中科大电磁学期末复习答案
光学与电磁学期末复习试题(含答案)
大学物理(电磁学)综合复习资料一.选择题:l.(本题3分)真空中一“无限大”均匀带负电荷的平面如图所示,其电场的场强分布图应是(设场强方向向右为正、向左为负)[ ]2.(本题3分)在静电场中,下列说法中哪一个是正确的?(A)带正电荷的导体,其电势一定是正值.(B)等势面上各点的场强一定相等.(C)场强为零处,电势也一定为零.(D)场强相等处,电势梯度矢量一定相等.[ ]3.(本题3分)电量之比为1:3:5的三个带同号电荷的小球A、B、C,保持在一条直线上,相互间距离比小球直径大得多.若固定A、C不动,改变B的位置使B所受电场力为零时,AB与BC比值为(A)5.(B)l/5.(C )5. (D )5/1 [ ] 4.(本题3分)取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A )回路L 内的∑I 不变, L 上各点的B不变. (B )回路L 内的∑I 不变, L 上各点的B改变.(C )回路L 内的∑I 改变, L 上各点的B不变.(D )回路L 内的∑I 改变, L 上各点的B改变.[ ] 5.(本题3分)对位移电流,有下述四种说法,请指出哪一种说法正确. (A )位移电流是由变化电场产生的. (B )位移电流是由线性变化磁场产生的. (C )位移电流的热效应服从焦耳—楞次定律. (D )位移电流的磁效应不服从安培环路定理. 6.(本题3分)将一个试验电荷q 0(正电荷)放在带有负电荷的大导体附近P 点处,测得它所受的力为F .若考虑到电量q 0不是足够小,则 (A )0/q F 比P 点处原先的场强数值大. (B )0/q F 比P 点处原先的场强数值小. (C )0/q F 等于原先P 点处场强的数值.(D )0/q F 与P 点处场强数值关系无法确定. [ ]7.(本题3分)图示为一具有球对称性分布的静电场的E~r关系曲线.请指出该静电场是由下列哪种带电体产生的.(A)半径为R的均匀带电球面.(B)半径为R的均匀带电球体.(C)半径为R的、电荷体密度为Arρ(A为常数)的非均匀带=电球体.(D)半径为R的、电荷体密度为rρ(A为常数)的非均匀=A/带电球体.[ ]8.(本题3分)电荷面密度为σ-的两块“无限大”均匀带电的平行平板,+和σ放在与平面相垂直的X轴上的+a和-a位置上,如图所示.设坐标原点O处电势为零,则在-a<x<+a区域的电势分布曲线为[ ]9.(本题3分)静电场中某点电势的数值等于(A )试验电荷q 0置于该点时具有的电势能. (B )单位试验电荷置于该点时具有的电势能. (C )单位正电荷置于该点时具有的电势能.(D )把单位正电荷从该点移到电势零点外力所作的功. 10.(本题3分)在图(a )和(b )中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b )图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A )2121,P P L L B B l d B l d B =⋅=⋅⎰⎰.(B )2121,P P L L B B l d B l d B =⋅≠⋅⎰⎰.(C )2121,P P L L B B l d B l d B ≠⋅=⋅⎰⎰.(D )2121,P P L L B B l d B l d B ≠⋅≠⋅⎰⎰. [ ]11.(本题3分)电位移矢量的时间变化率dt dD /的单位是 (A )库仑/米2. (B )库仑/秒.(C )安培/米2. (D )安培²米2. [ ] L2.(本题3分)有四个等量点电荷在OXY 平面上的四种不同组态,所有点电荷均与原点等距.设无穷远处电势为零,则原点O 处电场强度和电势均为零的组态是 [ ]13.(本题3分)如图示,直线MN 长为l 2,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A ) A <0且为有限常量. (B ) A >0且为有限常量. (C ) A =∞. (D ) A =0. [ ]14.(本题3分)一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F和合力矩M为:(A )0,0==M F. (B )0,0≠=M F.(C )0,0=≠M F.(D )0,0≠≠M F.[ ]15.(本题3分)当一个带电导体达到静电平衡时: (A )表面上电荷密度较大处电势较高.(B )表面曲率较大处电势较高.(C )导体内部的电势比导体表面的电势高.(D )导体内任一点与其表面上任一点的电势差等于零. [ ]16.(本题3分)如图所示,螺线管内轴上放入一小磁针,当电键K 闭合时,小磁针的N 极的指向(A )向外转90O . (B )向里转90O . (C )保持图示位置不动. (D )旋转180O .(E )不能确定. [ ]17.(本题3分)如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A ),0=⋅⎰Ll d B且环路上任意一点 B =0.(B ),0=⋅⎰Ll d B且环路上任意一点0≠B .(C ),0≠⋅⎰Ll d B且环路上任意一点 0≠B .(D ),0≠⋅⎰Ll d B且环路上任意一点B=常量.[ ]I18.(本题3分)附图中,M、P、O为由软磁材料制成的棒,三者在同一平面内,当K闭合后,(A)M的左端出现N极.(B)P的左端出现N极.(C)O右端出现N极.(D)P的右端出现N极.[ ]二.填空题:1.(本题3分)如图所示,在边长为a的正方形平面的中垂线上,距中心O点a12处,有一电量为q的正点电荷,则通过该平面的电场强度通量为.2.(本题3分)电量分别为q1,q2,q3的三个点电荷分别位于同一圆周的三个点上,如图所示.设无穷远处为电势零点,圆半径为R,则b点处的电势U=3.(本题3分)在静电场中,场强沿任意闭合路径的线积分等于零,即0=⋅⎰Ll d E,这表明静电场中的电力线 .4.(本题3分)空气的击穿电场强度为m V /1026⨯,直径为0.10m 的导体球在空气中时的最大带电量为 . (22120/1085.8m N C ⋅⨯=-ε) 5.(本题3分)长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小H = ,磁感应强度的大小B = . 6.(本题3分)一“无限长”均匀带电的空心圆柱体,内半径为a ,外半径为b ,电荷体密度为ρ.若作一半径为r (a <r <b ),长度为L 的同轴圆柱形高斯柱面,则其中包含的电量q = . 7.(本题3分)一静止的质子,在静电场中通过电势差为100V 的区域被加速,则此质子的末速度是 . (leV =1.6³10-19J ,质子质量m P =1.67³l0-27kg ) 8.(本题3分)两个电容器1和2,串联以后接上电动势恒定的电源充电.在电源保持联接的情况下,若把电介质充入电容器2中,则电容器1上的电势差电容器1极板上的电量 .(填增大、减小、不变) 9.(本题3分)磁场中任一点放一个小的载流试验线圈可以确定该点的磁感应强度,其大小等于放在该点处试验线圈所受的 和线圈的 的比值. 10.(本题3分)在点电荷系的电场中,任一点的电场强度等于 ,这称为场强叠加原理. 11.(本题3分)一半径为R 的均匀带电球面,其电荷面密度为σ.该球面内、外的场强分布为(r表示从球心引出的矢径):=)(r E)(R r <,=)(r E)(R r >. 12.(本题3分)在静电场中,电势不变的区域,场强必定为 .三.计算题: l .(本题10分)一空气平行板电容器,两极板面积均为 S ,板间距离为 d ( d 远小于极板线度),在两极板间平行地插入一面积也是S 、厚度为 t (< d )的金属片.试求: (l )电容C 等于多少?(2)金属片放在两极板间的位置对电容值有无影响?2.(本题10分)计算如图所示的平面载流线圈在P 点产生的磁感应强度,设线圈中的电流强度为I .3.(本题10分)图中所示为水平面内的两条平行长直裸导线LM 与L ’M ’,其间距离为l 其左端与电动势为0 的电源连接.匀强磁场B垂直于图面向里.一段直裸导线ab 横放在平行导线间(并可保持在导线间无摩擦地滑动)把电路接通.由于磁场力的作用,ab 将从静止开始向右运动起来.求(1) ab 能达到的最大速度V .(2) ab 达到最大速度时通过电源的电流I .4.(本题10分)两电容器的电容之比为2:1:21 C C(l )把它们串联后接到电压一定的电源上充电,它们的电能之比是多少?(2)如果是并联充电,电能之比是多少?(3)在上述两种情形下电容器系统的总电能之比又是多少? 5.(本题10分)在一平面内有三根平行的载流直长导线,已知导线1和导线2中的电流I 1=I 2且方向相同,两者相距 3³10-2m ,并且在导线1和导线2之间距导线1为10-2m 处B =0,求第三根导线放置的位置与所通电流I 3之间的关系.6.(本题10分)一圆柱形电容器,内圆柱的半径为R 1,外圆柱的半径为R 2,长为L )]([12R R L ->>,两圆柱之间充满相对介电常数为r ε的各向同性均匀电介质.设内外圆柱单位长度上带电量(即电荷线密度)分别为λ和λ-,求:(l )电容器的电容; (2)电容器储存的能量. 7.(本题10分)从经典观点来看,氢原子可看作是一个电子绕核作高速旋转的体系.已知电子和质子的电量为-e 和e ,电子质量为m e ,氢原子的圆轨道半径为r ,电子作平面轨道运动,试求电子轨道运动的磁矩m p的数值?它在圆心处所产生磁感应强度的数值B 0为多少? 8.(本题10分)一无限长直导线通有电流t e I I 30-=.一矩形线圈与长直导线共面放置,其长边与导线平行,位置如图所示.求:(l )矩形线圈中感应电动势的大小及感应电流的方向; (2)导线与线圈的互感系数.四.证明题:(共10分) 1.(本题10分)一环形螺线管,共N 匝,截面为长方形,其尺寸如图,试证明此螺线管自感系数为:ab h N L ln 220πμ=大学物理(电磁学)参考答案 一.选择题:1.(D ) 2.(D ) 3.(D ) 4.(B ) 5.(A )6.(A ) 7.(B ) 8.(C ) 9.(C ) 10.(C ) 11.(C )12.(D ) 13.(D ) 14.(B ) 15.(D ) 16.(C ) 17.(B ) 18.(B )二.填空题:(共27分) 1.(本题3分) )6/(0εq 2.(本题3分))22(813210q q q R++πε3.(本题3分) 不可能闭合 4.(本题3分) 5.6³10-7C 5.(本题3分))2/(r I π )2/(r I H πμμ= 6.(本题3分))(22a r L -ρπ 7(本题3分)1.38³105m 8.(本题3分)增大 增大 9.(本题3分)最大磁力矩 磁矩10.(本题3分)点电荷系中每一个点电荷在该点单独产生的电场强度的矢量和 11.(本题3分)r rR 302εσ12.(本题3分)零三.计算题: 1.(本题10分)解:设极板上分别带电量+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2;金属片与A 板间场强为 )/(01S q E ε= 金属板与B 板间场强为 )/(02S q E ε= 金属片内部场强为0'=E 则两极板间的电势差为 d E d E U U B A 21+=-))](/([210d d S q +=ε))](/([0t d S q -=ε 由此得)/()/(0t d S U U q C B A -=-=ε因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容无影响.2.(本题10分)解:如图,CD 、AF 在P 点产生的 B =0 EF D E BC AB B B B B B+++= )sin (sin 4120ββπμ-=a IB AB ,方向⊗其中0sin ,2/1)2/(sin 12===ββa a aIB AB 240μ=∴,同理:aIB BC 240μ=,方向⊗.同样 aIB B EF DE 280μ==,方向⊙.a IaI a I B 8224242000μμμ=-=∴3.解:(1)导线ab 运动起来时,切割磁感应线,产生动生电动势。
高中物理电磁学期末考试练习题附参考答案
三、计算题。
1.一锥顶角为 的圆台,上下底面半径分别为 和 ,在它的侧面上均匀带电,电荷面密度为 ,求顶点O的电势。(以无穷远处为电势零点)
解:
以顶点O为坐标原点,圆锥轴线为 轴,向下为正,在任意位置 处取高度 的小园环,其面积:
2.一电量为 的试验电荷放在电场中某点时,受到 向下的力,则该点的电场强度大小为 ,方向向上。
3.无限长直导线在P处弯成半径为R的圆,当通以电流I时,则在圆心O点的磁感应强度大小等于 。
4.AC为一根长为 的带电细棒,左半部均匀带有负电,右半部均匀带有正电荷,电荷线密度分别为 和 ,如图所示。O点在棒的延长线上,距A端的距离为 ,P点在棒的垂直平分线上,到棒的垂直距离为 。以棒的中点B为电势的零点,则O点的电势 = ,P点的电势 =0。
(A) , 。
(B) , 。
(C) , 。(D) , 。
5.相距为 的两个电子,在重力可忽略的情况下由静止开始运动到相距为 ,从相距 到相距 期间,两电子系统的下列哪一个量是不变的:[C]
(A)动能总和;(B)电势能总和;
(C)动量总和;(D)电相互作用力
6.均匀磁场的磁感应强度 垂直于半径为 的圆面。今以该圆周为边线,作一半球面 ,则通过 面的磁通量的大小为:[B]
(A) 。(B) 。
(C) 。(D)无法确定的量。
7.对位移电流,有下述四种说法,请指出哪一种说法正确:[A]
(A)位移电流是由变化电场产生的。(B)位移电流是由线性变化磁场产生的。
(C)位移电流的热效应服从焦耳—楞次定律。
(D)位移电流的磁效应不服从安培环路定理。
期末复习 电磁学部分(选择和填空)
