第1章质点运动学

合集下载

大学物理第1章质点运动学

大学物理第1章质点运动学

大学物理第1章质点运动学质点运动学是物理学中研究物体运动的学科,它是物理学的一个重要分支,是学习物理的基础之一。

一、质点运动学的概念质点运动学是研究质点运动的学科,它把物体看作质点,即把物体看成一个点,而不考虑其体积大小。

质点运动学的主要研究内容包括:位置、速度、加速度等运动量的描述,以及运动的曲线形状、动量、能量等方面的分析。

二、质点的运动质点的运动可以分为匀速运动和非匀速运动两种情况。

1.匀速运动匀速运动是指质点在单位时间内沿着同一直线等距离地移动的运动。

匀速运动的速度大小是恒定的,可以用速度公式v=d/t来计算。

2.非匀速运动非匀速运动是指质点在单位时间内沿任意曲线路径移动的运动。

非匀速运动中质点的速度大小是变化的,需要用微积分的方法进行分析和计算。

三、质点运动中的基本物理量在质点运动中,需要描述质点的运动状态和变化情况。

主要的量包括:1.位置位置是指质点在空间中所处的位置,通常使用坐标表示。

我们可以通过坐标系建立一个参照系,来描述质点的位置。

2.位移位移是指质点从一个位置到另一个位置的距离和方向,通常用符号Δr表示。

位移的大小可以用位移公式Δr=r2-r1来计算。

3.速度速度是指质点在单位时间内所改变的位置,通常用符号v 表示。

速度的大小可以用速度公式v=Δr/Δt来计算。

4.加速度加速度是指质点在单位时间内速度所改变的量,通常用符号a表示。

加速度的大小可以用加速度公式a=Δv/Δt来计算。

四、质点的曲线运动在质点运动中,一些运动路径可能是曲线运动。

曲线运动的路径通常可以用弧长s、曲率半径r、圆心角等来表征。

1.弧长弧长是指质点在曲线路径上所走过的曲线长度,通常用符号s表示。

弧长的大小可以用弧长公式s=rθ来计算。

2.曲率半径曲率半径是指曲线在任一点上的曲率半径,通常用符号r 表示。

曲率半径可以根据曲线的形状计算得出。

3.圆心角圆心角是指质点所在的路径所对应的圆所对应的圆心角度数,通常用符号θ表示。

第1章 质点运动学

第1章 质点运动学

100t
4
t3
0
3
x x0
t
t0 vx (t)dt 0
t
(100t
4
t3 )dt
50t 2
1
t4
0
3
3
第一章 质点运动学
1-5 曲线运动
一、匀速圆周运动
1、匀速圆周运动的加速度
A v B
vA B vB
设质△|量=圆点 t|时vvv周处|存'刻。的在在,质半圆。v质点径周根点从为上据在PR点的加Q,运P处速处圆动,度,心到速的速为Q度定度O点为义,为有vv可v在,速;' 得t其度时在瞬中增刻t+时|,v
解:由
a
ann a
v2 R
n
dv dt
v
ds dt
20
0.6t 2 (m
/
s)
当t=1s时
an
v2 r
(20 0.6)2 200
m / s2
1.88m / s2
a
dv dt
1.2t
1.2m / s2
a a2 an2 2.23m / s2
dt
v0 v
0
v
v e(1.0s1 )t 0
由速度的定义: v
dy dt
v e(1.0s1 )t 0
y
t
dy v0 e dt (1.0s1 )t
y 10 1 e( 1.0s1 )t
0
0
由以上结果, t 时, v 0,此时y 10m。
但实际情况是:t 9.2s时, v 0,此时y 10m。
加速度分量
加速度大小 加速度余弦方向
a | a| a2x a2y a2z

第1章 质点运动学

第1章 质点运动学

由题可知:t = 0时,x = 10
故:c′ = 10
2 3 x = t + 10 3
h
v0
x
o
r
| ∆r |
x
θ ∆x
h
θ′
y
x
解法一
由图可知船的位矢为
r = xi + hj
而 由速度的定义有
x = r −h
2
2
dr dx dh dx v= = i+ j = i + 0 = vx i dt dt vx = r −h = 2 2 dt dt dt r −h
dr = −v0 因绳子变短故 dt
代入上式有
x +h vx = − v0 = − v0 x r 2 − h2 r
2 2

x2 + h2 v =− v0 i x
负号表示
v
的方向与正 x 方向相反。
由加速度定义得
2 2
位置x、位移∆x dx 速度v = dt dv = d 2 x 加速度a = dt
dθ 角速度ω = dt 角加速度β = dω
角位置θ、角位移∆θ
d 2θ =
匀速圆周运动θ = θ 0 + ωt
匀变速圆周运动 1 2 θ = θ 0 + ωt + β t 2 ω = ω0 + β t
2 2
dt
v2 an = = 0.808m / s 2 R
则a = aτ + an = 0.814m / s
2 2
2
an o θ = tg = 82 57′ aτ
−1
直线运动与圆周运动比较
直线运动
圆周运动

