将军饮马模型终稿

合集下载

将军饮马模型(终稿)教学提纲

将军饮马模型(终稿)教学提纲

将军饮马模型(终稿)将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。

证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM 交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM 交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.原理:两点之间,线段最短3.两定两动型最值例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d (动点M位于动点N左侧),使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l于点N,将点N向左平移长度d,得到点M。

初中数学58种模型之12、“将军饮马”三种模型详解

初中数学58种模型之12、“将军饮马”三种模型详解

当两淀点A 、R 在克罐/何侧时,在亞线』上携一点几便|阳一户创最大°将军饮马”三种模型"将军饮马"问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。

晋两定点A.U 在点线F 异創时-在肖践f 上找一点Pt 使PA+PB 锻小*述接也交h 纱/于点P.点卩閒为所求作的点.肖两远点上B 在直雜I 同测时,在直刻上拥一点P,使PA+PB 最小'作庖U 芸于宜线F 的对称点V ■连楼AB'交直线于点P.点P 即为用求作的点"―二I \PA-P^\荊卩址大值洵丽。

连接班并延长交直戦』十点几点卩即为所求作的点。

当两定点仏k 在直找门司侧时,在直线』上找一点人使PA-PB\^扎作点B 关于直统』的对称点B'h 谨接恋’井延快交宜鏡于点巴点F 即为所求作的点。

皓论PAPI1的颯小°PA-PB 的盘小值为AB'□冋-卿的最大值为上的动点,则户创的圮大值是多少?A ■B ■\A\PA-PB\的 1当两定点限廿在宜线/同删时,在直线丿上找--点片使f4-砂|最小“ 叫连接馭作■-朋的垂直平分钱交直线f 于点P ,点卩即沟所求作的点-最小值为叽模型实例例1一如图"止厅形的面积是1氛是等边三博形,点E 在止方刑ABCI )内“在对角纯蚯上有一点卩*则PD+FE 的艮小值为°^12.如圜已S11AABC 为辱展宜角匸角形…怔-氏=4”ZBCD 15".P 拘匚D热搜掃练I.如虱^AABC 中「ZACB-fJO 3,乃是就边的中点,II 是屈边b -动直+则LCIED 的最小悄是°])2・如图.点C的坐标为(3,y),当△ABC的周长最短时,求丿的值。

3.如图.正方形ABCD中,AB-7,M是DCI:的一点,且DM-3,N是AC上的一动点.求|DN-MN|的嚴小值与战大值.△PCD 周氏最小为点P 在ZAOB 的内部,在0B 上找点D,在0A 上找点C,使得△PCD 周长最小。

将军饮马模型(终稿)

将军饮马模型(终稿)

将军饮马模型将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营 A 出发,先到河边饮马,然后再去河岸同侧的军营 B 开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“ 将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点 P,使动点 P 到两个定点 A 与 B 的距离之和最小,即 PA+PB 最小 .作法:连接 AB ,与直线l 的交点Q,Q 即为所要寻找的点,即当动点P 跑到了点 Q 处,PA+PB 最小,且最小值等于AB.原理:两点之间线段最短。

证明:连接 AB ,与直线l 的交点Q,P为直线 l 上任意一点,在⊿ PAB 中,由三角形三边关系可知:AP+PB ≧ AB( 当且仅当 PQ 重合时取﹦ )例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 的和最小 .关键:找对称点作法:作定点 B 关于定直线l的对称点 C,连接 AC ,与直线 l 的交点 Q 即为所要寻找的点,即当动点 P 跑到了点 Q 处, PA+PB 和最小,且最小值等于 AC. 原理:两点之间,线段最短证明:连接 AC ,与直线l 的交点Q,P为直线 l 上任意一点,在⊿ PAC 中,由三角形三边关系可知:AP+PC≧ AC( 当且仅当 PQ 重合时取﹦ )2.两动一定型例3:在∠ MON 的内部有一点 A ,在 OM 上找一点 B ,在 ON 上找一点 C,使得△ BAC 周长最短.作法:作点 A 关于 OM 的对称点 A’,作点 A 关于 ON 的对称点 A’’,连接 A’ A ’’,与 OM 交于点 B,与 ON 交于点 C,连接 AB , AC ,△ ABC 即为所求.原理:两点之间,线段最短例 4:在∠ MON 的内部有点 A 和点 B ,在 OM 上找一点 C ,在 ON 上找一点 D ,使得四边形 ABCD 周长最短.作法: 作点 A 关于 OM 的对称点 A ’,作点 B 关于 ON 的对称点 B ’,连接 A ’ B ,’与 OM 交于点 C ,与 ON 交于点 D ,连接 AC , BD , AB ,四边形 ABCD 即为所求.原理: 两点之间,线段最短3. 两定两动型最值例 5:已知 A 、B 是两个定点, 在定直线 l 上找两个动点 M 与 N ,且 MN 长度等于定长 d (动点 M 位于动点 N 左侧),使 AM+MN+NB 的值最小 .提示:存在定长的动点问题一定要考虑平移作法一: 将点 A 向右平移长度 d 得到点 A ’, 作 A ’关于直线l 的对称点 A ’’,连接 A ’’B ,交直线 l于点 N ,将点 N 向左平移长度dM。

将军饮马(最完整讲义)

将军饮马(最完整讲义)

第1讲将军饮马模型➢知识点睛一、“将军饮马”问题主要利用构造对称图形解决两条线段和差、三角形周长、四边形周长等一类问题, 会与直线、角、三角形、四边形、圆、抛物线等图形结合, 在近年的中考和竞赛中经常出现, 而且大多以压轴题的形式出现。

二、定直线与两定点模型作法结论当两定点在直线异侧时, 在直线上找上点, 使最小.当两定点在直线同侧时, 在直线上找上点, 使最小.当两定点在直线同侧时, 在直线上找上点, 使最大.当两定点在直线异侧时, 在直线上找上点, 使最大.当两定点在直线同侧时, 在直线上找上点, 使最小.二、角到定点模型作法结论点在的内部, 在上找一点, 在上找一点,使得周长最小.点在的内部, 在上找一点, 在上找一点,使得最小.点在的内部, 在上找一点, 在上找一点,使得四边形周长最小.点在的外部, 在射线上找一点, 使与点到射线的距离和最小.点在的内部, 在射线上找一点, 使与点到射线的距离和最小.点分别在的边是, 在上找一点, 在上找一点,使得最小.三、两定点一定长模型作法结论如图在直线上找上两点(在左), 使最小,且.如图, , 之间的距离为, 在上分别找两点, 使, 且最小.如图, , ,之间的距离为, 之间的距离为, 在上分别找两点, 使, 在上分别找两点, 使且最小.如图, 在⊙上找一点, 在直线找一点,使得最小.➢精讲精练例1: 如图, 点P是∠AOB内任意一点, ∠AOB=30°, OP=8, 点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值.例2: 如图, 正方形ABCD 的边长是4, M 在DC 上, 且DM=1, N 是AC 边上的一动点, 则△DMN 周长的最小值.A .例3: 如图, 在Rt △ABO 中, ∠OBA=90°, A (4,4), 点C 在边AB 上, 且AC:CB=1:3, 点D 为OB 的中点, 点P 为边OA 上的动点, 当点P 在OA 上移动时, 使四边形PDBC 周长最小的点P 的坐标为 B. ,C .,D .第3题图 第4题图 第5题图例4: 如图, 在△ABC 中, AC=BC, ∠ACB=90°, 点D 在BC 上, BD=3, DC=1, 点P 是AB 上的动点, 则PC+PD 的最小值为 A. 4 B. 5 C. 6 D. 7例5:如图, 在等边△ABC 中, AB=6, N 为AB 上一点且BN=2AN, BC 的高线AD 交BC 于点D, M 是AD 上的动点, 连结BM, MN, 则BM+MN 的最小值是___________.A BCDMN例6: 如图, 在Rt △ABD 中, AB=6, ∠BAD=30°, ∠D=90°, N 为AB 上一点且BN=2AN, M 是AD 上的动点, 连结BM, MN, 则BM+MN 的最小值.例7: 如图, 在Rt △ABC 中, ∠ACB=90°, AC=6. AB=12, AD 平分∠CAB, 点F 是AC 的中点, 点E 是AD 上的动点, 则CE+EF 的最小值为 A. 3 B. 4 C.D.第7题图 第8题图 第9题图A .例8: 如图, 在锐角三角形ABC 中, BC=4, ∠ABC=60°, BD 平分∠ABC, 交AC 于点D, M 、N 分别是BD, BC 上的动点, 则CM+MN 的最小值是B. 2C.D. 4例9: 如图, 在菱形ABCD 中, AC=, BD=6, E 是BC 的中点, P 、M 分别是AC.AB 上的动点, 连接PE 、PM, 则PE+PM 的最小值是A. 6B.C.D. 4.5E AFCDBNM DCBAEPDCBAMA .例10: 如图, 矩形ABOC 的顶点A 的坐标为(-4,5), D 是OB 的中点, E 是OC 上的一点, 当△ADE 的周长最小时, 点E 的坐标是B. C. D.第10题图 第11题图 第12题图例11: 如图, 在矩形ABCD 中, AB=6, AD=3, 动点P 满足, 则点P 到A.B 两点距离之和PA+PB 的最小值为A. B. C. D.例12: 如图, 矩形ABCD 中, AB=10, BC=5, 点E 、F 、G 、H 分别在矩形ABCD 各边上, 且AE=CG, BF=DH, 则四边形EFGH 周长的最小值为A. B. C. D.例13: 如图, ∠AOB=60°, 点P 是∠AOB 内的定点且OP=, 若点M 、N 分别是射线OA.OB 上异于点O 的动点, 则△PMN 周长的最小值是A. B. C. 6 D. 3第13题图 第14题图CBH FGEDCB AABMOPN例14: 如图, ∠AOB 的边OB 与x 轴正半轴重合, 点P 是OA 上的一动点, 点N (3,0)是OB 上的一定点, 点M 是ON 的中点, ∠AOB=30°, 要使PM+PN 最小, 则点P 的坐标为 .例15:如图, 已知正比例函数y=kx (k>0)的图像与x 轴相交所成的锐角为70°, 定点A 的坐标为(0, 4), P 为y 轴上的一个动点, M 、N 为函数y=kx (k>0)的图像上的两个动点, 则AM+MP+PN 的最小值为___________.第15题图例16: 如图, 在平面直角坐标系中, 矩形ABCD 的顶点B 在原点, 点A.C 在坐标轴上, 点D 的坐标为(6, 4), E 为CD 的中点, 点P 、Q 为BC 边上两个动点, 且PQ=2, 要使四边形APQE 的周长最小, 则点P 的坐示应为______________.例17:如图, 矩形ABCD 中, AD=2, AB=4, AC 为对角线, E 、F 分别为边AB 、CD 上的动点, 且EF ⊥AC 于点M,连接AF 、CE, 求AF+CE 的最小值.x例18: 如图, 正方形ABCD的面积是12, △ABE是等边三角形, 点E在正方形ABCD内, 在对角线AC上有一点P, 求PD+PE的最小值。

专题06 将军饮马模型(解析版)

专题06 将军饮马模型(解析版)

专题06.将军饮马模型将军饮马模型在考试中,无论是解答题,还是选择、填空题,都是学生感觉有困难的地方,也恰是学生能力区分度最重要的地方,主要考查转化与化归等的数学思想。

