(完整word版)河北衡水中学2019届全国高三第一次摸底联考理科数学
河北衡水中学2019年度全国高三第一次摸底联考
河北衡水中学2019届全国高三第一次摸底联考理科数学本试卷4页,23小题,满分150分。
考试时间120分钟。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上相应的位置。
2.全部答案在答题卡上完成,答在本试题上无效。
3.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案用0.5mm 黑色笔迹签字笔写在答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数()34z i i =--在复平面内对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知全集R ,22x x -≥,则 A.{}20x x -<<B.{}20x x -≤≤ C.{}20x x x <->或D.{}20x x x ≤-≥或3.某地某所高中2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如下柱状图:2015年高考数据统计 2018年高考数据统计则下列结论正确的是A.与2015年相比,2018年一本达线人数减少B.与2015年相比,2018年二本达线人数增加了0.5倍C.与2015年相比,2018年艺体达线人数相同D.与2015年相比,2018年不上线的人数有所增加4.已知等差数列{}n a 的公差为2,前n 项和为n S ,且10100S =,则7a 的值为 A.11B.12C.13D.145.已知()f x 是定义在R 上的奇函数,若0x >时,()ln f x x x =,则0x <时,()f x = A.ln x xB.()ln x x -C.ln x x -D.()ln x x --6.已知椭圆()2222:10x y C a b a b +=>>和直线:143x y l +=,若过C 的左焦点和下顶点的直线与平行,则椭圆C 的离心率为A.45B.35C.34D.157.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2AE EO =u u u r u u u r,则ED =u u u rA.1233AD AB -u u ur u u u r B.2133AD AB +u u ur u u u r C.2133AD AB -u u ur u u u r D.1233AD AB +u u ur u u u r 8.某几何体的三视图如图所示,则此几何体A.有四个两两全等的面B.有两对相互全等的面C.只有一对相互全等的面D.所有面均不全等9.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设22DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边亚角形的概率是A.413C.92610.已知函数(),0,ln ,0x e x f x x x ⎧-≤=⎨>⎩(e 为自然对数的底数),若关于x 的方程()0f x a +=有两个不相等的实根,则a 的取值范围是A.1a >-B.11a -<<C.01a <≤D.1a <11.已知双曲线()222210,0x y a b a b -=>>的左、右焦点分别为1F ,2F ,过1F 作圆222x y a +=的切线,交双曲线右支于点M ,若1245F MF ∠=︒,则双曲线的渐近线方程为A.y =B.y =C.y x =±D.2y x =±12.如图,在正方体1111ABCD A B C D -中,点E ,F 分别为棱1BB ,1CC 的中点,点O 为上底面的中心,过E ,F ,O 三点的平面把正方体分为两部分,其中含1A 的部分为1V ,不含1A 的部分为2V ,连结1A 和2V 的任一点M ,设1A M 与平面1111A B C D 所成角为α,则sin α的最大值为A.2B.5二、填空题:本题共4小题,每小题5分,共20分。
衡水中学2019届高三第一次摸底考试数学(理)试卷 及答案
衡水中学2019届全国高三第一次摸底联考理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数在复平面内对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D2.已知全集U=R,则A. B.C. D.【答案】C3.某地某所高中2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如下柱状图:2015年高考数据统计 2018年高考数据统计则下列结论正确的是A. 与2015年相比,2018年一本达线人数减少B. 与2015年相比,2018年二本达线人数增加了0.5倍C. 与2015年相比,2018年艺体达线人数相同D. 与2015年相比,2018年不上线的人数有所增加【答案】D4.已知等差数列的公差为2,前项和为,且,则的值为A. 11B. 12C. 13D. 14【答案】C5.已知是定义在上的奇函数,若时,,则时,A. B. C. D.【答案】B6.已知椭圆和直线,若过的左焦点和下顶点的直线与平行,则椭圆的离心率为A. B. C. D.【答案】A7.如图,在平行四边形中,对角线与交于点,且,则A. B.C. D.【答案】C8.某几何体的三视图如图所示,则此几何体( )A. 有四个两两全等的面B. 有两对相互全等的面C. 只有一对相互全等的面D. 所有面均不全等【答案】B9.赵爽是我国古代数学家、天文学家,大约在公元年,赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形内部(含边界)随机取一点,则此点取自小等边三角形(阴影部分)的概率是( )A. B. C. D.【答案】A 10.已知函数(为自然对数的底数),若关于的方程有两个不相等的实根,则的取值范围是 A.B.C.D.【答案】C11.已知双曲线的左、右焦点分别为,,过作圆的切线,交双曲线右支于点,若,则双曲线的渐近线方程为A. B.C.D.【答案】A 12.如图,在正方体中,点,分别为棱,的中点,点为上底面的中心,过,,三点的平面把正方体分为两部分,其中含的部分为,不含的部分为,连结和的任一点,设与平面所成角为,则的最大值为A. B.C. D.【答案】B二、填空题:本题共4小题,每小题5分,共20分。
河北衡水中学2019届全国高三第一次摸底联考理科数学
绝密★启用前河北衡水中学2019届全国高三第一次摸底联考理科数学本试卷4页,23小题,满分150分。
考试时间120分钟。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上的相应位置。
2.全部答案在答题卡上完成,答在本试卷上无效。
3.回答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案用0.5mm 黑色笔记签字笔写在答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
一.选择题:本题共12小题,每小题5分,共60分.每小题给出的选项中,只有一项是符合题目要求的. 1.复数(34)z i i =--在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.已知全集U R =,2{|2}M x x x =-≥,则U M =ðA .{|20}x x -<<B .{|20}x x -≤≤C .{|20}x x x <->或D .{|20}x x x ≤-≥或3.某所高中2018年高考考生人数是2015年考生人数的1.5倍.为了更好的对比该校考生的升学情况,统计了该校2015年和2018年的高考各层次的达线率,得到如下柱状图则下列结论正确的是A .与2015年相比,2018年一本达线人数减少B .与2015年相比,2018年二本达线人数增加了0.5倍C .与2015年相比,2018年艺体达线人数不变D .与2015年相比,2018年未达线人数有所增加4.已知等差数列{}n a 的公差为2,前n 项和为n S ,且10100S =,则7a =A .11B .12C .13D .145.已知()f x 是定义在R 上的奇函数,若0x >时,()ln f x x x =,则0x <时,()f x =A .ln x xB .ln()x x -C .ln x x -D .ln()x x --6.已知椭圆C :22221(0)x y a b a b+=>>和直线l :143x y +=,若过椭圆C 的左焦点和下顶点的直线与直线l 平行,则椭圆C 的离心率为A .45B .35C .34 D .157.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2AE EO =,则ED =A .1233AD AB -B .2133AD AB + C .2133AD AB - D .1233AD AB + 8.某几何体的三视图如图所示,则此几何体A .有四个两两全等的面B .有两个互相全等的面C .只有一对互相全等的面D .所有面都不全等9.赵爽是我国古代的数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成).类比“赵爽弦图”,可类似的构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成了一个大等边三角形.设22DF AF ==,若在大等边三角形中随即取一点,则此点来自小等边三角形的概率是A .413BC .926D 10.已知函数,0()ln ,0x e x f x x x ⎧-≤=⎨>⎩(e 为自然对数的底数),若关于x 的方程()0f x a +=有两个不等的实根,则a 的取值范围是A .1a >-B .11a -<<C .01a <≤D .1a <11.已知双曲线22221(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,过1F 作圆222x y a +=的切线,交双曲线的右支于点M ,若1245F MF ∠=︒,则双曲线的渐近线方程为A .y =B .y =C .y x =±D .2y x =±12.如图,在正方体1111ABCD A B C D -中,点,E F 分别是棱11,BB CC 的中点,点O 为上底面的中心,过,,E F O 三点的平面分别把正方体分为两部分,其中含有1A 的部分为几何体1V ,不含1A 的部分为几何体2V ,已知M 为几何体2V 中(内部与表面)的任意一点,设1A M 与平面1111A B C D 所成的角为α,则sin α的最大值为A .BC .5D .6 二.填空题:本题共4小题,每小题5分,共20分.13.已知实数,x y 满足约束条件102400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =-的最小值为________.14.已知数列{}n a ,若数列1{3}n n a -的前n 项和11655n n T =⨯-,则5a =________. 15.由数字0,1组成的一串数字代码,其中恰好由7个1,3个0,则这样的不同数字代码共有______个.16.已知函数()sin()|2|(||)32f x x x ππϕϕ=-++-<的图像关于直线2x =对称,当[1,2]x ∈-时,()f x 的最大值为________. 三.解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(本小题12分)如图,在ABC ∆中,P 是边BC 上一点,60APC ∠=︒,AB =4AP PB +=.(1)求BP 的长;(2)若AC =,求cos ACP ∠的值.18.