地铁工程施工测量技术方案

合集下载

轨道交通工程施工测量方案

轨道交通工程施工测量方案

轨道交通工程施工测量方案一、施工测量的必要性轨道交通工程是指为满足城市高效便捷的交通需求,在地面或地下进行施工的交通线路,例如地铁、轻轨等。

轨道交通工程涉及到大量的工程测量工作,这是因为轨道交通工程需要保证线路的平整、车站的准确位置和通车的安全。

施工测量的主要目的包括:确保工程施工的精度和质量,为设计提供出具施工图纸成果,提高施工效率,节约成本,保证工程的安全性等。

二、施工测量的内容轨道交通工程施工测量的内容包括:线路测量、车站测量、土建测量、安装测量等。

1. 线路测量(1)线路纵断面测量:测量线路的纵断面地形、曲线半径、坡度等,以确定线路的设计参数和平面布置。

(2)线路横断面测量:测量线路的道床、轨面、路基等各部分的横断面,以确定各部分的平面布置。

(3)道岔测量:道岔是轨道交通系统的重要设施,需要通过道岔测量确定其准确位置和角度,保证列车的安全通行。

2. 车站测量(1)车站平面布置测量:针对车站区域的道岔、站台、站内设施等进行平面布置测量,以确定车站的尺寸和位置。

(2)站台高程测量:测量车站站台的高程,以确定客车乘降的便利性。

(3)站房测量:测量车站站房、站内设施的位置、尺寸和结构形式,为其施工和安装提供准确数据。

3. 土建测量(1)地形测量:测量轨道交通线路所经过的地形情况,包括地表高程、地貌特征、自然地质、水文地质和交通地理等。

(2)凿岩量测量:凿岩是轨道交通工程中常见的隧道施工方式,需要对凿岩量进行测量,确定施工工艺和施工进度。

4. 安装测量(1)轨道安装测量:测量轨道的轨距、轨面坡度、轨道垂直和水平偏差等,保证轨道的安装精度。

(2)信号设备测量:测量信号设备的位置、高度、角度等参数,确保信号设备的安全性和可靠性。

三、施工测量的方法轨道交通工程施工测量的方法主要包括:全站仪法、激光法、GPS定位法、测距仪法等。

1. 全站仪法全站仪是一种高精度的光电仪器,它可以测定地面物体三维坐标及其高程、测量水平角和垂直角等,并利用计算机进行数据处理以达到一定的工程精度。

地铁工程施工测量技术方案

地铁工程施工测量技术方案

地铁工程施工测量技术方案一、背景随着城市交通的日益繁忙,地铁建设已经成为解决交通压力的重要方式之一、地铁工程建设涉及到许多专业技术,其中测量技术在地铁工程的设计、施工和验收等阶段都起到了重要的作用。

地铁工程施工测量技术方案的目的是通过对地铁工程的测量,确保工程建设的精确性和质量,以及为后续步骤提供准确的数据支持。

二、目标1.提供准确的地铁工程设计数据,保证工程建设的精确性和质量。

2.测量地铁建设过程的进展,及时发现和解决问题,确保工期的顺利进行。

3.为地铁工程的验收和后续维护提供准确的数据支持。

三、技术方案1.前期调研:在地铁工程施工之前,进行周边环境调查和工程规划,确定测量点和设备的布置方案。

2.地形测量:使用全站仪或激光测距仪对工程所在区域的地形进行测量,获得地形高程数据。

3.坐标控制测量:在工程区域内设置控制点,使用全球卫星定位系统(GPS)进行测量,建立起坐标基准系统,为后续测量提供准确的坐标数据。

4.基坑测量:在地铁建设的基坑区域进行测量,包括基坑底部的水平度和垂直度、基坑土方开挖量等数据的测量。

5.隧道测量:对地铁隧道进行内部和外部的测量,包括隧道的几何形状、纵断面和横断面等数据的测量。

6.结构测量:对地铁工程的桥梁、洞口和固定设备等结构进行测量,确保结构的准确性和安全性。

7.施工进度测量:根据工程的施工进度,进行测量和监控,及时发现和解决施工中的问题,确保工程的顺利进行。

8.验收测量:在地铁工程完成后,进行验收测量,包括地铁线路的曲线半径、坡度、地下管道的埋深等数据的测量,确保工程符合设计要求。

9.后续维护测量:地铁工程建设完成后,定期进行维护测量,保证地铁线路和设备的安全运行。

四、设备和人员1.全站仪和激光测距仪:用于地形和隧道测量。

2.全球卫星定位系统(GPS):用于坐标控制测量。

3.土方机械和挂具:用于基坑测量和土方开挖量的测量。

4.结构测量仪器:用于结构测量。

5.测量技术人员:包括测量工程师和测量员,负责测量仪器的操作和数据的处理。

地铁工程施工测量方案

地铁工程施工测量方案

第六篇工程施工测量第一章施工测量的组织和管理1。

1 本标段施工测量的技术要求⑴施工测量的方法及精度要求严格遵守《地下铁道、轻轨交通工程测量规范》(GB50308—)。

根据《地下铁道、轻轨交通工程测量规范》(GB50308-)规定,地铁车站和区间施工测量中线和高程的总贯通误差为m横≤±50mm,m纵<L/10000,m竖≤±25mm。

为保证总贯通误差,地铁有关施工测量的误差分配按表6。

1—1标准执行。

地铁测量的误差分配表表6.1-1⑵测量的内外业执行复核和检算制,控制网点平差及其他数据由两组人员独立进行计算,并及时较核。

重要部位的放样宜采用不同的方法和不同的路线检核测设,以确保正确.⑶测量工作根据人员和仪器设备状态选择方法,优先采用具有闭合条件的方法,避免误差超限产生和错误。

使用全站仪数字化测量时,制定并落实误差监控手段,对各种误操作必须有查错功能和纠错能力。

⑷测量外业原始记录完整,测量成果资料齐全、计算准确、文整清楚,必须有计算者、复核者签字,项目总工程师签认。

1。

2 测量队的人员组成和仪器配备为确保地铁建筑物空间位置及几何尺寸的准确性,将误差控制在规定范围之内,保证施工测量的精度,我公司将派具有地下工程测量经验的专业测量工程师和经专业培训持测绘证的测量人员组成专业测量队,负责施工测量工作。