在各类考试中都以中高档题为主。

在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。

希望通过本专题的讲解让大家对这类问题有比较清晰的认识。

将军饮马模型在上学期(北师大版七年级下册)已经涉及,但是由于缺乏计算工具(勾股定理),所以只能是作出相关图形,很难进行相关最值的计算。

模型1、将军饮马--两定一动求线段和的最小值【模型探究】A,B为定点,m为定直线,P为直线m上的一个动点,求AP+BP的最小。

(1)如图1,点A、B在直线m两侧:辅助线:连接AB交直线m于点P,则AP+BP的最小值为AB.(2)如图2,点A、B在直线同侧:辅助线:过点A作关于定直线m的对称点A’,连接A’B交直线m于点P,则AP+BP的最小值为A’B.图1图2例1.(2022·江苏·八年级专题练习)要在街道旁修建一个奶站,向居民区A、B提供牛奶,小聪根据实际情况,以街道旁为x轴,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是____.【答案】10【分析】作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,则A'B即为所求.【详解】解:作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,∵AP =A 'P ,∴AP +BP ∵A (0,3),∴A '(0∴P 点到A 、B 的距离最小值为【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,会根据两点坐标求两点间距离例2.(2023·河南南阳·八年级阶段练习)如图,等边ABC ∆的边长为4,点E 是AC 边的中点,点P 是ABC ∆的中线AD 上的动点,则EP CP +的最小值是_____.∵△ABC 是等边三角形,AD 是∴AD 是BC 的垂直平分线,∴点∵△ABC 是等边三角形,E 是例4.(2022·湖北江夏初二月考)在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴上,点A 的坐标为(4,0),∠AOB =30°,点E 的坐标为(1,0),点P 为斜边OB 上的一个动点,则PA+PE 的最小值为_____.【分析】作A 关于OB 的对称点D ,连接ED 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N ,则此时PA+PC 的值最小,求出AM 和AD ,再求出DN 、EN ,根据勾股定理求出ED ,即可得出答案.【解析】作A 关于OB 的对称点D ,连接ED 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N ,则此时PA+PC 的值最小,∵DP =PA ,∴PA+PE =PD+PE =ED ,∵点A 的坐标为(4,0),∠AOB =30°,∴OA =4,∴AM =12OA =2,∴AD =2×2=4,∵∠AMB =90°,∠B =60°,∴∠BAM =30°,∵∠DNO =∠OAB =90°,∴DN ∥AB ,∴∠NDA =∠BAM =30°,∴AN =12AD =2,由勾股定理得:DN =,∵E (1,0),∴EN =4﹣1﹣2=1,在Rt △DNE 中,由勾股定理得:DE =,即PA+PC 【点睛】本题考查了轴对称确定最短路线问题,坐标与图形性质,含30度角的直角三角形的性质,勾股定理的应用,熟练掌握最短路径的确定方法找出点P 的位置以及表示PA+PE 的最小值的线段是解题的关键.例4.(2023·广东·八年级期中)如图,在△ABC 中,∠C =90°,CB =CA =4,∠A 的平分线交BC 于点D ,若点P 、Q 分别是AC 和AD 上的动点,则CQ +PQ 的最小值是.【解答】解:如图,作点P 关于直线AD 的对称点P ′,连接CP ′交AD 于点Q ,则CQ +PQ =CQ +P ′Q =CP ′.∵根据对称的性质知△APQ ≌△AP ′Q ,∴∠PAQ =∠P ′AQ .又∵AD 是∠A 的平分线,点P 在AC 边上,点Q 在直线AD 上,∴∠PAQ =∠BAQ ,∴∠P ′AQ =∠BAQ ,∴点P ′在边AB 上.∵当CP ′⊥AB 时,线段CP ′最短.∵在△ABC 中,∠C =90°,CB =CA =4,∴AB=4,且当点P ′是斜边AB 的中点时,CP ′⊥AB ,此时CP ′=AB =2,即CQ +PQ 的最小值是2.故填:2.例5.(2023·江阴市八年级月考)某班级在探究“将军饮马问题”时抽象出数学模型:直线l 同旁有两个定点A 、B ,在直线l 上存在点P ,使得PA PB +的值最小.解法:如图1,作点A 关于直线l 的对称点A ',连接A B ',则A B '与直线l 的交点即为P ,且PA PB +的最小值为A B '.请利用上述模型解决下列问题:(1)几何应用:如图2,ABC ∆中,90C ∠=︒,2AC BC ==,E 是AB 的中点,P 是BC 边上的一动点,则PA PE +的最小值为;(2)几何拓展:如图3,ABC ∆中,2AC =,30A ∠=︒,若在AB 、AC 上各取一点M 、N 使CM MN +的值最小,画出图形,求最小值并简要说明理由.【答案】(1;(2【分析】(1)作点A 关于BC 的对称点A′,连接A′E 交BC 于P ,此时PA+PE 的值最小.连接BA′,先根据勾股定理求出BA′的长,再判断出∠A′BA=90°,根据勾股定理即可得出结论;(2)作点C 关于直线AB 的对称点C′,作C′N ⊥AC 于N 交AB 于M ,连接AC′,根据等边三角形的性质解答.【详解】解:(1)如图2所示,作点A 关于BC 的对称点A′,连接A′E 交BC 于P ,此时PA+PE 的值最小.连接BA′.由勾股定理得,,∵E 是AB 的中点,∴BE=12,∵90C ∠=︒,2AC BC ==,∴∠A′BC=∠ABC=45°,∴∠A′BA=90°,∴PA+PE 的最小值=A′E=;(2)如图3,作点C 关于直线AB 的对称点C′,作C′N ⊥AC 于N 交AB 于M ,连接AC′,则C′A=CA=2,∠C′AB=∠CAB=30°,∴△C′AC 为等边三角形,∴∠AC′N=30°,∴AN=12C′A=1,∴CM+MN 的最小值为.【点睛】本题考查的是轴对称--最短路线问题、勾股定理、等边三角形的判定和性质、含30°角的直角三角形的性质、垂线段最短,解这类问题的关键是将所给问题抽象或转化为数学模型,把两条线段的和转化为一条线段.模型2、将军饮马--两动一定求线段和的最小值【模型探究】已知定点A 位于定直线m ,n 的内侧,在直线m 、n 分别上求点P 、Q 点PA +PQ +QA 周长最短.辅助线:过点A 作关于定直线m 、n 的对称点A’、A’’,连接A’A’’交直线m 、n 于点P 、Q ,则PA +PQ +QA 的最小值为A’A’’.例1.(2022·上虞市初二月考)如图,点P 是∠AOB 内任意一点,OP =6cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,若△PMN 周长的最小值是6cm ,则∠AOB 的度数是()A.15B.30C.45D.60【答案】B【分析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=DM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=12∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.【解析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=12∠COD,∵△PMN周长的最小值是6cm,∴PM+PN+MN=6,∴DM+CN+MN=6,即CD=6=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°,故选:B.【点睛】此题考查轴对称的性质,最短路线问题,等边三角形的判定与性质,熟练掌握轴对称的性质,证明三角形是等边三角形是解题的关键.例2.(2022·江苏九年级一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,D,E,F分别是AB,BC,AC边上的动点,则△DEF的周长的最小值是()A.2.5B.3.5C.4.8D.6【答案】C【分析】如图作D关于直线AC的对称点M,作D关于直线BC的对称点N,连接CM,CN,CD,EN,FM,DN,DM.由∠MCA=∠DCA,∠BCN=∠BCD,∠ACD+∠BCD=90°,推出∠MCD+∠NCD=180°,可得M、B、N 共线,由DF+DE+EF=FM+EN+EF,FM+EN+EF≥MN,可知当M、F、E、N共线时,且CD⊥AB时,DE+EF+FD的值最小,最小值=2CD,求出CD的值即可解决问题.【详解】解:如图,作D关于直线AC的对称点M,作D关于直线BC的对称点N,连接CM,CN,CD,EN,FM,DN,DM.∴DF=FM,DE=EN,CD=CM,CD=CN,∴CD=CM=CN,∵∠MCA=∠DCA,∠BCN=∠BCD,∠ACD+∠BCD=90°,∴∠MCD+∠NCD=180°,∴M、C、N共线,∵DF+DE+EF=FM+EN+EF,∵FM+EN+EF≥MN,∴当M、F、E、N共线时,且CD⊥AB时,DE+EF+FD的值最小,最小值为MN=2CD,∵CD⊥AB,∴12•AB•CD=12•AB•AC,∴CD=•AB ACAB=125=2.4,∴DE+EF+FD的最小值为4.8.故选:C.【点睛】本题考查了轴对称-最短问题、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题,属于中考选择题中的压轴题.例3.(2023.山东八年级期末)如图所示,在四边形ABCD中,∠A=90º,∠C=90º,∠D=60º,AD=3,AB=,若点M、N分别为边CD,AD上的动点,则△BMN的周长最小值为()A. B. C.6 D.3【答案】C【解析】作点B关于CD、AD的对称点分别为点B'和点B'',连接B'B''交DC和AD于点M和点N,连接MB、NB;再DC和AD上分别取一动点M’和N’(不同于点M和N),连接M'B,M'B',N’B和N'B'',如图1所示:∵B'B''<M'B'+M'N'+N'B",B'M'=BM',B"N'=BN',∴BM'+M'N'+BN'>B'B",又∵B'B"=B'M+MN+NB",MB=MB',NB=NB'',∴NB+NM+BM<BM'+M’N'+BN'NB+NM+BM时周长最小;连接DB,过点B'作B'H⊥DB''于B’’D的延长线于点H,如图示2所示:在Rt△ABD中,AD=3,AB=,,∴∠2=30º,∴∠5=30º,DB=DB'',又∵∠ADC=∠1+∠2=60º,∴∠1=30º,∴∠7=30º,DB'=DB,∴∠B'DB''=∠1+∠2+∠5+∠7=120º,DB'=DB''=DB,又∵∠B'DB"+∠6=180º,∴∠6=60º,∴HD=,HB'=3,在Rt△B'HB''中,由勾股定理得:B'B"=,NB+NM+BM=6,故选C.模型3、将军饮马--两动两定求线段和的最小值【模型探究】A,B为定点,在定直线m、n上分别找两点P、Q,使PA+PQ+QB最小。

专题02 最值模型之将军饮马(遛马、过桥)模型(解析版)

专题02 最值模型之将军饮马(遛马、过桥)模型(解析版)

专题02 最值模型之将军饮马(遛马、过桥)模型将军遛马模型和将军过桥(造桥)模型是将军饮马的姊妹篇,它是在将军饮马的基础上加入了平移的思想,主要还是考查转化与化归等的数学思想。

在各类考试中都以中高档题为主,本专题就将军遛马模型和将军过桥(造桥)模型进行梳理及对应试题分析,方便掌握。

在解决将军遛马和将军过桥(造桥),不管是横向还是纵向的线段长度(定长),只要将线段按照长度方向平移即可,即可以跨越长度转化为标准的将军饮马模型,再依据同侧做对称点变异侧,异侧直接连线即可。

利用数学的转化思想,将复杂模型变成基本模型就简单容易多了,从此将军遛马和将军过桥(造桥)再也不是问题!模型1.将军遛马模型【核心思路】去除定量,组合变量(通过几何变换将若干段原本彼此分类的线段组合到一起)。