物理复习 :电磁学部分 (附解)一、选择题1. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零.(C) 处处不为零. (D) 无法判定 . [ ]2. 在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为:(A) 2012a Q επ. (B) 206aQ επ. (C) 203a Q επ. (D) 20a Q επ. [ ] 3. 一电场强度为E 的均匀电场,E 的方向与沿x 轴正向,如图所示.则通过图中一半径为R 的半球面的电场强度通量为(A) πR 2E . (B) πR 2E / 2.(C) 2πR 2E .(D) 0. [ ]4. 有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q的正点电荷,如图所示,则通过该平面的电场强度通量为 (A) 03εq .(B) 04επq (C) 03επq. (D) 06εq [ ] 5. 半径为R 的均匀带电球面的静电场中各点的电场强度的大小E 与距球心的距离r 之间的关系曲线为:[ ] 6. 静电场中某点电势的数值等于(A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能.(C)单位正电荷置于该点时具有的电势能.(B) 把单位正电荷从该点移到电势零点外力所作的功[ ]7. 在点电荷+q 的电场中,若取图中P 点处为电势零点 ,则M 点的电势为 (A) a q 04επ. (B) a q 08επ. q E O r (D) E ∝1/r 2(C) a q 04επ-. (D) aq 08επ-. [ ] 8. 如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A) 顶点a 、b 、c 、d 处都是正电荷.(B) 顶点a 、b 处是正电荷,c 、d 处是负电荷.(C) 顶点a 、c 处是正电荷,b 、d 处是负电荷.(D) 顶点a、b 、c 、d 处都是负电荷. []9. 如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E =0,r Q U 04επ=. (B) E =0,RQ U 04επ=. (C) 204r Q E επ=,rQ U 04επ= . (D) 204r Q E επ=,R Q U 04επ=. [ ] 10. 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出: (A) E A >E B >E C ,U A >U B >U C .(B) E A <E B <E C ,U A <U B <U C .(C) E A >E B >E C ,U A <U B <U C .(D) E A <E B <E C ,U A >U B >U C . [ ]11. 一带正电荷的物体M ,靠近一原不带电的金属导体N ,N 的左端感生出负电荷,右端感生出正电荷.若将N 的左端接地,如图所示,则(A) N 上有负电荷入地.(B) N 上有正电荷入地.(C ) N 上的电荷不动.(D) N 上所有电荷都入地. [ ]12. 图示一均匀带电球体,总电荷为+Q ,其外部同心地罩一内、外半径分别为r 1、r 2的金属球壳.设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: (A) 204r Q E επ=,rQ U 04επ=. (B) 0=E ,104r Q U επ=. (C) 0=E ,rQ U 04επ=. 13.两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大. b a(C) 两球电容值相等. (D) 大小关系无法确定. [ ](D) 0=E ,204r Q U επ=. [ ] 14. 一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U 12、电场强度的大小E 、电场能量W 将发生如下变化:(A) U 12减小,E 减小,W 减小.(B) U 12增大,E 增大,W 增大.(C) U 12增大,E 不变,W 增大.(D) U 12减小,E 不变,W 不变. [ ]15. 真空中有“孤立的”均匀带电球体和一均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是(A) 球体的静电能等于球面的静电能.(B) 球体的静电能大于球面的静电能.(C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能. [ ]16. 如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为(A) B 1= B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2.(D) B 1 = B 2 /4. [ ] 17. 边长为l 的正方形线圈中通有电流I ,此线圈在A点(见图)产生的磁感强度B 为(A)l I π420μ. (B) l I π220μ. (C) l I π02μ. (D) 以上均不对. [ ] 18. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . [ ]19. 在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为(A) R 140πμ. (B) R120πμ.(C) 0. (D) R 140μ. [ ] C q20. 如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的?(A)I l H L 2d 1=⎰⋅ . (B) I l H L =⎰⋅2d(C) I l H L -=⎰⋅3d . (D)I l H L -=⎰⋅4d .[ ] 21. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2.(C) 正比于B ,反比于v . (D) 反比于B ,反比于v .[ ]22. 四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为 (A) I a B π=02μ. (B) I aB 2π=02μ. (C) B = 0. (D) I a B π=0μ. [ ]23. 无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A) R I π20μ. (B) RI 40μ. (C) 0. (D) )11(20π-R I μ. (E) )11(40π+R I μ. [ ] 24. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R = 2r ,则两螺线管中的磁感强度大小B R 和B r 应满足:(A) B R = 2 B r . (B) B R = B r .(C) 2B R = B r . (D) B R = 4 B r . [ ]二、填空25. 真空中,有一均匀带电细圆环,电荷线密度为λ,其圆心处的电场强度E 0=__________________,电势U 0= __________________.(选无穷远处电势为零)26. 如图所示.试验电荷q , 在点电荷+Q 产生的电场中,沿半径为R 的整个圆弧的3/4圆弧轨道由a 点移到d 点的过程中电场力作功为________________;从d点移到无穷远处的过程中,电场力作功为____________. 4I a27. 一均匀静电场,电场强度()j i E 600400+= V ²m -1,则点a (3,2)和点b (1,0)之间的电势差U ab =__________________. (点的坐标x ,y 以米计)28.如图所示,在电荷为q 的点电荷的静电场中,将一电荷为q 0的试验电荷从a 点经任意路径移动到b 点,电场力所作的功A =______________.29. 空气平行板电容器的两极板面积均为S ,两板相距很近,电荷在平板上的分布可以认为是均匀的.设两极板分别带有电荷±Q ,则两板间相互吸引力为____________________.30.一半径为R 的均匀带电细圆环,带有电荷Q ,水平放置.在圆环轴线的上方离圆心R 处,有一质量为m 、带电荷为q 的小球.当小球从静止下落到圆心位置时,它的速度为 v = _______________________. 31.一质点带有电荷q =8.0³10-10 C ,以速度v =3.0³105 m ²s -1在半径为R =6.00³10-3m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电质点轨道运动的磁矩p m =___________________.(μ0 =4π³10-7 H ²m -1)32. 图中所示的一无限长直圆筒,沿圆周方向上的面电流密度(单位垂直长度上流过的电流)为i ,则圆筒内部的磁感强度的大小为B =________,方向_______________.33. 有一同轴电缆,其尺寸如图所示,它的内外两导体中的电流均为I ,且在横截面上均匀分布,但二者电流的流向正相反,则(1) 在r < R 1处磁感强度大小为________________. (2) 在r > R 3处磁感强度大小为________________. 34. 两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是____________,运动轨迹半径之比是______________.35.如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的 作用力的大小为____________,方向_________________.B答案一、选择题1. C2. C3. D4. D5. B6. C7. D8. C9. B10. D 11. B 12. D 13. C 14. C 15. B 16. C 17. A 18. D 19. D20. D 21. B 22. C 23. D 24. B二、填空题25 0λ / (2ε0)26. 0qQ / (4πε0R )27. -2³103 V28. ⎪⎪⎭⎫ ⎝⎛-πb ar r q q 11400ε29. Q 2 / (2ε0S )30. 2/1021122⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-π-R m Qq gR ε31. 6.67³10-7 T7.20³10-7 A ²m 232. μ0i沿轴线方向朝右 33. )2/(210R rI πμ34. 1∶2 35.B I R 2 沿y 轴正向。
电磁学复习题集及答案
电磁学复习题集及答案电磁学是物理学的重要分支之一,涉及电场、磁场以及它们之间的相互作用。
为了帮助大家复习电磁学知识,本文将提供一系列电磁学的复习题及答案。
希望通过这些题目的练习,能够加深对电磁学概念和原理的理解。
一、选择题1. 电场是指:A. 带电粒子所在空间B. 带电物体周围决定其它带电敏感物体运动状态的场C. 带电物体周围由于电介质作用而存在的场答案:B2. 磁感应强度的单位是:A. 特斯拉B. 高斯C. 法拉第答案:A3. 电路中最基本的电路元件是:A. 电源B. 电容器C. 电阻器答案:C4. 以下哪个物理量与电势差有关:A. 电场强度B. 电荷量C. 电容答案:A5. 以下哪个式子描述了法拉第电磁感应定律:A. U = IRB. F = maC. ε = -dφ/dt答案:C二、填空题1. 应用安培环路定理,计算通过一圈电流为2A的闭合回路的磁场的磁感应强度,如果这一圈回路的面积为0.5平方米,则磁感应强度大小为_________.答案:4特斯拉2. 自感系数也被称为________,单位是亨利。
答案:互感系数3. 电感为0.1亨的线圈通以频率为50Hz的交流电流,求其电感应电动势的峰值_________.答案:31.4伏三、解答题1. 一个长直导线中传过电流I,求与这根导线距离为r处点的磁感应强度B。
导线的长度为L。
解答:根据比奥-萨伐尔定律,磁感应强度B与电流I、距离r和导线长度L的关系为:B = (μ0 * I)/(2πr)其中,μ0 为真空中的磁导率,其数值为4π*10^(-7) 特斯拉·米/安培。
2. 有一个平行板电容器,两个平行金属板之间的空气介电常数为ε,两板间的距离为d,面积为A。
如果在这个电容器中加上电压U,求电场强度大小E以及电场能量密度u。
解答:电场强度E与电压U和板间距离d的关系为:E = U/d电场能量密度u与介质电容率ε、电场强度E的关系为:u = ε * E^2 / 2根据上述关系,将U和d代入公式可得到答案。
大学电磁学考试题及答案
大学电磁学考试题及答案一、选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是多少?A. 3×10^8 m/sB. 3×10^5 m/sC. 3×10^6 m/sD. 3×10^9 m/s答案:A2. 法拉第电磁感应定律描述的是哪种现象?A. 电荷守恒定律B. 电荷的产生和消失C. 磁场变化产生电场D. 电场变化产生磁场答案:C3. 根据洛伦兹力公式,当一个带电粒子垂直于磁场运动时,其受到的力的方向是?A. 与磁场方向相同B. 与磁场方向相反C. 与带电粒子速度方向相同D. 与带电粒子速度方向垂直答案:D4. 麦克斯韦方程组中描述电荷分布与电场关系的是?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定理D. 洛伦兹力公式答案:A5. 一个闭合电路中的感应电动势与什么因素有关?A. 磁通量的变化率B. 磁通量的大小C. 电路的电阻D. 电流的大小答案:A6. 根据电磁波的性质,以下哪种波长与频率的关系是正确的?A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率成正比,但与速度无关答案:B7. 在电磁学中,磁感应强度的单位是什么?A. 库仑B. 特斯拉C. 安培D. 伏特答案:B8. 电磁波的传播不需要介质,这是因为电磁波具有哪种特性?A. 粒子性B. 波动性C. 传播性D. 能量性答案:B9. 根据电磁学理论,以下哪种情况下磁场强度最大?A. 导线电流较小B. 导线电流较大C. 导线电流为零D. 导线电流变化答案:B10. 电磁波的频率与波长的关系是什么?A. 频率越高,波长越长B. 频率越高,波长越短C. 频率与波长无关D. 频率与波长成正比答案:B二、填空题(每题2分,共20分)1. 电磁波的传播速度在真空中是______。
答案:3×10^8 m/s2. 根据法拉第电磁感应定律,当磁通量发生变化时,会在______产生感应电动势。
大学物理电磁学题库及答案
大学物理电磁学题库及答案一、选择题:(每题3分) 1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2r 2B . (B) r 2B .(C) 0. (D) 无法确定的量. [ B ]2、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为 ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) r 2B . (B) 2r 2B . (C) -r 2B sin . (D) -r 2B cos . [ D ]3、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为(A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22. [ C ]4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内.(B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b .(D) 方向在环形分路所在平面内,且指向a . (E) 为零. [ E ]5、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P .[ D ]6、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为(A) 01=B ,02=B . (B) 01=B ,l I B π=0222μ. (C) l I B π=0122μ,02=B . (D) l I B π=0122μ,lI B π=0222μ. [ C ]7、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为 n B α Sc I db a a I I I a a a a 2a I P Q O a I B 1 I B 1 2ab c d I(A) R 140πμ. (B) R120πμ. (C) 0. (D) R140μ. [ D ] 8、一个电流元l I d 位于直角坐标系原点 ,电流沿z 轴方向 ,点P (x ,y ,z )的磁感强度沿x 轴的分量是:(A) 0.