(本小题12分)在ABC ∆中,D ,E 分别是AB ,AC 的中点,22AB BC CD ==,如图1.以DE 为轴将ADE ∆翻折,使点A 到达点P 的位置,如图2.(1)证明:平面BCP ⊥平面CEP ;(2)若平面DEP ⊥平面BCED ,求直线DP 与平面BCP 所成角的正弦值.19.(本小题12分)某高校为了对2018年录取的大一理工科新生有针对性地进行教学,从大一理工科新生中随机抽取40名,对他们2018年高考的数学分数进行分析,研究发现这40名新生的数学分数x 在[100,150)内,且其频率y 满足1020n y a =-(其中1010(1)n x n ≤<+,n N +∈) (1)求a 的值;(2)请画出这40名新生高考数学分数的频率的分布直方图,并估计这40名新生的高考数学分数的平均数(同一组中的数据用该组的中间值代替)(3)将此样本的频率估计为总体的太绿,随机调查4名该校的大一理工科新生,记调查的4名新生中“高考数学分数不低于130分”的人数为随机变量ξ,求ξ的数学期望.20.(本小题12分)已知抛物线E :22(0)x py p =>的焦点为F ,0(2,)A y 是E 上一点,且||2AF =.(1)求E 的方程;(2)设点B 是E 上异于点A 的一点,直线AB 与直线3y x =-交于点P ,过点P 作x 轴的垂线交E 于点M ,求证:直线BM 过定点.21.(本小题12分)已知函数()1()ax f x e x a R =--∈.(1)当1a =时,求证:()0f x ≥;(2)讨论函数()f x 的零点个数.请考生在22、23两题中任选一题作答,注意,只能做所选定的题目,如果多做则按所做的第一道题记分,作答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.[选修4—4:坐标系与参数方程](本小题10分)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos (0)a a ρθθ=+>;直线l的参数方程为222x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),直线l 与曲线C 分别交于,M N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若点P 的极坐标为(2,)π,||||PM PN +=,求a 的值.23.[选修4—5:不等式选讲](本小题10分)已知函数()|2|f x x =-.(1)求不等式(1)(3)f x xf x +<+的解集;(2)若函数2()log [(3)()2]g x f x f x a =++-的值域为R ,求实数a 的取值范围.。
河北省衡水中学2019届高三第一次模拟考试-数学理试卷
河北省衡水中学2019届高三第一次模拟考试-数学理试卷河北省衡水中学2019届高三第一次模拟考试-数学理试卷·3·河北省衡水中学2019~2019学年度第二学期高三年级一模考试数学(理科)试卷(A 卷)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.考试时间120分钟. 第Ⅰ卷(选择题 共60分)一、选择题:(本题共12个小题,每小题5分,共60分,在四个选项中,只有一项是符合要求的) 1.设全集为实数集R ,{}{}24,13M x x N x x =>=<≤,则图中阴影部分表示的集合是( )A .{}21x x -≤<B .{}22x x -≤≤C .{}12x x <≤D .{}2x x < 2.设,a R i ∈是虚数单位,则“1a =”是“a ia i+-为纯虚数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件 3.若{}na 是等差数列,首项10,a>201120120a a +>,201120120a a ⋅<,则使前n 项和0nS>成立的最大正整数n 是( ) A .2019 B .2019 C .4022D .4023·4·4. 在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可 以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续 7天的新增病例数计算,下列各选项中,一定符合上述指标的是( )①平均数3x ≤;②标准差2S ≤;③平均数3x ≤且标准差2S ≤;④平均数3x ≤且极差小于或等于2;⑤众数等于1且极差小于或等于1。
A .①②B .③④C .③④⑤D .④⑤5.在长方体ABCD —A1B1C1D1中,对角线B1D 与平面A1BC1相交于点E ,则点E 为△A1BC1的( ) A .垂心 B .内心 C .外心 D .重心6.设yx ,满足约束条件⎪⎩⎪⎨⎧≥≥+-≤--,0,,02,063y x y x y x 若目标函数y b ax z +=)0,(>b a 的最大值是12,则22a b +的最小值是( )A .613B .365C .651·5·D .36137.已知三棱锥的三视图如图所示,则它的外接球表面积为( )A .16πB .4πC .8πD .2π 8.已知函数()2sin()f x x =+ωϕ(0,)ω>-π<ϕ<π图像的一部分(如图所示),则ω与ϕ的值分别为( ) A .115,106π- B .21,3π-C .7,106π-D .4,53π-9. 双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x=的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为( )A .2B .12+C .13+D .23+10. 已知函数)(x f 是定义在R 上的奇函数,若对于任意给定的不等实数12,x x ,不等式)()()()(12212211x f x x f x x f x x f x +<+恒成立,则不等式0)1(<-x f 的解集为( ) A.)0,(-∞ B. ()+∞,0 C.)1,(-∞ D. ()+∞,1·6·11.已知圆的方程422=+y x ,若抛物线过点A(0,-1),B(0,1)且以圆的切线为准线,则抛物线的焦点轨迹方程是( )A.x23+y24=1(y≠0)B.x24+y23=1(y≠0) C.x23+y24=1(x≠0) D.x24+y23=1 (x≠0) 12. 设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R,满足(2)()32xf x f x +-≤⋅,(6)()632xf x f x +-≥⋅,则)2008(f =( )A.200722006+ B .200622008+ C .200722008+ D .200822006+第Ⅱ卷 非选择题 (共90分)二、填空题(本题共4个小题,每小题5分,共20分. 把每小题的答案填在答题纸的相应位置) 13.在区间[-6,6],内任取一个元素xO ,若抛物线y=x2在x=xo 处的切线的倾角为α,则3,44ππα⎡⎤∈⎢⎥⎣⎦的概率为 。
河北省衡水中学2019届高三第一次摸底考试数学(理)试题
河北衡水中学2019届全国高三第一次摸底联考理科数学本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数()34z i i =--在复平面内对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知全集22x x -≥,则 A.{}20x x -<<B.{}20x x -≤≤C.{}20x x x <->或D.{}20x x x ≤-≥或3.某地某所高中2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如下柱状图:2015年高考数据统计 2018年高考数据统计则下列结论正确的是A.与2015年相比,2018年一本达线人数减少B.与2015年相比,2018年二本达线人数增加了0.5倍C.与2015年相比,2018年艺体达线人数相同D.与2015年相比,2018年不上线的人数有所增加4.已知等差数列{}n a 的公差为2,前n 项和为n S ,且10100S =,则7a 的值为 A.11B.12C.13D.145.已知()f x 是定义在R 上的奇函数,若0x >时,()ln f x x x =,则0x <时,()f x = A.ln x xB.()ln x x -C.ln x x -D.()ln x x --6.已知椭圆()2222:10x y C a b a b+=>>和直线:143x y l +=,若过C 的左焦点和下顶点的直线与平行,则椭圆C 的离心率为A.45B.35C.34D.157.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2A E E O =,则ED =A.1233AD AB - B.2133AD AB + C.2133AD AB - D.1233AD AB + 8.某几何体的三视图如图所示,则此几何体A.有四个两两全等的面B.有两对相互全等的面C.只有一对相互全等的面D.所有面均不全等9.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设22DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边亚角形的概率是A.413B.13C.926D.2610.已知函数(),0,ln ,0x e x f x x x ⎧-≤=⎨>⎩(e 为自然对数的底数),若关于x 的方程()0f x a +=有两个不相等的实根,则a 的取值范围是A.1a >-B.11a -<<C.01a <≤D.1a <11.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 作圆222x y a +=的切线,交双曲线右支于点M ,若1245F MF ∠=︒,则双曲线的渐近线方程为A.y =B.y =C.y x =±D.2y x =±12.如图,在正方体1111ABCD A BC D -中,点E ,F 分别为棱1BB ,1CC 的中点,点O 为上底面的中心,过E ,F ,O 三点的平面把正方体分为两部分,其中含1A 的部分为1V ,不含1A 的部分为2V ,连结1A 和2V 的任一点M ,设1A M 与平面1111A B C D 所成角为α,则sin α的最大值为A.C.5D.6二、填空题:本题共4小题,每小题5分,共20分。
2019届河北省衡水中学高三第一次摸底考试数学(理)试题(解析版)