【模型解读】已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA +PQ +QB 的值最小。

(原理用平移知识解)(1)点A 、B 在直线m 两侧:(2)点A 、B 在直线m 同侧:如图1 如图2(1)如图1,过A 点作AC ∥m ,且AC 长等于PQ 长,连接BC ,交直线m 于Q ,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。

(2)如图2,过A 点作AE ∥m ,且AE 长等于PQ 长,作B 关于m 的对称点B ’,连接B ’E ,交直线m 于Q ,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。

【最值原理】两点之间线段最短。

例1.(2023·黑龙江·九年级校考期中)问题背景(1)如图(1),在公路l 的一侧有A ,B 两个工厂,A ,B 到公路的垂直距离分别为1km 和3km ,A ,B 之间的水平距离为3km .现需把A 厂的产品先运送到公路上然后再转送到B 厂,则最短路线的长是_____km .问题探究(2)如图(2),ACB △和DEF V 是腰长为2的两个全等的等腰直角三角形,90ACB DEF Ð=Ð=°,点A ,D 重合,点B ,F 重合,将ACB △沿直线AB 平移,得到A C B ¢¢¢△,连接QQ P【答案】(1)5km (2)存在,最小值为25(3)最短路线长为15km【分析】(1)根据最短路径的作法,找出最短路径A B ¢,再利用矩形的性质,求出BE 和A E ¢利用勾股定理即可求出最短路径;(2)根据平移的性质可知四边形CQEC ¢和AQEA ¢均为平行四边形,再利用最短路径作法得出则 AQ A Q ¢=,AQ BQ A Q ¢=\+\ 当点Q 与点P 重合时, AQ 连接AA ¢, 交l 于点C , 过点由平移知CC AB ¢∥,CC QE ¢\∥.又 CQ EC ¢∥,\四边形 CQEC ¢是平行四边形,CC QE \¢=,CQ EC =¢由平移知CC AA ¢¢=,AA QE\¢=又n AB ∥,\四边形 AQEA ¢是平行四边形,AQ A E \=¢1A E C E AQ CQ QA CQ \+=+=+³¢¢\当点Q 与点P 重合时, A E C E ¢+¢过点C 作 1CG A A ^交 1A A 的延长线于点2AC AE ==Q ,2CG \=,13A G =例3.(2022·四川自贡·中考真题)如图,矩形ABCD 中,42AB BC ==,,G 是AD 的中点,线段EF 在边AB 上左右滑动;若1EF =,则GE CF +的最小值为____________.【答案】【分析】如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,可得四边形EFCH是平行四边形,从而得到G'H=EG'+EH=EG+CF,再由勾股定理求出HG'的长,即可求解.【详解】解:如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,∴G'E=GE,AG=AG',∵四边形ABCD是矩形,∴AB∥CD,AD=BC=2∴CH∥EF,∵CH=EF=1,∴四边形EFCH是平行四边形,∴EH=CF,∴G'H=EG'+EH=EG+CF,∵AB=4,BC=AD=2,G为边AD的中点,∴AG=AG'=1 ∴DG′=AD+AG'=2+1=3,DH=4-1=3,+的最小值为∴HG¢===GE CF【点睛】此题主要考查了利用轴对称求最短路径问题,矩形的性质,勾股定理等知识,确定GE+CF最小时E,F位置是解题关键.【答案】35【分析】连接BD与AC交于点O,延长Q四边形ABCD是菱形,AC\\=+=,由平移性质知,246OM\+=FM FD\=,DF DE AF当点A、F、M三点共线时,\+的最小值为:AMDF DE模型2.将军过桥(造桥)模型【核心思路】去除定量,组合变量(通过几何变换将若干段原本彼此分类的线段组合到一起)。

中考数学:'将军饮马'所有模型及变式——终极篇

中考数学:'将军饮马'所有模型及变式——终极篇

中考数学:'将军饮马'所有模型及变式——终极篇以微课堂初中精品微课,数学奥林匹克国家一级教练执教。

一、模型展现(1)直线型模型1:在直线l上求作点P,使PA+PB最小.原理:两点之间,线段最短.PA+PB最小值即为AB长.模型2:在直线l上求作点P,使PA+PB最小.原理:和最小,同侧转异侧.两点之间,线段最短.模型3:在直线l上求作点P,使|PA-PB|最大.原理:两边之差小于第三边,|PA-PB|最大值即为AB长.模型4:在直线l上求作点P,使|PA-PB|最大.原理:差最大,异侧转同侧.两边之差小于第三边.变式:在直线l上求作点P,使l平分∠APB,与此作法相同.模型5:在直线l上求作点P,使|PA-PB|最小.原理:|PA-PB|最小为0,中垂线上的点到线段两端的距离相等.(2)角型模型6:在OA,OB上求作点M,N,使△PMN周长最小.原理:作两次对称,两点之间,线段最短.模型7:在OA,OB上求作点M,N,使四边形PQMN周长最小.原理:P,Q分别作对称,两点之间,线段最短.模型8:在OA,OB上求作点M,N,(1)使PM+MN最小.(2)使PN+MN最小.原理:先连哪个点,就先做关于那个点所在射线的对称点.垂线段最短.模型9:P,Q为OA,OB的定点,在OA,OB上求作点M,N,使PN+NM +MQ最小.原理:两点之间,线段最短,PN+NM+MQ最小值即为P’Q’的长.(3)平移型模型10:在直线l上求作点M,N,使MN=a,且AM+MN+NB最小.原理:将l上的MN转化到B’B.(问题情境:将军从军营A出发,去河边l饮马,饮马完在河边牵马散步a米,回军营B.可以转化为饮完马,直接去军营B,在到达之前散步.)模型11(造桥选址):直线l1∥l2,在l1上求作点M,在l2上求作点N,使MN⊥l1,且AM+MN +NB最小.原理:将MN转化为AA’.(可以理解为在A处先走过桥的路,再直达点B.)二、典型例题例1:(模型2)从点A(0,2)发出的一束光线,经x轴反射,过点B(4,3),求从点A到点B所经过的路径长.解析:例2:(模型4)已知点A(1,3)、B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为______解析:例3:(模型10)如图,当四边形PABN的周长最小时,a=______解析:例4:(模型11)解析:例5:(结合勾股)如图,在等边△ABC中,AB=6,N为AB上一点,且AN=2,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM、MN,则BM+MN的最小值是_____解析:小结:所有类型已归纳完,更多内容,详见八上11讲期中专题一将军饮马类题型全覆盖暑假特辑10《轴对称》之“将军饮马”(上)暑假特辑11《轴对称》之“将军饮马”(下)本讲思考题:已知点A(-3,-4)和B(-2,1).(1)试在y轴上求一点P,使PA+PB的值最小(2)试在y轴上求一点P,使|QA-QB|的值最大(3)若C(0,m),D(0,m-2),当m为何值时,四边形ABCD的周长最小.答案:(1) P (0,-1)(2) Q (0,11)(3) m = -0.2End欢迎收看《以微课堂》微课,欢迎收看《以微课堂》微课,作者简介:四星级重点中学高级教师、数学名师。

专题07 将军饮马模型(原卷版)

专题07 将军饮马模型(原卷版)

专题07.将军饮马模型将军饮马模型在考试中,无论是解答题,还是选择、填空题,都是学生感觉有困难的地方,也恰是学生能力区分度最重要的地方,主要考查转化与化归等的数学思想。

在各类考试中都以中高档题为主。

在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。

希望通过本专题的讲解让大家对这类问题有比较清晰的认识。

··模型1、将军饮马--两定一动求线段和的最小值【模型探究】A,B为定点,m为定直线,P为直线m上的一个动点,求AP+BP的最小。

(1)如图1,点A、B在直线m两侧:辅助线:连接AB交直线m于点P,则AP+BP的最小值为AB.(2)如图2,点A、B在直线同侧:辅助线:过点A作关于定直线m的对称点A’,连接A’B交直线m于点P,则AP+BP的最小值为A’B.图1图2例1.(2022·江苏·八年级专题练习)要在街道旁修建一个奶站,向居民区A、B提供牛奶,小聪根据实际情况,以街道旁为x轴,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是____.例2.(2022·江苏·八年级专题练习)如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是边AC上一点,若AE=2,则EM+CM的最小值为()AB .C .D .例3.(2022·江苏·八年级专题练习)如图所示,在ABC 中,AB AC =,直线EF 是AB 的垂直平分线,D 是BC 的中点,M 是EF 上一个动点,ABC 的面积为12,4BC =,则BDM 周长的最小值是_________.例4.(2023·湖北洪山·八年级期中)如图,将△ABC 沿AD 折叠使得顶点C 恰好落在AB 边上的点M 处,D 在BC 上,点P 在线段AD 上移动,若AC =6,CD =3,BD =7,则△PMB 周长的最小值为___.例5.(2023·江阴市八年级月考)某班级在探究“将军饮马问题”时抽象出数学模型:直线l 同旁有两个定点A 、B ,在直线l 上存在点P ,使得PA PB +的值最小.解法:如图1,作点A 关于直线l 的对称点A ',连接A B ',则A B '与直线l 的交点即为P ,且PA PB +的最小值为A B '.请利用上述模型解决下列问题:(1)几何应用:如图2,ABC ∆中,90C ∠=︒,2AC BC ==,E 是AB 的中点,P 是BC 边上的一动点,则PA PE +的最小值为;(2)几何拓展:如图3,ABC ∆中,2AC =,30A ∠=︒,若在AB 、AC 上各取一点M 、N 使CM MN +的值最小,画出图形,求最小值并简要说明理由.模型2、将军饮马--两动一定求线段和的最小值【模型探究】已知定点A 位于定直线m ,n 的内侧,在直线m 、n 分别上求点P 、Q 点PA +PQ +QA 周长最短.辅助线:过点A 作关于定直线m 、n 的对称点A’、A’’,连接A’A’’交直线m 、n 于点P 、Q ,则PA +PQ +QA 的最小值为A’A’’.例1.(2022·江苏·无锡市八年级期末)如图,已知∠AOB 的大小为α,P 是∠AOB 内部的一个定点,且OP =4,点E 、F 分别是OA 、OB 上的动点,若△PEF 周长的最小值等于4,则α=()A .30°B .45°C .60°D .90°例2.(2022·江苏九年级一模)如图,Rt △ABC 中,∠C =90°,AC =3,BC =4,D ,E ,F 分别是AB ,BC ,AC 边上的动点,则△DEF 的周长的最小值是()A .2.5B .3.5C .4.8D .6例3.(2023春·贵州毕节·七年级统考期末)如图所示,30AOB ∠= ,点P 为AOB ∠内一点,8OP =,点,M N 分别在,OA OB 上,求PMN ∆周长的最小值.例4.(2023.山东八年级期末)如图所示,在四边形ABCD 中,∠A =90º,∠C =90º,∠D =60º,AD =3,AB=,若点M、N分别为边CD,AD上的动点,则△BMN的周长最小值为()A. B. C.6 D.3模型3、将军饮马--两动两定求线段和的最小值【模型探究】A,B为定点,在定直线m、n上分别找两点P、Q,使PA+PQ+QB最小。