并根据工程项目需要的规范要求标准配备测量仪器,用于现场施工测量.测量队人员组成见表6。

1-2,配备测量仪器清单见表6.1—3. 1。

3 测量队的工作职责和日常管理1.3。

1 测量队的工作职责测量队执行技术责任制,并对项目总工程师负责;⑴负责各控制网点的接收、管理和对控制网点的复测,注意对首级及二级控制网点进行复核;⑵负责对业主所交的GPS点、水准点的复测;⑶负责配合业主及监理有关测量复测及检查工作,负责对业主及监理书面申报测量实施方案及测量成果,并对所报资料的完整性、正确性负责;⑷负责对施工作业队的测量工作进行检查、指导、复测;测量队人员组成表6.1-2测量仪器清单表6。

地铁工程测量方案

地铁工程测量方案

地铁工程测量方案一、背景地铁工程是一项复杂的工程项目,需要进行多种测量工作来确保工程的准确性和安全性。

地铁工程的测量工作包括地理测量、地形测量、建筑测量、地质测量等多个方面,需要采用多种测量方法和技术。

在地铁建设过程中,测量工作的准确性直接影响地铁的施工质量和运营安全,因此需要制定科学合理的测量方案来保障工程的顺利进行。

二、测量范围地铁工程测量范围非常广泛,包括地铁线路、地铁站点、隧道、桥梁、地下管线、环境等多个方面。

其中,地铁线路是地铁工程的主要部分,需要进行地形测量、地形测量、建筑测量等方面的测量工作。

地铁站点是地铁工程的重要节点,需要进行站台、进出口、轨道、轨道设备等多个方面的测量工作。

隧道和桥梁是地铁工程的重要组成部分,需要进行地质、地形、结构测量等多个方面的测量工作。

地下管线是地铁工程的隐患之一,需要进行管线位置、管线材质、管线埋深等多个方面的测量工作。

环境是地铁工程的工作环境,需要进行气象、水文、污染等多个方面的测量工作。

三、测量方法1.地形测量地形测量是地铁工程中重要的测量工作之一,需要采用多种测量方法和技术来完成。

地形测量的主要方法包括地面测量和地下测量两种。

地面测量主要采用全站仪、经纬仪、GPS、遥感等多种仪器和技术,实施地表高程控制、道路、桥梁、河流等地貌特征测量。

地下测量主要采用地下雷达、挖掘机、管线探测仪等仪器和技术,实施地下地貌、地下管线、地下水文等测量。

2.地质测量地质测量是地铁工程中必不可少的测量工作之一,需要采用多种测量方法和技术来保证地下工程的安全施工。

地质测量的主要方法包括地质勘探、地质探测、地质雷达等多种方法。

地质勘探主要采用岩芯钻探、岩土样品分析、地下水位观测等方法,实施地质勘查、地质构造、地下水文等测量。

地质探测主要采用地震勘探、爆炸反射法、声波测井法等方法,实施地下构造、地震动力学、地下水文等测量。

3.建筑测量建筑测量是地铁工程中的重要测量工作之一,需要采用多种测量方法和技术来保证地下建筑的准确施工。

地铁铺轨工程测量施工方案

地铁铺轨工程测量施工方案

地铁铺轨工程测量施工方案1、施工背景地铁铺轨工程是地铁建设中重要的一环,其质量关系到地铁运行安全和乘客的舒适度。

测量施工是地铁铺轨工程中的第一道工序,其准确性和精细度对后续的施工工艺和工程质量有重大影响。

因此,编制一份科学合理的地铁铺轨工程测量施工方案对于保证工程质量和工期进度至关重要。

2、测量对象地铁铺轨工程的测量对象主要包括地下隧道、站台、轨道线路等。

隧道测量主要涉及隧道的尺寸、形状、水平及垂直度、倾角等;站台测量主要涉及站台的尺寸、相对高差、水平度等;轨道线路测量主要涉及轨道线路的轨面坡度、轨面间距、直线度等。

同时,还需充分考虑地铁运行的安全要求,确保测量数据的准确性和连续性。

3、测量方法(1)传统测量:传统测量方法主要包括使用全站仪、水准仪、测距仪等测量仪器,以及使用钢尺、尺子、划线工具等手持测量工具进行测量。

这种方法适合对于简单的隧道、站台以及轨道线路的测量,具有简单、便捷、成本低等特点。

(2)激光测量:激光测量是一种高精度的测量方法,主要利用激光测距仪、激光水平仪等高科技仪器进行测量。

这种方法适合对于复杂的隧道形状、大范围的站台以及长距离的轨道线路测量,具有精度高、速度快、自动化程度高等特点。

(3)GPS测量:GPS测量是一种利用全球定位系统进行测量的方法,主要适用于大范围的轨道线路测量,具有范围广、精度高等特点。

4、测量方案(1)选择合适的测量方法:根据具体的测量对象和测量要求,选择合适的测量方法进行测量。

(2)确定测量控制点:根据测量对象的位置和形状,确定测量控制点的位置和数量,以确保测量数据的准确性和连续性。

(3)编制测量程序:根据测量的具体要求,编制测量程序,明确每一个测量环节的工作内容和方法。

(4)设置测量基准:根据测量对象的实际情况,设置合适的测量基准,以确保测量数据的一致性。

(5)实施测量工作:按照测量程序和方法,分别进行隧道、站台、轨道线路的测量工作。

(6)处理测量数据:对测量所得的数据进行处理和分析,生成测量数据报告,以供后续工程设计和施工使用。

地铁工程施工监测方案

地铁工程施工监测方案

地铁工程施工监测方案监测目的:一是通过对监测信息的分析指导后续工程的施工,二是确保周围建筑物的稳定及施工安全,三是为今后类似工程的建设提供经验.根据招标文件中有关施工监测部分的精神,结合本工程的地理位置及基坑的开挖深度和工程结构型式的特点来考虑,我们认为监测重点为监测围护结构的水平位移及沉降、地表变形、钢支撑受力、地下水位以及地下管线变形等方面监测。

1.监测组织与程序建立专业监测小组,根据业主要求委托有资质和有业绩的单位进行,并由具备独立资质有丰富施工经验、监测经验及有结构受力计算、分析能力的工程技术人员组成。

负责监测方案的制定、监测仪器的埋设和调试、监测数据的收集、整理和分析,并采用先进可靠的计算软件,快速、及时准确的反馈信息,指导施工。

同时与预测的数据进行对照,有利于及时发现异常,及早采取措施。

2. 监测项目地下工程按信息化设计,现场监控量测是监视围岩稳定、判断支护衬砌设计是否合理安全、施工方法是否正确的重要手段,通过监控量测:将监测数据与预测值相比较,判断前一步施工工艺和支护参数是否符合预期要求,以确定和调整下一步施工,确保施工安全和地表建筑物、地下管线的安全。