2019届河北省衡水中学高三第一次摸底考试数学(理)试题(解析版)则下列结论正确的是A. 与2015年相比,2018年一本达线人数减少B. 与2015年相比,2018年二本达线人数增加了0.5倍C. 与2015年相比,2018年艺体达线人数相同D. 与2015年相比,2018年不上线的人数有所增加【答案】D【解析】【分析】设2015年该校参加高考的人数为,则2018年该校参加高考的人数为.观察柱状统计图,找出各数据,再利用各数量间的关系列式计算得到答案.【详解】设2015年该校参加高考的人数为,则2018年该校参加高考的人数为.对于选项A.2015年一本达线人数为.2018年一本达线人数为,可见一本达线人数增加了,故选项A错误;对于选项B,2015年二本达线人数为,2018年二本达线人数为,显然2018年二本达线人数不是增加了0.5倍,故选项B错误;对于选项C,2015年和2018年.艺体达线率没变,但是人数是不相同的,故选项C错误;对于选项D,2015年不上线人数为.2018年不上线人数为.不达线人数有所增加.故选D.【点睛】本题考查了柱状统计图以及用样本估计总体,观察柱状统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.4.已知等差数列的公差为2,前项和为,且,则的值为A. 11B. 12C. 13D. 14【答案】C【解析】【分析】由及公差为 2.代入前项和公示,求出,得到挺喜欢上,即可求出的值.【详解】由及公差为2.得.所以,故.故选C.【点睛】本题考查等差数列的基本量计算,属基础题.5.已知是定义在上的奇函数,若时,,则时,A. B. C. D.【答案】B【解析】【分析】设,则由奇函数的性质f(-x)=-f(x),求出函数f(x)的解析式,【详解】设,则,所以.又因为是定义在上的奇函数,所以,所以.故选B.【点睛】本题考查函数的奇偶性的综合运用,属基础题.6.已知椭圆和直线,若过的左焦点和下顶点的直线与平行,则椭圆的离心率为A. B. C. D.【答案】A【解析】【分析】直线的斜率为,因为过的左焦点和下顶点的直线与平行,,由此可求椭圆的离心率.【详解】直线的斜率为,过的左焦点和下顶点的直线与平行,所以,又,所以,故选A.【点睛】本题考查椭圆的离心率求法,属基础题. 7.如图,在平行四边形中,对角线与交于点,且,则A. B.C. D.【答案】C【解析】【分析】利用向量加法法则结合图像特点运算即可.【详解】.故选C.【点睛】本题考查向量的线性运算,属基础题.8.某几何体的三视图如图所示,则此几何体A. 有四个两两全等的面B. 有两对相互全等的面C. 只有一对相互全等的面D. 所有面均不全等【答案】B【解析】【分析】由三视图得到几何体的直观图,由三视图给出的几何量证明即可..【详解】几何体的直观图为四棱锥.如图.因为,,.所以≌.因为平面,所以.同理,.因为,,,所以≌.又与不全等.故选B.【点睛】本题考查三视图原原几何体,以及线面关系的有关证明,属中档题.9.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边亚角形的概率是A. B. C. D.【答案】A【解析】【分析】根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在中,,,,由余弦定理,得,所以.所以所求概率为.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.10.已知函数(为自然对数的底数),若关于的方程有两个不相等的实根,则的取值范围是A. B. C. D.【答案】C【解析】【分析】画出函数的图像,利用数形结合法可求的取值范围,【详解】画出函数的图像如图所示,若关于的方程有两个不相等的实根,则函数与直线有两个不同交点,由图可知,所以.故选C.【点睛】本题考查方程的根个数的求参数的范围,考查数形结合思想方法,属于中档题.11.已知双曲线的左、右焦点分别为,,过作圆的切线,交双曲线右支于点,若,则双曲线的渐近线方程为A. B. C. D.【答案】A【解析】【分析】由双曲线的定义可得,结合条件可得,运用勾股定理,结合a,b,c的关系,可得,进而得到渐近线的斜率.【详解】如图,作于点.于点.因为与圆相切,,所以,,,.又点在双曲线上.所以.整理,得.所以.所以双曲线的渐近线方程为.故选A.【点睛】本题考查双曲线的渐近线的斜率,注意运用圆的切线的性质,结合双曲线的定义,考查运算能力,属于中档题.12.如图,在正方体中,点,分别为棱,的中点,点为上底面的中心,过,,三点的平面把正方体分为两部分,其中含的部分为,不含的部分为,连结和的任一点,设与平面所成角为,则的最大值为A. B.C. D.【答案】B【解析】【分析】连结.可证平行四边形即为截面. 五棱柱为,三棱柱为,设点为的任一点,过点作底面的垂线,垂足为,连结,则即为与平面所成的角,所以.进而得到的最大值.【详解】连结.因为平面.所以过的平面与平面的交线一定是过点且与平行的直线.过点作交于点,交于点,则,连结,.则平行四边形即为截面.则五棱柱为,三棱柱为,设点为的任一点,过点作底面的垂线,垂足为,连结,则即为与平面所成的角,所以.因为,要使的正弦值最大,必须最大,最小,当点与点重合时符合题意.故.故选B.【点睛】本题考查了空间中的平行关系与平面公理的应用问题,考查线面角的求法,属中档题.二、填空题:本题共4小题,每小题5分,共20分。
河北衡水中学2019-2020学年全国高三第一次摸底联考理科数学
河北衡水中学2019-2020学年全国高三第一次摸底联考理科数学一 选择题(每小题5分,共60分)1.复数 在复平面内对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限 2.已知全集U=R , 则 A. B. C. 或 D. 或3.某地某所高中2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如下柱状图:2015年高考数据统计 2018年高考数据统计 则下列结论正确的是A. 与2015年相比,2018年一本达线人数减少B. 与2015年相比,2018年二本达线人数增加了0.5倍C. 与2015年相比,2018年艺体达线人数相同D. 与2015年相比,2018年不上线的人数有所增加4.已知等差数列 的公差为2,前 项和为 ,且 ,则 的值为 A. 11 B. 12 C. 13 D. 145.已知 是定义在 上的奇函数,若 时, ,则 时, A. B. C. D.6.已知椭圆和直线,若过 的左焦点和下顶点的直线与平行,则椭圆 的离心率为A.B.C.D.7.如图,在平行四边形 中,对角线 与 交于点 ,且,则A. B.C. D.8.某几何体的三视图如图所示,则此几何体A. 有四个两两全等的面B. 有两对相互全等的面C. 只有一对相互全等的面D. 所有面均不全等9.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边亚角形的概率是A. B. C. D.10.已知函数(为自然对数的底数),若关于的方程有两个不相等的实根,则的取值范围是A. B. C. D.11.已知双曲线的左、右焦点分别为 , ,过 作圆 的切线,交双曲线右支于点 ,若 ,则双曲线的渐近线方程为A. B. C. D.12.如图,在正方体 中,点 , 分别为棱 , 的中点,点 为上底面的中心,过 , , 三点的平面把正方体分为两部分,其中含 的部分为 ,不含 的部分为 ,连结 和 的任一点 ,设 与平面 所成角为 ,则 的最大值为A. B.C. D.二 填空题(每小题5分,共20分)13.设x ,y 满足约束条件⎩⎨⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为_______.14若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知=,则___ ___ . 15.已知,且,则的最小值等于_______.16.如图,在中,,点在线段上,且,,则的面积的最大值为__________.三 解答题(共70分)17.(10分) 命题:函数的定义域为;命题:函数在上单调递减,若命题为真,为假,求实数的取值范围.ABC △sin 2ABC ∠=D AC 2AD DC=BD =ABC△p ()()21f x lg x ax =++R q ()221f x x ax =--(]1,-∞-"p q"∨"p q"∧a18.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a (sin A ﹣sin B )=(c ﹣b )(sin C +sin B ) (Ⅰ)求角C ;(Ⅱ)若c =,△ABC 的面积为 ,求△ABC 的周长.19.(12分)数列满足. (1)求证:数列是等差数列,并求出的通项公式;(2)若,求数列的前n 项和.20(12分)在四棱锥中,都为等腰直角三角形,,为的中点.(Ⅰ)求证:平面;(Ⅱ)若是边长为2的等边三角形,,求三棱锥的体积.21.(12分)已知数列{a n }的前n 项和为S n ,且满足S n +n=2a n (n ∈N *). (1)证明:数列{a n +1}为等比数列,并求数列{a n }的通项公式; (2)若b n =(2n+1)a n +2n+1,数列{b n }的前n 项和为T n ,求满足不等式>2 010的n 的最小值.22.(12分)已知函数f (x )=2ln x+ax-(a ∈R )在x=2处的切线经过点(-4,ln 2). (1)讨论函数f (x )的单调性;(2)若不等式>mx-1恒成立,求实数m 的取值范围.7233{}n a 11()n a a n N ++==∈{}2n a {}n a 12n n n b a a +=+{}n b河北衡水中学2019-2020学年全国高三第一次摸底联考理科数学1.复数 在复平面内对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】D2.已知全集U=R , 则 A. B. C. 或 D. 或 【答案】C3.某地某所高中2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如下柱状图:2015年高考数据统计 2018年高考数据统计 则下列结论正确的是A. 与2015年相比,2018年一本达线人数减少B. 与2015年相比,2018年二本达线人数增加了0.5倍C. 与2015年相比,2018年艺体达线人数相同D. 与2015年相比,2018年不上线的人数有所增加 【答案】D4.已知等差数列 的公差为2,前 项和为 ,且 ,则 的值为 A. 11 B. 12 C. 13 D. 14 【答案】C5.已知 是定义在 上的奇函数,若 时, ,则 时, A. B. C. D. 【答案】B6.已知椭圆和直线,若过 的左焦点和下顶点的直线与平行,则椭圆 的离心率为A. B. C. D.【答案】A7.如图,在平行四边形中,对角线与交于点,且,则A. B.C. D.【答案】C8.某几何体的三视图如图所示,则此几何体A. 有四个两两全等的面B. 有两对相互全等的面C. 只有一对相互全等的面D. 所有面均不全等【答案】B9.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边亚角形的概率是A. B. C.D.【答案】A10.已知函数(为自然对数的底数),若关于 的方程 有两个不相等的实根,则的取值范围是A. B. C. D. 【答案】C11.已知双曲线的左、右焦点分别为 , ,过 作圆 的切线,交双曲线右支于点 ,若 ,则双曲线的渐近线方程为 A. B. C. D. 【答案】A12.如图,在正方体 中,点 , 分别为棱 , 的中点,点 为上底面的中心,过 , , 三点的平面把正方体分为两部分,其中含 的部分为 ,不含 的部分为 ,连结 和 的任一点 ,设 与平面 所成角为 ,则 的最大值为A. B.C. D.【答案】B二填空题13.___8____. 14._4 . 15.16.17.3218.解:(Ⅰ)由已知a (sinA ﹣sinB )=(c ﹣b )(sinC+sinB ) 由正弦定理,得a (a ﹣b )=(c ﹣b )(c+b ),即a 2+b 2﹣c 2=ab . 所以cosC==,又C ∈(0,π),所以C=.(Ⅱ)由(Ⅰ)知a 2+b 2﹣c 2=ab .所以(a+b )2﹣3ab=c 2=7, 又S=sinC=ab=,所以ab=6,所以(a+b )2=7+3ab=25,即a+b=5.所以△ABC 周长为a+b+c=5+.19.2021 (1)证明 当n=1时,2a 1=a 1+1,∴a 1=1.∵2a n =S n +n ,n ∈N *,∴2a n-1=S n-1+n-1,n ≥2, 两式相减,得a n =2a n-1+1,n ≥2, 即a n +1=2(a n-1+1),n ≥2,∴数列{a n +1}为以2为首项,2为公比的等比数列, ∴a n +1=2n ,∴a n =2n -1,n ∈N *.(2)解 b n =(2n+1)a n +2n+1=(2n+1)·2n ,∴T n =3×2+5×22+…+(2n+1)·2n , ∴2T n =3×22+5×23+…+(2n+1)·2n+1,两式相减可得-T n =3×2+2×22+2×23+…+2·2n -(2n+1)·2n+1,∴T n =(2n-1)·2n+1+2,∴>2010可化为2n+1>2010.22解(1)f'(x )=+a+,令x=2,则f'(2)=1+a+f'(2),∴a=-1, 因切点为(2,2ln2+2a-2f'(2)),则y-(2ln2+2a-2f'(2))=f'(2)(x-2),代入(-4,2ln2),得2ln2-2ln2-2a+2f'(2)=-6f'(2),∴f'(2)=-,∴f'(x)=-1-≤0, ∴f(x)在(0,+∞)单调递减.(2)>mx-1恒成立,即>m,令φ(x)=2ln x+,由(1)可知φ(x)在(0,+∞)单调递减,∵φ(1)=0,∴x∈(0,1),φ(x)>0,x∈(1,+∞),φ(x)<0,∴φ(x)在(0,+∞)恒大于0,∴m≤0.。