完整word版将军饮马问题的11个模型及例题

完整word版将军饮马问题的11个模型及例题

将军饮马问题问题概述路径最短、线段和最小、线段差最大、周长最小等一系列最值问题方法原理2.三角形两边之和大于第三边,两边之差小于第三边;1.两点之间,线段最短;.垂线段最短3.中垂线上的点到线段两端点的距离相等;4.基本模型1.已知:如图,定点A、B分布在定直线l两侧;要求:在直线l上找一点P,使PA+PB的值最小, 即为所求,点PP解:连接AB交直线l于点PA+PB的最小值即为线段AB的长度理由:在l上任取异于点P的一点P′,连接AP′、BP′,在△ABP'中,AP′+BP′>AB,即AP′+BP′>AP+BP∴P为直线AB与直线l的交点时,PA+PB最小.2.已知:如图,定点A和定点B在定直线l的同侧要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小)解:作点A关于直线l的对称点A′,连接A′B交l于P,点P即为所求;理由:根据轴对称的性质知直线l为线段AA′的中垂线,由中垂线的性质得:PA=PA′,要使PA+PB最小,则需PA′+PB值最小,从而转化为模型1.3.两的同侧(A、B已知:如图,定点A、B分布在定直线l 的距离不相等)点到l︱的值最大P,使PA-PB︱要求:在直线l上找一点 P,点P即为所求;解:连接BA并延长,交直线l于点的一点P′,︱=AB,在l上任取异于点P此时︱理由:PA-PB ︱<AB,,由三角形的三边关系知︱P′A-P′B′连接AP、BP′︱PA-PB︱′A-P′B︱<即︱P两B分布在定直线l的两侧(A、已知:如图,定点A、B 4.的距离不相等)点到l︱的值最大上找一点P,使︱PA-PB要求:在直线l 并延长交连接B′A解:作点B关于直线l的对称点B′,P于点,点P即为所求;为线段BB′的中垂线,由中垂理由:根据对称的性质知l ′,要使︱PA-PB︱最大,则需线的性质得:PB=PB3.′︱值最大,从而转化为模型︱PA-PB1-1典型例题2分DA和点B,点Cx+4如图,直线y=与x轴、y轴分别交于点3最小时,为OA上一动点,当PC+PD、别为线段ABOB的中点,点P_________. _________,此时的最小值为PC+PD点P的坐标为,连轴的对称点D'的特征,作点【分析】符合基本模型2D关于x为CDx轴于点P,此时PC+PD 值最小,由条件知CD'接交长,从OPCDD'的中位线,易求△的中位线,△BAOOP为长,可用勾股定理CD'PC+PD而求出P点坐标;的最小值即.(或两点之间的距离公式,实质相同)计算轴x′交CD′,连接D轴的对称点x关于D,作点CD】连接解答【.2x=0,则y=4,于点P,此时PC+PD值最小.令y=x+4中322的坐标,∴点Ay=0∴点B坐标(0,4);令y=x+4中,则x+4=0,解得:x=﹣633的中位线,BAO的中点,∴CD为△为(﹣6,0).∵点C、D分别为线段AB、OB1AO=3CD=,∴CD∥x轴,且2′的中点,O为DDD∵点′和点D关于x轴对称,∴31OP=CD=-1D′(0,),∴OP为△CDD′的中位线,∴,223△CDD′中,∴点P的坐标为(﹣,0).在Rt22222?4DDCD3??5.CD′=的最小值为=5,即=PC+PD 坐标;若题型变、点P【小结】还可用中点坐标公式先后求出点C CD′的解析不是化,C、DAB和OB中点时,则先求直线.P的坐标式,再求其与x轴的交点1-2典型例题B ,点1)如图,在平面直角坐标系中,已知点A的坐标为(0,3最,点的坐标为(,﹣2)P在直线y=﹣x上运动,当|PA﹣PB|2_________. PB|的最大值是P大时点的坐标为_________,|PA﹣,y=【分析】符合基本模型4的特征,作A关于直线﹣x 对称点C x连接BC,可得直线BC的方程;求得BC与直线y=﹣的交点P的坐标;此时|PA﹣PB|=|PC﹣PB|=BC取得最大值,.再用两点之间的距离公式求此最大值BCBC,可得直线;连接的坐标为(﹣1,0)C解答【】作A 关于直线y=﹣x对称点,易得C44|PA);此时4P为(4,﹣的方程为y=﹣xy=﹣,与直线﹣x联立解得交点坐标552241)(?2(?1)?3 PB|=|PC﹣PB|=BCBC==取得最大值,最大值;﹣22.,需作一次对称点,连线得交点2和4】【小结“两点一线”大多考查基本模型1-1变式训练),,已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(50最短0D(,1),当CP+DPOBOB=45,点P是对角线上的一个动点,√时,点P的坐标为()510361,.)1. 00.A(,) B(,C((.) D,)77552.1-2变式训练AC=2,和如图,菱形ABCD中,对角线ACBD交于点O,的上一动点,则PE+PB3,E为AB的中点,P为对角线BD=2AC√__________. 最小值为1-3变式训练112与直线交于x+bx+cD,抛物线y=x+1如图,已知直线y=与y轴交于点A,与x轴交于点22.01,)A、E两点,与x轴交于B、C两点,且B点坐标为()求该抛物线的解析式;(1. 的值最大,求出点MC|M的坐标(2)在抛物线的对称轴上找一点M,使|AM﹣拓展模型1.已知:如图,A为锐角∠MON外一定点;,使上找一点Q上找一点P,在射线ON要求:在射线OM. AP+PQ的值最小解:过点A作AQ⊥ON于点Q,AQ与OM相交于点P,此时,AP+PQ最小;理由:AP+PQ≧AQ,当且仅当A、P、Q三点共线时,AP+PQ取得最小值AQ,根据垂线段最短,当AQ⊥ON时,AQ最小.2.已知:如图,A为锐角∠MON内一定点;,使上找一点ONQ,在射线上找一点要求:在射线OMP.的值最小 AP+PQ.ONAQ⊥的对称点A′,过点A′作解:作点A关于OM AP+PQ最小;交OM于点P,此时于点Q,A′QAP+PQ最小,AP=A′P,要使理由:由轴对称的性质知1 P+PQ最小,从而转化为拓展模型只需A′为锐角∠MON内一定点;已知:如图,A 3.,使,在射线ON上找一点Q要求:在射线OM上找一点P 的周长最小△APQ的对,关于ON 解:分别作A点关于直线OM的对称点A1于点ONQ,点A交OM于点P,交称点A,连接 A221即为所求,此时△APQ周长最小,最小值P和点Q AA的长度;即为线段21,△APQ的周AP=AP,AQ=AQ理由:由轴对称的性质知21 A四点共线、P、Q、P+PQ+A长AP+PQ+AQ=AQ,当A2112. 时,其值最小内两个定点;B为锐角∠MON、已知:如图,A 4.四边形上找一点Q,使要求:在OM上找一点P,在ON APQB的周长最小,作点B关于直线A 关于直线OM的对称点A′解:作点 Q,P,交ON于交的对称点ONB′,连接A′B′OM于周长的、点Q即为所求,此时四边形APQB则点P′′B的长度之和;最小值即为线段AB和A ,将PA理由:AB长为定值,由基本模型将PA转化为′ B′四点共线时,、、′QB转化为QB,当A′P、Q . QBPQPA′+′+PAPQ QB的值最小,即++的值最小下方的定分别为m上方和n已知:如图,直线m∥n,A、B5.搭桥模型垂直)(直线AB不与m点,. 最小PQ,使得AP+PQ+BQ之间求作垂线段要求:在m、n 最小,可通过平移,使PQ为定值,只需AP+BQ分析:,转化为基本模型、Q“接头”P 的方向,向下平移至A沿着平行于PQ解:如图,将点交直线n于点′AA′=PQ,连接AB点A′,使得,线段PQ即⊥n,交直线m于点PQ,过点Q作PQ.为所求,此时AP+PQ+BQ最小′=PA,理由:易知四边形QPAA′为平行四边形,则QA +BQ最小,即、A′三点共线时,QA′当B、Q.AP+PQ+BQ最小AP+BQ最小,PQ长为定值,此时al两侧,长度为A、B分布于直线6.已知:如图,定点左边)上移动(P在Q (a为定值)的线段PQ在l最小要求:确定PQ的位置,使得AP+PQ+QB的值最小,可通过平移,PQ为定值,只需AP+QB 分析:,转化为基本模型、Q“接头”使P A′,使解:将点A沿着平行于l的方向,向右移至l上截取交直线Bl于点Q,在AA′=PQ=a,连接A′ PQ即为所求,此时在Q左边),则线段PQ=a (PB+a ′′B+PQ,即AAP+PQ+QB的最小值为A ′为平行四边形,则PA=QA,理由:易知四边形APQA′PA+QB +QB最小,即、QB三点共线时,QA′A当′、.值最小最小,又PQ长为定值此时PA+PQ+QBal的同侧,长度、7. 已知:如图,定点AB分布于直线左边)Q在P上移动(l在PQ的线段)为定值(a周长最小要求:确定PQ的位置,使得四边形APQB点分析:AB长度确定,只需AP+PQ+QB最小,通过作A3的对称点,转化为上述模型关于llAl的对称点A′,将点′沿着平行于解:作A点关于B ′A′′=PQ=a,连接A′′的方向,向右移至A′′,使A (P在Q左边),线段交l于Q,在l上截取QP=a APQB周长的最小值为PQ即为所求,此时四边形B+AB+aA′′′′B+AB+PQ,即A2-1典型例题、AC、N分别是线段如图,在矩形ABCD中,AB=10,BC=5,若点M .上的两个动点,则ABBM+MN 的最小值为,再过EAC的对称点关于【分析】符合拓展模型2的特征,作点B的最小值,借BM+MNAB的垂线段,该垂线段的长即点E作.助等面积法和相似可求其长度,BM+MN=EM+MN作EN⊥AB于N,则E解答【】作点B关于AC的对称点E,再过点,其最小值即EN长;∵AB=10,BC=522BCAB?5,∴=5AC=510?55, =2等面积法求得ACBE=4边上的高为,∴55,∴∽△ABCENBEN=8.易知△,代入数据解得 8.即BM+MN的最小值为】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作【小结有些题则作动点的定点或动点关于定直线的对称点,有些题作定点的对称点易解,.对称点易解2-2典型例题分别、NAOB内的定点且OP=,点MP如图,∠AOB=60°,点是∠)(的动点,OB上异于点O则△PMN周长的最小值是、是射线OAC..AB..6 D3分别交D,连接CDOA、OB的对称点C、【分析】符合拓展模型3的特征;作P点分别关于,OC、OD,此时△PMN周长最小,其值为CD长;根据对称性连接OA、OB于M、NCD.是顶角为120°的等腰三角形,作底边上高,易求底边分析条件知△OCD N,如图,、OB于M、的对称点OA、OBC、D,连接CD分别交OA【解答】作P点分别关于,BOD,∠AOP=∠AOC则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠°,∠AOC=2∠AOB=120PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∴,⊥CD于H∴此时△PMN周长最小,作OHOC=OH=,则CH=DH,∵∠OCH=30°,∴CD=2CH=3.CH=OH=,∴即△PMN周长的最小值是3;故选:D.【小结】根据对称的性质,发现△OCD是顶角为120°的等腰三角形,是解题的关键,也是难点.2-3典型例题所在的直线为原点,OCABCO,以点O如图,已知平行四边形,,OC=6D,AD=2轴于点为x轴,建立直角坐标系,AB交y为点P所在的直线为OD的垂直平分线,∠A=60°,线段EF轴x与E′关于线段EF上的动点,PM⊥x轴于点M点,点E ′M.对称,连接BP、E ;(1)请直接写出点A坐标为,点B坐标为. 的坐标BP+PM+ME′的长度最小时,请求出点P(2)当的长即可解决;,BD【分析】(1)解直角三角形求出OD,可得OP=EM符合(2)“搭桥模型”的特征;首先证明四边形OPME′是平行四边形,点为P′的长度最小,此时PM是定值,PB+ME′=OP+PB的值最小时,BP+PM+ME 点坐标;OB与EF的交点,结合OB的解析式可得P直线 ADO中,∵∠A=60°,AD=2,(【解答】1)在Rt △,)°OD=2?tan60=2,∴A(﹣2,2∴,∵四边形ABCO是平行四边形,∴AB=OC=6)4B(,22=4∴DB=6﹣,∴,,∵如图,(2)连接OP.EF垂直平分线段ODPM⊥OC PEO=是矩形,°,∴四边形∠∠EOM=PMO=90OMPE∴∠′,∴,∵∴PM=OE=OE=OEPM=OE′,OE∥′,PM,′是平行四边形OPME∴四边形.