大学物理第1章质点运动学

大学物理第1章质点运动学

则有
ax 2 R cost;
a y 2 R sint
加速度的大小
2 2 2 2 2 2 a ax a2 ( R cos t ) ( R sin t ) R y
根据矢量的点积运算,分别计算
v r [(R sint )i (R cost ) j ] [(R cost )i ( R sint ) j ] 0 2 2 v a [(R sint )i (R cost ) j ] [( R cost )i ( R sint ) j ] 0
大学物理
第一章 质点运动学
1.1 运动学的一些基本概念 1.1.1、参考系(reference frame)和坐标系(coordinate) 参考系:为了描述物体的运动而选取的参考标准物体。 (运动描述的相对性) 坐标系:直角坐标系、自然坐标系、极坐标系、球坐标系等. 说明 在运动学中,参考系的选择是任意的;在动力学中则不然 1.1.2、时间和空间的计量 1、时间及其计量 时间表征物理事件的顺序性和物质运动的持续性。时间测量的 标准单位是秒。1967年定义秒为铯—133原子基态的两个超精细 能级之间跃迁辐射周期的9192631770倍。量度时间范围从宇宙 年龄1018s(约200亿年)到微观粒子的最短寿命 10-24s.极限的时 间间隔为普朗克时间10-43s,小于此时间,现有的时间概念就不适 用了。
运动学中的两类问题
1、已知质点的运动学方程求质点的速度、加速度等问
题常称为运动学第一类问题.
r r (t )
微分
v, a
2、由加速度和初始条件求速度方程和运动方程的问题称 为运动学的第二类问题.
a , v0 , r0

第1章_质点运动学

第1章_质点运动学
可见,Munday下落的速度增加得非常快,但他 在下落过程中是感觉不到速度在增加的,因为加速 度是恒定的,而人只对加速度的变化有感觉。当他 落到水面时,他的加速度急剧减小,Munday才会 感到有剧烈的变化。 此外,(a)、(b) 、(c)式分别表示自由落体运动 的位移、速度、时间三者的关系。
17
1-2 质点运动的描述
r
m
求:(1)物体在圆周上运动的距离与时间的关系; (2)要维持物体这样的运动,绳子的拉力应为多少。
21
1-2 质点运动的描述
解:(1)物体在圆周上运动距离为物体经过的圆弧的长度
t

dv at dt

v v0
cdt v
0
0
ct
ds 由 v dt
1 2 得 s s 0 v0 t ct 2
1-1 物理基准 1-2 质点运动的描述 1-3 相对运动 1-4 牛顿运动定律 1-5 动量 1-6 能量
6
1-1 物理基准
一、长度、时间和质量标准 物体运动相关的单位有三个——长度、时间和质量。 1、长度的国际单位是米(m):一米等于光在真空 中传播1/299,792,458秒所走的距离。 2、时间的国际单位是秒(s):一秒是从铯原子中放射 出9,192,631,770次光振动所需要的时间。
质点是研究真实物体运动的一个理想模型,物体在其 大小和形状可以被忽略的情况下,可以视为一个质点。
4
引言
地球绕太阳公转时地球可视一个质点。 一切平动的物体,都可以视为一个质点。
如果物体的大小与形状不能忽略,则把物体上 每一小部分视为一个质点,把整个物体视为有许多 质点所组成的系统,称为质点系。
5
目录

第1章-质点运动学

第1章-质点运动学

位移
rrrBArxBxBAii
rA
yA
yB
j j
y
yB A r
r y A A
rB
B
yB yA
(xB xA)i ( yB yA) j
xi yj
o
xA
xB x
xB xA
若质点r 在 (三x维B 空x间A中)i运动( yB
yA)
j
(zB
z A )k
位移的大小为 r x2 y2 z2
23
1-2 求解运动学问题举例
例3 有 一个球体在某液体中竖直下落, 其初速度
为 v0 10 j , 它的加速度为 a 1.0v j. 问:(1)经
过多少时间后可以认为小球已停止运动, (2)此球体
在停止运动前经历的路程有多长?
解:由加速度定义
v dv 1.0
t
dt
,
v v0
0
a dv 1.0v dt
v v2
位矢量
t
0,
t 0
0,
tv
rv
a
dv dt
v2 r
en
2ren
法向单 位矢量
vB
r
o
en
v
vB
vA et r
vA
31
1-3 圆周运动
三alitlami tm 变00速litdmdv圆vvvt0tt周nt运vtavt动dvdttrev2ttleeit切mntv向a0nn加aaevn速tntneen度t 和法向v加2v速tove度2vnrevtv1vn1
一 圆周运动的角速度和角加速度
角坐标 (t)
角速度 (t) d (t)
dt
速率