河北衡水中学2019年度届全国高三第一次摸底联考理科数学
绝密★启用前河北衡水中学2019届全国高三第一次摸底联考理科数学本试卷4页,23小题,满分150分。
考试时间120分钟。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上的相应位置。
2.全部答案在答题卡上完成,答在本试卷上无效。
3.回答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案用0.5mm 黑色笔记签字笔写在答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
一.选择题:本题共12小题,每小题5分,共60分.每小题给出的选项中,只有一项是符合题目要求的. 1.复数(34)z i i =--在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限2.已知全集U R =,2{|2}M x x x =-≥,则U M =ðA .{|20}x x -<<B .{|20}x x -≤≤C .{|20}x x x <->或D .{|20}x x x ≤-≥或3.某所高中2018年高考考生人数是2015年考生人数的1.5倍.为了更好的对比该校考生的升学情况,统计了该校2015年和2018年的高考各层次的达线率,得到如下柱状图则下列结论正确的是A .与2015年相比,2018年一本达线人数减少B .与2015年相比,2018年二本达线人数增加了0.5倍C .与2015年相比,2018年艺体达线人数不变D .与2015年相比,2018年未达线人数有所增加4.已知等差数列{}n a 的公差为2,前n 项和为n S ,且10100S =,则7a =A .11B .12C .13D .14 5.已知()f x 是定义在R 上的奇函数,若0x >时,()ln f x x x =,则0x <时,()f x =A .ln x xB .ln()x x -C .ln x x -D .ln()x x --6.已知椭圆C :22221(0)x y a b a b+=>>和直线l :143x y +=,若过椭圆C 的左焦点和下顶点的直线与直线l 平行,则椭圆C 的离心率为A .45 B .35C .34D .157.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2AE EO =u u u r u u u r ,则ED =u u u rA .1233AD AB -u u ur u u u rB .2133AD AB +u u ur u u u rC .2133AD AB -u u ur u u u rD .1233AD AB +u u ur u u u r8.某几何体的三视图如图所示,则此几何体 A .有四个两两全等的面 B .有两个互相全等的面 C .只有一对互相全等的面 D .所有面都不全等9.赵爽是我国古代的数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成).类比“赵爽弦图”,可类似的构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成了一个大等边三角形.设22DF AF ==,若在大等边三角形中随即取一点,则此点来自小等边三角形的概率是A .413B .213C .926D .31310.已知函数,0()ln ,0x e x f x x x ⎧-≤=⎨>⎩(e 为自然对数的底数),若关于x 的方程()0f x a +=有两个不等的实根,则a 的取值范围是A .1a >-B .11a -<<C .01a <≤D .1a <11.已知双曲线22221(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,过1F 作圆222x y a +=的切线,交双曲线的右支于点M ,若1245F MF ∠=︒,则双曲线的渐近线方程为A .2y x =±B .3y x =±C .y x =±D .2y x =±12.如图,在正方体1111ABCD A B C D -中,点,E F 分别是棱11,BB CC 的中点,点O 为上底面的中心,过,,E F O 三点的平面分别把正方体分为两部分,其中含有1A 的部分为几何体1V ,不含1A 的部分为几何体2V ,已知M 为几何体2V 中(内部与表面)的任意一点,设1A M 与平面1111A B C D 所成的角为α,则sin α的最大值为A .22 B .25C .265D .266二.填空题:本题共4小题,每小题5分,共20分.13.已知实数,x y 满足约束条件102400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =-的最小值为________.14.已知数列{}n a ,若数列1{3}n n a -的前n 项和11655n n T =⨯-,则5a =________.15.由数字0,1组成的一串数字代码,其中恰好由7个1,3个0,则这样的不同数字代码共有______个. 16.已知函数()sin()|2|(||)32f x x x ππϕϕ=-++-<的图像关于直线2x =对称,当[1,2]x ∈-时,()f x 的最大值为________.三.解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题12分)如图,在ABC ∆中,P 是边BC 上一点,60APC ∠=︒,AB =4AP PB +=.(1)求BP 的长; (2)若AC =,求cos ACP ∠的值.18.(本小题12分)在ABC ∆中,D ,E 分别是AB ,AC 的中点,22AB BC CD ==,如图1.以DE 为轴将ADE ∆翻折,使点A 到达点P 的位置,如图2.(1)证明:平面BCP ⊥平面CEP ;(2)若平面DEP ⊥平面BCED ,求直线DP 与平面BCP 所成角的正弦值. 19.(本小题12分)某高校为了对2018年录取的大一理工科新生有针对性地进行教学,从大一理工科新生中随机抽取40名,对他们2018年高考的数学分数进行分析,研究发现这40名新生的数学分数x 在[100,150)内,且其频率y 满足1020ny a =-(其中1010(1)n x n ≤<+,n N +∈) (1)求a 的值;(2)请画出这40名新生高考数学分数的频率的分布直方图,并估计这40名新生的高考数学分数的平均数(同一组中的数据用该组的中间值代替)(3)将此样本的频率估计为总体的太绿,随机调查4名该校的大一理工科新生,记调查的4名新生中“高考数学分数不低于130分”的人数为随机变量ξ,求ξ的数学期望. 20.(本小题12分) 已知抛物线E :22(0)x py p =>的焦点为F ,0(2,)A y 是E 上一点,且||2AF =. (1)求E 的方程;(2)设点B 是E 上异于点A 的一点,直线AB 与直线3y x =-交于点P ,过点P 作x 轴的垂线交E 于点M ,求证:直线BM 过定点. 21.(本小题12分)已知函数()1()axf x e x a R =--∈.(1)当1a =时,求证:()0f x ≥; (2)讨论函数()f x 的零点个数.请考生在22、23两题中任选一题作答,注意,只能做所选定的题目,如果多做则按所做的第一道题记分,作答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.[选修4—4:坐标系与参数方程](本小题10分)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos (0)a a ρθθ=+>;直线l的参数方程为222x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),直线l 与曲线C 分别交于,M N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若点P 的极坐标为(2,)π,||||PM PN +=,求a 的值.23.[选修4—5:不等式选讲](本小题10分) 已知函数()|2|f x x =-.(1)求不等式(1)(3)f x xf x +<+的解集;(2)若函数2()log [(3)()2]g x f x f x a =++-的值域为R ,求实数a 的取值范围.。
(完整word)河北衡水中学2019高三第一次调研考试--数学(理)
河北衡水中学2019高三第一次调研考试--数学(理)高三年级数学试卷 〔理科〕本试卷分第一卷〔选择题〕和第二卷 (非选择题)两部分。
第一卷共2页,第二卷共2页。
共150分。
考试时间120分钟。
第一卷〔选择题共60分〕5分,共60分。
每题所给选项只有一项符合题意,请将正确答案的选 项填涂在答题卡上〕1.集合 M{x|x 1 22x 3 0},N {x |x a},假设 M 范围是〔〕件 5. _2(1 cosx) dx ()2[3,) B 、(3,) C 、(1] D 、(2.f(x)在R 上是奇函数,且N ,那么实数a 的取值1)【一】选择题〔每题f (xf (Q) 4) f (xx)当x (0,2)时,f (x) 2x 2,则f (7)()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条A. ( ,4]B.[4, )C.[ 4,4]D.( 4,4] 8.有下面四个判断:其中正确的个数是()A.-2B.23、函数f (x)C.-98log 2 x (x 1 x 2(xD.98 °),那么不等式 0)f (x ) 0的解集为〔〕A. {x | 0 x1} B {x|1 x 0} C. {x | 1 x1} D. {x | x 1}4.“a 0”是“方程ax 22x 10至少有一个负根”的〔〕A.B. 2C.2 D.A 、[0 , 1〕B 、( pC [1 ,+◎D (,1]7、函数2f(x) log °.5(xax 3a)在[2,)单调递减,那么a 的取值范围()⑤abc 4 ; ® abc 4其中正确结论的序号是() A.①③⑤B.①④⑥C.②③⑤D.②④⑥设0 a 1,函数f(x) log a (a 2x 2a x 2),那么使f (x) 0的取值范围是〔〕A. (, log a 3) B. (log a 3, ) C. (0, )D. ( ,0)12.函数sin x (0 x 1),假设a,b,c 互不相等,且f(a) f(b) f(c),那么 f (x)log 2010 x (x 1)a b c 的取值范围是()函数为f/(x),f/(x)的导函数为f 〃(x),那么有f 〃(Xo)0。
河北衡水中学届全国高三第一次摸底联考