(B) 2/32220)/(d )4/(z y x l Iy ++π-μ.(C) 2/32220)/(d )4/(z y x l Ix ++π-μ.(D) )/(d )4/(2220z y x l Iy ++π-μ. [ B ]9、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然B 3= 0,但021≠+B B . (D) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. [ A ]10、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B 、2B 及3B ,则O 点的磁感强度的大小 (B) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为021=+B B ,B 3 = 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0.(D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ C ]11、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小 (C) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0.(C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0. (D) B ≠ 0,因为虽然021≠+B B ,但3B ≠ 0. [ C ]12、电流由长直导线1沿平行bc 边方向经过a 点流入由电阻均匀的导线构成的正三角形线框,由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).已知直导线上的电流为I ,三角框的每一边长为l .若载流导线1、2和三角框中的电流在三角框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为021=+B B ,B 3= 0. (C) B ≠0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠0,因为虽然B 3= 0,但021≠+B B . [ D ]13、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿半径方向流出,经长直导线2返回电源(如图).已知直导线上电流为I ,圆环的半径为R ,且a 、b 与圆心O 三点在一直线上.若载流直导线1、2和圆环中的电流在O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点磁感强度的大小为(D) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B . [ A ]14、电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B 、2B 、3B ,则圆心处磁感强度的大小(E) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0.(C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0. (D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B . [ B ]15、电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿半径方向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,∠aOb =30°.若长直导线1、2和圆环中的电流在圆心O 点产生的磁感强度分别用1B 、2B 、3B 表示,则圆心O 点的磁感强度大小 (F) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然B 3= 0,但021≠+B B . (D) B ≠ 0,因为B 3≠ 0,021≠+B B ,所以0321≠++B B B . [ A ]16、如图所示,电流由长直导线1沿ab 边方向经a 点流入由电阻均匀的导线构成的正方形框,由c 点沿dc 方向流出,经长直导线2返回电源.设载流导线1、2和正方形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 、3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠0、B 2≠ 0,但021=+B B .B 3 = 0 (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3= 0,但021≠+B B . [ B ]17、 如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电流在框中心O 点产生的磁感强度分别用 1B 、2B 、3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但0321=++B B B . (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3= 0,但021≠+B B . [ A ]18、在一平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流i 的大小相等,其方向如图所示.问哪些区域中有某些点的磁感强度B 可能为零? (A) 仅在象限Ⅰ. (B) 仅在象限Ⅱ. (C) 仅在象限Ⅰ,Ⅲ. (D) 仅在象限Ⅰ,Ⅳ.(E) 仅在象限Ⅱ,Ⅳ. [ E ]19、如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为 (A) B 1 = B 2. (B) B 1 = 2B 2.(C) B 1 = 21B 2. (D) B 1 = B 2 /4. [ C ]20、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感强度(A) 与L 无关. (B) 正比于L 2.(C) 与L 成正比. (D) 与L 成反比.(E) 与I 2有关. [ D ]1 2 C q21、如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的? (A) I l H L 2d 1=⎰⋅ . (B) I l H L =⎰⋅2d(C) I l H L -=⎰⋅3d . (D) I l H L -=⎰⋅4d .[ D ]22、如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知 (A) 0d =⎰⋅L l B ,且环路上任意一点B = 0. (B) 0d =⎰⋅L l B ,且环路上任意一点B ≠0.(C) 0d ≠⎰⋅Ll B ,且环路上任意一点B ≠0.(D) 0d ≠⎰⋅L l B ,且环路上任意一点B =常量. [ B ]23、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B 沿图中闭合路径L 的积分⎰⋅L l B d 等于(A) I 0μ. (B) I 031μ. (C) 4/0I μ. (D) 3/20I μ. [ D ]24、若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布(A) 不能用安培环路定理来计算.(B) 可以直接用安培环路定理求出.(C) 只能用毕奥-萨伐尔定律求出.(D) 可以用安培环路定理和磁感强度的叠加原理求出. [ D ]25、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A) 回路L 内的∑I 不变,L 上各点的B 不变.(B) 回路L 内的∑I 不变,L 上各点的B 改变.(C) 回路L 内的∑I 改变,L 上各点的B 不变.(D) 回路L 内的∑I 改变,L 上各点的B 改变. [ B ]26、距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为L 2 L 1 L 3 L 4 2I IL O II I a b c d 120°(A) 3×10-5 T . (B) 6×10-3 T .(C) 1.9×10-2T . (D) 0.6 T .(已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ B ]27、在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则: (A) =⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B = (B) ≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B =. (C) =⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. (D) ≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. [ C ]28、如图,一个电荷为+q 、质量为m 的质点,以速度v 沿x 轴射入磁感强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x = 0延伸到无限远,如果质点在x = 0和y = 0处进入磁场,则它将以速度v -从磁场中某一点出来,这点坐标是x = 0 和 (A) qB m y v +=. (B) qBm y v 2+=. (C) qB m y v 2-=. (D) qBm y v -=. [ B ]29、一运动电荷q ,质量为m ,进入均匀磁场中,(A) 其动能改变,动量不变. (B) 其动能和动量都改变.(C) 其动能不变,动量改变. (D) 其动能、动量都不变. [ C ]30、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设R A ,R B 分别为A 电子与B 电子的轨道半径;T A ,T B 分别为它们各自的周期.则(A) R A ∶R B =2,T A ∶T B =2. (B) R A ∶R B 21=,T A ∶T B =1. (C) R A ∶R B =1,T A ∶T B 21=. (D) R A ∶R B =2,T A ∶T B =1. [ D ]31、一铜条置于均匀磁场中,铜条中电子流的方向如图所示.试问下述哪一种情况将会发生? (A) 在铜条上a 、b 两点产生一小电势差,且U a > U b .L1 2 I 3 (a) (b) ⊙× ×(B) 在铜条上a 、b 两点产生一小电势差,且U a < U b .(C) 在铜条上产生涡流.(D) 电子受到洛伦兹力而减速. [ A ]32、一电荷为q 的粒子在均匀磁场中运动,下列哪种说法是正确的?(A) 只要速度大小相同,粒子所受的洛伦兹力就相同.(B) 在速度不变的前提下,若电荷q 变为-q ,则粒子受力反向,数值不变.(C) 粒子进入磁场后,其动能和动量都不变.(D) 洛伦兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆. [ B ]33、一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2.(C) 正比于B ,反比于v . (D) 反比于B ,反比于v .[ B ]34、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A) Oa . (B) Ob .(C) Oc . (D)Od . [ C ]35、如图所示,在磁感强度为B 的均匀磁场中,有一圆形载流导线,a 、b 、c 是其上三个长度相等的电流元,则它们所受安培力大小的关系为(A) Fa > Fb > Fc . (B) F a < F b < F c .(C) F b > F c > F a . (D) F a > F c > F b . [ C ]36、如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将 (A) 顺时针转动同时离开ab . (B) 顺时针转动同时靠近ab .(C) 逆时针转动同时离开ab .(D) 逆时针转动同时靠近ab . [ D ]37、两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A) R r I I 22210πμ. (B) Rr I I 22210μ.O O r R I 1 I 2(C) r R I I 22210πμ. (D) 0. [ D ]38、两根平行的金属线载有沿同一方向流动的电流.这两根导线将:(A) 互相吸引. (B) 互相排斥.(C) 先排斥后吸引. (D) 先吸引后排斥. [ A ]39、有一N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为 (A) 2/32IB Na . (B) 4/32IB Na . (C) ︒60sin 32IB Na . (D) 0. [ B ]40、有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO边在y 轴上,且线圈可绕y 轴自由转动,则线圈将(A) 转动使α 角减小.(B) 转动使α角增大.(C) 不会发生转动.(D) 如何转动尚不能判定. [ D ]41、若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明:(A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行.(B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行.(C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直.(D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直. [ A ]42、图示一测定水平方向匀强磁场的磁感强度B (方向见图)的实验装置.位于竖直面内且横边水平的矩形线框是一个多匝的线圈.线框挂在天平的右盘下,框的下端横边位于待测磁场中.线框没有通电时,将天平调节平衡;通电后,由于磁场对线框的作用力而破坏了天平的平衡,须在天平左盘中加砝码m 才能使天平重新平衡.若待测磁场的磁感强度增为原来的3倍,而通过线圈的电流减为原来的21,磁场和电流方向保持不变,则要使天平重新平衡,其左盘中加的砝码质量应为(A) 6m . (B) 3m /2.(C) 2m /3. (D) m /6.B(E) 9m /2. [ B ]43、如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将 (A) 向着长直导线平移. (B) 离开长直导线平移.