第一章 质点运动学

第一章 质点运动学
16
物理学
已知:x(t ) 1.0t 2.0,y(t ) 0.25t 2 2.0, 解 (1) 由题意可得
dx dy vx 1.0, vy 0.5t dt dt t 3s 时速度为 v 1.0i 1.5 j
速度 v 与
x 轴之间的夹角
第一章 质点运动学
第一章 质点运动学
14
物理学
讨论 一运动质点在某瞬 y 时位于矢径 r ( x, y ) 的 y 端点处,其速度大小为
dr ( A) dt dr ( C) dt
注意
dr (B) dt
r (t )
x
o
x
dx 2 dy 2 ( D) ( ) ( ) dt dt
dr dr dt dt
1.5 0 arctan 56.3 1.0
17
物理学
x(t ) 1.0t 2.0, (2)运动方程 2 y(t ) 0.25t 2.0,
消去参数 t 可得轨迹方程为
y 0.25x x 3.0
2
轨迹图 t 4s
y/m
6 2
t 4s
t 2s 4
-6 -4 -2 0
dx B v A v x i i vi dt l dy vB v y j j o dt 2 2 2 x y l dx dy 两边求导得 2 x 2y 0 dt dt
第一章 质点运动学

y
A
v
x
20
物理学
dy x dx y 即 dt y dt B x dx vB j y dt dx o v dt vB vtan j

第一章_质点运动学

第一章_质点运动学
v
dv − 1 ) t dt , ( − 1 .0 s − 1 ) t = (−1.0s ∫0 v = v0e ∫v0 v
dy ( −1.0 s −1 ) t v= = v0 e dt
dv a= = ( − 1.0s −1 ) v dt
o
v0
∫0 d y = v 0 ∫0 e
y t
(-1.0s ) t
(2) 运动方程 )
x ( t ) = (1m ⋅ s ) t + 2m
y (t ) = ( 1 m ⋅ s −2 )t 2 + 2 m 4
1 -1 2 y = ( m ) x − x + 3m 4
y/m
6
−1
由运动方程消去参数 t 可得轨迹方程为
轨迹图
t = − 4s
t = 4s
t = − 2s 4
位移的物理意义 A) 确切反映物体在空间位置的变化 与路径无关, 确切反映物体在空间位置的变化, 与路径无关, 只决定于质点的始末位置. 只决定于质点的始末位置 B)反映了运动的矢量性和叠加性 )反映了运动的矢量性和叠加性. 了运动的矢量性和叠加性
第一章
质点运动学
∆ r = ∆ xi + ∆ yj + ∆ zk
z
2
r
r= r = x +y +z
第一章
质点运动学
位矢
r 的方向余弦
cos α = x r cos β = y r cos γ = z r
y
β
P
r
P
α , β , γ 分别是
r
o
和Ox轴, Ox轴
z
γ
α
x
Oy轴和Oz轴之间的夹角。 Oy轴和Oz轴之间的夹角。 轴和Oz轴之间的夹角

第一章质点运动学1大学物理教程北京邮电大版

第一章质点运动学1大学物理教程北京邮电大版

质点运动的方法。
x
1
gt2
2
1.2.1 位置矢量 运动方程
1 位置矢量 确定质点P某一时刻在坐标系里的位置的物理量称位
r 置矢量, 简称位矢 。
r
xi
yj
zk
y
y
r
*P
k j
式中 i、j 、k 分别为x、y、z
方向的单位矢量。
z ox
i
x
例如: r 2i 3 j 5k z
r 位矢 的大小为: r r x2 y2 z2
x
dx dt
r dr r2 h2 dt
按题意
0
dr dt
由此得船速
x 0
r r2 h2
0
x2 h2 x
v = vxi = -v0
x2 h2 i x
上式中的负号表示船的速度v沿X轴的负方向。
加速度:
ax
dvx dt
0
h2 x2 h2
dx dt
v02h2 x3
a
v02h 2 x3
i
负号表示加速度a的方向与X轴的正方向相反。 由于a与v同向,所以小船是加速靠岸的。
在直角坐标系中分解:
r xi yj zk
在直角坐标系中分 解:
rA xAi yA j zAk rB xBi yB j zB k
则在直角坐标系 Oxyz 中其位移为
r (xB xA)i ( yB yA) j (zB zA)k
xi yj zk
y
yB A r
r y A A
z = z(t)
该r运动2方ti程矢(8量式t:2 )
j
方程组消去t就得到质点的轨迹方程。 例运动学方程为x=2t, y=8-t2,轨迹方程为