′的长度最小,∴OP=EM,∵PM是定值,∴PB+ME′=OP+PB的值最小时,BP+PM+MEB共线时,BP+PM+ME′的长度最小,∵直线OB的解析式为y=,x∴当O、P、.2,)(∴P(构造平行四边求没有公共端点的两条线段之和的最小值,一般通过作对称和平移【小结】.形)的方法,转化为基本模型2-4典型例题的顶点坐标分△AOB如图所示,在平面直角坐标系中,RtOAOB4),把△绕点)(﹣2,0,O(0,0),B(0,别为A 90°,得到△COD.按顺时针方向旋转C、D两点的坐标;(1)求三点的抛物线的解析式;、D(2)求经过A、BFE在点E(3)在(2)中抛物线的对称轴上取两点、F(点、求出E的上方),且EF=1,使四边形ACEF的周长最小,两点的坐标.F点,结合直线的F【分析】符合拓展模型7的特征,通过作对称、平移、连线,可找出E、、解析式和抛物线的对称轴可解出EF坐标. 解答】(1)由旋转的性质可知:OC=OA=2,OD=OB=4,∴C点的坐【,0)D),点的坐标是(4,标是(0,22,(2)设所求抛物线的解析式为y=ax+bx+c 4a-2b+c=016a+4b+c=0由题意,得 c=41,,b=1,c=4解得a=-21+4;x2+x y=-∴所求抛物线的解析式为21,+x+4的对称轴为x=1x2y=-最短,抛物线3)只需AF+CE(2A关于对称轴x=1的对称点,作2将点A向上平移至A(﹣,1),则AF=AE111的解析式,与对称轴交于点EE为所求,可求得ACCC1(A4,),连接A,A22223771y=+x2,当x=1时, )的坐标为,点)为y=-(1,E,∴点的坐标为F(1,.4444. 】解决此类题的套路是“对称、平移、连线”【小结;其中,作对称和平移的顺序可互换2-1变式训练几何模型: l同旁的两个定点.条件:如图1,A,B是直线的值最小.P问题:在直线l上确定一点,使PA+PB (不必证明)B交l于点P,即为所求.方法:作点A关于直线l的对称点A',连接A' 模型应用:轴上一动1),P为xA)如图2,已知平面直角坐标系中两定点(0,﹣1)和B(2,﹣(1 ,此时PA+PB= .点,则当PA+PB的值最小是点P的横坐标是,由BD的中点,P是AC上一动点,连接)如图3,正方形ABCD的边长为4,E为AB2(的最小PB+PEAC于P,则正方形对称性可知,B与D关于直线AC对称.连接ED交值是.分别F上一动点,E,DAB=60中,AB=10,∠°,P是对角线AC3()如图4,在菱形ABCD .的最小值是是线段AB和BC上的动点,则PE+PF分别是FE.°,点B=60G是边CD边的中点,点)如图(45,在菱形ABCD中,AB=6,∠.AD上的两个动点,则EF+ED的最小值是AG,变式训练2-2如图,矩形ABCD中,AD=15,AB=10,E为AB边上一点,且DE=2AE,连接CE与对角线BD交于F;若P、Q分别为AB边和BC边上的动点,连接EP、PQ和QF;则四边形EPQF周长___________.的最小值是2-3变式训练的P到直线l,l、l之间的距离为8,点如图,已知直线l∥l11212距上有一动PQ=4l的距离为4,,在直线l离为6,点Q到直线12最小,此时,满足AB⊥l,且PA+AB+BQ点A,直线l上有一动点B22.PA+BQ=2-4变式训练在OC的边OA在y轴的正半轴上,中,直角梯形如图,已知在平面直角坐标系xOyOABC 按顺BD.将∠DBC绕点作OC=3,过点BBD⊥BC,交OA于点x轴的正半轴上,OA=AB=2, E和F.x 时针方向旋转,角的两边分别交y轴的正半轴、轴的正半轴于点 B、C三点的抛物线的解析式;(1)求经过A、)中抛物线的顶点时,求CF的长;(2)当BE经过(1BCPQPQ=1,要使四边形(点Q在点P的上方),且Q(3)在抛物线的对称轴上取两点P、 Q两点的坐标.的周长最小,求出P、中考真题1.要在街道旁建奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使A、B到它的距离之和最短?小聪以街道为x轴,建立了如图所示的平面直角坐标系,A点坐标为(0,3),B点坐标为(6,5),则A、B两点到奶站距离之和的最小值是.2.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△)的坐标是(E的周长最小时,点ADE.,)(0,2) D.(0(A.(0,) B.0,) C.1两点距、满足S=BS,则点P到A3.如图,在矩形ABCD中,AB=5,AD=3,动点P ABCDPAB△矩形3)离之和PA+PB的最小值为(.5C. DA. B.,2)的距离与到4.已知抛物线y=x+1具有如下性质:该抛物线上任意一点到定点F2x0(M的坐标为(y=,3),P是抛物线x+1 PMF周长2上一个动点,轴的距离始终相等,如图,点的最小值是()则△6DC..A.3 B45 .轴上的动点,轴,分别是xyD1B),(b,)都在双曲线y=上,点C,,,点5.如图,A(a3 )ABCD则四边形周长的最小值为(.CB.. D A.AE+DE边上的动点,则ABDAC=3中,在6.如图,Rt△ABC∠C=90°,,BC=4,、E分别是、BC 的最小值为().5DCA.B..上的动点,,中,∠如图,7.Rt△ABCBAC=90°,AB=3AC=6,点D,分别是边EBCAC,的最小值为则DA+DE .8.如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为.9.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC )的长是(PM的值最小时,PB+PM上的动点,当..D. B. C. A分F交BC于D点,E,,10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8AD平分∠CAB AC,上的动点,则CE+EF的最小值为()别是AD6. D.A. B. COABC6的正方形11.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是PM+PNP 两点.△OMN的面积为10.若动点在x轴上,则N 的两边AB,BC分别相交于M,的最小值是()2.2 D..A.6 B10 CADBC则四边形翻折得到△ABD,AC=BC=212.如图,△ABC中,,AB=1,将它沿ABPE+PF上的任意点,则、形,的形状是 P、E、F分别为线段ABAD、DB .的最小值是D轴于,AB两点,交xC、y=y=13.如图,已知抛物线x+bx+c与直线x+3交于).,,0BC 2两点,连接AC、,已知A(,3)C(﹣30)求此抛物线的解析式;(1的值最大,并求出这个最(2)在抛物线对称轴MD||MB上找一点M,使﹣l 大值;轴y交⊥作,过点轴右侧抛物线上一动点,连接为)点(3PyPAPPQPAABC于点QP,AP,问:是否存在点Q,使得以,为顶点的三角形与△请说的坐标;若不存在,P相似?若存在,请求出所有符合条件的点.明理由.14.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.,3),C(03A(﹣1,0),B(,0y=ax15.如图,抛物线+bx+c(a≠0)经过点的坐标;)2)三点.求抛物线的解析式及顶点M(1 N点的坐标;时,求N为抛物线上的点且在第四象限,当S=S(2)连接AC、BC,ABCNBC△△,(ml上,动点QPx轴,动点(m,3)在直线2(3)在()问的条件下,过点C作直线l∥ PM+PQ+QN的和最小,并求出m为何值时,PM+PQ+QNPM轴上,连接、PQ、NQ,当0)在x 和的最小值.,过A,两点的二次函数A16.如图,直线y=5x+5交x轴于点,交y轴于点C .的图2+4x+cy=axC象交x轴于另一点B )求二次函数的表达式;(1NDD,求线段⊥BC上的动点,作NDx轴交二次函数的图象于点是线段)连接(2BC,点N 长度的最大值;2)是该二次函数图象上一点,4,m图象的顶点,点H(3)若点为二次函数y=ax+4x+cM(的坐标.E,F的周长最小,求出点HEFM,使四边形E,F轴上分别找点y轴、x在.yB两点,与A0)与x轴从左至右交于,(x﹣2)(x+a)(a>y=17.如图1,已知抛物线 C.轴交于点,求抛物线的解析式;T(1,﹣)(1)若抛物线过点△ B、D三点为顶点的三角形与(2)在第二象限内的抛物线上是否存在点D,使得以A、 ABC相似?若存在,求a的值;若不存在,请说明理由.)是抛物线上的点,6,t1的坐标为(﹣1,),点Q(2(3)如图,在(1)的条件下,点PPQNM轴上移动到何处时,四边形MN=2,问MN在x两点,在x轴上,从左至右有M、N且 M 的坐标.的周长最小?请直接写出符合条件的点轴另一交点x5)两点,与((﹣1,0),C0,A18.如图,对称轴为直线x=2的抛物线经过),P是第一象限内抛物线上的动点.0F,,0(,1)E(a0),(a+1,MB为.已知)求此抛物线的解析式;(1 的面积的最大值,并求此时点)当2a=1时,求四边形MEFPP的坐标;(周长最小?请说为顶点的等腰三角形,求是以点)若△(3PCMPaPMEF为何值时,四边形明理由.P探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点19.1=P:P1得到结论三过构造直角角形利用图,(x(,y),Px,y)可通2112221的坐标公式:)P(x,y他还利用图2证明了线段PP的中点P21.,y=x=1)请你帮小明写出中点坐标公式的证明过程;( MN长度为;(﹣M2)①已知点(2,﹣1),N3,5),则线段运用:(为顶点的平行四边形顶点D),3(﹣B2,0),C(,﹣12A②直接写出以点(2,),;的坐标:D轴正半轴夹角的平≥x(x0)的图象OL与xy=n2P33拓展:()如图,点(,)在函数的周长最小,简要叙述作图FExOL分线上,请在、轴上分别找出点、,使△PEF 方法,并求出周长的最小值.20.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛2物线y=﹣x+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;2)若点P(x,y)是抛物线y=﹣x+2x+1上的任意一点,设点P到直线AB的距离为d,求d 2(关于x的函数解析式,并求d取最小值时点P的坐标;3)若点E在抛物线y=﹣x+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小2(值.,且OA∥ABC,使得BC21.如图①,在平面直角坐标系中,OA=6,以OA为边长作等边三角形落在过原点且开口向下的抛物线上.B、C点)求这条抛物线的解析式;(1个单位的速度运动,2BAC 的方向以每秒P从点B出发,沿折线在图①中,(2)假设一动点P个单位的速度运动,当点沿点出发,x轴的负半轴方向以每秒1同时另一动点Q从O,使得tQP、的运动过程中,是否存在时间A运动到点时,P、Q都同时停止运动,在的值,若不存在,请说明理由;AB,若存在,求出tPQ⊥,在抛物线的对称边上找一点G,使BE=EF=1个单位,试在ABE3()在BC边上取两点、F 的周长最小,并求出周长的最小值.H,使得四边形EGHF轴上找一点本人所著《初中几何模型与解题通法》已发行,可在当当、淘宝和京东搜索购买1.特色:由一线名师编写,更专业权威,各地历年中考压轴题几乎都能在书中找到对应的模型和方法,甚至出现大量高度类似题。

