工程力学I-第3章 力矩与平面力偶系
工程力学(静力学与材料力学)第三章力偶系详解
FB
r M2 0 ∑ M = 0 , FA sin
M 2 2r FA
M2 = 4M1 = 8kNm
2M 1 FO FB FA 8kN r
• 作业3-1,3-4,3-8
考虑CB部分为二力构件,得:
FC FA FB FC
例3-4
图示机构自重不记。圆轮上的销子 A 放在 摇杆 BC上的光滑导槽内。M 1 = 2kNm,OA = r = 0.5m 。图示位置OA⊥OB,α = 30°,且系统平衡。 求作用于摇杆 BC 上力偶的矩 M 2 及 O、B 支座的反 力。 解:受力分析
M1
R
F1
M
F2
2
M1 + M2 = rBA×F1 + rBA×F2 = rBA×( F1 + F2 ) = rBA×R = M
如有n个力偶,按上法依次合成, 最后得一力偶,合力偶矩矢为 M = M1 +M2 + … +Mn = ∑M I
B
rBA
A
F2
F1
任意个力偶可以合成为一个 合力偶,这个合力偶矩矢等于各 分力偶矩矢的矢量和。 M = M 1+ M 2+ … + M n = ∑M i
性质三
证:
力偶没有合力
仍用反证法,即假定力偶有合力,那么总可 找到一个与此力大小相等,方向相反而作用线 共线的力与此力平衡,即力与力偶相平衡。与 性质二矛盾。
性质一、二和三告诉我们力偶只能与力偶等 效而不能与单个力等效。
•力偶只能与力偶相平衡 力偶只能与力偶相平衡
§3-4 力偶系的合成
设有两个力偶,由性质一,将 力偶中两力分别移到两力偶作用面 交线上的两点 A 和 B,可得到两个 汇交力系,其合力分别为R 、 R ’ 。
工程力学I-第3章 力矩与平面力偶系
D
x
§3-2 关于力偶的概念
力偶:一对等值、反向而不共线的平行力,用 符号(F ,F′)表示。
力偶臂:两个力作用
线之间的垂直距离d。
F’
F
力偶的作用面:两个 力作用线所决定的平 面
§3-2 关于力偶的概念
F F
d
d
F
d
F
F
F
转动游戏方向盘
拧水龙头
扳手拧螺母
§3-2 关于力偶的概念
Q AABD AABC 显然, 并注意到力偶矩的转向也相同, 则有M ( F , F ) M ( P, P) P
M (P 1, P 1 ) M ( P, P ) 显然, 1, P 1) 从而有M ,( F , F ) M ( P
P1
力偶等效
M ( F , F ) M ( P 1, P 1)
(1)力对点之矩,不仅取决于力的大小,还与矩心的位置有关。
(2)力对任一点之矩,不因该力的作用点沿其作用线移动而改变。 *(3)力的大小等于零或其作用线通过矩心时,力矩等于零。 (4)互成平衡的两个力对同一点之矩的代数和为零。
Mo(F)=±Fd
§3-1 关于力矩的概念及其计算
合力矩定理:
y Fy
(3)将力P和P’沿各自的作用 线移至任意点A’,B’,根 据力的可传性原理,有 (P,P’) =(P1,P1’) 。
§3-2 关于力偶的概念
(4) A′
P1′ b F′ A A F B Q′ D P′ B′ C
M (F , F ) AB BD 2 AABD ,
M(P, P') AB BC 2 AABC
第三章 力偶与平面力偶理论)
M 0 F F h
力对点之矩(力矩)是一个代数量,它的绝 对值等于力的大小与力臂的乘积;
它的正负:力使物体绕矩心逆时针转向时为正,反之为负。 常用单位为 N· m 或 kN· m。 注意:力矩在下列几种情况下等于零 (1)力的大小等于零;
(2)力的作用线通过矩心,即力臂等于零;
(3) 互成平衡的二力对同一点之矩为零。
78.93N m
按合力矩定理 M O F M O Ft M O Fr
F cos θ r 78.93N m
例3-2 已知:q,l; 求: 合力及合力作用线位置. 解: 取微元如图
x q q l l x 1 P q dx ql 0 l 2
M Mi Mi
i 1 n
平面力偶系平衡的充要条件 M = 0,有如下平衡方程
Mi
0
平面力偶系平衡的必要和充分条件是:所有各力 偶矩的代数和等于零。
例3-1
已知: F=1400N, θ 20 , r 60mm
求: M O F .