(C) 转动. (D) 不动. [ A ]44、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为 (A) I a B π=02μ. (B) I a B 2π=02μ. (C) B = 0. (D) I a B π=0μ. [ C ]45、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R = 2r ,则两螺线管中的磁感强度大小B R 和B r 应满足:(A) B R = 2 B r . (B) B R = B r .(C) 2B R = B r . (D) B R = 4 B r . [ B ]46、四条平行的无限长直导线,垂直通过边长为a =20 cm 的正方形顶点,每条导线中的电流都是I =20 A ,这四条导线在正方形中心O 点产生的磁感强度为 (μ0 =4π×10-7 N ·A -2)(A) B =0. (B) B = 0.4×10-4 T .(C) B = 0.8×10-4 T. (D) B =1.6×10-4 T . [ C ]47、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2. [ B ]48、关于稳恒电流磁场的磁场强度H ,下列几种说法中哪个是正确的?(A) H 仅与传导电流有关.(B) 若闭合曲线内没有包围传导电流,则曲线上各点的H 必为零.(C) 若闭合曲线上各点H 均为零,则该曲线所包围传导电流的代数和为零.I 1I Iaa(D) 以闭合曲线L为边缘的任意曲面的H 通量均相等. [ C ]49、图示载流铁芯螺线管,其中哪个图画得正确(即电源的正负极,铁芯的磁性,磁力线方向相互不矛盾.)[ C ]50、附图中,M 、P 、O 为由软磁材料制成的棒,三者在同一平面内,当K 闭合后,(A) M 的左端出现N 极. (B) P 的左端出现N 极.(C) O 的右端出现N 极. (D) P 的右端出现N 极.[ B ]51、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为1.0 T ,则可求得铁环的相对磁导率μr 为(真空磁导率μ0 =4π×10-7 T ·m ·A -1)(A) 7.96×102 (B) 3.98×102(C) 1.99×102 (D) 63.3 [ B ]52、磁介质有三种,用相对磁导率μr 表征它们各自的特性时,(A) 顺磁质μr >0,抗磁质μr <0,铁磁质μr >>1.(B) 顺磁质μr >1,抗磁质μr =1,铁磁质μr >>1.(C) 顺磁质μr >1,抗磁质μr <1,铁磁质μr >>1.(D) 顺磁质μr <0,抗磁质μr <1,铁磁质μr >0. [ C ]53、顺磁物质的磁导率:(A) 比真空的磁导率略小. (B) 比真空的磁导率略大.(C) 远小于真空的磁导率. (D) 远大于真空的磁导率. [ B ]54、用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为μr 的均匀磁介质.若线圈中载有稳恒电流I ,则管中任意一点的(A) 磁感强度大小为B = μ0 μ r NI .(B) 磁感强度大小为B = μ r NI / l .M O P(C) 磁场强度大小为H = μ 0NI / l .(D) 磁场强度大小为H = NI / l . [ D ]55、一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO ′转动,转轴与磁场方向垂直,转动角速度为ω,如图所示.用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略) (A) 把线圈的匝数增加到原来的两倍. (B) 把线圈的面积增加到原来的两倍,而形状不变.(C) 把线圈切割磁力线的两条边增长到原来的两倍.(D) 把线圈的角速度ω增大到原来的两倍. [ D ]56、一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是(A) 线圈绕自身直径轴转动,轴与磁场方向平行.(B) 线圈绕自身直径轴转动,轴与磁场方向垂直.(C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移. [ B ]57、如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系(从线圈刚进入磁场时刻开始计时,I以顺时针方向为正) [ C ]58、两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则: (A) 线圈中无感应电流. (B) 线圈中感应电流为顺时针方向.(C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定. [ B ]59、将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势.(B) 铜环中感应电动势大,木环中感应电动势小.(C) 铜环中感应电动势小,木环中感应电动势大.(D) 两环中感应电动势相等. [ D ]B I O(D)I O(C)O (B) I60、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流 (A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.(C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. [ B ]61、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B 中,另一半位于磁场之外,如图所示.磁场B 的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使(A) 线环向右平移. (B) 线环向上平移. (C) 线环向左平移. (D) 磁场强度减弱. [ C ]62、如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到?(A) 载流螺线管向线圈靠近.(B) 载流螺线管离开线圈.(C) 载流螺线管中电流增大. (D) 载流螺线管中插入铁芯. [ B ]63、如图所示,闭合电路由带铁芯的螺线管,电源,滑线变阻器组成.问在下列哪一种情况下可使线圈中产生的感应电动势与原电流I的方向相反. (A) 滑线变阻器的触点A 向左滑动.(B) 滑线变阻器的触点A 向右滑动.(C) 螺线管上接点B 向左移动(忽略长螺线管的电阻).(D) 把铁芯从螺线管中抽出. [ A ]64、 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度ω旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为(A) 2abB | cos ω t |. (B) ω abB(C)t abB ωωcos 21. (D) ω abB | cos ω t |. (E) ω abB | sin ω t |. [ D ]65、一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两侧与一个伏特计相接,如图.整个系统放在磁感强度为B 的均匀磁场中,B 的方向沿z 轴正方 b d b c d c d v v v I B i I A B I O B a b ω z B y l V向.如果伏特计与导体平板均以速度v 向y 轴正方向移动,则伏特计指示的电压值为(A) 0. (B) 21v Bl . (C) v Bl . (D) 2v Bl . [ A ]66、一根长度为L 的铜棒,在均匀磁场 B 中以匀角速度ω绕通过其一端O 的定轴旋转着,B 的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是: (A) )cos(2θωω+t B L . (B) t B L ωωcos 212. (C) )cos(22θωω+t B L . (D) B L 2ω.(E)B L 221ω. [ E ] 67、如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ D ]68、如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与B 同方向),BC 的长度为棒长的31,则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等.(B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点.[ A ]69、如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)—(D)的 --t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势? [ A ]70、如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd(A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ D ] B ω L O θ bl b a v α t O (A) t O (C) t O (B)tO (D) C D O ω B c a b d N M B O O ′ B B A C71、有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12.若它们分别流过i 1和i 2的变化电流且ti t i d d d d 21>,并设由i 2变化在线圈1中产生的互感电动势为 12,由i 1变化在线圈2中产生的互感电动势为 21,判断下述哪个论断正确.(A) M 12 = M 21, 21 = 12.(B) M 12≠M 21, 21 ≠ 12.(C) M 12 = M 21, 21 > 12.(D) M 12 = M 21, 21 < 12. [ C ]72、已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数(A) 都等于L 21. (B) 有一个大于L 21,另一个小于L 21. (C) 都大于L 21. (D) 都小于L 21. [ D ]73、面积为S 和2 S 的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用Φ21表示,线圈2的电流所产生的通过线圈1的磁通用Φ12表示,则Φ21和Φ12的大小关系为:(A) Φ21 =2Φ12. (B) Φ21 >Φ12.(C) Φ21 =Φ12. (D) Φ21 =21Φ12. [ A ]74、如图所示的电路中,A 、B 是两个完全相同的小灯泡,其内阻r >>R ,L 是一个自感系数相当大的线圈,其电阻与R 相等.当开关K 接通和断开时,关于灯泡A 和B 的情况下面哪一种说法正确?(A) K 接通时,I A >I B . (B) K 接通时,I A =I B . (C) K 断开时,两灯同时熄灭.(D) K 断开时,I A =I B . [ C ]75、用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m = (A) 只适用于无限长密绕螺线管.(B) 只适用于单匝圆线圈.(C) 只适用于一个匝数很多,且密绕的螺绕环.(D) 适用于自感系数L一定的任意线圈. [ D ]76、两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为 (A) 221LI . (B) 221LI ⎰∞+π-+0d π2])(2π2[2002r r r r d I r I I μμ (C) ∞.(D) 221LI 020ln 2r d I π+μ [ A ]77、真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21aI πμμ (B) 200)2(21a I πμμ (C) 20)2(21Ia μπ (D) 200)2(21a I μμ [ B ]78、电位移矢量的时间变化率t D d /d 的单位是(A )库仑/米2 (B )库仑/秒(C )安培/米2 (D )安培•米2 [C ]79、对位移电流,有下述四种说法,请指出哪一种说法正确.(A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的.(C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理. [ A ]80、在感应电场中电磁感应定律可写成t l E LK d d d Φ-=⎰⋅ ,式中K E 为感应电场的电场强度.此式表明: (A) 闭合曲线L 上K E 处处相等.(B) 感应电场是保守力场.(C) 感应电场的电场强度线不是闭合曲线.(D) 在感应电场中不能像对静电场那样引入电势的概念. [ D ]二、填空题(每题4分)81、一磁场的磁感强度为k c j b i a B ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb .I I d 2r 082、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量Φ=⎰⋅Ss d B =0.若通过S 面上某面元S d 的元磁通为d Φ,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d Φ',则d Φ∶d Φ'=1:283、在非均匀磁场中,有一电荷为q 的运动电荷.当电荷运动至某点时,其速率为v ,运动方向与磁场方向间的夹角为α ,此时测出它所受的磁力为f m .则该运动电荷所在处的磁感强度的大小为f m /(qvsin α) 磁力f m 的方向一定垂直运动电荷速度矢量与该点磁感应强度矢量所组成的平面84、沿着弯成直角的无限长直导线,流有电流I =10 A .在直角所决定的平面内,距两段导线的距离都是a =20 cm 处的磁感强度B =_1.71×10-5T _.(μ0 =4π×10-7 N/A 2)85、在真空中,将一根无限长载流导线在一平面内弯成如图所示的形状,并通以电流I ,则圆心O 点的磁感强度B的值为μ0I/(4a ).86、电流由长直导线1沿切向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切线流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上,则O 点的磁感强度的大小为087、在真空中,电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环半径为R .a 、b 和圆心O 在同一直线上,则O 处的磁感强度B 的大小为_μ0I/(4R π)__.88、如图,球心位于O 点的球面,在直角坐标系xOy 和xOz 平面上的两个圆形交线上分别流有相同的电流,其流向各与y 轴和z 轴的正方向成右手螺旋关系.则由此形成的磁场在O 点的方向为_两单位矢量j 和k 之和的方面,即(k j +)的方向_.89、如图,两根导线沿半径方向引到铁环的上A 、A ′两点,并在很远处与电源相连,则环中心的磁感强度为_ B=0__.。
中科大电磁场试卷
09006 2010~2011第二学期期末考试卷
一、简答题
1、电偶极子和磁偶极子的物理模型和条件是-----------。
2、有人说:截止存在时的静电场能量等于无介质时吧自由电荷和极化电荷(看作自由电荷)从无穷远搬到静电场中原来位置过程中外力所作的功。
这种说法对吗?为什么?