将军饮马模型(终稿)(完整资料).doc

将军饮马模型(终稿)(完整资料).doc

【最新整理,下载后即可编辑】将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B 的距离之和最小,即PA+PB最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB.原理:两点之间线段最短。

证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ 重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B 的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l 的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB 和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PA C中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ 重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON 上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A 关于OM 的对称点A’,作点B 关于ON 的对称点B’ ,连接A’ B’,与OM 交于点C ,与ON 交于点D ,连接AC ,BD ,AB ,四边形ABCD 即为所求.原理:两点之间,线段最短3. 两定两动型最值例5:已知A 、B 是两个定点,在定直线l 上找两个动点M 与N ,且MN 长度等于定长d (动点M 位于动点N 左侧),使AM+MN+NB 的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A 向右平移长度d 得到点A’, 作A’关于直线l 的对称点A’’,连接A’’B ,交直线l 于点N ,将点N 向左平移长度d ,得到点M 。

将军饮马模型【范本模板】

将军饮马模型【范本模板】

将军饮马问题将军饮马问题=轴对称问题=最短距离问题(轴对称是工具,最短距离是题眼)。

所谓轴对称是工具,即这类问题最常用的做法就是作轴对称.而最短距离是题眼,也就意味着归类这类的题目的理由。

比如题目经常会出现线段 a+b 这样的条件或者问题。

一旦出现可以快速联想到将军饮马问题,然后利用轴对称解题。

1。

将军饮马故事“将军饮马”问题是数学问题中的经典题目,主要转化成“两点之间线段最短问题”原题:如图,一位将军,从A地出发,骑马到河边给马饮水,然后再到B地,问怎样选择饮水的地点,才能使所走的路程最短?•A•B模型一:一条定直线,同侧两定点在直线l的同侧有两点A,B,在L上求一点P,使得PA+PB值最小。

一般做法:作点 A(B)关于直线的对称点,连接 A’B,A’B 与直线交点即为所求点.A'B即为最短距离 .理由:A'为 A 的对称点,所以无论 P 在直线任何位置都能得到 AP=A'P。

所以PA+PB=PA’+PB。

这样问题就化成了求 A’到 B 的最短距离,直接相连就可以了。

例一:某供电部门准备在输电主干线L上连接一个分支线路,分支点为M,同时向新落成的A、B两个居民小区送电。

已知两个居民小区A、B分别到主干线的距离AA1=2千米,BB1=1千米,且A1B1=4千米。

(1)如果居民小区A、B位于主干线L的两旁,如图(1)所示,那么分支点M 在什么地方时总路线最短?最短线路的长度是多少千米?(2)如果居民小区A、B位于主干线L的同旁,如图(2)所示,那么分支点M在什么地方时总路线最短?此时分支点M与A1的距离是多少千米?模型二:一条定直线,一定点,一动点如图,已知直线L 和定点A ,在直线K 上找一点M,在直线L 上找一点P ,使得AP+PB 值最小.模型三:一定点,两条定直线如图,在∠OAB 内有一点 P ,在 OA 和 OB 各找一个点 M 、N ,使得△PMN 周长最短(题 眼)。

专题07 将军饮马模型(解析版)

专题07 将军饮马模型(解析版)

专题07.将军饮马模型将军饮马模型在考试中,无论是解答题,还是选择、填空题,都是学生感觉有困难的地方,也恰是学生能力区分度最重要的地方,主要考查转化与化归等的数学思想。

在各类考试中都以中高档题为主。

在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。

希望通过本专题的讲解让大家对这类问题有比较清晰的认识。

··模型1、将军饮马--两定一动求线段和的最小值【模型探究】A,B为定点,m为定直线,P为直线m上的一个动点,求AP+BP的最小。

(1)如图1,点A、B在直线m两侧:辅助线:连接AB交直线m于点P,则AP+BP的最小值为AB.(2)如图2,点A、B在直线同侧:辅助线:过点A作关于定直线m的对称点A’,连接A’B交直线m于点P,则AP+BP的最小值为A’B.图1图2例1.(2022·江苏·八年级专题练习)要在街道旁修建一个奶站,向居民区A、B提供牛奶,小聪根据实际情况,以街道旁为x轴,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是____.【答案】10【分析】作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,则A'B即为所求.【详解】解:作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,∵AP=A'P,∴AP+BP∵A(0,3),∴A'(0∴P点到A、B的距离最小值为【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,会根据两点坐标求两点间距离例2.(2022·江苏·八年级专题练习)如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是边AC上一点,若AE=2,则EM+CM的最小值为()C.D.A B.【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,灵活运用勾股定理是解题关键.例3.(2022·江苏·八年级专题练习)如图所示,在ABC 中,AB AC =,直线EF 是AB 的垂直平分线,D 是BC 的中点,M 是EF 上一个动点,ABC 的面积为12,4BC =,则BDM 周长的最小值是_________.【点睛】本题主要考查了线段垂直平分线的性质,三线合一定理,解题的关键在于能够根据题意得到当A、M、D三点共线时,AM+DM最小,即为AD.例4.(2023·湖北洪山·八年级期中)如图,将△ABC沿AD折叠使得顶点C恰好落在AB边上的点M处,D 在BC上,点P在线段AD上移动,若AC=6,CD=3,BD=7,则△PMB周长的最小值为___.【答案】18【分析】首先明确要使得△PMB周长最小,即使得PM+PB最小,再根据翻折的性质可知PM=PC,从而可得满足PC+PB最小即可,根据两点之间线段最短确定BC即为最小值,从而求解即可.【详解】解:由翻折的性质可知,AM=AC,PM=PC,∴M点为AB上一个固定点,则BM长度固定,∵△PMB周长=PM+PB+BM,∴要使得△PMB周长最小,即使得PM+PB最小,∵PM=PC,∴满足PC+PB最小即可,显然,当P、B、C三点共线时,满足PC+PB最小,如图所示,此时,P点与D点重合,PC+PB=BC,∴△PMB周长最小值即为BC+BM,此时,作DS⊥AB于S点,DT⊥AC延长线于T点,AQ⊥BC延长线于Q点,由题意,AD为∠BAC的角平分线,∴DS=DT,∵1122ACDS AC DT CD AQ==,1122ABDS AB DS BD AQ==,∴11221122ABDACDAB DS BD AQSS AC DT CD AQ==,即:AB BDAC CD=,∴763AB=,解得:AB=14,∵AM=AC=6,∴BM=14-6=8,∴△PMB周长最小值为BC+BM=3+7+8=18,故答案为:18.【点睛】本题考查翻折的性质,以及最短路径问题等,掌握翻折的基本性质,利用角平分线的性质进行推理求解,理解并熟练运用两点之间线段最短是解题关键.例5.(2023·江阴市八年级月考)某班级在探究“将军饮马问题”时抽象出数学模型:直线l 同旁有两个定点A 、B ,在直线l 上存在点P ,使得PA PB +的值最小.解法:如图1,作点A 关于直线l 的对称点A ',连接A B ',则A B '与直线l 的交点即为P ,且PA PB +的最小值为A B '.请利用上述模型解决下列问题:(1)几何应用:如图2,ABC ∆中,90C ∠=︒,2AC BC ==,E 是AB 的中点,P 是BC 边上的一动点,则PA PE +的最小值为;(2)几何拓展:如图3,ABC ∆中,2AC =,30A ∠=︒,若在AB 、AC 上各取一点M 、N 使CM MN +的值最小,画出图形,求最小值并简要说明理由.【答案】(110;(23【分析】(1)作点A 关于BC 的对称点A′,连接A′E 交BC 于P ,此时PA+PE 的值最小.连接BA′,先根据勾股定理求出BA′的长,再判断出∠A′BA=90°,根据勾股定理即可得出结论;(2)作点C 关于直线AB 的对称点C′,作C′N ⊥AC 于N 交AB 于M ,连接AC′,根据等边三角形的性质解答.【详解】解:(1)如图2所示,作点A 关于BC 的对称点A′,连接A′E 交BC 于P ,此时PA+PE 的值最小.连接BA′.由勾股定理得,22BC AC +2222+2,∵E 是AB 的中点,∴BE=122,∵90C ∠=︒,2AC BC ==,∴∠A′BC=∠ABC=45°,∴∠A′BA=90°,∴PA+PE 的最小值=A′E=22'A B BE +()()22222+1010;(2)如图3,作点C关于直线AB的对称点C′,作C′N⊥AC于N交AB于M,连接AC′,则C′A=CA=2,∠C′AB=∠CAB=30°,∴△C′AC为等边三角形,∴∠AC′N=30°,∴AN=12C′A=1,∴CM+MN的最小值为2221 3.【点睛】本题考查的是轴对称--最短路线问题、勾股定理、等边三角形的判定和性质、含30°角的直角三角形的性质、垂线段最短,解这类问题的关键是将所给问题抽象或转化为数学模型,把两条线段的和转化为一条线段.模型2、将军饮马--两动一定求线段和的最小值【模型探究】已知定点A位于定直线m,n的内侧,在直线m、n分别上求点P、Q点PA+PQ+QA周长最短.辅助线:过点A作关于定直线m、n的对称点A’、A’’,连接A’A’’交直线m、n于点P、Q,则PA+PQ+QA 的最小值为A’A’’.例1.(2022·江苏·无锡市八年级期末)如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP =4,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于4,则α=()A.30°B.45°C.60°D.90°【答案】A【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点E、F在CD上时,△PEF的周长为PE+EF+FP=CD,此时周长最小,根据CD=4可得出△COD是等边三角形,进而可求出α的度数.【详解】解:如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F.此时,△PEF的周长最小.连接OC,OD,PE,PF.∵点P与点C关于OA对称,∴OA垂直平分PC,∴∠COA=∠AOP,PE=CE,OC=OP,同理,可得∠DOB=∠BOP,PF=DF,OD=OP.∴∠COA+∠DOB=∠AOP+∠BOP=∠AOB=α,OC=OD=OP=4,∴∠COD=2α.又∵△PEF的周长=PE+EF+FP=CE+EF+FD=CD=4,∴OC=OD=CD=4,∴△COD是等边三角形,∴2α=60°,∴α=30°.故选:A.【点睛】本题主要考查了最短路径问题,本题找到点E和F的位置是解题的关键.要使△PEF的周长最小,通常是把三边的和转化为一条线段,运用三角形三边关系解决.例2.(2022·江苏九年级一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,D,E,F分别是AB,BC,AC边上的动点,则△DEF的周长的最小值是()A.2.5B.3.5C.4.8D.6【答案】C【分析】如图作D关于直线AC的对称点M,作D关于直线BC的对称点N,连接CM,CN,CD,EN,FM,DN,DM.由∠MCA=∠DCA,∠BCN=∠BCD,∠ACD+∠BCD=90°,推出∠MCD+∠NCD=180°,可得M、B、N 共线,由DF+DE+EF=FM+EN+EF,FM+EN+EF≥MN,可知当M、F、E、N共线时,且CD⊥AB时,DE+EF+FD的值最小,最小值=2CD,求出CD的值即可解决问题.【详解】解:如图,作D关于直线AC的对称点M,作D关于直线BC的对称点N,连接CM,CN,CD,EN,FM,DN,DM.∴DF =FM ,DE =EN ,CD =CM ,CD =CN ,∴CD =CM =CN ,∵∠MCA =∠DCA ,∠BCN =∠BCD ,∠ACD +∠BCD =90°,∴∠MCD +∠NCD =180°,∴M 、C 、N 共线,∵DF +DE +EF =FM +EN +EF ,∵FM +EN +EF ≥MN ,∴当M 、F 、E 、N 共线时,且CD ⊥AB 时,DE +EF +FD 的值最小,最小值为MN =2CD ,∵CD ⊥AB ,∴12•AB •CD =12•AB•AC ,∴CD =•AB AC AB =125=2.4,∴DE +EF +FD 的最小值为4.8.故选:C .【点睛】本题考查了轴对称-最短问题、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题,属于中考选择题中的压轴题.例3.(2023春·贵州毕节·七年级统考期末)如图所示,30AOB ∠= ,点P 为AOB ∠内一点,8OP =,点,M N 分别在,OA OB 上,求PMN ∆周长的最小值.【答案】PMN ∆周长的最小值为8【分析】作P 关于OA 、OB 的对称点12P P 、,连结1OP、2OP ,即可快速找到解题思路.【详解】如图,作P 关于OA 、OB 的对称点12P P 、,连结1OP、2OP ,12PP 交OA 、OB 于M 、N ,此时PMN ∆周长最小,根据轴对称性质可知1PM PM =,2P N PN =,1212PM N PM M N PN PP ∴∆=++=,且1AO P AO P ∠=∠,2BO P BO P ∠=∠,12260POP AOB ∠=∠=︒,128O P O P O P ===,12PPO ∆为等边三角形,1218PP OP ==即PMN ∆周长的最小值为8.【点睛】本题应用知识比较隐晦,分别考查了轴对称图形和等边三角形,需要认真分析,充分联系所学知识,方可正确解答.例4.(2023.山东八年级期末)如图所示,在四边形ABCD中,∠A=90º,∠C=90º,∠D=60º,AD=3,AB=,若点M、N分别为边CD,AD上的动点,则△BMN的周长最小值为()A. B. C.6 D.3【答案】C【解析】作点B关于CD、AD的对称点分别为点B'和点B'',连接B'B''交DC和AD于点M和点N,连接MB、NB;再DC和AD上分别取一动点M’和N’(不同于点M和N),连接M'B,M'B',N’B和N'B'',如图1所示:∵B'B''<M'B'+M'N'+N'B",B'M'=BM',B"N'=BN',∴BM'+M'N'+BN'>B'B",又∵B'B"=B'M+MN+NB",MB=MB',NB=NB'',∴NB+NM+BM<BM'+M’N'+BN'NB+NM+BM时周长最小;连接DB,过点B'作B'H⊥DB''于B’’D的延长线于点H,如图示2所示:在Rt△ABD中,AD=3,AB=,,∴∠2=30º,∴∠5=30º,DB=DB'',又∵∠ADC=∠1+∠2=60º,∴∠1=30º,∴∠7=30º,DB'=DB,∴∠B'DB''=∠1+∠2+∠5+∠7=120º,DB'=DB''=DB,又∵∠B'DB"+∠6=180º,∴∠6=60º,∴HD=,HB'=3,在Rt △B'HB''中,由勾股定理得:B'B"=,NB +NM +BM =6,故选C.模型3、将军饮马--两动两定求线段和的最小值【模型探究】A ,B 为定点,在定直线m 、n 上分别找两点P 、Q ,使PA +PQ +QB 最小。