河北衡水中学2019届全国高三第一次摸底联考理科数学本试卷4页;23小题;满分150分..考试时间120分钟..注意事项:1.答题前;考生务必将自己的姓名、准考证号填写在答题卡上相应的位置..2.全部答案在答题卡上完成;答在本试题上无效..3.回答选择题时;选出每小题答案后;用2B 铅笔把答题卡上对应题目的答案标号涂黑..如需改动;用橡皮擦干净后;再选涂其他答案标号..回答非选择题时;将答案用0.5mm 黑色笔迹签字笔写在答题卡上..4.考试结束后;将本试卷和答题卡一并交回..一、选择题:本题共12小题;每小题5分;共60分..在每小题给出的四个选项中;只有一项是符合题目要求的..1.复数()34z i i =--在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限2.已知全集R ;22x x -≥;则 A.{}20x x -<< B.{}20x x -≤≤ C.{}20x x x <->或 D.{}20x x x ≤-≥或 3.某地某所高中2018年的高考考生人数是2015年高考考生人数的1.5倍;为了更好地对比该校考生的升学情况;统计了该校2015年和2018年的高考情况;得到如下柱状图: 2015年高考数据统计2018年高考数据统计则下列结论正确的是A.与2015年相比;2018年一本达线人数减少B.与2015年相比;2018年二本达线人数增加了0.5倍C.与2015年相比;2018年艺体达线人数相同D.与2015年相比;2018年不上线的人数有所增加4.已知等差数列{}n a 的公差为2;前n 项和为n S ;且10100S =;则7a 的值为A.11B.12C.13D.14 5.已知()f x 是定义在R 上的奇函数;若0x >时;()ln f x x x =;则0x <时;()f x =A.ln x xB.()ln x x -C.ln x x -D.()ln x x --6.已知椭圆()2222:10x y C a b a b +=>>和直线:143x y l +=;若过C 的左焦点和下顶点的直线与平行;则椭圆C 的离心率为 A.45 B.35 C.34 D.157.如图;在平行四边形ABCD 中;对角线AC 与BD 交于点O ;且2AE EO =;则ED = A.1233AD AB - B.2133AD AB + C.2133AD AB - D.1233AD AB + 8.某几何体的三视图如图所示;则此几何体A.有四个两两全等的面B.有两对相互全等的面C.只有一对相互全等的面D.所有面均不全等9.赵爽是我国古代数学家、天文学家;大约在公元222年;赵爽为周碑算经一书作序时;介绍了“勾股圆方图”;亦称“赵爽弦图”以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的.类比“赵爽弦图”;可类似地构造如图所示的图形;它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形;设22DF AF ==;若在大等边三角形中随机取一点;则此点取自小等边亚角形的概率是A.413B.13C.926D.2610.已知函数(),0,ln ,0x e x f x x x ⎧-≤=⎨>⎩e 为自然对数的底数;若关于x 的方程()0f x a +=有两个不相等的实根;则a 的取值范围是A.1a >-B.11a -<<C.01a <≤D.1a <11.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ;2F ;过1F 作圆222x y a +=的切线;交双曲线右支于点M ;若1245F MF ∠=︒;则双曲线的渐近线方程为A.y =B.y =C.y x =±D.2y x =±12.如图;在正方体1111ABCD A B C D -中;点E ;F 分别为棱1BB ;1CC 的中点;点O 为上底面的中心;过E ;F ;O 三点的平面把正方体分为两部分;其中含1A 的部分为1V ;不含1A 的部分为2V ;连结1A 和2V 的任一点M ;设1A M 与平面1111A B C D 所成角为α;则sin α的最大值为A.2二、填空题:本题共4小题;每小题5分;共20分..13.已知实数x ;y 满足约束条件10,240,0,x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩;则2z x y =-的最小值为________.14.已知数列{}n a ;若数列{}13n n a -的前n 项和11655n n T =⨯-;则5a 的值为________. 15.由数字0;1组成的一串数字代码;其中恰好有7个1;3个0;则这样的不同数字代码共有____________个.16已知函数()sin 232f x x x ππϕϕ⎛⎫⎛⎫=-++-< ⎪ ⎪⎝⎭⎝⎭的图像关于直线2x =对称;当[]1,2x ∈-时;()f x 的最大值为____________.三、解答题:共70分..解答应写出文学说明、证明过程或演算步骤..第17~21题为必考题;每个考试都必须作答..第22、23题为选考题;考生根据要求作答..一必考题:60分..17.12分如图;在ABC ∆中;P 是BC 边上的一点;60APC ∠=︒;AB =4AP PB +=. 1求BP 的长;2若4AC =;求cos ACP ∠的值. 18.12分在ABC ∆中;D ;E 分别为AB ;AC 的中点;22AB BC CD ==;如图1.以DE 为折痕将ADE ∆折起;使点A 到达点P 的位置;如图2.1证明:平面BCP ⊥平面CEP ;2若平面DEP ⊥平面BCED ;求直线DP 与平面BCP 所成角的正弦值..如图1如图2 19.12分某高校为了对2018年录取的大一理工科新生有针对性地进行教学;从大一理工科新生中随机抽取40名;对他们2018年高考的数学分数进行分析;研究发现这40名新生的数学分数x 在[]100,150内;且其频率y 满足1020n y a =-其中()10101n x n ≤<+;*n N ∈. 1求a 的值;2请画出这20名新生高考数学分数的频率分布直方图;并估计这40名新生的高考数学分数的平均数同一组中的数据用该组区间的中点值作代表;3将此样本的频率估计为总体的概率;随机调查4名该校的大一理工科新生;记调查的4名大一理工科新生中“高考数学分数不低于130分”的人数为随机变量;求的数学期望.20.12分已知抛物线()2:20E x py p =>的焦点为F ;()02,A y 是E 上一点;且2AF =. 1求E 的方程;2设点B 是上异于点A 的一点;直线AB 与直线3y x =-交于点P ;过点P 作x 轴的垂线交E 于点M ;证明:直线BM 过定点.21.12分已知函数()()1ax f x e x a R =--∈.1当1a =时;求证:()0f x ≥;2讨论函数()f x 的零点的个数..二选考题:共10分..请考生在第22、23题中任选一题作答;如果多做;则按所做的第一题计分..22.选修4-4:坐标系与参数方程10分在平面直角坐标系xOy 中;以O 为极点;x 轴的正半轴为极轴;建立极坐标系;曲线C 的极坐标方程为()2sin 2cos 0a a ρθθ=+>;直线l的参数方程为2,22x y ⎧=-+⎪⎪⎨⎪=⎪⎩t 为参数;直线l 与曲线C 分别交于M ;N 两点.1写出曲线C 的直角坐标方程和直线l 的普通方程;2若点P 的极坐标为()2,π;PM PN +=;求a 的值.23.选修4-5:不等式选讲10分已知函数()2f x x =-.1求不等式()()13f x xf x +<+的解集;2若函数()()()2log 32g x f x f x a =++-⎡⎤⎣⎦的值域为R ;求实数a 的取值范围.参考答案及解析河北衡水中学2019届全国高三第一次摸底联考·理科数学一、选择题1.D 解析复数()3443z i i i =--=-.对应的点为()4,3-;位于第四象限.故选D.2.C 解析由22x x -≥;得220x x +≤;解得20x -≤≤.所以.故选C.3.D 解析设2015年该校参加高考的人数为S ;则2018年该校参加高考的人数为1.5S .对于选项A.2015年一本达线人数为0.28S .2018年一本达线人数为0.24 1.50.36S S ⨯=;可见一本达线人数增加了;故选项A 错误;对于选项B;2015年二本达线人数为0.32S ;2018年二本达线人数为0.4 1.50.6S S ⨯=;显然2018年二本达线人数不是增加了0.5倍;故选项B 错误;对于选项C;2015年和2018年.艺体达线率没变;但是人数是不相同的;故选项C 错误;对于选项D;2015年不上线人数为0.32S .2018年不上线人数为0.28 1.50.42S S ⨯=.不达线人数有所增加.故选D.4.C 解析由10100S =及公差为2.得11a =.所以21n a n =-;故713a =.故选C.5.B 解析设0x <;则0x ->;所以()()ln f x x x -=--.又因为()f x 是定义在R 上的奇函数;所以()()f x f x -=-;所以()()ln f x x x =-.故选B.6.A 解析直线l 的斜率为34-;所以34b c =;又222b c a +=;所以45c e a ==;故选A. 7.C 解析()11213333ED EA AD AC AD AD AB AD AD AB =+=-+=-++=-.故选C. 8.B 解析几何体的直观图为四棱锥P ABCD -.如图.因为AD AB =;PA PA =;90BAP DAP ∠=∠=︒.所以ABP ∆≌ADP ∆.因为BC ⊥平面ABP ;所以BC BP ⊥.同理;CD DP ⊥.因为BP DP =;CD BC =;CP CP =;所以BCP ∆≌DCP ∆.又ABP ∆与BCP ∆不全等.故选B.9.A 解析在ABD ∆中;3AD =;1BD =;120ADB ∠=︒;由余弦定理;得AB =所以DF AB =所以所求概率为2413DEF ABC S S ∆∆=. 故选A.10.C 解析画出函数()f x 的图像如图所示;由图可知10a -≤-<;所以01a <≤.故选C.11.A 解析如图;作1OA F M ⊥于点A .21F B F M ⊥于点B .因为1F M 与圆222x y a +=相切;1245F MF ∠=︒;所以OA a =;22F B BM a ==;2F M =;12F B b =.又点M 在双曲线上.所以12222F M F M a b a -=+-=.整理;得b =.所以b a =所以双曲线的渐近线方程为y =..故选A.12.B 解析连结EF .因为EF 平面ABCD .所以过EFO 的平面与平面ABCD 的交线一定是过点O 且与EF 平行的直线.过点O 作GH BC 交CD 于点G ;交AB 于H 点;则GH EF ;连结EH ;FG .则平行四边形EFGH 即为截面.则五棱柱1111A B EHA D C FGD -为1V ;三棱柱EBH FCG -为2V ;设M 点为2V 的任一点;过M 点作底面1111A B C D 的垂线;垂足为N ;连结1A N ;则1MA N ∠即为1A M 与平面1111A B C D 所成的角;所以1MA N α∠=. 因为1sin MN A Mα=;要使α的正弦值最大;必须MN 最大;1A M 最小;当点M 与点H 重合时符合题意.故()max 11max sin MN HN A M A H α⎛⎫===⎪⎝⎭.故选B. 二、填空题13.3-解析可行域如图所示; 当直线22x z y =-经过点A 时;z 取得最小值.解方程组10,240,x y x y -+=⎧⎨+-=⎩可得点()1,2A ;所以min 3z =-.故填3-.14.16解析据题意;得2112311333655n n n a a a a ++++⋅⋅⋅+=⨯-; 所以当2n ≥时;221123111333655n n n a a a a ---+++⋅⋅⋅+=⨯-.两式相减;得11111366655n n n n n a +--=⨯-⨯=.所以当2n ≥时;12n n a -=;故516a =. 15.120解析3100120C =.故填120.16.4解析据题意知;函数2y x =-的图像关于直线2x =对称;曲线sin 3y x πϕ⎛⎫=+ ⎪⎝⎭关于直线2x =对称;所以232k ππϕπ⨯+=+;k Z ∈.所以6k πϕπ=-;k Z ∈.