将现场测量的数据、信息及时反馈,以修改和完善设计,使设计达到优质安全、经济合理。

将现场测量的数据与理论预测值比较,用反分析法进行分析计算,使设计更符合实际,以便指导今后的工程建设。

测点布置、监测手段与监测频率现场监控量测项目、测点布置、监测手段与监测频率详见明挖段监控量测表。

3.监测方案及相应措施1)地面沉降(1)监测方法:主要监测基坑开挖引起的地表变形情况。

监测方法是在地表埋设测点,用水准仪进行下沉的量测。

根据量测结果进行回归分析,判断基坑开挖对地表变形的影响。

(2)测点布置原则:测点布置在基坑周围地面上,间距10~20米。

(3)量测频率:见监测项目汇总表(4)量测精度:±1mm(5)相应对策: 当地表沉降速度过大,加快监测频率,必要时,停工检查原因,采用加强支撑和加固地层的措施保证施工安全。

地铁线路测量施工方案

地铁线路测量施工方案

地铁线路测量施工方案地铁线路的测量施工是确保地铁线路规划与建设能够顺利进行的重要环节。

本文将详细介绍地铁线路测量施工方案,包括施工前准备、测量方法、数据处理与分析以及安全保障等内容。

一、施工前准备为了保证地铁线路测量施工的顺利进行,需要进行充分的准备工作。

首先,需对施工范围进行详细的调查和勘察,了解地质地形条件,检查是否存在障碍物。

其次,需要确定测量设备和工具的类型和数量,确保能够满足施工需要。

同时,组织测量团队,明确各个成员的职责和任务,确保协同工作。

最后,制定详细的施工计划,明确时间节点和工作顺序,确保施工进度。

二、测量方法地铁线路测量可以采用多种方法,根据实际情况选择合适的方法进行。

一般情况下,常用的测量方法包括全站仪法、导航定位法和激光测距法。

全站仪法适用于测量地铁线路的平面和高程位置,通过多次观测取平均值以提高测量的准确性。

导航定位法适用于测量地铁线路的位置与方向,通过安装导航设备进行实时定位。

激光测距法适用于测量地铁线路的距离和高差,通过激光测距仪进行测量。

三、数据处理与分析测量完成后,需要进行数据的处理和分析,以获取准确的地铁线路数据。

首先,对测量数据进行筛选和清理,排除异常数据和误差。

然后,进行数据的计算和处理,包括坐标计算、高程计算以及线路方向计算等。

最后,进行数据的分析,对线路的走向、坡度和曲率等进行评估和判断,以确定线路是否符合设计要求。

四、安全保障地铁线路测量施工需要重视安全保障措施,以确保工作人员和施工设备的安全。

首先,进行周边环境的安全评估,确保测量工作不会对周边建筑物和人员造成危险。

其次,严格遵守测量设备的操作规范,确保设备正常运行和使用。

同时,加强对工作人员的培训和安全意识教育,提高他们的工作安全意识和应急处理能力。

最后,在施工现场设置警示标志和安全防护措施,确保施工现场的安全。

五、总结地铁线路测量施工方案是确保地铁线路规划与建设顺利进行的重要保障。

本文详细介绍了地铁线路测量施工的准备工作、测量方法、数据处理与分析以及安全保障等内容。

轨道工程施工测量方案

轨道工程施工测量方案

轨道工程施工测量方案一、项目概况本工程是铁路施工项目,涉及轨道铺设、路基修建和相关设施建设。

施工测量是铁路工程中的重要一环,它直接影响到工程的质量和进度,因此必须严格执行相关规范,确保测量准确无误。

二、施工测量任务1、轨道铺设测量:包括轨道轨面及轨道几何参数的测量,确保轨道的平整度、垂直度和轨面标高满足设计要求。

2、路基测量:包括线路线形、路基高程和路基坡度的测量,确保路基的平整度和坡度满足设计要求。

3、相关设施测量:包括信号设备、电气设备及通信设备的安装位置测量,确保设施安装准确无误。

三、施工测量方法1、轨道铺设测量:(1)采用全站仪进行轨道轨面的高程测量,测量间隔根据工程要求确定。

(2)采用测距仪进行轨道线形、几何参数的测量,确保轨道的垂直度和轨面标高满足设计要求。

2、路基测量:(1)采用全站仪进行路基高程测量,测量间隔根据工程要求确定。

(2)采用测量车进行路基平整度和坡度的测量,确保路基的平整度和坡度满足设计要求。

3、相关设施测量:(1)采用全站仪进行设施安装位置的测量,确保设施安装准确无误。

四、施工测量控制要点1、测量前的准备工作:测量前需进行现场勘测,确定测量点位和测量范围,根据工程要求确定测量方法和测量间隔。

2、测量过程的质量控制:测量过程中要保持测量仪器的准确性,对测量数据进行实时监测和校核,确保测量结果准确无误。

3、测量后的数据处理:对测量数据进行整理和归档,编制成测量报告,供工程管理部门参考。

五、施工测量安全防护1、施工现场应设置警示标志,禁止无关人员进入测量区域。

2、测量人员需穿戴合格的安全防护用具,遵守工程现场安全规定。

六、施工测量质量验收1、测量数据应满足设计要求,并经过工程管理部门的审查和认可。

2、经过质量验收合格后,方可进行下一步施工工序。

综上所述,本施工测量方案严格按照相关规范和工程要求进行设计,确保测量工作准确无误,为工程施工的顺利进行提供有力保障。

同时,施工中应按照方案的要求,严格执行,确保施工质量和进度。

地铁测量方案范文

地铁测量方案范文

地铁测量方案范文地铁是目前城市交通中最为常见的一种交通工具,它的快捷、方便、环保等特点受到了广大市民的喜爱。

然而,在地铁的建设过程中,需要对地铁线路进行精密的测量,以确保地铁的安全运营。

下面将详细介绍地铁测量的方案。

地铁测量主要涉及地面控制点的建立、地下控制点的建立、线路走线和隧道纵断面的测量等内容。

以下是详细的测量方案:1.地面控制点的建立:地面控制点是地铁测量的基础,必须准确、可靠。

首先需要选定参照点,如建筑物的墙角或道路的拐点。