第1章质点运动学

第1章质点运动学
2
2.几种典型的坐标系 几种典型的坐标系 (1).直角坐标系 直角坐标系
z P
r 直角坐标系中, 直角坐标系中,任意矢量 A 可表示为 r r r r A= A i + Ay j + A k x z
矢量的大小或模 矢量的大小或模表示为
x
γ
O
A
α
β
y
A = A2 + A2 + A2 x y z
方向余弦满足关系
cos2 α +cos2 β +cos2 γ =1
r dk =0 dt
直角坐标系中,坐标轴的单位矢量是常矢量, 直角坐标系中,坐标轴的单位矢量是常矢量,满足
r di =0 dt
r dj =0 dt
3
(2).自然坐标系 自然坐标系 为坐标原点, 在已知运动轨迹上任取一点O为坐标原点,用质点距离原点的轨 来确定质点任意时刻的位置, 道长度s来确定质点任意时刻的位置,以轨迹切向和法向的单位 矢量( 作为其独立的坐标方向,这样的坐标系,称为自然坐 矢量(τ、n)作为其独立的坐标方向,这样的坐标系,称为自然坐 称为自然坐标 自然坐标。 标系 s 称为自然坐标。
在第6章 狭义相对论中讲授 在第6
10
§1.3.2 描述一般曲线运动的线参量
线参量: 线参量: 位置矢量、位移矢量、 位置矢量、位移矢量、 速度矢量和加速度矢量
z P(x,y,z)
γ α
r
z
β
1.位置矢量与运动方程 1.位置矢量与运动方程
x x
o
y y
(1).位置矢量: 由坐标原点指向质点的有向线段。 (1).位置矢量:时刻t,由坐标原点指向质点的有向线段。 位置矢量
β

第一章 质点 运动学

第一章  质点 运动学

rB
r
思考题 质点作曲线运动,判断下列说法的正误 注: r (或称 r |) 位矢大小的变化量
r r
r r
s r
s r
s r
平均速度: v
r t
单位: m s 1
平均速度的方向与 t 时间内位移的方向一致
质点作变加速圆周运动,切 向加速度和法向加速度的大小方 向
当子弹从枪口射出时,椰子刚好从树上由静止 自由下落. 试说明为什么子弹总可以射中椰子 ?
例 设在地球表面附近有一个可视为质点的抛体,
以初速 v0 在 Oxy 平面内沿与 Ox 正向成 角抛出, 并
略去空气对抛体的作用. (1)求抛体的运动方程和其
y
B
角速度:
lim
t d dt

R
s
A

角加速度:
t 0

O
x
lim
t 0
t

d dt
圆周运动的角量描述
角 速 度 的 单位: 弧度/秒(rads-1) ; 角加速度的单位: 弧度/平方秒(rad s-2) 。
讨论:
(1) 角加速度对运动的影响: 等于零,质点作匀速圆周运动; 不等于零但为常数,质点作匀变速圆周运动; 随时间变化,质点作一般的圆周运动。
RES 1.5 108 3 RE 6.4 10
2.4 10 1
4
地球上各点的公转速度相差很小,忽略地球自身尺 寸的影响,作为质点处理。


研究地球自转
v R
地球上各点的速 度相差很大,因 此,地球自身的 大小和形状不能 忽略,这时不能 作质点处理。

第一章- 质点运动学

第一章- 质点运动学

间位置而设置的坐标系统,是固结于参考系上的一个数
学抽象。 常见的坐标系:
角向
r

径向
•P(r,α)
极轴
z
P•(x,y,z)
r
Or
y
x
极坐标系
r n
τr
P(n,τ)
O
•P(r,ϕ ,θ ) r
直角坐标系
自然坐标系
球坐标系
§1-2 描述质点运动的物理量
1-2-1 位置矢量与运动方程
上海
热带风暴
1 PDF 文件使用 "pdfFactory Pro" 试用版本创建
设质点: t+
t ∆t
时位时移刻刻::: AB∆,, rvrvrBvA
z
A v
∆rv
B
rA
v rB
O
y
x
平均速度: vr = ∆rv ∆t
单位:m⋅s-1
平均速度的方向与∆t时间内位移的方向一致
2 PDF 文件使用 "pdfFactory Pro" 试用版本创建
2. 瞬时速度(速度) 精细地描述质 z
avt
=
dv dt
evt
=
d2s dt 2
evt
v 讨论 det
dt
∆evt
=
v et
(t
+
∆t)
-
v et
(t
)
当: ∆t → 0 , ∆θ → 0
有 ∆et = et ⋅ ∆θ = ∆θ
方向 ∆evt ⊥ evt
v d et dt
= lim ∆evt ∆t→0 ∆t
= lim ∆θ ∆t→0 ∆t