解:直接按定义
MO
F F h F r cos θ
M1 F1 d M2 F2 d
M1 F1d
M 2 F2d
Mn Fn d
M n Fnd
=
=
FR F1 F2 Fn
F1 F2 Fn FR
=
=
=
M FRd F1d F2d Fnd M1 M 2 M n
定理:同平面内的两个力偶,如果力偶矩相等,则两力偶 彼此等效。 推论: 任一力偶可在它的作用面内任意转移,而不改变它对刚体 的作用。因此力偶对刚体的作用与力偶在其作用面内的位置无 关。 只要保持力偶矩不变,可以同时改变力偶中力的大小与 力偶臂的长短,对刚体的作用效果不变.
工程力学 第3章 力偶系
M 2 F2 , F2'
M F1'
r1
F F1 F2 F ' F1' F2'
F2' MR F, F '
F2
F1 F
M2
MR r F ' r (F1'F2 ') r F1'r F2 '
M1 M2
结论:两个力偶的合成仍然为力偶,且
第三章 力偶系
§1 力对点之矩矢 一、 平面力对点之矩(回顾)
力使物体绕某点转动的力学效应,称为力对该点之矩。 例如扳手旋转螺母。
BF
dA L
O
力F对O点之矩定义为: Mo(F)=±Fd
通常规定:力使物体绕矩心逆时针方向转动时,力矩 为正,反之为负。
第三章 力偶系
二、力对点之矩矢量 1、空间力矩三个要素:
一、力偶 在日常生活和工程实际中经常见到物体受动两个大小相等、 方向相反,但不在同一直线上的两个平行力作用的情况。例如
第三章 力偶系
B d
F’
F A
M
B
F
rBA
F’ d A
1. 定义:在力学中把这样一对等值、反向而不共线的平行力 称为力偶,用符号 ( F , F′)表示。
两个力作用线之间的垂直距离 d 称为力偶臂, 两个力作用线所决定的平面称为力偶的作用面。
x (F ) y (F )
yFz zFx
zFy xFz
M
z
(F
)
xFy
yFx
力对点之矩在各坐标轴上的投影
MO z
O xr
第三章 平面力偶系
1教师:薛齐文土木与安全工程学院力学教研室第三章力矩与平面力偶系§3–1 力对点之矩§3–2 力偶与力偶矩§3–3 力偶的等效§3–4 平面力偶系的合成与平衡24①是代数量。
)(F M O ②是影响转动的独立因素。
)(F M O ④=2⊿AOB =F •d ,2倍⊿形面积。
)(F M O -+d F F M O ⋅±=)(大小和转向:说明:③单位N •m,工程单位kgf •m。
力矩的性质:1)力矩取决于力F 的大小,也取决于矩心的位置。
2)力矩不因力沿其作用线移动改变。
3)力矩的力F=0或力F 过矩心时,力矩为零。
4)互成平衡的两力对同一点的矩的代数和为零;F yF x9.1实例:方向盘、水龙头、钥匙;2 基本定义力偶:是一对等值、反向、作用线相互平行的力;用(F ,F ‘)表示。
力偶作用面:力偶中的两力所确定的平面;力偶臂:力偶中的两力作用线之间的距离。
§3—2 力偶及其性质一力偶研究力偶对物体的作用效应?如何度量?101 定义:力偶对物体的转动效应的度量。
2表示:M=Fd3力偶矩正负及单位:逆正顺负,kN.m或N.m 4几何表示:等于以一力为底边,另一力的作用线上的任一点为顶点所构成的三角形的面积的两倍。
二力偶矩ABC d F d F M Δ±=⋅⋅⋅±=⋅±=2212力偶矩两要素:大小:方向:-+= =13F=3Nd=2m F=9N M=18Nmd=6m15;111d F m =∵222d F m −=dP m 11=又dP m 22′−='21P P R A −=2'1P P R B −=21'21'21)( m m d P d P d P P d R M A +=−=−=⋅=∴合力矩§2-4平面力偶系的合成与平衡平面力偶系:作用在物体同一平面的许多力偶设有两个力偶d d一平面力偶系合成FAFBm−mmm−0 2=−−21。
工程力学第三章力矩与平面力偶系_图文
例题讲解
【解】作 AB 梁的受力图,如图( b )所示。AB梁上作用 有二个力偶组成的平面力偶系,在 A 、B 处的约束
反力也必须组成一个同平面的力偶 ( , ) 与之平衡。 由平衡方程
() RA 、RB为正值,说明图中所示RA 、RB 的指向正确。
力臂d
=
1m
×
sinα
=
1m
×
。 sin45 =
m
MB(F)=+F×d= +15kN×0.5 m = +7.5 kN ·m
注意:负号必须标注,正号可标也可不标。一般不标注。
§3-1力矩的概念和计算
(二)合力矩定理
表达式: 证明: 由图得
而 则
Fy
F
A
Fx
()
§3-1力矩的概念和计算
()
若作用在 A 点上的是一个汇交力系( 、 、 ),则可将每个力对 o 点之矩相加,有
2. 力偶的三要素 (2)力偶的方向; (3)力偶的作用面。
3. 力偶的性质 (1)力偶在任何坐标轴上的投影等于零;
(2)力偶不能合成为一力,或者说力 偶没有合 力,即它不能与一个力等效, y
因而也不能被一个力平衡;
(3)力偶对物体不产生移动效应,只 产生转动 效应,既它可以也只能改变物
体的转动状 态。
例题讲解
【例题5】在一钻床上水平放置工件,在工件上同时钻四个等 直径的孔,每个钻头的力偶矩为 求工件的总切削力偶矩和A 、B端水平反力?