然后需要在参照点上打上固定的点或铜踏板,并在附近的地面上打上辅助点。

通过测量这些点的坐标,可以建立地面控制网。

2.地下控制点的建立:地下控制点是为了控制地铁线路的走线,一般位于地下隧道内。

首先需要确定地下控制点的位置,可以利用地面控制点或者现有测量数据进行定位。

然后需要采用精密测量仪器,在地下进行测量,测量的内容包括点的坐标和高程。

3.线路走线的测量:线路走线是地铁工程中最为重要的一项测量任务。

它涉及地铁线路的平面和空间走线。

平面走线主要通过控制点控制线的走向,使用全站仪、经纬仪等测量仪器进行测量,确定地铁线路的位置。

空间走线主要通过隧道纵断面的测量和平面走线数据的分析,确定地铁线路的高程,以确保地铁线路的通过高度与设计要求一致。

4.隧道纵断面的测量:隧道纵断面的测量是为了确定隧道的高程和坡度,以确保地铁线路的坡度达到设计要求。

测量方法一般采用全站仪和水准仪,通过在隧道内不同位置的测量,可以获得隧道纵断面的高程和坡度数据。

总之,地铁测量是保障地铁工程建设质量和安全运营的关键环节。

通过地面和地下控制点的建立、线路走线和隧道纵断面的测量等工作,可以确保地铁线路的准确走线和合理布局。

只有在地铁测量方案的指导下,才能保证地铁工程的安全和高效运营。

地铁施工控制测量技术分析

地铁施工控制测量技术分析

地铁施工控制测量技术分析一、地铁施工控制测量技术的基本原理和应用场景地铁施工控制测量技术的基本原理是通过使用现代计算机辅助设计(CAD)软件,在数字地图上建立地铁工程的三维模型,然后将其转换为二维图形,进行精准的空间数据计算和定位,以确保地铁工程的准确施工和质量监管。

地铁施工控制测量技术的应用场景主要包括以下几个方面:1、地铁基础工程的定位和测量。

地铁的基础工程包括地铁的基础底板、基坑和地下结构等部分,这些工程的定位和测量是地铁施工的第一步,通过地铁施工控制测量技术的应用,可以精确定位地铁基础的坐标和高度,确保地铁基础工程的施工质量。

3、地铁站台和设备的定位和测量。

地铁站台和设备的定位和测量是地铁工程中非常重要的一部分,这些设备的定位和测量直接影响地铁的使用效果和安全性。

通过地铁施工控制测量技术的应用,可以精确定位地铁站台和设备的中心线、坡度和高度等参数,并能对其进行精确的监控和分析,确保地铁站台和设备的施工质量和安全性。

地铁施工控制测量技术的技术难点主要集中在以下几个方面:1、地铁施工环境的复杂性。

地铁施工环境千变万化,施工条件复杂,地形地貌不规则,需要对施工环境进行精准的计算和分析,以保证施工的准确性。

2、地铁建筑物的多样性。

地铁建筑物具有多样性,不同地铁建筑物的施工控制测量技术方法也不尽相同,因此需要灵活运用现代测量技术,根据地铁建筑物的不同特点、不同施工环境和要求,制定不同的测量方案。

3、施工时间紧、任务重。

地铁工程施工时间紧、任务重,需要在有限的时间内完成大量的测量工作,因此需要精通现代测量技术,快速准确地完成施工任务。

2、应用智能化测量设备。

智能化测量设备是指通过计算机辅助技术将现代测量仪器与工作现场连接,实时监控地铁工程施工过程,快速准确地获取地铁工程的施工数据和测量结果。

通过智能化测量设备的应用,可以大大提高地铁施工控制测量技术的效率和实用性,实现地铁工程的高效施工和质量监管。

总之,地铁施工控制测量技术是地铁工程中非常重要的一部分,对地铁工程的质量和安全性有着至关重要的作用。

佛山地铁施工测量方案终极版

佛山地铁施工测量方案终极版

佛山市城市轨道交通2号线(一期)TJ2标工程施工测量方案编制人:审核人:批准人:中交隧道工程局有限公司日期:年月日第1章工程概况 (1)第2章作业依据及执行规范 (6)第3章测量作业任务和测量管理组织机构 (7)第4章加密控制测量 (12)第5章联系测量 (32)第6章地下控制测量 (36)第7章施工测量 (38)第8章施工测量管理制度及技术保障措施 (56)第9章其它 (59)第1章工程概况1.1本标段工程概况我局承建佛山城市轨道交通工程位于佛山市禅城区,沿魁奇西路、魁奇路、魁奇一路、魁奇二路自西向东布置,起于石湾站ZCK31+806,止于湾华站ZCK37+253,线路全长5447米。

本标段设计范围包含4站4区间,车站分别为番村站(车站长460m)、魁奇路站(车站长196.5m)、石梁站(车站长216m)和湾华站(车站东西向长312m,南北向长322.5m);区间均为盾构区间,分别为石湾站~番村站区间(单线长1333米)、番村站~魁奇路站区间(单线长873.94米)、魁奇路站~石梁站区间(单线长1083.162米)和石梁站~湾华站区间(单线长701.099米)其工程平面位置图见图1-1。

本标段为广东省佛山市城市轨道交通2号线TJ2标工程,施工范围包括4站4区间,即石湾站~番村站盾构区间、番村站主体及出入口、风亭风道等附属结构、番村站~魁奇路站盾构区间及明挖区间、魁奇路站主体及出入口通道、风亭风道及冷却塔等附属结构、魁奇路站~石梁站盾构区间及明挖区间、石梁站主体及出入口、风亭风道等附属结构、石梁站~湾华站盾构区间、湾华站主体及出入口、风亭风道及联络通道等附属结构。

工程范围示意图见图2-1。

图1-1 工程平面位置图1.2工程环境本标段为广东省佛山市城市轨道交通2号线TJ2标工程,施工范围包括4站4区间,即石湾站~番村站盾构区间、番村站主体及出入口、风亭风道等附属结构、番村站~魁奇路站盾构区间及明挖区间、魁奇路站主体及出入口通道、风亭风道及冷却塔等附属结构、魁奇路站~石梁站盾构区间及明挖区间、石梁站主体及出入口、风亭风道等附属结构、石梁站~湾华站盾构区间、湾华站主体及出入口、风亭风道及联络通道等附属结构。