大学物理第一章 质点运动学

大学物理第一章  质点运动学
力学(mechanics)
§1 §2 §3 §4 §5 §6 质点运动学(kinematics) 质点动力学(dynamics) 功和能(work and energy) 动量守恒定律 (momentum conservation) 刚体的定轴转动(rotation) 流体力学(fluid mechanics)
v
t
g b
(1 e bt )
t
x vdt
0
g b
t
g b2
(1 e bt )
例题6、质点在流体中下落,a=-kv2,k=0.4m-1, t=0时,v=v0,求:从原点以上10m处开始下落, 速度减小到v0/10时到原点的距离。
解: d v dv dx a kv2 d t dx dt
r xi h j v0 vx dr dt dx v vx r dr x dt
2 h 2 v0
dx
dt dx dt
2
i r x ( h)
2 2 2 2
dt v vx i dv dt

h x x
v0
a

x
3
i
二、当v或a为已知时,求位置矢量



当v或a为时间函数时,直接根据定义积分,并代入 初始条件,可求出位矢; 当v或a为位置参量函数时,可做变量替换后,用分 离变量法积分,并代入初始条件,再求出位矢; 例如:已知 v=v(x) dx dx
物体定位,必须有参照物,我们称之为参照系。
2、 坐标系 利用坐标系,能在 点与数组之间建立 一个对应,从而在 几何图形与方程之 间建立一个对应的 关系.
三、 位置矢量
1. 位置矢量 质点在任一时刻的 空间位置,用位置 矢量来表示。

大学物理学(上册)第1章 质点运动学

大学物理学(上册)第1章 质点运动学

须在参考系上固连某种坐标系,这样,物体在某时刻的位置
即可用一组坐标表示.可见坐标系不仅在性质上具有参考系
的作用,而且还具有数学抽象作用.最常用的坐标系有:直角
坐标、球坐标、极坐标、柱坐标、自然坐标等.对物体运动
的描述决定于参考系而不是坐标系.
y
A
K
y
O
x
z
z
x 直角坐标系
K
r θ
A
O
x
极坐标系
O
y
o法向 sz
r x22 y22 z22 x12 y12 z12
讨论 (1)位移与位置矢量
位移表示某段时间内质点位置的变 化,是个过程量;位置矢量表示某个时
y
s' s p1 r
p2
刻质点的位置,是个状态量. (2)位移与路程

r(t1) r (t2 )
P1P2 两点间的路程 s是不唯一的,可 O
2)轨道方程表示为 x2 y2 r 2
1.2.2 位移与路程
y

A r B
rA
rB
y

yB A r
r y A A
rB
B
yB yA
o
x
o
xA
xB x
xB xA
1.位移 经过时间间隔 t 后,质点位置矢量发生变化,由始
点A指向终点B 的有向线段AB称为点A到B 的位移矢量 r.位
因为 v(t) v(t dt)
所以 dv 0 dt
而 a a 0 所以
v(t)
O
dv
v(t dt)
a dv dt
例 设质点的运动方程为
r t xti y t j

第一章质点运动学

第一章质点运动学

3v 1.73v, y 轴正向 沿
作业:习题1-7,1-9
练习:习题1-6
提示:1-1题为第一类质点运动学问题,即 运动方程 加速度
速度 加速度
1-2题为第二类质点运动学问题,即
速度 运动方程
§1-3
圆周运动
y
y
平面极坐标 质点在A点的位置由 (r,θ)来确定. 以(r,θ)为坐标的 坐标系称为平面极坐标系
x x(t ) 分量式 y y (t ) z z(t )
—参数方程
2.运动方程
y
y (t )
r (t )
P
x(t )
从上式中消去参数 t ,可 z (t ) z 得质点运动的轨迹方程:
o
x
f ( x, y, z) 0
选择题.已知一质点位置矢量的表达式为 : r 2i 5 j 37k ,则该质点作 (A) 匀速直线运动。 (B) 静止。 (C) 抛物线运动。 (D)一般曲线运动。
物 理 学
第一章
质点运动学
§1-1
质点运动的描述
一 参考系 质点 1.参考系 为描述物体运动而选定的标准物,称 为参考系。 参考系选取的不同,物体运动的描 述不同,即对物体运动的描述具有相 对性。 2.质点 忽略物体的体积与形状,将其抽象为 具有同等质量的点,称为质点. 质点是理想模型.
二 位置矢量
x(t ) 1.0t 2.0, (2)运动方程 2 y(t ) 0.25t 2.0, 则有 t x 2 ,带入 y 中可消去参数 t ,
可得轨迹方程为
轨迹图
t 4 s
6
y 0.25x x 3.0
2
y/m