(完整版)将军饮马问题的11个模型及例题

(完整版)将军饮马问题的11个模型及例题
理由:由轴对称的性质知AP=A′P,要使AP+PQ最小,
只需A′P+PQ最小,从而转化为拓展模型1
3. 已知:如图,A为锐角∠MON内一定点;
要求:在射线OM上找一点P,在射线ON上找一点Q,使
△APQ的周长最小
解:分别作A点关于直线OM的对称点A1,关于ON的对
称点A2,连接 A1A2交OM于点P,交ON于点Q,点
【解答】作点B关于AC的对称点E,再过点E作EN⊥AB于N,则BM+MN=EM+MN,
其最小值即EN长;∵AB=10,BC=5,
∴AC= =5 ,
等面积法求得AC边上的高为 =2 ,∴BE=4 ,
易知△ABC∽△ENB,∴ ,代入数据解得EN=8.
即BM+MN的最小值为8.
【小结】该类题的思路是通过作对称,将线段转化,再根据定理、公理连线或作垂线;可作定点或动点关于定直线的对称点,有些题作定点的对称点易解,有些题则作动点的对称点易解.
(a为定值)的线段PQ在l上移动(P在Q左边)
要求:确定PQ的位置,使得AP+PQ+QB最小
分析:PQ为定值,只需AP+QB的值最小,可通过平移,
使P、Q“接头”,转化为基本模型
解:将点A沿着平行于l的方向,向右移至A´,使
AA´=PQ=a,连接A´B交直线l于点Q,在l上截取
PQ=a(P在Q左边),则线段PQ即为所求,此时
点A′,使得AA′=PQ,连接A′B交直线n于点
Q,过点Q作PQ⊥n,交直线m于点P,线段PQ即
为所求,此时AP+PQ+BQ最小.
理由:易知四边形QPAA′为平行四边形,则QA′=PA,
当B、Q、A′三点共线时,QA′+BQ最小,即

(完整版)将军饮马模型(终稿)

(完整版)将军饮马模型(终稿)

将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.【问题原型】将军饮马造桥选址费马点【涉及知识】两点之间线段最短,垂线段最短;三角形两边三边关系;轴对称;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小.作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB。

原理:两点之间线段最短。

证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在⊿PA C中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦)2.两动一定型例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.原理:两点之间,线段最短例4:在∠MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM交于点C,与ON 交于点D,连接AC,BD,AB,四边形ABCD即为所求.原理:两点之间,线段最短3.两定两动型最值例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d(动点M位于动点N 左侧),使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l 于点N,将点N向左平移长度d,得到点M.作法二:作点A关于直线l的对称点A1,将点A1向右平移长度d得到点A2,连接A2 B,交直线l于点Q,将点Q向左平移长度d,得到点Q。

将军饮马模型

将军饮马模型
将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的B地开会, 应该怎样走才能使路程最短?
从此,这个被称为“将军饮马”的问题广泛流传.
这个问题的解决并不难,据说海伦略加思索就解决了它.
解决
如图所示,从A出发向河岸引垂线,垂足为D,在AD的延长线 取A关于河岸的 对称点A‘,连结A’B,与河岸线相交于C,则C点就是饮马的地方,将军只要从A 出发,沿直线走到C,饮马之后,再由C沿直线走到B,走的路程就是最短的. 如果将军在河边的另外任一点C‘饮马,所走的路程就是AC’+C‘B,
解:∵在菱形ABCD中,AC与BD互相垂直平分, ∴点B、D关于AC对称, 连接ED,则ED就是所求的EF+BF的最小值的线段, ∵AB=AD, ∠DAB=60°
∴ △ABC是等边三角形 ∵E为AB的中点 ∴DE⊥AB,
Rt △ABC中, ED=6sin60º=3 3
但是,AC'+C'B=A'C'+C'B>A'B=A'C+CB=AC+CB. 可见,在C点外任何一点C'饮马,所走的路程都要远一些. 这有几点需要说明的: (1)由作法可知,河流l相当于线段AA中垂线,所以 AD=A‘D。 (2)由上一条知:将军走的路程就是AC+BC,就等于A’C+BC,
而两村庄,他们想在河流l的边上建立一个水泵站,已知每米 的管道费用是100元,A到河流的距离AD是1km,B到河流的距离BE是3km, DE长3km。请问这个水泵站应该建立在哪里使得费用最少?
解:如图所作,C点为水泵站的位置。
应用2
如图,在边长为6的菱形ABCD中,∠DAB=60°, E为AB的中点,F是AC上的一动点,则EF+BF的 最小值为 多少?

将军饮马模型(终稿)

将军饮马模型(终稿)

將軍飲馬模型一、背景知識:【傳說】早在古羅馬時代,傳說亞曆山大城有一位精通數學和物理の學者,名叫海倫.一天,一位羅馬將軍專程去拜訪他,向他請教一個百思不得其解の問題.將軍每天從軍營A出發,先到河邊飲馬,然後再去河岸同側の軍營B開會,應該怎樣走才能使路程最短?這個問題の答案並不難,據說海倫略加思索就解決了它.從此以後,這個被稱為“將軍飲馬”の問題便流傳至今.【問題原型】將軍飲馬造橋選址費馬點【涉及知識】兩點之間線段最短,垂線段最短;三角形兩邊三邊關係;軸對稱;平移;【解題思路】找對稱點,實現折轉直二、將軍飲馬問題常見模型1.兩定一動型:兩定點到一動點の距離和最小例1:在定直線l上找一個動點P,使動點P到兩個定點A與Bの距離之和最小,即PA+PB 最小.作法:連接AB,與直線lの交點Q,Q即為所要尋找の點,即當動點P跑到了點Q處,PA+PB最小,且最小值等於AB.原理:兩點之間線段最短。

證明:連接AB,與直線lの交點Q,P為直線l上任意一點,在⊿PAB中,由三角形三邊關係可知:AP+PB≧AB(當且僅當PQ重合時取﹦)例2:在定直線l上找一個動點P,使動點P到兩個定點A與Bの距離之和最小,即PA+PBの和最小.關鍵:找對稱點作法:作定點B關於定直線lの對稱點C,連接AC,與直線lの交點Q即為所要尋找の點,即當動點P跑到了點Q處,PA+PB和最小,且最小值等於AC.原理:兩點之間,線段最短證明:連接AC,與直線lの交點Q,P為直線l上任意一點,在⊿PAC中,由三角形三邊關係可知:AP+PC≧AC(當且僅當PQ重合時取﹦)2.兩動一定型例3:在∠MONの內部有一點A,在OM上找一點B,在ON上找一點C,使得△BAC周長最短.作法:作點A關於OMの對稱點A’,作點A關於ONの對稱點A’’,連接A’ A’’,與OM 交於點B,與ON交於點C,連接AB,AC,△ABC即為所求.原理:兩點之間,線段最短例4:在∠MONの內部有點A和點B,在OM上找一點C,在ON上找一點D,使得四邊形ABCD周長最短.作法:作點A關於OMの對稱點A’,作點B關於ONの對稱點B’,連接A’ B’,與OM交於點C,與ON交於點D,連接AC,BD,AB,四邊形ABCD即為所求.原理:兩點之間,線段最短3.兩定兩動型最值例5:已知A、B是兩個定點,在定直線l上找兩個動點M與N,且MN長度等於定長d(動點M位於動點N左側),使AM+MN+NBの值最小.提示:存在定長の動點問題一定要考慮平移作法一:將點A向右平移長度d得到點A’,作A’關於直線lの對稱點A’’,連接A’’B,交直線l於點N,將點N向左平移長度d,得到點M。

专题06 将军饮马模型(原卷版)

专题06 将军饮马模型(原卷版)