地铁工程施工测量技术

地铁工程施工测量技术
偶数站上为:前——后——后——前 返测:奇数站上为:前——后——后——前
<2>每一测段的往测与返测,宜分别在上午、下午进行,也 可以在夜间观测,由往测转向返测时,两根标尺必须互 换位置.
<3>精密水准测量观测的视线长度、视距差、视线高不应 超过表2的规定.
表3 精密水准测量观测的视线长度、视距差、视线
与中丝读数差
3.0
检测间歇点高差之 差
1.0
<5>精密水准测量的主要技术要求应符合表4规定. 表5 精密水准测量的主要技术要求
每千米高差中 数中误差(mm)
偶 然 中 全中误差 误 差
附和水 准线路 平均长 度(KM)
水准仪 等级
水准 尺
观测次数
与已知点联 测
附合或环线
± 2
±4
2~4
DS1 因瓦 往返各一次 往返各一次
注:L为往返测段、附和或环线的路线长度(以KM计),N为单程的测站数
往返较差、附和或环 闭合差(mm)
平坦地
±8√L
<6>两次观测高差超限时应重测.当重测成果与原测 成果比较,其较差均不超过限值时,应该取三次成 果的平均数.
1.2.3观测成果处理 每千米水准测量的高差偶然中误差应按照下式计算:
M=±√〔[△△/L]/〔4N 式中:M--高差偶然中误差〔㎜
两井定向时,是利用地面近井点才用导线测量方法直接测 定两根钢丝的平面坐标值;在地下隧道中,将已经布设 好的地下导线与竖井中的钢丝的联测,即可以将地面坐 标系中的坐标和方位传递到地下,经计算求出地下导线 各点的坐标与导线边的方位角,两井定向示意图如下:
β α1
α
A
bc
a

地铁工程施工测量方案

地铁工程施工测量方案

地铁工程施工测量方案_物业经理人地铁工程施工测量方案本标段施工测量采纳地面布置掌握导线点。

利用光学垂准仪及相关测量设备向地下隧道内投点掌握主体构造施工。

某东路站从西南、东北风井向下投点定出地下导线基线并传递高程,来掌握主体构造施工。

某桥~某东路站区间从区间施工竖井,向隧道内投点定出地下导线基线并传递高程,来掌握主体构造施工。

1 地面掌握测量1.1 平面掌握测量对业主供应的掌握导线点进展复测,并与相邻标段及接近掌握点进展贯穿联测。

利用全站仪进展地面施工导线布设,导线点埋设混凝土标石。

1.2 高程掌握测量对业主供应的周密水准点进展复测并与接近水准点贯穿联测。

使用周密水准仪和标尺在供应的水准点之间加密水准网,布设成闭合环线,闭合差≤±8√L mm(L为环线长度,以千米计),操作方法精度指标执行Ⅱ等水准点测量要求。

2 联系测量2.1 趋近测量从地面掌握点采纳趋近导线向风井和竖井引测坐标和方位,趋近导线拆角个数不多于3个,来回总长不大于350m,相对点中误差≤±10mm,定出施工导线点的精确位置。

2.2 地下定向采纳光学垂准仪进展风井、竖井投点,每次投点独立进展,共投三次。

三次点位互差≤±2mm,取中为最终位置。

风井、竖井各投出三点,利用小三角网指导地下施工。

2.3 高程传递利用加密水准网点作趋近水准测量,按Ⅱ等水准测量方法和仪器施测,限差≤±8√L mm。

使用检定过的钢尺用悬吊的方法经风井或竖井传递高程,上、下两台水准仪同时观看读数,每次错动钢尺3~5cm,共测三次。

高差较差掌握在±5mm以内,取平均值使用。

地下高程传递与坐标传递同步进展。

3 地下掌握测量地下施工掌握测量用掌握导线,直线隧道掘进大于200m时,曲线隧道掘进到直缓点时,埋设洞内导线掌握点,直线隧道施工掌握导线点平均边长150m,特别状况下,不短于100m。

曲线隧道施工掌握导线点埋设在曲线五大桩点上,一般边长不小于60m。

城市轨道交通地铁项目施工测量方案

城市轨道交通地铁项目施工测量方案

城市轨道交通地铁项目施工测量方案1.1施工测量1.1.1施工测量技术要求施工测量是标定和检查施工中线、测设坡度和放样建筑物,测量是施工的导向,是确保工程质量的前提和基础。

地铁工程施工测量的施测环境和条件复杂,要求的施测精度又相当高,必须精心施测和进行成果整理,工程测量成果必须符合相关规范的要求。

①施工测量按招标文件和施工图纸、《城市测量规范》(CJJ8)、《地下铁道、轻轨交通工程测量规范》(GB50308)及《工程测量规范》(GB50026)的有关规定执行;②对业主提供的控制点进行检测,符合精度要求后再进行工程的施工测量;③对整个工程场区按施工需要布设精密导线平面控制网(如采用原有控制网作为场区控制网时,要先复核检查,符合精度要求后方可能取用);④场区内按施工需要布设高程控制网,并采用城市二等水准测量的技术要求施测,其路线高程闭合差在±8L mm(L为线路长度,以km计)之内。

1.1.2地面控制测量1.1.1.1地面平面控制测量XXX地铁全线的控制测量的首级控制网为GPS控制网,一般沿线路方向布设,导线长度一般为1〜2Km。

以GPS控制网为基础建立二级地面精密导线,平均边长250m,一般埋设在大街两侧的人行道上,尽量在地铁车站的出入口、风道竖井及施工竖井附近布设,并避开变形区。

精密导线每隔L5Km左右与GPS控制网联系。

(1)精密导线控制网的布置原则:①导线网尽量使其延伸方向垂直于贯通面,以减弱边长误差对横向贯通精度的影响,最好组成主副导线闭合环;②尽量选择长边,减少导线边数,以减弱测角误差对横向贯通误差的影响;③图形简单并避免局部的弯曲或锯齿形的曲折;④每一进洞口最好可能有三个平面控制网点作为引线入洞的依据并在布网时最好将这些控制点纳入主控网;⑤插网和插点与主网同等精度。

(2)精密导线技术精度要求:①导线全长3〜5km,平均边长为350m,测角中误差W土1.5〃,最弱点的点位中误差W土15mm,相邻点的相对点位中误差忘±8山山,方位角闭合差W±5n(n为导线的角度个数),导线全长相对闭合差W1/35000;②导线点位充分利用城市已埋设的永久标志,或按城市导线标志埋设。

