 8m/s
1 2 bt ,其中 v 0 和 b 都是正常量.求 t 时刻齿尖 P 的速度及加速度的大小. 2
[解] 设时刻 t 齿尖 P 的速率为 v ,切向加速度 a t ,法向加速度 a n ,则
v
ds v0 bt dt dv at b dt v 2 (v0 bt) 2 an R R
[解] 根据链式法则
a
dv dv d x dv v dt d x dt dx
v d v a d x 2 6 x d x
对上式两边积分并考虑到初始条件,得 故物体的速度与位置的关系为
v
10
vdv
2 6xd x
x 0
v 6 x 2 4 x 100
ms
第一章习题解答
1-3 一粒子按规律 x t 3 3t 2 9t 5 沿 x 轴运动,试分别求出该粒子沿 x 轴正向运动;沿 x 轴负向运动;加速运动;减速运动的时间间隔. [解] 由运动方程 x t 3 3t 2 9t 5 可得 质点的速度 粒子的加速度 由式(1)可看出 由式(2)可看出
2 2 v vx vx 32 4 2 5 m s
与 x 轴正方向之间的夹角