因为2πϕ<;所以6πϕ<-.所以()sin 236f x x x ππ⎛⎫=--+- ⎪⎝⎭.又sin 36y x ππ⎛⎫=-- ⎪⎝⎭与2y x =-在区间[]1,2-上都为减函数;所以()()max 14f x f =-=.三、解答题17.解:1由已知;得120APB ∠=︒………………………………………………1分又AB =4AP BP +=;在ABP ∆中;由余弦定理;得(()()222424cos120BP BP BP BP =+--⨯⨯-︒;……………………4分整理;得2440BP BP -+=.解得2BP =.…………………………………………6分2由1知;2AP =;所以在ACP ∆中;由正弦定理.得sin 60sin AC AP ACP=︒∠;…………………………8分解得4sin 25ACP ∠==.………………………………………………………9分因为24<所以AP AC <;从而ACP APC ∠<;即ACP ∠是锐角;……11分所以3cos 5ACP ∠==.……………………………………………………12分 18.1证明:在题图1中;因为22AB BC CD ==;且D 为AB 的中点..由平面几何知识;得90ACB ∠=︒.…………………………………………………………………1分又因为E 为AC 的中点;所以DE BC ……………………………………………2分在题图2中;CE DE ⊥;PE DE ⊥;且CEPE E =;所以DE ⊥平面CEP ;所以BC ⊥平面CEP .…………………………………………………………………4分 又因为BC ⊂平面BCP ;所以平面BCP ⊥平面CEP .…………………………………………………………5分 2解:因为平面DEP ⊥平面BCED ;平面DEP 平面BCED DE =;EP ⊂平面DEP ;EP DE ⊥.所以EP ⊥平面BCED .………………………………………………………………6分 又因为CE ⊂平面BCED ;所以EP CE ⊥.…………………………………………………………………………7分 以E 为坐标原点;分别以ED ;EC ;EP 的方向为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系.…………………………………………………………………8分在题图1中;设2BC a =;则4AB a =;AC =;AE CE ==;DE a =.则()P ;(),0,0D a;(),0C;()2,0B a .所以()DP a =-;()2,0,0BC a =-;()0,CP =.……………9分 设(),,n x y z =为平面BCP 的法向量; 则0,0,n BC n CP ⎧⋅=⎪⎨⋅=⎪⎩;即20,0.ax -=⎧⎪⎨=⎪⎩ 令1y =;则1z =.所以()0,1,1n =.…………………………………………………11分 设DP 与BCP 平面所成的角为θ;则sin sin ,cos ,2nDP n DP n DP n DP θ⋅=====. 所以直线DP 与平面BCP 所成角的正弦值为4.…………………………………12分 9.解:1由题意知:1410≤≤n ;所以的取值为10;11;12;13;14;………1分 代入2010n a y -=;可得()()()()()17.01065.0106.01055.0105.010=-+-+-+-+-a a a a a ;………………3分解得08.0=a .……………………………………………………………………………4分 2由1;得1.0,15.0,2.0,25.0,3.0=y ;频率分布直方图如图:……………6分这40名新生的高考数学分数的平均数为12010.014515.013520.012525.011530.0105=⨯+⨯+⨯+⨯+⨯. ……………………8分3由题意可知;4,3,2,1,0=ξ;且“高考数学分数不低于130分”的概率为25.01.015.0=+;所以ξ~⎪⎭⎫ ⎝⎛41,4B ……………………………………………………10分 所以()1414=⨯=ξE .…………………………………………………………………12分 10.1解:根据题意知;a py 24=;①……………………………………………1分 因为2=AF ;所以22=+p y a .②. …………………………………………………2分 联立①②解的1=a y ;2=p .………………………………………………………… 4分 所以E 的方程为y x 42=.………………………………………………………………5分(2)证明:方法一;设()11,y x B ;()22,y x M .由题意;可设直线BM 的方程为b kx y +=;代入y x 42=;得0442=--b kx x .(3)由根与系数的关系.得k x x 421=+;b x x 421-=.③…………………………6分 由x MP ⊥轴及点P 在直线3-=x y 上;得()3,22-x x P ;则由A ;P ;B 三点共线;得21241122--+=--x b kx x x ;………………………………8分 整理;得()()()06214212121=--++---b x b x k x x k .将③代入上式并整理;得()()03221=-+-b k x . ……………………………………………………………………10分由点B 的任意性;得032=-+b k ;所以()3223+-=-+=x k k kx y .即直线BM 恒过定点()3,2. ……………………………………………………………12分方法二;设()3,-t t P ;⎪⎪⎭⎫ ⎝⎛4,2n n B ; 则⎪⎪⎭⎫ ⎝⎛4,2t t M ;⎪⎪⎭⎫ ⎝⎛--=14,22n n AB ;()4,2--=t t AP .…………………………6分 由A ;B ;P 三点共线;即()()()0214422=-⎪⎪⎭⎫ ⎝⎛----t n t n ;即()()012222=--+-tn n t n .…………8分 当2=n 时;点B 坐标为()1,2;与()1,2A 重合;不合题意;当2≠n 时;01222=--+tn n t ;整理;得324-+=n t nt .③ 因为44422t n n t n t k BM+=--=; 所以直线BM 的方程为()t x t n t y -+=-442. ……………………………………10分 结合③.得()4442t t n t x t n y +-++= ()324+-+=x t n ; 所以直线BM 恒过定点()3,2. ………………………………………………………12分21.1证明:当1=a 时;()1--=x e x f x ;则()1-='x e x f .………………1分由()0='x f .得0=x .当0<x 时;()0<'x f ;当0>x 时;()0>'x f ;所以函数()x f 在区间()0,∞-内是减函数..在区间()+∞,0内是增函数;………3分 所以0=x 是()x f 的极小值点;也是最小值点.且()()00min ==f x f ;故当1=a 时.()0≥x f 恒成立.………………………………………………………5分 2解:据题意;得()1-='axae x f . ①当0≤a 时;()0<'x f 恒成立.则函数()x f 在R 上是减函数..又()00=f ;所以函数()x f 有且只有一个零点. …………………………………6分 ②当0>a 时.由()0='x f ;得a a x 1ln 1=. 当a a x 1ln 1<时;()0<'x f ; 当aa x 1ln 1>时;()0>'x f ; 所以()x f 在区间⎪⎭⎫ ⎝⎛∞-a a 1ln 1,内是减函数;在区间⎪⎭⎫ ⎝⎛+∞,1ln 1a a 内是增函数..所以aa x 1ln 1=是函数()x f 的极小值点;也是最小值点; 即()11ln 111ln 1min --=⎪⎭⎫⎝⎛=a a a a a f x f .…………………………………………7分 令()()01ln >--=t t t t t h ;则()()t t t h ln ln 11-=+-=';当1=t 时;()0='t h ;当10<<t 时;()0>'t h ;当1>t 时;()0<'t h ;所以函数()t h 在区间()1,0内是增函数;在区间()+∞,1内是减函数;从而1=t 是函数()t h 的极大值点.也是最大值点;所以()()01=≤h t h ;即()011ln 11min ≤--=a a a x f 当且仅当1=a 时取等号………………………9分 当()011ln 11min =--=a a a x f ;即1=a 时;函数()x f 只有一个零点…………10分 当()011ln 11min <--=a a a x f ;即0>a ;且1≠a 时;分1>a 和10<<a 两种情况讨论:i 当1>a 时;01ln 11<<-aa ;因为()()0111>=---=-ax ax e e f ;所以()x f 在区间⎪⎭⎫ ⎝⎛∞-a a 1ln 1,内有一个零点;又()00=f ;因此()x f 有两个零点. ii 当10<<a 时;01ln 1>a a ; 由1;得1+≥x e x .即()1ln +≥x x ;亦即1ln -≤x x . 令a x 2=.则得122ln -≤a a ;即⎪⎭⎫ ⎝⎛--≥-122ln a a ; 所以0121122212ln 22ln 222ln 2>-=-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛≥--=⎪⎭⎫ ⎝⎛a a a a a a e a a f a ; 所以()x f 在区间⎪⎭⎫⎝⎛+∞,1ln 1a a 内有一个等点. 又()00=f ;因此函数()x f 有两个零点.由i 和ii;得当1>a 或10<<a 时;函数()x f 有两个零点.综上;当0≤a 或1=a 时;函数()x f 只有一个零点;当0>a .且1≠a 时;函数()x f 有两个零点..………………………………………12分22.解:1由()0cos 2sin 2>+=a a θθρ;得()0cos 2sin 22>+=a a θρθρρ; 所以曲线C 的直角坐标方程为ax y y x 2222+=+;即()()11222+=-+-a y a x ;…………………………………………………………3分 直线l 的普通方程为2+=x y . …………………………………………………………5分(2)将直线l 的参数方程⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 22,222代入ax y y x 2222+=+并化简、整理; 得()0442232=+++-a t a t .……………………………………………………5分 因为直线l 与曲线C 交于M ;N 两点.. 所以()()0444223Δ2>+-+=a a ;解得1≠a .…………………………………6分 由根与系数的关系;得a t t 22321+=+;4421+=a t t . ………………………7分 因为点P 的直角坐标为()0,2-;在直线l 上.. 所以2522321=+=+=+a t t PN PM ;……………………………………9分 解得2=a ;此时满足0>a .且1≠a ;故2=a .…………………………………………………………………………………10分23.解:1由已知不等式;得11+<-x x x .………………………………………1分 考虑到0>x ;不等式又可化为⎩⎨⎧>-+≤<012,102x x x 或⎩⎨⎧->>.1,12x x ………………………3分 解得112≤<-x 或1>x .所以不等式()()31+<+x xf x f 的解集为()+∞-,12.………………………………5分 2设()()()a x f x f x h 23-++=;则()a x x x h 212-++-=. 因为()a a x x 23212-≥-++-当且仅当[]2,1-∈x 时取等号;所以()a x h 23min -=. …………………………………………………………………7分 因为函数()()()[]a x f x f x g 23log 2-++=的值域为R ;所以()()023≤-++a x f x f 有解;即a x x 212≤++-. 因为312≥++-x x ;所以32≥a ;即23≥a . 所以实数a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,23.…………………………………………………10分。