地铁施工变形测量方案

地铁施工变形测量方案

地铁施工变形测量方案1. 引言地铁施工变形测量是地铁工程建设过程中的重要环节之一。

精确测量地铁施工过程中的变形情况,可以及时发现并解决地铁隧道或地下结构的变形问题,保证地铁施工的安全和顺利进行。

本文档将介绍一种地铁施工变形测量方案,包括测量方法、测量仪器及其使用、数据处理与分析等内容。

2. 测量方法为了对地铁施工过程中的变形情况进行精确测量,本方案采用以下方法:2.1 预测测量预测测量是在地铁施工前期进行的一种测量方法。

通过对地铁隧道或地下结构进行建模分析,结合工程设计参数,预测不同施工阶段的变形情况。

预测测量可以为后续实际测量提供参考依据。

2.2 实际测量实际测量是对地铁施工过程中变形情况进行实时监测的方法。

采用精确的测量仪器对地铁隧道或地下结构进行测量,获取实际变形数据。

实际测量可以帮助工程人员及时发现并解决地铁施工中的变形问题,保证施工的安全和顺利进行。

3. 测量仪器及其使用为了进行地铁施工变形测量,需要选用适当的测量仪器。

常见的测量仪器包括全站仪、水准仪、倾斜仪等。

下面是各种仪器的简要介绍及其使用方法:3.1 全站仪全站仪是一种精密测量仪器,可用于测量地铁隧道或地下结构的各种参数,如平面坐标、高程、倾角等。

使用全站仪时,需要根据实际情况选择合适的测量模式和测量点位,进行准确的测量。

3.2 水准仪水准仪是用于测量地铁隧道或地下结构的高程差异的仪器。

使用水准仪时,需要选择合适的测量路线和测量点位,通过测量水平线的高程变化,获得地铁隧道或地下结构的高程信息。

3.3 倾斜仪倾斜仪是一种用于测量地铁结构倾斜程度的仪器。

使用倾斜仪时,需要将其安装在地铁结构上,定时测量并记录倾斜角度。

通过倾斜仪的测量结果,可以判断地铁结构是否存在倾斜问题,及时采取修复措施。

4. 数据处理与分析对地铁施工过程中测得的变形数据进行处理与分析,可以获取更详细的变形信息,并为后续的工程决策提供依据。

数据处理与分析主要包括以下步骤:4.1 数据清理对测量数据进行清理,剔除异常数据和误差。

地铁工程测量技术方案

地铁工程测量技术方案

地铁工程测量技术方案概述地铁建设是现代城市发展的重要组成部分,它具有速度快、载客量大、能耗低等优点,在城市公共交通中扮演着越来越重要的角色。

地铁建设需要经过周密的规划和设计,而其中测量技术是不可或缺的一环。

地铁工程测量技术方案是地铁建设的重要组成部分,它的准确性和可靠性直接影响着地铁工程建设的质量和安全。

主要内容测量前的准备地铁工程建设前,需要进行充分的准备工作,包括确定测量范围和精度要求,确定测量方法和技术方案,以及组织测量人员和工具设备等。

测量范围和精度要求是测量工作的基础,需要根据地铁工程建设的实际情况进行调整。

对于大面积区域的测量,通常采用全站仪、GPS和激光扫描仪等现代测量工具,对于局部区域的测量,可以采用传统的测量工具如三角板、水准仪和钢卷尺等。

测量方法和技术方案的确定需要根据实际情况进行选取,要考虑地铁建设的地形地貌、地质情况、工程结构和施工进度等因素。

同时,在确定测量方法和技术方案时要注意保证测量结果的准确性和可靠性,并综合考虑测量的时间、费用和人力成本等因素,以确保工程建设的顺利进行。

组织测量人员和工具设备需要根据测量工作的具体要求进行组织,一般需要具备一定的测量技术和经验,并熟练掌握测量工具的使用方法。

同时,需要确保测量工作的设备和工具处于良好的状态,以保证测量工作的顺利进行。

测量过程中的注意事项地铁工程测量过程中需要注意以下几点:1.测量前需要仔细检查测量设备和工具的状态,确保其正常工作。

2.需要确保测量设备和工具的精度和稳定性,以保证测量结果的准确性和可靠性。

3.在测量进行时,需要注意选择合适的测量时间和地点,以避免干扰和误差的产生。

4.测量过程中需要注意测量数据的处理和管理,包括测量数据的采集、存储、传输和分析等。

5.需要根据测量结果进行及时的调整和修正,以保证地铁工程建设的质量和安全。

测量技术方案的优化为了提高地铁工程建设的效率和质量,需要不断优化测量技术方案。

其中,可以采用以下几种方法:1.采用更先进的测量技术和设备,如全站仪、GPS和激光扫描仪等,以提高测量精度和效率。

地铁隧道工程测量方案

地铁隧道工程测量方案

地铁隧道工程测量方案一、前言地铁隧道工程是现代城市交通建设的重要组成部分,其施工需要充分的前期测量工作来保证施工质量和安全。

地铁隧道工程的测量工作是复杂的,需要精确的测量技术和全面的测量方案。

本文将就地铁隧道工程测量的目的、内容、方法和技术要求进行分析和探讨,以期为地铁隧道工程的测量工作提供参考。

二、测量目的地铁隧道工程测量的目的是保证隧道施工的质量和安全,为隧道施工提供精确的控制点和数据,并为隧道质量检测和验收提供数据支持。

具体来说,地铁隧道工程测量的目的包括以下几个方面:1.确定隧道施工的基准线和控制点;2.提供隧道内部管线和构筑物的准确位置和坐标;3.为地质勘察提供数据支持;4.监测隧道施工过程中的变形和位移。

三、测量内容地铁隧道工程的测量内容主要包括隧道轴线测量、隧道内部管线和构筑物测量、地质勘察测量、隧道变形监测等。

具体来说,地铁隧道工程的测量内容包括以下几个方面:1.隧道轴线测量隧道轴线测量是地铁隧道工程测量的重要内容,其目的是确定隧道的中心线和横断面图,为隧道施工提供精确的轴线位置和坐标。