第一章 质点运动学

第一章 质点运动学

六. 单位 本课程采用国际单位制( ), ),其中 本课程采用国际单位制(SI),其中 长度单位 时间单位 速度单位 加速度单位 米(符号 m) ) 秒(符号 s) ) 米每秒( 米每秒(符号 m/s ) 米每二次方秒( 米每二次方秒(符号 m/s2 )
例题1-4 已知质点作匀加速直线运动,加速度 已知质点作匀加速直线运动, 例题 求这质点的运动方程。 为 a ,求这质点的运动方程。 dv = a 常量),积分得 ),积分得 解 由定义 (常量), dt
∆r = r1 − r
即等于质点位矢在∆t O 即等于质点位矢在∆ 时间内的增量。 时间内的增量。且有
r
r ∆t 时间内位移 1
t +∆t 时刻位矢 ∆
x
∆r = x1i + y1 j − xi − yj = ( x1 − x )i + ( y1 − y ) j
时间内质点通过的路程 为标量 路程∆ 为标量, ∆t 时间内质点通过的路程∆s为标量,仅当 ∆t→0时,位移的大小 时 lim ∆r = ∆s
d 2 x dv x ax = 2 = = −ω 2 R cos ω t dt dt d 2 y dv y ay = 2 = = −ω 2 R sin ω t dt dt
由此得加速度的大小
v a = ω R cos ωt + sin ωt = ω R = R
2 2 2 2
2
如果把加速度写成矢量式, 如果把加速度写成矢量式,则有
本课程中只讨论平面内的运动问题, 本课程中只讨论平面内的运动问题,常用坐标 系有平面直角坐标系 极坐标系和自然坐标系。 平面直角坐标系、 系有平面直角坐标系、极坐标系和自然坐标系。
二. 质点 一般情况下, 一般情况下,运动物体的形状和大小都可能变化

第1章 质点运动学

第1章 质点运动学

第1章 质点运动学
1.1 质点运动的描述
一、几个基本概念
运动是绝对的,对运动的描述是相对的。
1. 参考系 为了描述物体的运动而被选作参考的 物体叫做参考系.
任何实物物体均可被选作参考系;场不能作为参考系。
2. 坐标系 为了定量的描述物体的运动,在选定的参考 系上建立的带有标尺的数学坐标,简称坐标系。 坐标系是固结于参考系上的一个数学抽象。
?
即:
v v lim lim ? t 0 t t 0 t
v
vB
A
v
v v dv dv dt dt
第1章 质点运动学
总结:
描述对象 位置
描述质点运动的基本物理量
物理量 位矢 定义
r , r (t )
中心
位置变化
位移
v v0
a (t )
,如何求解

dv a dt
t dv adt
t0
同理:

r
r0
t dr v dt
t0
积分上、 下限!
第1章 质点运动学 例: 质量为5kg可视为质点的物体从原点开始运动, 其加速度为 a (0.4 1.2t )i 1.6 j (设运动开始记时,t 为运动时间),求任意时刻质点的速度及运动方程。
rB
r
r r
第1章 质点运动学
讨论: 比较位移和路程
r AB
s AB
s
A
B
r
位移:是矢量,表示质点位置变化的净效果,与质点 运动轨迹无关,只与始末点有关。 路程:是标量,是质点通过的实际路径的长,与质点 运动轨迹有关 直线(直进)运动 r s 何时取等号? 曲线运动 t 0时, dr ds

第1章 质点运动学

第1章 质点运动学

r = op
j
y A β
y P
r (t ) = x(t )i + y(t ) j + z(t )k
质点的运动函数 质点的运动函数
γ
α
r
x n
B x
z
2
O
r = x + y +z x y z cosα = cos β = cosγ = r r r
2 2
z
i
k
5
1.1 参考系 位置矢量
运动函数
r (t ) = x(t )i + y(t ) j + z(t )k
求速度
求导) 求加速度 (求导)
求位置(运动函数) 积分) 求位置(运动函数) 积分) (
13
1.3 圆周运动
1.3.1 描述圆周运动的物理量
质点的运动轨迹是固定的圆周的运动称为圆周运动 质点的运动轨迹是固定的圆周的运动称为圆周运动 质点作曲线运动时, 质点作曲线运动时,可以看作各个 瞬间做不同曲率半径的圆周运动。 瞬间做不同曲率半径的圆周运动。 1. 角位移 角位置
其方向为: 其方向为: 初位置指向末位置
∆r
N B
r1
O
r2
7
1.1 参考系 位置矢量
位移
∆r = MN
M A
路程 质点在某段时间内所经过 的轨迹长度。 的轨迹长度。
∆S
∆S
∆r ≤ ∆S
∆r = r2 − r1
∆r ≠ ∆r
r1
O
∆r
N B
r2
思考: 号何时成立? 思考:等号何时成立? 位移性质: ) 位移性质: 1)矢量性 ( (2)相对性(参考系) )相对性(参考系)

第1章 质点运动学

第1章 质点运动学
r
dr υ= dt
方向: 方向:切线方向
速度是位置矢量对时间的一阶导数
第一章 质点运动学 9
3) 平均速率和瞬时速率 平均速率
S υ= t
S dS υ = lim = dt 0 t → t
运动路径
P (t1 )
瞬时速率 讨论
υ
r
s
Q(t2 )
速度的矢量性、瞬时性和相对性。 1) 速度的矢量性、瞬时性和相对性。 2) 速度和速率的区别