解: 各力偶的合力偶距为
根据平面力偶系平衡方程有:
由力偶只能与力偶平衡的性质 ,力NA与力NB组成一力偶。
例题讲解
工程力学第3章(力偶系)
Engineering Mechanics
中南大学土木建筑学院力学系
Department of Mechanics of School of Civil Engineering and Architecture of Central South University
第三章 力偶系 §3-1 力对点之矩矢
力偶臂d 力偶臂 1=200mm, ,
,力偶臂d , F2 = F2' = 120N,力偶臂 2=300mm , F3 = F3' = 80 N,
M 1 = 100 × 0.2 = 20
N.m N.m
M 2 = 120 × 0.3 = 36
M 3 = 80 × 0.18 = 14.4 N.m
M Rx M Ry = ∑ M y = M 1 = 20 N.m
二、力对轴之矩的 解析表达式
M x ( F ) = M x ( Fy ) + M x ( Fz ) = -zFy + yFz M y ( F ) = M y ( Fz ) + M y ( Fx ) = -xFz + zFx M z ( F ) = M z ( Fx ) + M z ( Fy ) = -yFx + xFy
M R = M1 + M 2 + ⋅ ⋅ ⋅ + M n = ∑ M
M R = M1 + M 2 + ⋅ ⋅ ⋅ + M n = ∑ M
合力偶矩矢的大小 M R = ( ∑ M x ) 2 + ( ∑ M y )2 + ( ∑ M z )2 合力偶矩矢的方向
R
∑M cos( M ,i ) =
cos( M R,j ) = MR
工程力学03-力矩 平面力偶系
力偶只能与力偶平衡!
例 题 1
FA
M1 M3 M2
M1=M2=10 N.m, M3=20 N.m;固定螺柱 A 和 B 的距离 l=200 mm 。求两个光滑螺 柱所受的水平力。
A
解:选工件为研究对象,因为力偶只能与
力偶平衡,所以,力FA与FB构成一力 偶,故FA= FB 。列写平衡方程 FB
B
由∑M = 0, F l M M M 0 A 1 2 3
A FA M B
FB
例 题 2
A l D
M B A
FA
M B
45
FB
列平衡方程:
M 0,
M FA l cos 45 0
M 2M 解得: FA FB l cos 45 l
例 题 3 如图所示的铰接四连杆机构,杆重不计,已知
OA=r,DB=2r,α=30°,试求平衡时力偶M1和M2 关系。
§3-2 力偶与力偶矩
2. 平面力偶的性质 性质1:力偶既没有合力,本身又不平衡,是一个基 本力学量。
力和力偶是静力学的两个基本要素
性质2:力偶对其所在平面内任一点的矩恒等于力偶
矩,而与矩心的位置无关,因此力偶对刚体 的效应用力偶矩度量。
力偶矩的三个要素: 力偶矩的大小、力偶的转向、力偶的作用平面
A F
M Mi
平衡条件:
d
B
Mi 0
§3-4 平面力偶系的合成与平衡
§3-4 平面力偶系的合成与平衡
平面力偶系的合成
的代数和。
M Mi
平面力偶系合成结果还是一个力偶,其力偶矩为各力偶矩
平面力偶系的平衡条件
于零。
Mi 0
理论力学第三章力矩与平面力偶理论(H)
理论⼒学第三章⼒矩与平⾯⼒偶理论(H)第3章⼒矩与平⾯⼒偶理论※平⾯⼒对点之矩的概念及计算※⼒偶及其性质※平⾯⼒偶系的合成与平衡※结论与讨论§3-1 平⾯⼒对点之矩的概念及计算1.⼒对点之矩AFBhhF M O ?±=)(F h ——⼒臂O ——矩⼼OABM O Δ±=2)(F M O (F ) ——代数量(标量)“+”——使物体逆时针转时⼒矩为正;“-”——使物体顺时针转时⼒矩为负。