河北省衡水中学2019年全国高三统一联合考试(理科)数学试题及答案
2019年全国高三统一联合考试理科数学一、选择题1.若集合A ={x|x <3},{}2B =,则A∩B =A .{x|x <3}B .{x|0≤x <3}C .{x|0<x <3}D .{x|x≤4} 2.已知i 为虚数单位,若a 为实数,且a ≠0, 则1i ia a -=+A .a +iB .a -iC .iD .-i3.如图,网格纸上每个小正方形的边长为10cm ,粗实线画出的是某蛋糕店制作的一款生日蛋糕的三视图,则该蛋糕的体积为A .3π×103cm 3B .7π×103cm 3C .9π×103cm 3D .10π×103cm 3 4.已知ππ()22α∈-,,且cos2α=2sin2α-1,则tanα=A .12- B .12C .-2D .25.在25()y x x-的展开式中,xy 3的系数为 A .20 B .10 C .-10 D .-20 6.函数21()x xe f x xe +=的图象大致为A .B .C .D .7.摆线最早出现于公元1501年出版的C·包威尔的一本书中,摆线是这样定义的:一个圆沿一条直线缓慢地滚动,则圆上一固定点所经过的轨迹称为摆线.圆滚动一周,动圆上定点描画出摆线的第一拱;再向前滚动一周,动圆上定点描画出第二拱;继续滚动,可得第三拱、第四拱、……设圆的半径为r ,圆滚动的圈数为c ,摆线的长度为l ,执行如图所示程序框图,若输入的r =2,c =2,则输出摆线的长度为A .12πB .16πC .32D .968.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,b =2,c C =60°,则sinA 的值为A B .7C D .149.某车站在某一时刻有9位旅客出站,假设每位旅客选择共享单车继续出行的概率都为12,且各位旅客之间互不影响.设在这一时刻9位旅客中恰好有k人骑行共享单车的概率为P(X-k),则A.P(X=4)=P(X=5)B.P(X=4)>P(X=5)C.P(X=5)<P(X=6)D.P(X=5)=P(X=6)10.在边长为8的等边△ABC中,D,E分别为AC,AB的中点.现将△ADE 沿DE折起到△A′DE的位置,使得A B'=A′B与底面BCDE所成的正弦值为ABCD.11.已知抛物线C:y2=4x的焦点为F,A为抛物线C上异于顶点O的一点,点B的坐标为(a,b)(其中a,b满足b2-4a<0).当|AB|+|AF|最小时,△ABF恰好正三角形,则a=A.1 B.43C.53D.212.已知函数ln(2)2()02ln(2)2x xf x xx x->⎧⎪==⎨⎪-<⎩,,,若f(x)≤|x-a|对任意的x∈R恒成立,则实数a的取值范围是A.[1,3] B.[2,4] C.[1,2] D.[-1,1]二、填空题13.已知向量(21)a =-,,()32b =,,若()a b a λ+⊥,则实数λ=_________. 14.函数f (x )=x 2-ln|x|的图象在点(-1,f (-1))处的切线方程为__________.15.将函数2π()2cos π13f x x ⎛⎫=+- ⎪⎝⎭的图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再把所得函数的图象向右平移1个单位长度,最后得到的图象对应的函数设为g (x ),则g (x )在区间[-1,1]上的所有零点的和为_______________. 16.已知双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2的直线l 与C 交于A ,B (其中点A 在x 轴上方)两点,且满足22AF F B λ=.若C 的离心率为32,直线l 的倾斜角为120°,则实数λ的值是____________.三、解答题 (一)必考题17.已知等比数列{a n }是递减数列,a 1a 4=3,a 2+a 3=4. (1)求数列{a n }的通项公式;(2)设b n =2n -2a n +1+n ,求数列{b n }的前n 项和T n .18.如图,在多面体ABCDFE中,四边形ABCD是菱形,∠ABC=60°,四边形ABEF是直角=梯形,∠FAB=90°,AF∥BE,AF=AB=2BE=2.(1)证明:CE∥平面ADF.(2)若平面ABCD⊥平面ABEF,H为DF的中点,求平面ACH与平面ABEF所成锐二面角的余弦值.19.为了解高三学生的“理科综合”成绩是否与性别有关,某校课外学习兴趣小组在本地区高三年级理科班中随机抽取男、女学生各100名,然后对200名学生在一次联合模拟考试中的“理科综合”成绩进行统计.规定:分数不小于240分为“优秀”,小于240分为“非优秀”.(1)根据题意,填写下面的2×2列联表,并根据;列联表判断是否有90%以上的把握认为“理科综合”成绩是否优秀与性别有关.(2)用分层抽样的方法从成绩优秀的学生中随机抽取12名学生,然后再从这12名学生中抽取3名参加某高校举办的自主招生考生,设抽到的3名学生中女生的人数为X ,求X 的分布列及数学期望.附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n =a +b +c +d .20.在平面直角坐标系xOy中,已知椭圆C:22221x ya b+=(a>b>0)的离心率为3,直线l和椭圆C交于A,B两点,当直线l过椭圆C的焦点,且与x轴垂直时,23AB=.(1)求椭圆C的方程;(2)设直线l过点(1,0)且倾斜角为钝角,P为弦AB的中点,当∠OPB 最大时,求直线l的方程.21.已知函数f(x)=x2e ax-1.(1)讨论函数f(x)的单调性;(2)当1e3a>时,求证:f(x)>lnx.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知倾斜角为α的直线l 的参数方程为2cos sin x t y t αα=-+⎧⎨=⎩(t 为参数),曲线C 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),点P的坐标为(-2,0).(1)当12cos 13α=时,设直线l 与曲线C 交于A ,B 两点,求|PA|·|PB|的值;(2)若点Q 在曲线C 上运动,点M 在线段PQ 上运动,且2PM MQ =,求动点M 的轨迹方程.23.[选修4-5:不等式选讲] 已知函数f (x )=|x -1|+|2x|.(1)在给出的平面直角坐标系中作出函数f (x )的图象,并解不等式f (x )≥2;(2)若不等式f (x )+|x -1|≥5-k 对任意的x ∈R 恒成立,求证:65k k+≥.2019年全国高三统一联合考试·理科数学一、选择题1.B 2.D 3.C 4.B 5.C 6.A 7.C 8.D 9.A 10.B 11.C 12.A 二、填空题13.5414.x +y =0 15.2316.17三、解答题17.解:(1)设等比数列{a n }的公比为q ,则2312113,4,a q a q a q ⎧=⎪⎨+=⎪⎩ 解得11,33a q ⎧=⎪⎨⎪=⎩或19,1.3a q =⎧⎪⎨=⎪⎩又因为数列{a n }是递减数列,所以11,33a q ⎧=⎪⎨⎪=⎩不合题意,故19,1.3a q =⎧⎪⎨=⎪⎩故数列{a n }的通项公式为a n =33-n .(2)由(1)得222223()3n n n n b n n ---=⨯+=+, 故232[1()](1)99223()22223213n n n n n n n T -++=+=-⨯+-.18.(1)证明:(方法一)因为四边形ABCD 是菱形,所以AD ∥BC .又因为AF ∥BE ,AF∩AD =A ,BC∩BE =B ,所以平面ADF ∥平面BCE . 因为CE ⊂平面BCE ,所以CE ∥平面ADF . (方法二)取AF 的中点M ,连接DM ,EM ,如图.由题意知AM =BE 且AM ∥BE ,所以四边形ABEM 为平行四边形,即ME =AB 且ME ∥AB .又因为四边形ABCD 是菱形,所以四边形DCEM 为平行四边形,即有DM ∥CE .又DM ⊂平面ADF ,CE ⊄平面ADF ,所以CE ∥平面ADF .(2)解:取CD 的中点N ,在菱形ABCD 中,∠ABC =60°,可得AN ⊥CD . 因为平面ABCD ⊥平面ABEF ,平面ABCD∩平面ABEF =AB ,AF ⊂平面ABEF ,AF ⊥AB ,所以AF ⊥平面ABCD . 以A为坐标原点,以AN uuu r ,AB uu ur ,AF uu u r 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系A —xyz 如图所示.故A(0,0,0),C1,0),D-1,0),F(0,0,2),1,1)2H-,1,1)2AH=-uuu r,,0)AC=u u u r.设平面ACH的一个法向量为(,,)n x y z=r,则有0,0,n AHn AC⎧⋅=⎪⎨⋅=⎪⎩r uuu rr uuu r即10,220.x y zy-+=⎪⎨+=令x=1可得(1,n=r.易知平面ABEF的一个法向量为(1,0,0)m=u r.设平面ACH与平面ABEF所成的锐二面角为θ,则||cos||||m nm nθ⋅==u r ru r r,.19.解:(1)填写列联表如下:因为22200(35756525) 2.381 2.70610010060140K ⨯⨯-⨯=≈<⨯⨯⨯, 所以没有90%以上的把握认为“理科综合”成绩是否优秀与性别有关.(2)利用分层抽样的方法,抽到男生的人数为1235760⨯=,抽到女生的人数为1225560⨯= 若从12人中任意抽取3人,则女生被抽到的人数X =0,1,2,3,3075312C C 7(0)C 44P X ===,2175312C C 21(1)C 44P X ===,1275312C C 7(2)C 22P X ===,0375312C C 1(3)C 22P X ===. 故抽到女生的人数X 的分布列为()0123444422224E X =⨯+⨯+⨯+⨯=. 20.解:(1)由题意知c a =,2221(1)9c b a -=,又a 2=b 2+c 2,解得b 2=1,a 2=9,故椭圆C 的方程为2219x y +=. (2)设A (x 1,y 1),B (x 2,y 2),直线l :y =k (x -1)(k <0). 联立方程221,9(1),x y y k x ⎧+=⎪⎨⎪=-⎩得(9k 2+1)x 2-18k 2x +9k 2-9=0,故21221891k x x k +=+. 设P (x 0,y 0),则212029291x x k x k +==+,200229(1)(1)9191k k y k x k k k =-=-=-++,所以直线OP 的斜率0019OP y k x k==-. 设直线l ,OP 的倾斜角分别为α,β,则∠OPB =α-β,tan tan 91tan tan()()1tan tan 89OPB k kαβαβαβ-∠=-==++. 因为k <0,所以112()()993k k k k -+=-+=-≥,即1293k k +-≤,所以3t an 4O P B ∠-≤.当且仅当13k =-时,等号成立. 所以当∠OPB 最大时,直线l 的斜率13k =-,此时直线l 的方程为x +3y -1=0.21.(1)解:函数f (x )的定义域为R ,f′(x )=2xe ax +x 2·ae ax =x (ax +2)e ax .