第一章 质点运动学
18
§1-4 用自然坐标表示平面曲线运 动中的速度和加速度
自然坐标系 (用自然坐标 表示质点位置) 用自然坐标S表示质点位置 表示质点位置)
设质点作曲线运动,且轨迹已知, 设质点作曲线运动,且轨迹已知,则 选参考点和正方向即可建立自然坐标。 选参考点和正方向即可建立自然坐标。运 动方程为: 动方程为: s = s(t) 单位切向量τ : 长度为 ,沿切向指向运动方向 长度为1, 单位法向量 n: 长度为 ,沿法向指向凹的一侧 长度为1,
S = Rωt
第一章 质点运动学 7
§1-2 质点的位移、速度和加速度 质点的位移、
一、位移
描述质点位置变化的物理量 几何描述: 几何描述: PQ 数学描述: 数学描述: r
= r ( t + t ) r ( t )
r( t )
P S Q r
r ( t + t )
r
讨论 (1) 位移是矢量(有大小,有方向) 位移是矢量(有大小,有方向) 位移不同于路程 r ≠ S (2) 位移与坐标选取无关 (3) 由质点的始末位置确定, 由质点的始末位置确定, 与中间运动过程无关 (4) 分清 r 与r 的区别
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
cos y r
cos z r
方向余弦满足以下关系
y
y
r
j oi
zk
x
P (x,y,z)
x
cos2cos2czos21
六、运动方程与轨道
质点的位置与运动时间(t)有关,位置矢量满足
一定的函数关系:
rr(t)
或:
r ( t) x ( t) i y ( t) j z ( t) k
称为质点运动方程
二、坐标系
坐标系:由固结在参考系上的一组有刻度的射线、 曲线或角度表示。
• 坐标系为参考系的数学抽象(两者相对静止)
• 坐标系可任选,以描述方便为原则
*在同一参考系中,用不同的坐标系描述同一物 体的运动时,其数学表述不同-与坐标系的选择 有关。
• 常用的坐标系:
•直角坐标系 (x , y , z)
R
: 角加速度
质点作匀加速圆周运动时,其角位置、角位移、角 速度和角加速度等角量间的关系与质点作直线运动 中各个线量间的关系完全对应,即
0 t
0 0t
1 2
t2
2
2 0
2
(
0)
要说明的是:
平均速率和瞬时速率反映质点运动过程中的不 同信息。
也就是说,平均速率和瞬时速率有不同的物理 意义,它们强调质点运动过程中关于运动快慢的不同 方面。
(1)平均速率更强调在一有限时间段内的总体运动 效果;
(2)瞬时速率更强调运动过程中的细节。
某些典型速度大小的量级 单位:(m·s-1) 光 已知类星体最快的退行 电子绕核的运动 太阳绕银河中心的运动 地球绕太阳的运动 第二宇宙速度 第一宇宙速度 子弹出口速度 地球的自转(赤道) 空气分子热运动的平均速度(室温) 空气中的声速 民航喷气客机 人的最大速度 人的步行 蜗牛爬行 冰河移动 头发生长 大陆漂移
•球坐标系
(r, , )
•柱坐标系
(, , z)
•自然坐标系
三、空间和时间
物质的运动发生在空间和时间之中,要在参考系 中定量地描述物质的运动就需要测量空间的间隔 和时间的间隔
•空间反映了物质的广延性,是与物体的体积 和物体的位置变化联系在一起的
•时间所反映的是物理事件发生的顺序性和持续性
•1967年10月第13届国际计量大会上关于秒的定义: “1秒(s)是铯-133原子基态的两个超精细能级 在零磁场中跃迁所对应的辐射的9,192,631,770个 周期的持续时间”。
1.2 质点的位移和速度
一、位移
设在 t 时间内质点从A 运动到B,则质点在 t
时间内的位移定义为:
y
s
A r
B
rA
rB
rAB
z
O
x
由图可知位移与初、末时刻位置矢量的关系:
rrBrA
位移的性质: 1. 矢量性
如图所示:位移满足矢量叠加性质。
即在t1+ t2时间内的总位移满足:
A C A B B C
dxidy jdzk dt dt dt
vvxivyjvzk
速度分量为:
vx
dx dt
vy
dy dt
速率为:
v v
dz vz dt
vx2 vy2 vz2
[例1-1]
质点的运动方程为
x A cost
y
A sin
t
讨论质点的运动性质。
解: 位置矢量:
yv
rxi yj
A c o sti A s intj
3.0×108 2.7×108 2.2×108 2.0×105 3.0×104 1.1×104 7.8×103 ~7×102 4.6×102 4.5×102 3.3×102 2.7×102
12 1.3 ~10-3 ~10-6 3×10-9 10-9
三、速度的分量形式 1. 直角坐标系
v dr dt
(1)平均加速度更强调在一有限时间段内速度变化的 总体效果;
(2)瞬时加速度更强调运动过程中速度变化的细节。
某些常见事件的加速度/(m/s2)
电梯启动
1.9
飞机起飞
4.9
地球表面自由落体
9.8
月球表面自由落体
1.7
太阳表面自由落体
2.7×102
使人昏晕
约70
火箭升空
约50~100
子弹在枪膛中的运动
加速度的大小为
a a ax2 ay2 az2
d2x2 d2y2 d2z2
dt2
dt2
dt2
*圆周运动
a
dv dt
et
v2
en
v d s d (R ) R d
s
oR
d t dt
R
dt d d t : 角速度
at
dv dt
R d dt
R
d dt
an
1
v2
1 ( R ) 2 R 2
五、质点的位置坐标和位置矢量 y
•直角坐标系
质点位置:
P(x, y, z)=P(t)
位置矢量(或矢径):
P (x,y,z)
y
r
j
oi
zk
x
x
z
roPrrˆ
位置矢量在直角坐标 系中可用单位矢量表 示为:
rxiyjzk
y
y
r
j oi
zk
x
P (x,y,z)
x
z
位矢的方向可以由三个方向余弦来表示
cos x r
3.2×107 8.6×104 5×102
1 10-3 10-6 10-9 10-12 10-15 10-18 10-21 10-24 10-43
四、质点 1. 物体的大小、形状可忽略时 2. 运动过程中,物体各部分运动相同 (如物体的平动 ) •物体可以看作质点 该“点”-具有该物体相同的质量
•而真实物体可以看成无穷多质点的集合
4×1016
太阳到冥王星的距离
1012
日地距离
1.5×1011
地球半径
106
五线电中波波长
103
核动力航空母舰长
3×102
小孩高度
1
尘埃
10-3
人类红血球细胞直径
10-6
细菌线度
10-9
原子线度
10-10
核的线度
10-15
普朗克长度
10-35
表2 一些典型物理现象的时间尺度
宇宙年龄
1018
太阳系年龄