2. 合⼒之矩定理平⾯汇交⼒系合⼒对于平⾯内⼀点之矩等于所有各分⼒对于该点之矩的代数和。
3. ⼒矩与合⼒矩的解析表达式xA FF xF yOαyx yx y y O x O O yF xF M M M ?=+=)()()(F F F )()()()()(21i O n O O O R O M M M M M F F F F F ∑=+++=")()(ix i iy i R O F y F x M ?∑=FF nαOrF rF 已知:F n ,α,r求:⼒F n 块对轮⼼O 的⼒矩。
h解:(1)直接计算αcos )(r F h F M n n n O ==F (2)利⽤合⼒之矩定理计算αcos )()()()(r F M M M M n O O r O n O ==+=F F F F 例题1§3-2 ⼒偶及其性质1.⼒偶与⼒偶矩⼒偶——两个⼤⼩相等、⽅向相反且不共线的平⾏⼒组成的⼒系。
⼒偶臂——⼒偶的两⼒之间的垂直⼒偶的作⽤⾯——⼒偶所在的平⾯。
(1)⼒偶不能合成为⼀个⼒,也不能⽤⼀个⼒来平衡。
⼒和⼒偶是静⼒学的两个基本要素。
(2)⼒偶矩是度量⼒偶对刚体的转动效果;它有两个要素:⼒偶矩的⼤⼩和⼒偶矩的转向。
F′FABOdx FdFxxdFMMMOOO=+′=′+=′)()()(),(FFFF⼒偶矩±=FdM2.平⾯⼒偶的等效定理1F ′F ′2F ′0F ′F 00F ′F 0ABDCdF F 1F 2★在同平⾯内的两个⼒偶,如果⼒偶矩相等,则两⼒偶彼此等效。
工程力学(人民交通出版社)第3章 第2节力偶系
Fy
F
C
B D
b
Fx x
a
MA( F ) MA( Fx ) MA( Fy ) Fx b Fy a F cos b F sin a Fa sin Fb cos
F Fx Fy
Fx F cos Fy F sin
Mo (F , F ' ) Mo (F ) Mo (F ' ) F (d x ) F ' x F d
⑦正负规定:逆时针为正 ⑧单位量纲:N m 或 kN m
二、力偶与力偶矩
2、力偶的特点 ⑨力偶的三要素: 力偶矩的大小、力偶的转向、力偶的作用面 ⑩力偶矩矢 用一个矢量表达三要素:力偶矩矢。
§3-2
力矩与力偶理论
一、力对点之矩 二、力偶与力偶矩 三、力偶系的合成与平衡
一、力对点之矩
1、平面中力矩的概念
力对物体可产生运动效应,在一般情况下,既可能产生移动(平动)效应, 也可能产生转动效应,或者同时产生这两种运动效应。力的移动效应取决于 力的大小和方向,而力使物体绕某点的转动效应,则用力对该点的矩来度量, 简称力矩。
2)合力矩定理 将力Fn分解为切由合力矩定理得:
M o (Fn ) M o (Ft ) M o (Fr ) Fn r cos 0 Fn r cos
小结力偶和力偶矩
1. 力矩是力学中的一个基本概念。度量力对物体的转动 效应:
即有: Mx mx My my Mz mz 同理: M Mx 2 My 2 Mz 2
( Mx ) ( My ) ( Mz )
2 2 2
z
MZ
第三章力矩和平面力偶系第四章平面任意力系
解:
图(a):
MA = - 8×2 = -16 kN ·m
MB = 8×2 = 16 kN ·m
图(b): MA = - 4×2×1 = -8 kN · m
MB = 4×2×1 = 8 kN ·m
第二节 力偶
▪ 一、力偶 力偶矩
▪
在日常生活和工程实际中经常见到物体受动两个大小相等、方向相反,
但不在同一直线上的两个平行力作用的情况。例如
第三节 平面力偶系的合成与平衡
一、平面力偶系的合成