当a =0时,f (x )=x 2-1,则f (x )在区间(0,+∞)内为增函数,在区间(-∞,0)内为减函数;当a >0时,2()()e ax f x ax x a '=+,令f′(x )>0得2x a <-或x >0,令f′(x )<0得20x a -<<,所以f (x )在区间(-∞,2a -)内为增函数,在区间(2a -,0)内为减函数,在区间(0,+∞)内为增函数;当a <0时,2()()e ax f x a x x a '=+,令f′(x )>0得20x a <<-,令f′(x )<0得2x a >-或x <0,所以f (x )在区间(-∞,0)内为减函数,在区间(0,2a -)内为增函数,在区间(2a -,+∞)内为减函数.(2)证明:由f (x )>lnx ,得x 2e ax >lnx +1,即3e ln 1ax x x x+>. 设3ln 1()x g x x +=则3261(ln 1)3()x x x x g x x⋅-+⋅'=23443ln 23(ln ln e )x x x x -+-=-=-当230e x -<<时,g′(x )>0;当23e x ->时,g′(x )<0.所以g (x )在区间(0,23e -)内是增函数,在区间(23e -,+∞)内是减函数, 所以23e x -=是g (x )的极大值点,也是g (x )的最大值点, 即22323max 233ln e 11()(e )e 3(e )g x g ---+===. 设e ()(0)ax h x x x =>,则21()e ()ax a x a h x x -'=. 当10x a <<时,h′(x )<0;当1x a>时,h′(x )>0. 所以h (x )在区间(0,1a )内是减函数,在区间(1a,+∞)内是增函数, 所以1x a=是h (x )的极小值点,也是h (x )的最小值点, 即min 1()()e h x h a a== 综上,21()e e ()3g x a h x <≤≤,故f (x )>lnx 成立. 22.解:(1)曲线C 的普通方程为x 2+y 2=1. 当12cos 13α=时,直线l 的参数方程为122,13513x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),代入曲线C 的普通方程,得2483013t t -+=. 由于248276()12013169∆=--=>,故可设点A ,B 对应的参数分别为t 1,t 2,则t 1·t 2=3,所以|PA|·|PB|=3.(2)设Q (cosθ,sinθ),M (x ,y ),则由2PM MQ =uuu r uuu r ,得(x +2,y )=2(cosθ-x ,sinθ-y ),即322cos ,32sin .x y θθ+=⎧⎨=⎩消去θ,得2224()39x y ++=,此即为点M 的轨迹方程.23.(1)解:13,0,()|1||2|1,01,31,1,x x f x x x x x x x -<⎧⎪=-+=+⎨⎪->⎩≤≤其图像如下图所示.令f (x )=2,得13x =-或x =1, 由f (x )的图像可知,不等式f (x )≥2的解集为{x|13x -≤,或x≥1}. (2)证明:因为f (x )+|x -1|=|2x -2|+|2x|≥|2x -2-2x|=2. 所以k≥3. 因为2656(2)(3)5k k k k k k k k-+--+-==, 又由k≥3,得k -2>0,k -3≥0,所以(2)(3)0k k k--≥, 即65k k +≥.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
河北衡水中学2019届全国高三第一次摸底联考
理科数学
本试卷4页,23小题,满分150分。
考试时间120分钟。
注意事项:
1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上的相应位置。
2.全部答案在答题卡上完成,答在本试卷上无效。
3.回答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案用0.5mm 黑色笔记签字笔写在答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
一.选择题:本题共12小题,每小题5分,共60分.每小题给出的选项中,只有一项是符合题目要求的. 1.复数(34)z i i =--在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限
D .第四象限
2.已知全集U R =,2{|2}M x x x =-≥,则
U
M =
A .{|20}x x -<<
B .{|20}x x -≤≤
C .{|20}x x x <->或
D .{|20}x x x ≤-≥或
3.某所高中2018年高考考生人数是2015年考生人数的1.5倍.为了更好的对比该校考生的升学情况,统计了该校2015年和2018年的高考各层次的达线率,得到如下柱状图
则下列结论正确的是
A .与2015年相比,2018年一本达线人数减少
B .与2015年相比,2018年二本达线人数增加了0.5倍
C .与2015年相比,2018年艺体达线人数不变
D .与2015年相比,2018年未达线人数有所增加
4.已知等差数列{}n a 的公差为2,前n 项和为n S ,且10100S =,则7a =
A .11
B .12
C .13
D .14 5.已知()f x 是定义在R 上的奇函数,若0x >时,()ln f x x x =,则0x <时,()f x =
A .ln x x
B .ln()x x -
C .ln x x -
D .ln()x x --
6.已知椭圆C :22
221(0)x y a b a b
+=>>和直线l :143x y +=,若过椭圆C 的左焦点和下顶点的直线与直
线l 平行,则椭圆C 的离心率为
A .
45 B .35
C .
34 D .15
7.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2AE EO =,则ED =
A .1233AD A
B -
B .2133AD AB +
C .2133A
D AB -
D .12
33
AD AB +
8.某几何体的三视图如图所示,则此几何体 A .有四个两两全等的面 B .有两个互相全等的面 C .只有一对互相全等的面 D .所有面都不全等
9.赵爽是我国古代的数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成).类比“赵爽弦图”,可类似的构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成了一个大等边三角形.设22DF AF ==,若在大等边三角形中随即取一点,则此点来自小等边三角形的概率是
A .
413
B .
213
13
C .
926
D .
313
26
10.已知函数,0
()ln ,0
x e x f x x x ⎧-≤=⎨>⎩(e 为自然对数的底数),若关于x 的方程()0f x a +=有两个不等的实根,
则a 的取值范围是
A .1a >-
B .11a -<<
C .01a <≤
D .1a <
11.已知双曲线22
221(0,0)x y a b a b
-=>>的左,右焦点分别为12,F F ,过1F 作圆222x y a +=的切线,交双
曲线的右支于点M ,若1245F MF ∠=︒,则双曲线的渐近线方程为
A .2y x =±
B .3y x =±
C .y x =±
D .2y x =±
12.如图,在正方体1111ABCD A B C D -中,点,E F 分别是棱11,BB CC 的中点,点O 为上底面的中心,过
,,E F O 三点的平面分别把正方体分为两部分,其中含有1A 的部分为几何体1V ,不含1A 的部分为几何体2V ,已知M 为几何体2V 中(内部与表面)的任意一点,设1A M 与平面1111A B C D 所成的角为α,则sin α的最
大值为
A .
22 B .255
C .265
D .266
二.填空题:本题共4小题,每小题5分,共20分.
13.已知实数,x y 满足约束条件102400x y x y y -+≥⎧⎪
+-≤⎨⎪≥⎩
,则2z x y =-的最小值为________.
14.已知数列{}n a ,若数列1
{3
}n n a -的前n 项和11
655
n n T =⨯-,则5a =________.
15.由数字0,1组成的一串数字代码,其中恰好由7个1,3个0,则这样的不同数字代码共有______个. 16.已知函数()sin()|2|(||)3
2
f x x x π
π
ϕϕ=-++-<
的图像关于直线2x =对称,当[1,2]x ∈-时,()
f x 的最大值为________.
三.解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题12分)
如图,在ABC ∆中,P 是边BC 上一点,60APC ∠=︒
,AB =4AP PB +=.
(1)求BP 的长; (2
)若4
AC =
,求cos ACP ∠的值.
18.(本小题12分)
在ABC ∆中,D ,E 分别是AB ,AC 的中点,22AB BC CD ==,如图1.以DE 为轴将ADE ∆翻折,使点A 到达点P 的位置,如图2.
(1)证明:平面BCP ⊥平面CEP ;
(2)若平面DEP ⊥平面BCED ,求直线DP 与平面BCP 所成角的正弦值. 19.(本小题12分)
某高校为了对2018年录取的大一理工科新生有针对性地进行教学,从大一理工科新生中随机抽取40名,对他们2018年高考的数学分数进行分析,研究发现这40名新生的数学分数x 在[100,150)内,且其频率y 满足1020
n
y a =-
(其中1010(1)n x n ≤<+,n N +∈) (1)求a 的值;
(2)请画出这40名新生高考数学分数的频率的分布直方图,并估计这40名新生的高考数学分数的平均数(同一组中的数据用该组的中间值代替)
(3)将此样本的频率估计为总体的太绿,随机调查4名该校的大一理工科新生,记调查的4名新生中“高考数学分数不低于130分”的人数为随机变量ξ,求ξ的数学期望. 20.(本小题12分)
已知抛物线E :22(0)x py p =>的焦点为F ,0(2,)A y 是E 上一点,且||2AF =. (1)求E 的方程;
(2)设点B 是E 上异于点A 的一点,直线AB 与直线3y x =-交于点P ,过点P 作x 轴的垂线交E 于点M ,求证:直线BM 过定点. 21.(本小题12分)
已知函数()1()ax f x e x a R =--∈.
(1)当1a =时,求证:()0f x ≥; (2)讨论函数()f x 的零点个数.
请考生在22、23两题中任选一题作答,注意,只能做所选定的题目,如果多做则按所做的第一道题记分,作答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.[选修4—4:坐标系与参数方程](本小题10分)
在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为
2sin 2cos (0)a a ρθθ=+>;直线l
的参数方程为22
2
x t y t ⎧=-+
⎪⎪⎨⎪=⎪⎩(t 为参数),直线l 与曲线C 分别交于
,M N 两点.
(1)写出曲线C 的直角坐标方程和直线l 的普通方程;
(2)若点P 的极坐标为(2,)π
,||||PM PN +=a 的值.
23.[选修4—5:不等式选讲](本小题10分) 已知函数()|2|f x x =-.
(1)求不等式(1)(3)f x xf x +<+的解集;
(2)若函数2()log [(3)()2]g x f x f x a =++-的值域为R ,求实数a 的取值范围.。