专题06.将军饮马模型将军饮马模型在考试中,无论是解答题,还是选择、填空题,都是学生感觉有困难的地方,也恰是学生能力区分度最重要的地方,主要考查转化与化归等的数学思想。

在各类考试中都以中高档题为主。

在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。

希望通过本专题的讲解让大家对这类问题有比较清晰的认识。

将军饮马模型在上学期(北师大版七年级下册)已经涉及,但是由于缺乏计算工具(勾股定理),所以只能是作出相关图形,很难进行相关最值的计算。

模型1、将军饮马--两定一动求线段和的最小值【模型探究】A ,B 为定点,m 为定直线,P 为直线m 上的一个动点,求AP +BP 的最小。

(1)如图1,点A 、B 在直线m 两侧:辅助线:连接AB 交直线m 于点P ,则AP +BP 的最小值为AB .(2)如图2,点A 、B 在直线同侧:辅助线:过点A 作关于定直线m 的对称点A’,连接A’B 交直线m 于点P ,则AP +BP 的最小值为A’B .图1图2例1.(2022·江苏·八年级专题练习)要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,小聪根据实际情况,以街道旁为x 轴,测得A 点的坐标为(0,3),B 点的坐标为(6,5),则从A 、B 两点到奶站距离之和的最小值是____.例2.(2023·河南南阳·八年级阶段练习)如图,等边ABC ∆的边长为4,点E 是AC 边的中点,点P 是ABC ∆的中线AD 上的动点,则EP CP +的最小值是_____.例4.(2022·湖北江夏初二月考)在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴上,点A 的坐标为(4,0),∠AOB =30°,点E 的坐标为(1,0),点P 为斜边OB 上的一个动点,则PA+PE 的最小值为_____.例4.(2023·广东·八年级期中)如图,在△ABC 中,∠C =90°,CB =CA =4,∠A 的平分线交BC 于点D ,若点P 、Q 分别是AC 和AD 上的动点,则CQ +PQ 的最小值是.例5.(2023·江阴市八年级月考)某班级在探究“将军饮马问题”时抽象出数学模型:直线l 同旁有两个定点A 、B ,在直线l 上存在点P ,使得PA PB +的值最小.解法:如图1,作点A 关于直线l 的对称点A ',连接A B ',则A B '与直线l 的交点即为P ,且PA PB +的最小值为A B '.请利用上述模型解决下列问题:(1)几何应用:如图2,ABC ∆中,90C ∠=︒,2AC BC ==,E 是AB 的中点,P 是BC 边上的一动点,则PA PE +的最小值为;(2)几何拓展:如图3,ABC ∆中,2AC =,30A ∠=︒,若在AB 、AC 上各取一点M 、N 使CM MN +的值最小,画出图形,求最小值并简要说明理由.【模型探究】已知定点A位于定直线m,n的内侧,在直线m、n分别上求点P、Q点PA+PQ+QA周长最短.辅助线:过点A作关于定直线m、n的对称点A’、A’’,连接A’A’’交直线m、n于点P、Q,则PA+PQ+QA 的最小值为A’A’’.例1.(2022·上虞市初二月考)如图,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,若△PMN周长的最小值是6cm,则∠AOB的度数是()A.15B.30C.45D.60例2.(2022·江苏九年级一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4,D,E,F分别是AB,BC,AC边上的动点,则△DEF的周长的最小值是()A.2.5B.3.5C.4.8D.6例3.(2023.山东八年级期末)如图所示,在四边形ABCD中,∠A=90º,∠C=90º,∠D=60º,AD=3,AB=,若点M、N分别为边CD,AD上的动点,则△BMN的周长最小值为()A. B. C.6 D.3【模型探究】A,B为定点,在定直线m、n上分别找两点P、Q,使PA+PQ+QB最小。

八上21讲期末复习3将军饮马所有模型及变式——终极篇

八上21讲期末复习3将军饮马所有模型及变式——终极篇

⼋上21讲期末复习3将军饮马所有模型及变式——终极篇写在前⾯窗外银装素裹,虽然停课了,但是期末复习还是要进⾏的.加油,最后⼏天在家冲刺,你⼀定能⾏!将军饮马,这是笔者第三次写了,本讲会将本学期所有遇到的11个模型全部罗列,让⼤家举⼀反三,不再见题神伤!⼀、模型展现(1)直线型模型1:在直线l上求作点P,使PA+PB最⼩.原理:两点之间,线段最短.PA+PB最⼩值即为AB长.模型2:在直线l上求作点P,使PA+PB最⼩.原理:和最⼩,同侧转异侧.两点之间,线段最短.模型3:在直线l上求作点P,使|PA-PB|最⼤.原理:两边之差⼩于第三边,|PA-PB|最⼤值即为AB长.模型4:在直线l上求作点P,使|PA-PB|最⼤.原理:差最⼤,异侧转同侧.两边之差⼩于第三边.变式:在直线l上求作点P,使l平分∠APB,与此作法相同.模型5:在直线l上求作点P,使|PA-PB|最⼩.原理:|PA-PB|最⼩为0,中垂线上的点到线段两端的距离相等.(2)⾓型模型6:在OA,OB上求作点M,N,使△PMN周长最⼩.原理:作两次对称,两点之间,线段最短.模型7:在OA,OB上求作点M,N,使四边形PQMN周长最⼩.原理:P,Q分别作对称,两点之间,线段最短.模型8:在OA,OB上求作点M,N,(1)使PM+MN最⼩.(2)使PN+MN最⼩.原理:先连哪个点,就先做关于那个点所在射线的对称点.垂线段最短.模型9:P,Q为OA,OB的定点,在OA,OB上求作点M,N,使PN+NM+MQ最⼩.原理:两点之间,线段最短,PN+NM+MQ最⼩值即为P’Q’的长.(3)平移型模型10:在直线l上求作点M,N,使MN=a,且AM+MN+NB最⼩.原理:将l上的MN转化到B’B.(问题情境:将军从军营A出发,去河边l饮马,饮马完在河边牵马散步a⽶,回军营B.可以转化为饮完马,直接去军营B,在到达之前散步.)模型11(造桥选址):直线l1∥l2,在l1上求作点M,在l2上求作点N,使MN⊥l1,且AM+MN+NB最⼩.原理:将MN转化为AA’.(可以理解为在A处先⾛过桥的路,再直达点B.)⼆、典型例题例1:(模型2)从点A(0,2)发出的⼀束光线,经x轴反射,过点B(4,3),求从点A到点B所经过的路径长.解析:例2:(模型4)已知点A(1,3)、B(3,-1),点M在x轴上,当AM-BM最⼤时,点M的坐标为______解析:例3:(模型10)如图,当四边形PABN的周长最⼩时,a=______解析:例4:(模型11)解析:例5:(结合勾股)如图,在等边△ABC中,AB=6,N为AB上⼀点,且AN=2,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM、MN,则BM+MN的最⼩值是_____解析:⼩结:所有类型已归纳完,更多内容,详见⼋上11讲期中专题⼀将军饮马类题型全覆盖暑假特辑10《轴对称》之“将军饮马”(上)暑假特辑11《轴对称》之“将军饮马”(下)本讲思考题:已知点A(-3,-4)和B(-2,1).(1)试在y轴上求⼀点P,使PA+PB的值最⼩(2)试在y轴上求⼀点P,使|QA-QB|的值最⼤(3)若C(0,m),D(0,m-2),当m为何值时,四边形ABCD的周长最⼩.答案:(1) P (0,-1)(2) Q (0,11)(3) m = -0.2如何关注。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

将军饮马模型
一、背景知识:
【传说】
早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.
将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.
【问题原型】将军饮马造桥选址费马点
【涉及知识】两点之间线段最短,垂线段最短;
三角形两边三边关系;轴对称;平移;
【解题思路】找对称点,实现折转直
二、将军饮马问题常见模型
1.两定一动型:两定点到一动点的距离和最小
例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 最小.
作法:连接AB,与直线l的交点Q,
Q即为所要寻找的点,即当动点P跑到了点Q处,
PA+PB最小,且最小值等于AB.
原理:两点之间线段最短。

证明:连接AB,与直线l的交点Q,P为直线l上任意一点,
在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)
例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.
关键:找对称点
作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.
原理:两点之间,线段最短
证明:连接AC,与直线l的交点Q,P为直线l上任意一点,
在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦)
2.两动一定型
例3:在∠MON的部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短.
作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM 交于点B,与ON交于点C,连接AB,AC,△ABC即为所求.
原理:两点之间,线段最短
例4:在∠MON的部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短.
作法:作点A关于OM的对称点A’,作点B关于ON的对称点B’,连接A’ B’,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求.
原理:两点之间,线段最短
3.两定两动型最值
例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d (动点M位于动点N左侧),使AM+MN+NB的值最小.
提示:存在定长的动点问题一定要考虑平移
作法一:将点A向右平移长度d得到点A’,作A’关于直线l的对称点A’’,连接A’’B,交直线l于点N,将点N向左平移长度d,得到点M。

作法二:作点A关于直线l的对称点A1,将点A1向右平移长度d得到点A2,连接A2 B,交直线l于点Q,将点Q向左平移长度d,得到点Q。

原理:两点之间,线段最短,最小值为A’’B+MN
例6:(造桥选址)将军每日需骑马从军营出发,去河岸对侧的瞭望台观察敌情,已知河流的宽度为30米,请问,在何地修浮桥,可使得将军每日的行程最短?
例6:直线l1∥l2,在直线l1上找一个点C,直线l2上找一个点D,使得CD⊥l2,且AC+BD+CD最短.
作法:将点A沿CD方向向下平移CD长度d至点A’,连接A’B,交l2于点D,过点D作DC⊥l2于点C,连接AC.则桥CD即为所求.此时最小值为A’B+CD
原理:两点之间,线段最短,
4.垂线段最短型
例7:在∠MON的部有一点A,在OM上找一点B,在ON上找一点C,使得AB+BC最短.
原理:垂线段最短
点A是定点,OM,ON是定线,
点B、点C是OM、ON上要找的点,是动点.
作法:作点A关于OM的对称点A’,过点A’作A’C⊥ON,
交OM于点B,B、C即为所求。

例8:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之差最小,即PA-PB 最小.
作法:连接AB,作AB的中垂线与l的交点,即为所求点P
此时|PA-PB |=0
原理:线段垂直平分线上的点到线段两端的距离相等
例9:在定直线l上找一个动点C,使动点C到两个定点A与B的距离之差最大,即|PA-PB |最大
作法:延长BA交l于点C,点C即为所求,
即点B、A、C三点共线时,最大值为AB的长度。

原理:三角形任意两边之差小于第三边
例10:在定直线l上找一个动点C,使动点C到两个定点A与B的距离之差最大,即|PA-PB|最大
作法:作点B关于l的对称点B,连接AB,
交交l于点P即为所求,最大值为AB的长度。

原理:三角形任意两边之差小于第三边
典型例题 三角形
1.如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,且AE = 2,求EM+EC 的最小值
解:点C 关于直线AD 的对称点是点B ,连接BE ,交AD 于点M ,则ME+MD 最小, 过点B 作BH ⊥AC 于点H , 则EH = AH – AE = 3 – 2 = 1,BH =
BC 2 - CH 2 = 62 - 32 = 3 3 在直角△BHE 中,BE = BH 2 + HE 2 = (33)2 + 12 = 27
D B C D A
C B。

相关文档
最新文档