o
x
r x2 y2 A
速度:vdxidyjdzk dt dt dt
A s i n t i A c o stj
速度大小
v vx2 vy2
y
( A sint)2(A cost)2
v

Aconst.
o
x
匀速圆周运动!
vr0所以,速度沿切线方向!
1.3 质点的加速度
y
vA
一、加速度定义
A
设在 t 时间内质点从A运 动到B,
rA
rB
则质点在 t 时间内的平
o
均加速度定义为:
z
a v t
vA
瞬时加速度 a lim v
( t 0)
t0 t
vB
d v d 2r dt dt2
B
vB
x
v
要说明的是:
平均加速度和瞬时加速度反映质点运动过程中速 度变化的不同信息。
也就是说,平均加速度和瞬时加速度有不同的物 理意义,它们强调质点运动过程中关于运动速度变化 的不同方面。
约5×105
质子在加速器中的运动
约1013~1014
二、加速度的分量形式
1. 直角坐标系
a d v dvxidvy jdvz k d t dt dt dt
d2xid2yjd2zk dt2 dt2 dt2
ax
dvx dt
d2x等等 dt2
加速度在直角坐标系中的三个分量分别等于相应速度 分量对时间的一阶导数,或相应坐标分量对时间的二 阶导数
1.4×1018
原始人 最早文字记录 人的平均寿命
地球公转(一年) 地球自转(一天) 太阳光到地球的传播时间 人的心脏跳动周期
中频声波周期 中频五线电波周期 Π+介子的平均寿命
分子转动周期 原子振动周期(光波周期)
光穿越原子的时间 核振动周期
光穿越核的时间 普朗克时间
1013 1.6×1011
109
•长度单位是1983年10月第17届国际计量大会上关 于米的定义:“1米(m)是光在真空中时间间隔 (1/299,792,458)s内所经路经的长度” 。
表1 一些典型物理现象的空间尺度
已观测到的宇宙范围
1026
星系团半径
1023
星系间距离
2×1022
银河系半径
7.6×1022
太阳到最近恒星的距离
O
注意:速度为矢量! (1) 方向
t 0时,
B A, r
沿A点处轨道的切线方向
s e t
A
B
r
r (t ) r(tt)
O
(2) 大小
v v dr dt
r lim
t0 t
m slim r
t 0
t 0
O
v lim s t0 t
ds dt
速度大小与速率相等!
1.1 质点运动学基本概念
一、参考系 用来描述物体运动而选作参考的物体、或相对静 止的物体系。
• 运动的相对性决定描述物体运动必须选取参考系 • 在运动学中,参考系可任选,但以描述方便为原则 • 不同参考系中,对物体运动的描述不同如轨迹、 速度等)——称为运动描述的相对性
相关文档
最新文档