隧道轴线测量主要包括直线测量和曲线测量两种方式,测量方法包括全站仪测量、经纬仪测量和GPS测量等。

2.隧道内部管线和构筑物测量地铁隧道内部管线和构筑物的位置和坐标测量是隧道工程测量的重要内容之一,其目的是为隧道施工提供精确的管线位置和坐标。

隧道内部管线和构筑物测量主要包括水平测量、垂直测量和断面测量等,测量方法包括全站仪测量、激光测距仪测量和GPS测量等。

3.地质勘察测量地质勘察测量是地铁隧道工程测量的必要内容之一,其目的是为地质勘察提供数据支持,为隧道施工提供地质信息。

地质勘察测量主要包括地质构造测量、地层厚度测量和岩层倾角测量等,测量方法包括地质测量仪测量、地层探测仪测量和岩石分析测量等。

4.隧道变形监测隧道变形监测是地铁隧道工程测量的重要内容之一,其目的是监测隧道施工过程中的变形和位移,为隧道施工提供变形监测数据。

地铁建筑测量方案

地铁建筑测量方案

地铁建筑测量方案地铁建筑测量方案地铁建筑测量是地铁建设及工程监管中的关键环节,能够确保地铁工程的准确施工和质量控制。

本文将介绍一种地铁建筑测量方案,以确保地铁建设的顺利进行。

一、测量对象和测量任务测量对象:地铁建筑区域,包括站台、通道、轨道、进出口等。

测量任务:对各建筑区域进行精确测量,包括平面坐标、高程、倾斜度、水平度等。

二、测量仪器和设备1.全站仪:用于测量地铁建筑区域的平面坐标和高程。

2.水平仪:用于测量地铁建筑区域的水平度。

3.倾斜仪:用于测量地铁建筑区域的倾斜度。

4.激光测距仪:用于测量地铁建筑区域的尺寸和距离。

5.软件:用于数据处理和结果分析。

三、测量流程1.确定测量控制点:在地铁建筑区域设置测量控制点,以提供准确的坐标和高程基准。

2.进行基本测量:使用全站仪进行地铁建筑区域的平面坐标和高程测量。

3.检查水平度:使用水平仪对地铁建筑区域进行水平度检测,确保地铁建筑的平整度。

4.测量倾斜度:使用倾斜仪对地铁建筑区域进行倾斜度测量,确保地铁建筑的倾斜度不超过要求范围。

5.测量尺寸和距离:使用激光测距仪对地铁建筑区域的各个部位进行尺寸和距离测量,确保施工精度。

6.数据处理和结果分析:将测量数据导入计算机软件,进行数据处理和结果分析,生成测量报告和图纸。

四、质量控制与安全注意事项1.质量控制:在测量工作中,要严格按照测量方案进行,并对测量结果进行审核和确认,以确保测量的准确性和可靠性。

2.安全注意事项:测量工作中要注意安全,遵守工作规范,佩戴好安全防护用具,避免发生意外事故。

五、总结地铁建筑测量方案是地铁建设中不可或缺的一环,通过准确测量和控制,能够确保地铁工程的施工质量和安全性。

本文介绍的地铁建筑测量方案包括测量对象、任务、仪器设备、流程、质量控制与安全注意事项等,能够为地铁建设提供较为完整的测量指导。

同时,在实际测量过程中,还需要根据具体情况进行调整和优化,确保测量结果的准确性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳市城市轨道交通7号线BT项目7305标华强北车站施工测量技术方案(YDK22+141.378~YDK23+035.568)批准:审核:复核编制:中国水利水电建设股份有限公司深圳地铁7号线7305标项目经理部2013年01月目录1、工程概况 (1)2、编制依据 (2)3、既有控制点情况 (2)4、施工测量的目标和任务 (3)4.1 施工测量的目标 (3)4.2 施工测量的任务 (3)5、组织机构设置与人员、仪器设备配置 (3)5.1组织机构设置 (3)5.2 测量队人员及岗位 (4)5.3 测量仪器设备配置 (4)6、控制网加密测量 (5)6.1地面精密导线控制网加密 (5)6.1.1地面精密导线控制点布设要求 (5)6.1.2地面精密导线控制的布设 (5)6.1.3 导线控制网观测技术要求 (7)6.1.4观测成果处理及平差 (7)6.2地面施工高程控制网加密 (8)6.2.1 地面水准点的选点布设要求 (8)6.2.2地面加密高程网布设 (8)6.2.3水准测量技术要求 (10)7、车站施工测量 (11)7.1 平面施工控制点引测 (11)7.2 高程施工控制点引测 (11)7.3 基坑开挖施工测量 (12)7.4监控量测及变形观测 (13)7.5车站结构施工放样测量 (13)7.6 车站主体结构放样 (13)7.7车站竣工测量 (16)8、安全保证措施 (16)9、质量保证措施 (17)10、环境保证措施 (17)1、工程概况地铁7号线华强北片区位于深圳市福田区商业中心——华强北商圈的核心地段,在深南大道——红荔路之间、有“中国电子第一街”美誉的华强北路的地下,呈南北向布置。

华强北片区包含华强北车站、华强北车站至华新车站区间、华新车站南端,起止桩号为:YDK22+141.378~YDK23+035.568,共计894.19m。

华强北车站为地下三层岛式站台车站,车站有效站台中心里程为YDK22+362.878,车站起点里程为YDK22+166.878,车站终点里程为YDK22+496.778,华强北车站全长为329.9m,华强北车站南端有负一层的地下空间结构,长度为25.5m,放在华强北车站的设计范围中,因此华强北车站加上南端负一层地下空间整段长度为355.4m。

华强北车站主体基坑标准段宽度为28.1m,盾构扩大段宽度为29.8m,标准段基坑深度约为25.7~26.4m,盾构扩大段基坑深度约为27.0m。

华强北车站南端负一层基坑宽度为28.1m,基坑深度约为11.4m。

华强北车站负三层基坑围护结构采用1000mm 连续墙,南端负一层基坑采用800 厚连续墙,均采用盖挖逆作法施工。

华强北车站~华新车站区间是深圳地铁7 号线工程的一个区间,位于深圳市福田区华强北路与振华路交汇处,沿华强北路呈南北方向布置。

区间轨行区采用盾构法施工,其上为地铁2号线的华强站~燕南站区间,该区间为直径6.0m 的盾构区间,地铁2 号线盾构区间其上南端17m 长为地下一层的地下空间结构兼做顶管的接收井, 2号线盾构区间其上中间为矩形顶管,矩形顶管长度为41 米,2 号线盾构区间其上北端41m 为地下一层的地下空间结构局部兼做顶管的始发井。

华强北车站~华新车站区间起点里程为YDK22+496.778,终点里程为YDK22+595.778,全长为99.0m。

南端负一层盖挖逆作结构长度为17.0 米,基坑宽度为29.8m,基坑深度约为9.2~10.1m;北端负一层盖挖逆作结构长度为41.0米,基坑宽度为28.6m,基坑深度约为9.5~11.0m.。

南、北端负一层基坑围护结构均采用800 厚连续墙,均采用盖挖逆作法施工。

华新车站为带有故障车待避线的地下三层岛式站台车站,与地铁 3 号线华新站换乘(十字换乘节点土建部分已由 3 号线华新站土建单位施工完成),目前3号线华新站已开通运营。

华新车站有效站台中心里程为YDK23+051.917,车站起点里程为YDK22+862.217,车站终点里程为YDK23+140.317,道岔起点里程YDK22+647.472,道岔终点里程DK22+961.917,华新车站全长为511.839m,其中华新车站南端长度为439.789 米,华新车站北端长度为72.050 米。

华新车站南端(以换乘节点为界)围护结构采用1000mm 连续墙,采用盖挖逆作法施工;华新车站北端(以换乘节点为界)围护结构采用1000mm 连续墙,采用明挖顺作法施工。