3解释为何在导体中维持一个稳定的电流场必须依靠外电源不断补充能量?
4证明理想介质中传播的圆极化波瞬时坡阴亭矢量与时间和距离均无关。
5.色散的定义是---------。
若介质特性参数(μεσ)与频率无关,是否存在色散?
6.叙述一般时变场的唯一性定理。
7.说明辐射场分为近区、中中间区、远区的条件-----。
二。
计算题
1、一个矩形区域的边界条件如右图,求区域内的电位分布。
ψ|y=0=0 ψy |y=b =-v 0cos(Πx/2a)
ψx |x=0=0 ψ|x=a =0
2、求证法拉第圆盘的电阻
R=1/((2Πσd)*ln(R 2/R 1))
其中d 为圆柱的高,R1为内径,R2为外径。
3、真空中两个频率均为w的时谐电流分布。
电流分布分别为J a和J b,J a单独产生E a和H a,J b单独产生E b和H b(粗体表示矢量的复数形式)
(1)写出每一组电磁场所满足的复数形式色麦克斯韦方程组。
(2)证明∮s(E a×H b—E b×H a)ds=∫(E b·J a—E a·J b)dv(粗体表示矢量的复数形式)
4.。
电磁学考试题库及答案详解
电磁学考试题库及答案详解一、单项选择题1. 真空中两个点电荷之间的相互作用力遵循()。
A. 牛顿第三定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:B解析:库仑定律描述了真空中两个点电荷之间的相互作用力,其公式为F=k*q1*q2/r^2,其中F是力,k是库仑常数,q1和q2是两个电荷的量值,r是它们之间的距离。
2. 电场强度的方向是()。
A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 垂直于电荷分布D. 与电荷分布无关解析:电场强度的方向是从正电荷指向负电荷,这是电场的基本性质之一。
3. 电势能与电势的关系是()。
A. 电势能等于电势的负值B. 电势能等于电势的正值C. 电势能等于电势的两倍D. 电势能与电势无关答案:A解析:电势能U与电势V的关系是U=-qV,其中q是电荷量,V是电势。
4. 电容器的电容C与板间距离d和板面积A的关系是()。
A. C与d成正比B. C与d成反比C. C与A成正比D. C与A和d都成反比解析:电容器的电容C与板间距离d成反比,与板面积A成正比,公式为C=εA/d,其中ε是介电常数。
5. 磁场对运动电荷的作用力遵循()。
A. 洛伦兹力定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:A解析:磁场对运动电荷的作用力遵循洛伦兹力定律,其公式为F=qvBsinθ,其中F是力,q是电荷量,v是电荷的速度,B是磁场强度,θ是速度与磁场的夹角。
二、多项选择题1. 以下哪些是电磁波的特性?()A. 传播不需要介质B. 具有波粒二象性C. 传播速度等于光速D. 只能在真空中传播答案:ABC解析:电磁波的传播不需要介质,具有波粒二象性,传播速度等于光速,但它们也可以在其他介质中传播,只是速度会因为介质的折射率而改变。
2. 以下哪些是电场线的特点?()A. 电场线从正电荷出发,终止于负电荷B. 电场线不相交C. 电场线是闭合的D. 电场线的疏密表示电场强度的大小答案:ABD解析:电场线从正电荷出发,终止于负电荷,不相交,且电场线的疏密表示电场强度的大小。
电磁学期末考试题及答案
电磁学期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪项是电流的单位?A. 牛顿B. 库仑C. 安培D. 伏特答案:C2. 电磁波的传播速度在真空中是恒定的,其值是:A. 299,792,458 m/sB. 300,000,000 m/sC. 3.00 x 10^8 m/sD. 3.00 x 10^5 m/s答案:C3. 根据麦克斯韦方程组,以下哪项描述了电场与磁场之间的关系?A. 高斯定律B. 法拉第电磁感应定律C. 欧姆定律D. 安培环路定理答案:B4. 一个点电荷在电场中受到的力与以下哪个因素无关?A. 电荷量B. 电场强度C. 电荷的正负D. 电荷的质量答案:D5. 以下哪个选项是描述磁场的基本物理量?A. 电势B. 磁通C. 磁感应强度D. 电场强度答案:C6. 一个闭合电路中的感应电动势与以下哪个因素有关?A. 磁场强度B. 导线长度C. 导线运动速度D. 所有以上因素答案:D7. 根据洛伦兹力定律,一个带电粒子在磁场中运动时受到的力与以下哪个因素无关?A. 粒子的电荷量B. 粒子的速度C. 磁场的强度D. 粒子的质量答案:D8. 电磁波的波长与频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率的乘积是常数答案:B9. 以下哪种材料最适合用于制作超导磁体?A. 铁B. 铜C. 铝D. 铌钛合金答案:D10. 电磁感应现象是由以下哪位科学家发现的?A. 牛顿B. 法拉第C. 麦克斯韦D. 欧姆答案:B二、填空题(每题2分,共20分)1. 电磁波的传播不需要______。
答案:介质2. 电流通过导线时,导线周围会产生______。
答案:磁场3. 根据欧姆定律,电流I等于电压V除以电阻R,即I=______。
答案:V/R4. 电荷的定向移动形成了______。
答案:电流5. 电磁波的传播速度在真空中是______。
答案:3.00 x 10^8 m/s6. 电磁波的波长、频率和波速之间的关系是______。
大学物理电磁学复习题含答案
题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-= 1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的. 解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图a .1 ρ+球在O 点产生电场010=E,ρ-球在O 点产生电场'dπ4π3430320OO r E ερ= ∴ O 点电场'd33030OO r E ερ= ; 2 ρ+在O '产生电场'dπ4d 3430301OO E ερπ=' ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题8-13图a 题8-13图b3设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r 如题8-13b 图则 03ερr E PO=,3ερr E O P '-=' ,∴ 0003'3)(3ερερερd OO r r E E E OP PO P=='-=+='∴腔内场强是均匀的. 8-14 一电偶极子由q =×10-6C 的两个异号点电荷组成,两电荷距离d=,把这电偶极子放在×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p在外场E 中受力矩E p M⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =×10-8C,2q =×10-8C,相距1r =42cm,要把它们之间的距离变为2r =25cm,需作多少功 解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=-R q Rq0π41ε=O U )3(R q R q -R q0π6ε-=∴ Rqq U U qA o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: 1由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR0π4ελ=)2sin(π-2sinπ-R0π2ελ-=2 AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d RRx x xxU ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.电子质量0m =×10-31kg,电子电量e =×10-19C 解: 设均匀带电直线电荷密度为λ,在电子轨道处场强 rE 0π2ελ=电子受力大小 re eE F e0π2ελ==∴ rv mr e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =,求此电容器可承受的最高电压. 解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E与电势U 的关系U E -∇= ,求下列电场的场强:1点电荷q 的电场;2总电量为q ,半径为R 的均匀带电圆环轴上一点;3偶极子ql p =的l r >>处见题8-20图.解: 1点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ε=∂∂-= 0r为r 方向单位矢量. 2总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4x R qU +=ε∴ ()ix R qxi xU E 2/3220π4+=∂∂-=ε3偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql llr qU εθθθε=+--=∴ 30π2cos r p r U Erεθ=∂∂-=30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板题8-21图来说,1相向的两面上,电荷的面密度总是大小相等而符号相反;2相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图1则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;2在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即222204321=---εσεσεσεσ 又∵ +2σ3=σ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距,A 与C 相距 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电×10-7C,略去边缘效应,问B 板和C 板上的感应电荷各是多少以地的电势为零,则A 板的电势是多少解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图1∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴ 2d d21===ACAB AB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S qσCC10172-⨯-=-=S q B σ 2301103.2d d ⨯===AC AC AC A E U εσV8-23 两个半径分别为1R 和2R 1R <2R 的同心薄金属球壳,现给内球壳带电+q ,试计算:1外球壳上的电荷分布及电势大小;2先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;3再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: 1内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R q rr q r E U εε 2外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε3设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' 电荷守恒,此时内球壳电势为零,且π4'π4'π4'202010=+-+-=R q q R q R q U A εεε 得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R q R R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε 得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求: 1用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; 2小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力. 解: 由题意知 02π4r q F ε=1小球3接触小球1后,小球3和小球1均带电2q q =',小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'F rq r q q F =-=εε 2小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π43232F r qq F==ε 8-26 如题8-26图所示,一平行板电容器两极板面积都是S,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+65432154326543002101σσσσσσσσσσεσσσσεσσd U S qSq d U U C S S q B A解得 Sq 261==σσ Sq dU2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 S qd U E00422εεσ+==)2d(212d 02Sq U E U U CB C ε+===注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: 1电介质内、外的场强;2电介质层内、外的电势; 3金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd1介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4r rQ E r Qr D ε==外rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内2介质外)(2R r >电势rQ E U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势2020π4)11(π4R Q R r q rεεε+-=)11(π420R r Q r r-+=εεε 3金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdr R R Rr r Qdr rQ εεε)11(π4210R R Q r r-+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R 2R >1R ,且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求:1在半径r 处1R <r <2R =,厚度为dr,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;2电介质中的总电场能量; 3圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S 则 rlDS D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑ ∴ rlQ D π2=1电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w Wεευπ4d d π2π8d d 22222===2电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε3电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: 1 1q 对2q 作用的库仑力,2q 有无加速度;2去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: 11q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. 2去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =μ,2C =μ,3C =μ .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U86)35251(5021=+=+=U U U AB V8-32 1C 和2C 两电容器分别标明“200 pF 、500 V”和“300 pF、900 V”,把它们串联起来后等值电容是多少如果两端加上1000 V 的电压,是否会击穿解: 1 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF2串联后电压比231221==C C U U ,而100021=+U U∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求:1每个电容器的最终电荷; 2电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 1 =1q UC C C C C q U C C C C C 21212221211)(,)(+-=+-2电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+=221212U C C C C +=8-34 半径为1R = 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =和3R =,当内球带电荷Q =×10-8C 时,求:1整个电场储存的能量;2如果将导体壳接地,计算储存的能量;3此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图1在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r r Q E ε = 3R r >时 302π4r r Q E ε = ∴在21R r R <<区域⎰=d π4)π4(21222001RR r r r Q W εε⎰-==21)11(π8π8d 2102202R R R R Q r r Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε 41082.1-⨯=J2导体壳接地时,只有21R r R <<时30π4r r Q E ε =,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J 3电容器电容 )11/(π422102R R Q W C -==ε 121049.4-⨯=F。
大学物理 I-(力学、相对论、电磁学)_中国大学mooc课后章节答案期末考试题库2023年
大学物理 I-(力学、相对论、电磁学)_北京交通大学5中国大学mooc课后章节答案期末考试题库2023年1.如图所示,在真空中有一半径为a的3/4圆弧形的导线,通以恒定电流I,导线置于均匀外磁场(磁感应强度大小为B)中,磁场方向与导线所在平面垂直,则该载流导线所受的安培力大小为[ ]。
答案:2.圆铜盘水平放置在均匀磁场中,磁感应强度的方向垂直盘面向下。
当铜盘绕通过其中心垂直于盘面的轴沿图示方向匀角速度转动时,则[ ]。
答案:铜盘上有感应电动势产生,铜盘中心处电势最高3.如图所示,两无限大均匀载流平面,在垂直于电流流向的方向上,单位长度上的电流为j,则 I、II和III三个区域内的磁感应强度的大小和方向是[ ]。
答案:B I=0;B II=m0 j,方向垂直纸面向里;B III=04.如图所示,一个八字形不规则闭合回路中,穿过两根通电导线,电流大小分别为I1和I2,电流流向与回路平面法线方向的夹角分别成q1和q2角。
若回路L的方向如图,则磁感应强度对回路L的积分等于[ ]。
答案:5.均匀磁场充满在截面半径为R的圆柱形体积内,磁感应强度方向垂直纸面向里。
一根长为2R的导体细棒abc和一根长为R的导体细棒Oa,如图放置,其中,Oa=ab=bc=R,O点在磁场的中心。
当磁感应强度大小B随时间线性变化时,导体细棒上的感生电动势大小为[ ]。
答案:,6.将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感,则[ ]。
答案:铜环中有感应电流,木环中无感应电流7.如图所示氢原子中,电子绕原子核做半径为R的圆周运动,它等效于一个圆形电流。
设电子电荷量的绝对值为e,绕核转动的角速度为w,则该等效圆电流在圆心处产生的磁感应强度的大小为[ ]。
答案:8.一截面为矩形的螺线环,高为h,内外半径分别为a和b,环上均匀密绕N匝线圈。
当螺线环导线中电流为I时,螺线环内储存的磁场能量为[ ]。
大学物理 I-(力学、相对论、电磁学)_中国大学mooc课后章节答案期末考试题库2023年
大学物理 I-(力学、相对论、电磁学)_北京交通大学6中国大学mooc课后章节答案期末考试题库2023年1.如图所示,一个电荷量为q的点电荷位于正方体的顶点A处,则通过侧面abcd的电场强度通量等于[ ] 。
答案:2.如图所示,两个同心的均匀带电球面,内球面带电荷量为Q1,外球面带电荷量为Q2,则在两球面之间、距离球心O为r的P点处(OP=r)的电场强度大小E为[ ] 。
答案:3.在点电荷q的电场中,选取以q为中心、R为半径的球面上的一点P作为电势零点,则与点电荷q相距为r的Q点的电势为[ ] 。
答案:4.如图所示,作一个闭合曲面S包围点电荷Q,从无穷远处引入另一点电荷q至曲面S外一点,则引入前后[ ] 。
答案:通过S的电场强度通量不变,S上各点电场强度变化5.面积为S的空气平行板电容器,两极板上的带电量分别为+q和 -q,若不考虑边缘效应,则两极板间的相互作用力为[ ] 。
答案:6.真空中有一半径为R的半圆细环,带电量为Q,如图所示。
设无限远处为电势零点,则圆心处的电势为[ ] 。
答案:7.如图所示,有一带正电荷的点电荷q(q>0)和电中性的导体球A。
当把点电荷q缓慢地移近导体球A时,若设无穷远处电势为零,则[ ] 。
答案:导体球的电势升高8.一平行板电容器始终与端电压一定的电源相连。
当电容器两极板间为真空时,电场强度为,电位移矢量为,而当两极板间充满相对介电常量为的各向同性均匀电介质时,电场强度为,电位移矢量为,则[ ] 。
答案:;9.一半径为R的孤立导体球带电量为Q,则该导体球外的电场所储存的静电能为[ ]。
答案:10.静电场的电场强度沿任意闭合路径的环路积分一定为零。
答案:正确。
中国科大《电磁学与电动力学[上册]》参考答案
= 0 (2.6).
上式给出了内球的电荷量和球壳的电势. 或具体地,
q=
¡R1R2
Z R1 Q (2.7). 以及 U =
q
=
1
R2 ¡ R1
Q (2.8)
R2R3 ¡ R1R3 + R1R2
E
=
¡rU
=
3ql2 £ ¡ 4¼"0r4
2 cos µ sin µµ^
+ (3 cos2 µ
¡ 1)r^¤ (1.42)
1.19
选取高为 h ZZ
而半径为
r(a
<
r
<
b)
的共轴圆筒面为高斯面应用高斯定理,
得到
°E
¢ dS
=
h¸e "0
(1.43).
解得
E
=
¸e r^ 2¼r"0
for
a
<
r
<
b
(1.44).
(1.12)
作为
r
的单变量函数.
欲求受力的极大值, 可对 (1.12) 两端关于 r 求微并其等于零, 或
dF dr
=
q0Q 2¼"0
l2 ¡ 2r2 (r2 + l2)2:5
= 0 (1.13) . 解得
r
=
p2 l 2
(1.14).
可判断该点为受力最大值点. 诸满足条件的点构成一个圆, 其半径由 (1.14) 电场强度是纵坐标坐标 r 的函数, 或
E
=
Zr
0
kxdx 2"0
Zb
¡
r
kxdx 2"0
=
电磁学期末复习题参考答案