2、编制依据1.《地下铁道工程施工及验收规范》GB 50299-2003;2.《国家一、二等水准测量规范》GB 12897-2006;3.《工程测量规范》GB 50026-2007;4.《城市轨道交通工程测量规范》GB 50308-2008;5.《全球定位系统(GPS)测量规范》GB T/18314-2009;6. 《城市测量规范》CJJ/T8-2011。

3、既有控制点情况1、深圳市城市轨道交通7#线工程华强北片区共有控制点9个,其中C级GPS 点2个,精密导线点4个,二等水准点3个。

经现场察看,桩点均保存完好,其具体高级控制点情况见下表。

3-1 深圳地铁7号线华强北片区施工控制点点位情况2、平面网为深圳独立坐标系,高程网为1956年黄海高程系。

4、施工测量的目标和任务4.1 施工测量的目标施工测量的目标是要确保完工后的地铁空间位置及限界净空需要,确保地下结构、建筑群体及设备安装准确到位,确保与相邻标段的正确贯通。

4.2 施工测量的任务1)首级网为地铁7#线测量监控单位交桩的GPS C级网,二级网为测量监控单位布设的精密导线控制网,并在此基础上进行施工控制测量和放样工作;2)根据工程需要和现场情况,适当加密和改善地面控制点,以求有“多余的观测条件,”保证施工测量精度;3)施工放样工作要严格按照ISO9002贯标程序及图纸、规范执行,在放样前认真查阅图纸、规范,计算准确,保证施工放样的准确性;认真做好内业资料,保证资料的真实性。

4)对施工控制重点部位(如标段起始位置、车站轴线控制)要重点复核,保证其空间位置的准确性,保证结构限界净空要求;5)对车站各结构形式和施工误差累计等进行分析,根据实际情况对结构尺寸提出误差富余量,以求最终验收时结构不侵限;6)按规范对每道工序的测量放样工作进行复核并按监理要求提交测量报验资料,经核准后方进行下道工序;7)接受和配合驻地监理工程师检查工作,接受和配合测量中心对施工控制测量项目进行的阶段性复核和抽检工作;8)负责本标段的竣工验收测量工作;9)按《桩位保护协议》的要求保护好测量监控单位移交的控制桩及施工中已复核的加密控制桩点。

5、组织机构设置与人员、仪器设备配置5.1组织机构设置在实际施工过程中,项目经理部总工程师总体规划和管理,工程管理部负责测量队工作的总体调配和规划;测量队长直接管理测量队的全面工作;技术副队长负责施工测量的技术工作;测量队下设华强北片区测量班由2名测量主管(班长)、2 名技术员、2名资料员、2名观测员和2名测量员组成,负责具体的施工控制测量、施工放样;内业资料整理及测量管理工作。

其组织机构框图如下图:测量管理机构框图5.2 测量队人员及岗位5-2-1 主要岗位人员情况表5.3 测量仪器设备配置5-3-1 主要仪器设备配置表6、控制网加密测量6.1地面精密导线控制网加密6.1.1地面精密导线控制点布设要求根据监控测量单位交接桩所提供的首级网GPS点及二级网(精密导线)点,结合华强北片区施工场地范围内建筑物的的特点,进行精密导线加密控制网点布置。

测量点位布置要求如下:1、控制点位附近不宜有散热体、测站应尽量避开高压电线等强电磁场的干扰。

2、相邻控制点间的视线与障碍物的距离以不受旁折光影响为原则。

3、相邻导线边长不应相差太大,短边不宜小于长边的1/2,个别短边的边长不应小于100米,导线平均边长控制在350米。

4、GPS控制点与相邻精密导线点间的垂直角不应大于30°,视线离障碍物的距离不应小于1.5,避免旁折光的影响。

5、点位根据测量工作需要尽量选在地铁车站和岔道井位置,导线点埋设应避开施工可能影响的范围。

6、点位埋设:加密点标志使用不锈刚顶部刻划十字标志的测钉,埋设在地质稳定、不易破坏的地方。

6.1.2地面精密导线控制的布设结合现场条件,拟布设4个加密平面点,其具体网型见下图。

6.1.3 导线控制网观测技术要求1、导线控制网外业测量按城市轨道交通工程平面控制网的二等网(精密导线)精度施测,水平角采用全圆测回法观测6测回(测角精度不低于2.5″),往返观测距离各2个测回,单向测距4次并加入气象、仪器加、乘常数改正(测距精度不低于1/60000)。

2、当精密导线点上只有两个方向时,宜按左、右角观测,左、右角平均值之和与360°的较差应小于4″。

3、水平角观测遇到长、短边需要调焦时,应采用盘左长边调焦,盘右长边不调焦,盘右短边调焦,盘左短边不调焦的观测顺序进行观测。

6-3-1 精密导线测量主要技术指标平均边长(m)导线总长度(km)每边测距中误差(mm)测距相对中误差测角中误差(″)测回数方位角闭合差(″)全长相对闭合差相邻点的相对点位中误差(mm)Ⅰ级全站仪Ⅱ级全站仪350 3~5 ±6 1/60000 ±2.5 4 6 5√n 1/35000 ±8 6.1.4观测成果处理及平差1、附合导线或导线环的角度闭合差,不应大于下式计算的值。

式中:βm为测角中误差(″),即2.5″;n为附合导线或导线环的角度个数。

2、导线网方位角闭合差计算的测角中误差应按下式计算:式中:βf为附合导线或闭合导线环的方位角闭合差;n为计算f时的角度个数;N为附合导线或闭合导线环的个数。

3、精密导线测距边的边长投影改正归化到地下铁道交通工程线路测区平均高程面上的测距边长度,应按下式计算:D=D0[1+(Hp-Hm)/Ra]式中:D0为测距两端点的平均高程面上的水平距离(m);Ra为参考椭球体在测距边方向上法线弧的曲率半径,可取6371000m;Hp为测区的平均高程(m);Hm为测距边两端点的平均高程(m)。

4、平差精密导线采用科傻软件进行严密方法平差,测量数据整理后上报审批。

6.2地面施工高程控制网加密6.2.1 地面水准点的选点布设要求1、加密水准网应沿工程线路布设成附合路线、闭合路线或结点网。

车站附近应设置2个以上水准点。

2、加密水准点应选在离施工场地变形区外稳固的地方,墙上水准点应选在永久性建筑物上。

水准点点位应便于寻找、保存和引测。

加密水准点间距平均为300m。

3、加密水准标石和标志应按照规范要求埋设。

4、水准路线布设成附合水准路线,每300~400m设一个固定水准点。

相关文档
最新文档