选择题答案:填空题答案:70.静电场中某点的电场强度,其大小和方向与(单位正试验电荷在该点所受的静电力相同).71.由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度的大小E =_______0______.72.,相距为d ,其电荷线密度分别为λ1和λ2如图所示,则场强等于零的点与直线1的距离a 为.73.两个平行的“无限大”均匀带电平面, σ和+2A 、B 、C 三个区域的电场强度分别为:E A =,E B =,E C =设方向向右为正).74.真空中一半径为R Q (Q S (连同电荷),如图所示,假设不影响其他处原来的电荷分布,则挖去△S 后球心处电场强度的大小E,其方向为_(由球心指向△S )__.75.一均匀带正电的导线,电荷线密度为λ,其单位长度上总共发出的电场线条数(即电场强度通量).76.静电场中某点的电势,其数值等于_单位正试验电荷在该点的电势能___或 _把单位正电荷由该点沿任意路_径移到零势点时电场力所作的功__.77.图中曲线表示一种轴对称性静电场的场强大小E 的分布,r 表示离对称轴的距离,这是由_半径为R 的无限长均匀带电圆柱面___产生的电场.78.真空中,有一均匀带电细圆环,电荷线密度为λ,其圆心处的电场强度E 0= 0,电势U 0= .(选无穷远处电势为零)79.把一个均匀带有电荷+Q 的球形肥皂泡由半径r 1吹胀到r2,则半径为R (r 1<R <r 2=的球面上任一点的场强大小E 变为_0_;电势U 由选无穷远处为电势零点).80.如图所示,r 1=5 cm ,带电荷q 1=3×10-8 C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×108C ,设无穷远处电势为零,则空间另一电势为零的球面半径r = 10 cm ___.81.半径为0.1 m 的孤立导体球其电势为300 V ,则离导体球中心30 cm 处的电势U = 100V (以无穷远为电势零点).82.在点电荷q 的电场中,把一个-1.0×10-9 C 的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离 0.1 m 处,克服电场力作功1.8×10-5 J ,则该点电荷q =7102-⨯-.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )83.如图所示.试验电荷q , 在点电荷+Q 产生的电场中,沿半径为R 的整个圆弧的3/4圆弧轨道由a 点移到d 点电场力作功为____0____________;从d 点移到无穷远处的过程中,电场力作功为.84.图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷R BA =.现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电功为.85.在静电场中,一质子(带电荷e =1.6×10-19 C)沿四分之一的圆弧轨道从A 点移到B 点(如图),电场力作功8.0×10-15 J .则当质子沿四分之三的圆弧轨道从B 点回到A 点时,电场力作功A =-8.0×10-15 J .设A 点电势为零,则B 点电势U =-5×104V .86.一电子和一质子相距2×10-10 m (两者静止),将此两粒子分开到无穷远距离(两者仍静止)所需要的最小能量是_7.2_eV . (41επ=9×109 N ·m 2/C 2 , 质子电荷e =1.60×10-19 C, 1 eV=1.60×10-19J )的静电场中,若选取与点电荷距离为r 0的一点为电势零点,则点电荷距离为r 处的电势U = 88.如图所示,在场强为E 的均匀电场中,A 、B 两点间距离为d .AB 连线方向与E方向一致.从A 点经任意路径到B 点的场强线积分⎰⋅ABl Ed =Ed .+σ +2σABCS89.静电场中有一质子(带电荷e =1.6×10-19 ) 沿图示路径从a 点经c 点移动到b 点时,电场力作功8×10-15 J .则当质子从b 点沿另一路径回到a 点过程中,电场力作功A =-8×10-15 J ;若设a 点电势为零,则b 点电势U b =5×104V 90.真空中,一边长为a 的正方形平板上均匀分布着电荷q ;在其中垂线上距离平板d 处放一点电荷q 0如图所示.在d 与a 满足____d >>a___条件下,q 0所受的电场力可写成q 0q / (4πε0d 2).91.一电矩为p 的电偶极子在场强为E 的均匀电场中,p 与E间的夹角为α,则它所受的电场力F =0,力矩的大小M =__pEsin α__.92.d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /3的金属板,则板间电压变成U .93.+q 的点电荷,点电荷不与球壳内壁接触.然后使该球壳与地接触一下,再将点电荷+q 取走.此时,球壳的电荷为_-q __,电场分布的范围是_球壳外的整个空间. 94.带有电荷q 、A ,与一原先不带电、内外半径分别为rB 和r C同心放置如图.则图中P点的电场强度E A 、B 连接起来,则A 球的电势U (设无穷远处电势为零) 95.半径为R 1和R 2εr +λ和-λ,则介质中离轴线的距离为r 处的电位移矢量的大小D ,电场强度的大小 E96. 1、21的两极板间,如图所示, 则电容器2的电压U 2,电场能量W 2如何变化?(填增大,减小或不变) U 2减小,W 2减小97. 一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动心所产生的磁感强度B =_6.67×10-7T __,该带电轨道运动的磁矩p m .(μ0=4π×10-7 H ·m -1) 98.y 正向.在原点O 处取一电流元l Id ,则该电流元在(a ,0,0)__沿Z 轴负向____. 99.如图,′两点,并在很远处与电源相连,则环中心的磁感强度为_0__.100.如图所示,有两个半径相同的均匀带电绝缘体球面,O 1为左侧球面的球心,带的是正电;O 2为右侧球面的球心,它带的是负电,两者的面电荷密度相等.当它们绕21O O 轴旋转时,两球面相切处A 点的磁感强度B A =__0___.101.一长直螺线管是由直径d = 0.2 mm 的漆包线密绕而成.当它通以I = 0.5 A 的电流时,其内部的磁感强度B =_T 310-⨯π_.(忽略绝缘层厚度)(μ0 =4π×10-7 N/A 2)102. 两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅l Bd 等于:-μ0I (对环路a ).__0__(对环路b ). 2μ0I (对环路c ).103.如图所示,一半径为R ,通有电流为I 的圆形回路,位于Oxy 平面内,圆心为O .一带正电荷为q以速度v沿z 轴向上运动,当带正电荷的粒子恰好通过O 点时,作用于圆形回路上的力为__0______带电粒子上的力为__0______.104.两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是1:2,运动轨迹半径之比是1:2.105. 如图所示的空间区域内,分布着方向垂直于纸面的匀强磁场,在纸面内有一正方形边框abcd (磁场以边框为界).而a 、b 、c 三个角顶处开有很小的缺口.今有一束具有不同速度的电子由a 缺口沿ad 方向射入磁场区域,若b 、c 两缺口处分别有电子射出,则此两处出射电子的速率之比v b /v c =1:2.106.(半径为R )通有电流I中.线圈所受磁力矩的大小为,方向为_在图面中向上,Oa 0c107.有两个竖直放置彼此绝缘的圆形刚性线圈(它们的直径几乎相等),互相垂直的位置上.若给它们通以电流(如图),则它们转动的最后状态是_ 108.如图所示,在真空中有一半径为a 的3/4圆弧形的导线,其中通以稳恒电流I 磁且B 与导线所在平面垂直.则该载流导线bc 所受的磁力大小. 109.一弯曲的载流导线在同一平面内,形状如图(穷远来到无穷远去),则O 点磁感强度的大小是. 110.在xy 平面内,有两根互相绝缘,(如图),则在xy111. (1) B 0_______.112.一根无限长直导线通有电流I ,在P 点处被弯成了一个半径为R 的圆,且P 点处无交叉和接触,则圆心O 处的磁感强度大小为,方向为 垂直于纸面向里.113.用导线制成一半径为r =10 cm 的闭合圆形线圈,其电阻R =10 Ω,均匀磁场垂直于线圈平面.欲使电路中有一稳定的感应电流i = 0.01 A ,B 的变化率应为d B /d t =__3.185 T /S _.114.一段导线被弯成圆心在O 点、半径为R 的三段圆弧ab 、bc 、ca ,它们构成了一个闭合回路,ab位于xOy 平面内,bc 和ca 分别位于另两个坐标面中(如图).均匀磁场B沿x 轴正方向穿过圆弧bc设磁感强度随时间的变化率为K (K >0),则闭合回路abca 中感应电动势的bc 中感应电流的方向是 由C 流向b115.半径为a 的无限长密绕螺线管,单位长度上的匝数为n ,通以交变电流i =I m sin ωt ,则围在管外的同轴圆形回路(半径为r )上的感生电动势为)cos(02t nI a m ωωμπ-.116.已知在一个面积为S的平面闭合线圈的范围内,有一随时间变化的均匀磁场)(t B,则此闭合线圈内的感应电动势.117.如图所示,aOc 为一折成∠形的金属导线(aO =Oc =L ),位于xy 平面中;磁感强度为B的匀强磁场垂直于xy 平面.当aOc 以速度v沿x 轴正向运动时,导线上a 、c 两点间电势差U ac=__θsin vBl __________;当aOc 以速度v沿y 轴正向运动时,a 、c 两点的电势相比较,是____a ____点电势高.118.四根辐条的金属轮子在均匀磁场B 中转动,转轴与BR ,轮子转速为n ,则轮子中心O 与轮边缘b _O _处.119.一无铁芯的长直螺线管,在保持其半径和总匝数不变的情况下,把螺线管拉长一些,则它的自感系数将_____减小_____.120.一自感线圈中,电流强度在 0.002 s 内均匀地由10 A 增加到12 A ,此过程中线圈内自感电动势为 400 V , 则线圈的自感系数为L =0.4 H .yx ×× ×× ×xy。
大学电磁学考试题及答案
大学电磁学考试题及答案一、选择题(每题2分,共20分)1. 一个带正电的粒子在垂直于磁场方向运动时,会受到磁场力的作用。
这个力的方向是()A. 与磁场方向相反B. 与磁场方向相同C. 垂直于磁场方向D. 与粒子速度方向相反答案:C2. 根据法拉第电磁感应定律,当穿过闭合电路的磁通量发生变化时,电路中会产生感应电动势。
感应电动势的大小与()A. 磁通量的变化率成正比B. 磁通量的大小成正比C. 磁通量的变化量成正比D. 磁通量的变化方向成正比答案:A3. 两个点电荷之间的静电力与它们之间的距离成反比。
如果两个点电荷之间的距离增加到原来的两倍,静电力将变为原来的()A. 1/2B. 1/4C. 1/8D. 1/16答案:B4. 一个导体的电阻为R,将其长度增加到原来的两倍,同时横截面积减小到原来的一半,那么新的电阻是原来的()A. 2倍B. 4倍C. 8倍D. 16倍答案:C5. 根据麦克斯韦方程组,电场和磁场的相互作用可以产生()A. 电场B. 磁场C. 电荷D. 电流答案:B6. 一个电路中的电流为2A,电路的电阻为10Ω,根据欧姆定律,该电路两端的电压是()A. 20VB. 40VC. 100VD. 200V答案:A7. 在一个平行板电容器中,如果板间距离增加,而电荷量保持不变,那么电容器的电容将()A. 增加B. 减少C. 保持不变D. 无法确定答案:B8. 电磁波在真空中传播的速度等于()A. 光速B. 声速C. 电子速度D. 电流速度答案:A9. 一个线圈在磁场中以恒定速度旋转,产生的电流是()A. 直流电B. 交流电C. 脉冲电流D. 非周期性电流答案:B10. 根据安培环路定理,一个闭合回路中的总磁通量等于穿过该回路的电流的()A. 总和B. 代数和C. 几何平均D. 算术平均答案:B二、填空题(每题2分,共20分)11. 电磁波的传播不需要________,可以在真空中传播。
答案:介质12. 一个导体的电阻为5Ω,通过它的电流为0.5A,那么在1秒内导体消耗的电能是________焦耳。
FreeKaoYan中国科大《电磁学与电动力学[上册]》参考答案_部分3
7.1
利用右手螺旋定则可判断出感应电动势沿顺时针方向. 其大小 E = avB (7.1). 线圈所受力与线框速度反向. 取 a 为指向左而长度为 a 的向量, 则可写 F = Ia £ B = ¡a2 vB 2 =R . (7.2) 由安培环路定理可得距导线 r 的点的磁感应强度大小 B = ¹0 I=2¼r . 故线圈中的感应电动势大小 Z vt+b d© d ¹0 I ¹0 I ab E =¡ =¡ adr = ¡ (7.3) dt dt vt 2¼r 2t¼ v + bt
7.4
此情形中四根辐条上均产生等大的电动势: Z a Z a 1 E= ! £ r £ B ¢ dr = B! rdr = Ba2 ! (7.10) 2 0 0 轮子可等价于电动势为 E, 内电阻为 r=4 的电源. 则电路中有恒流 I = 4E=(r + 4R) (7.11), 故
16E 2 R E2 B2 a4 !2 · = (7.12) 2 (r + 4R) r 4r 其等号成立的条件为 r = 4R (7.13). P = I2R =
在脱离水银槽前导线因受安培力而满足fmdvdt由于水银槽很浅则可以认为导线段在可以忽略的位移内加速至v0v0并以该速度为初速度完成了以后的上抛运动
《电磁学与电动力学》答案与解题提示
6.4
导线段在脱离水银槽后成为断路而做纯粹的上抛运动. 在脱离水银槽前, 导线因受安培力而满足 dv dq (6.7) F =m = Bl dt dt 由于水银槽很浅, 则可以认为导线段在可以忽略的位移内加速至 v0 并以该速度为初速度完成了以后的上抛运动. 由能量守恒
7.5
闷罐车底面上将产生与其速度垂直的感应电动势 E = BLv = 2:6 £ 10¡3 V (7.14). 注意到车壁上任意点元的电动势 v £ B ¢ dl ´ 0. 分析可知, 该车两墙壁均分别为等势面, 且电势差 U = E . 而车壁上积累的电荷会在车中产生电场 E = vB = 1:0 £ 10¡3 N¢C¡1 (7.15). 面电荷密度 ¾ = "0 E = 9:1 £ 10¡15 C¢m¡2 (7.16).
电磁场与波_华中科技大学中国大学mooc课后章节答案期末考试题库2023年
电磁场与波_华中科技大学中国大学mooc课后章节答案期末考试题库2023年1.已知空气中电偶极子辐射的远场如下式,则波阻抗是( )【图片】【图片】答案:2.已知自由空间中的电磁波的两个分量为【图片】【图片】式中f=20MHz,b=0.42rad/m。
则坡印亭矢量的时间函数S(z,t)及坡印亭矢量的平均值Sav分别是()答案:3.已知在半径分别为a和b(a答案:4.设在m为无穷大的铁磁平面一侧空气中有一无限长直导线和一矩形线圈,两者位于同一个垂直于铁磁面的平面中,求长直导线和矩形线圈之间的互感()。
【图片】答案:5.如图所示为导电介质中的恒定电场,有三种不同介质相交于平行平面S1和S2,电流线与平面法线n1,n2的夹角分别为α1、α2和α3,求:若需α1=α3,应满足什么条件( )【图片】答案:6.半球形铜电极埋入地表面,附近有一个直而深的沟壁,若已知电极半径a=0.5m,电极中心至沟壁距离h=20m,土壤电导率【图片】S/m,如图所示。
接地电阻为( )【图片】答案:32.2 Ω7.一根水平导线,半径1.5mm,长1000m,轴心离地面30m,导线对地电容为( )。
答案:5.2 nF8.恒定磁场的边值问题求解中,对平行平面场,边界与磁力线垂直时,其矢量磁位与标量磁位的边界条件可以写成如下形式:答案:9.一长直铁管置于均匀的外磁场【图片】中,铁管轴线与磁力线垂直。
铁管内外均为空气。
已知铁的相对磁导率【图片】>>1 ,但不视作无穷大。
以图中 a-b-c-d-a 围成的矩形区域作为分析场域,设边界距离铁管足够远,以至于边界处的磁场没有受到铁管的影响。
铁管内半径 R1,外半径 R2;矩形区域长 ab=l,宽 bc =h。
分别以矢量磁位A(只有Az分量)和标量磁位【图片】为求解量计算磁场,需要确定a-b-c-d-a矩形边界两个位函数的边界条件,如果以b点作为矢量磁位A和标量磁位【图片】的参考零点,则c, d, a三个点的位函数分别为:【图片】【图片】答案:10.平行板电容器,极板面积400【图片】,两板相距0.5cm,两板之间一半厚度为玻璃所占,另一半厚度是空气,玻璃的相对介电常数【图片】,其击穿强度为60kV/cm,空气的击穿强度为30kV/cm,当电容器接到20kV的电源后,电容器会不会被击穿?答案:空气和玻璃都被击穿11.已知电偶极子在θ=30°,r=5 km处产生的电场为2 mV/m,则此电偶极子的辐射功率为()答案:P=4.44mW12.下列关于梯度计算正确结果的是( )答案:13.据估计,晴天时太阳辐射到地球的功率为1.34【图片】(对入射波而言),假设阳光为一单色平面电磁波,则入射波中的电场强度和磁场强度的最大值分别为()答案:14.三条输电线位于同一水平面上,导线半径都是r0=4mm,距离地面高度h=14m,线间距离d=2m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末复习
一、填空题
1.电荷q均匀分布在半径为r的圆环上,圆环绕圆环的旋转轴线以角速度ω转动,圆环磁矩
=ωqr2/2。
轴线上一点A与圆心相距x,则A点磁场强度=ωqr2(r2+x2)−3/2/(4π)。
2.一电子在0.002T的磁场里沿螺旋线运动,半径为5.0mm,螺距20mm。
则电子速度的大小
为2.08×106m/s,与磁场的夹角为arctan(π/2)或57.5°。
3.利用霍尔效应可判断半导体载流子的正负性。
4.空心螺绕环的自感为L0,加入铁芯后自感为L1,在铁芯上锯开一个断口后自感为L2,则
这三个自感的大小关系为L0<L2<L1。
5.磁化强度为常数M的细条形永久磁铁长l,横截面积A,则N、S极间的磁力=μ0A2M2/(4πl2)。
6.两线圈串联,顺接时总电感为1.0H,保持位置不变,逆接时总电感为0.4H,则互感=0.15H。
7.RLC电路的固有频率f0=[2π(LC) 1/2]−1。
当f0不变时,在临界阻尼(欠阻尼、过阻尼和临界阻
尼三选一)情形下,RLC暂态电路能最快地趋于平衡。
8.简谐交流电的描述方法有函数描述、矢量描述和复数描述,其中函数描述是忠实表述。
9.一材料电导率为5S/m,相对介电常数为1,电场强度为250sin(1010t)V,则传导电流密度
和位移电流密度分别为1250sin(1010t)A/m2和22.2 sin(1010t) A/m2。
10.太阳光正入射到半径相同的球面和圆盘面上,均发生全反射,若球面所受光压为P,则圆
盘面所受光压为2P。
二、判断题
1.(×) 与电场线可起始于电荷类似,磁感应线可起始于电流。
2.(×) 由毕-萨定律推导高斯定理时,需要利用B∝1/r2的性质。
3.(√) 洛伦兹力对带电粒子不作功。
4.(√) 缓变磁场中带电粒子的回旋磁矩守恒。
5.(√) 均匀磁场中通以稳恒电流的一任意线圈由ABC和ADC两段不同材料组成,则二者所
受磁场作用力大小相同。
6.(×) 磁棒沿棒长方向均匀磁化,在棒中间的表面附近取内外两点的磁感应强度相等。
7.(√) 把一个灯泡和一个线圈串联,将其先后接到电动势相同的直流和交流电源(有效值)
上,则直流情形比交流情形的灯泡亮。
8.(√) RLC串联电路谐振时,电容中电场能的最大值与电感中磁场能的最大值相同。
9.(×) 电荷守恒定律与麦克斯韦方程组彼此独立。
10.(×) 电视和雷达利用了电磁波的中波波段。
三、 简答题
1. 定性表述顺磁效应的微观机制以及与温度的关系。
答:具有固有分子磁矩的物质,有外磁场时,分子受磁力矩m 分子×B ,使m 分子有顺着外场方向排列的趋势,产生与外场方向一致的磁化强度。
温度越高,热运动越剧烈,对分子定向排列的干扰越大,因而顺磁效应越弱。
2. 实际工作中有时需要用很长的导线制作纯电阻,常将导线折成双股线,再绕成线圈形状。
这种绕法为什么能基本消除线圈的自感效应?
答:这种绕法,使得每匝导线附近都有另一匝通以相反电流的导线配对,自感相消。
或:该绕法所得线圈,可等效于两个基本相同且理想耦合的子线圈反向串联,总电感=L +L −2M = L +L −2L =0。
3. 谈谈本课程中学过哪几种类型电流以及各自的产生机制。
答:1) 传导电流:自由载流子在导体中的运动而成;2) 极化电流:电介质中的分子极化程度随外电场变化所产生的电流;3) 磁化电流:磁介质自发或在外磁场激励下,分子电流定向排列所产生的电流;4) 运流电流:真空中的自由电荷运动而成;5) 位移电流:电位移随时间的变化所至。
4. 如图,一闭合铁芯平均周长为l ,其中一部分缠绕安匝数为NI
的线圈。
对整个铁芯回路应用安培环路定理,有
d L Hl NI ⋅==∫H l v ,所以H =NI /l ;但如果按照长边为a 的狭
长虚线环路应用安培环路定理,则Ha =NI ,因而H =NI /a 。
两种
结果显然不同,如何解释这一“矛盾”?
答:前一个答案更正确。
关键是铁芯外附近有不可忽略的磁场强度(不是磁感应强度!),而第二种解法要求铁芯外H =0。
四、 计算题
1. 如图,一圆筒内磁感应强度均匀分布,且d B /d t 为常数,点P 、Q
坐标分别为(−a ,b )和(a ,b ),求下列两种情形下P 、Q 两点间的电势差。
(1) P 、Q 之间用圆弧导线连接;
(2) P 、Q 之间用直导线连接。
解:(1) 用直导线分别连接OP 和OQ ,由于二者均⊥E 感,不产生感生电动势无贡献,所以
U 弧PQ =−E 弧PQ =−E 扇形回路=d Φ/d t =d B /d t θ(a 2+b 2)/2,其中θ =2arctan(a /b )。
(2) 同理U 直线PQ =−E 直线PQ =−E 三角回路=ab d B /d t 。
2. RLC 串联电路,R =30Ω,L =10mH ,C =20μF ,电源电动势e =100cos(103t )V(t 单位是秒),求:
(1) 电源的平均功率及功率因素;
(2) 如何使得功率因素变为1?
解:(1) 总复阻抗Ż=R +j ωL +(j ωC )−1=30−40j Ω,复电动势峰值V m =100V ,
电流峰值I m =V m / Ż=1.2+1.6jA ,视在功率S =½|V m I m |=100V A ,
电源平均功率P =½Re(V m I m *)=60W ,所以功率因素cos ϕ=P /S =0.6.
(2) 只需使复阻抗虚部为零即可,如:可以串联一个40j Ω的元件,40j =1000 L j ,即
40 mH
的电感;或改变交流电源频率,使电路共振,此时ω=(LC )−1/2=2.236×103rad/s.
3. 一同轴电缆,中心是半径为a 的圆柱体导线,外部是半径为b 的导
体薄圆筒,内、外导体间充满磁导率为μ的介质。
内、外导体中的电流分布均匀,方向如图所示,求
(1) 磁化电流分布;
(2) 单位长度电缆储存的磁能;
(3) 单位长度电缆的自感系数。
(4) 外圆筒单位面积所受磁力。
解:(1) 令圆柱导线区和介质区分别为1和2区。
由安培环路定理,
H 1=rI /(2πa 2),M 1=0,H 2=I /(2πr ),M 2=H (μ/μ0−1)=(μ/μ0−1)I /(2πr ),电缆外区域无磁场。
r =a 、b 处磁化面电流分别为
i 1=M 2=(μ/μ0−1)I /(2πa ),平行于内电流,i 2=M 2=(μ/μ0−1)I /(2πb ),平行于外电流。
(2) 单位长度电缆总磁能
32
222
2200012400πd πd d d ln(/).4π4π16π4πa b a b a a r I I I I W H r r H r r r r b a a r μμμμμμ=+=+=+∫∫∫∫
(3) 由W =½LI 2得,单位长度电缆的自感0
ln(/).8π2πL b a μμ
=+
(4) 设外圆筒半径有虚位移δb ,则单位长度电缆总磁能变化
2200ln(),4π4πb
I I b b b W b μμδδδ+′=≈ 所以外圆筒单位面积受磁力20221,2π8πI W P b b b μδδ== 方向沿径向向外。