作用在物体同一平面内的各力偶组成平面力偶系。
m1=F1•d1,m2=F2•d2, m3=-F3•d3,
P1•d=F 1•d1 ,P2•d=F2•d2 , -P3•d =-F3•d3
FR=P1+P2-p3
FR′=P1′+P2′-P3′
M=FR d=(P1+P2-P3)d
二、力偶的性质
▪ 力和力偶是静力学中两个基本要素。力 偶与力具有不同的性质:
▪ (1)力偶不能简化为一个力,即力偶不 能用一个力等效替代。因此力偶不能与 一个力平衡,力偶只能与力偶平衡。
▪ (2)无合力,故不能与一个力等效;
▪ (3)力偶对其作在平面内任一点的矩恒 等于力偶矩,与矩心位置无关。
结论:
第三章 力矩与力偶
第一节 力对点之矩
一、 力矩的概念
力使物体绕某点转动的力学效应,称为力对该点之矩。
B
F
A d
O
L
力F对O点之矩定义为:力的大小F与力臂d的乘积冠以适当的正负号, 以符号mo(F) 表示,记为 :Mo(F)=±Fd
通常规定:力使物体绕矩心逆时针方向转动时,力矩为正,反之为负。
▪ 力 F 对O 点之矩的大小,
力矩与平面力偶系
工程力学与建筑结构
1.4 力偶的合成 作用在同一物体上的若干个力偶组成一个力偶系,若
力偶系中各力偶均作用在同一平面,则称为平面力偶系。 平面力偶系合成的结果为一合力偶,其合力偶矩等于
各分力偶矩的代数和。即 M =M1+M2+…+Mn=∑M
1.5力偶系的平衡条件 平面力偶系平衡的必要和充分条件是:力偶系中各力
偶矩的代数和为零。即 ∑M=0
工程力学与建筑结构
工程力学与建筑结构
工程力学与建筑结构
力矩与平面力偶系 1.1力矩的概念
用力的大小F与d的乘积度量力F使扳手绕O点的转动 效示应。,即称为力F对O点之矩,简称力矩,用符号MO(F)表
MO(F)=±Fd 式中,O点称为“矩心”,d称为“力臂”。 力矩的正负规定为:力使物体绕矩心逆时针方向转动时, 力矩为正;反之为负。
M=±Fd
力偶矩的正负规定与力矩正负规定一致,即:使物体 逆时针方向转动的力偶矩为正;反之为负。
F
F
B
h
铰杠
丝锥
F'
F d
F'
A
(a)
F' (b)
(c)
工程力学与建筑结构
在平面问题中,力偶矩也是代数量。力偶矩的单位与力矩 单位相同,即N•m。 根据力偶的概念可以证明,力偶具有以下性质: (1)力偶在其作用面上任一轴的投影为零。 (2)力偶对其作用面上任一点之矩,与矩心位置无关,恒 等于力偶矩。
系中所有分力对同一点之矩的代数和。
MO(FR)=MO(F1)+ MO (F2)+…+ MO (Fn)=∑ MO (F)
F1 y
A
FR
F2
O x
工程力学与建筑结构
1.3 力偶的概念
理论力学03力矩力偶与平面力偶系
本章讨论平面力偶系的合成与平衡问题
一、平面力偶系的合成 平面力偶系可合成为一个合力偶; 合力偶矩等于各分力偶矩的代数和,即
M1
M2 M3
M4
M Mi
二、平面力偶系的平衡方程
Mi 0
M
说明:根据平面力偶系的平衡方程,可解 一个未知量。
ቤተ መጻሕፍቲ ባይዱ
[例2] 已知梁长 l = 5 m,M = 100 kN·m ;若不计梁的自重,试求 铰支座 A 、B 处的约束力。
2. 力偶中的两个力对任一点的矩的代数和 恒等于力偶矩,与矩心位置无关。
dF F
3. 作用于刚体同一平面内两个力偶等效的充要条件为其力偶矩 相等。
结论:力偶矩唯一决定了力偶对刚体的作用效应。
◆ 通常用力偶矩符号来代表力偶:
F
d
M Fd
F
M 或M
第三节 平面力偶系
平面力偶系:由位于同一平面内的一群力偶所组成的力系
构平衡。试求作用于摆杆 BO1上的力偶矩 M2 (各构件的自重不计)
解: 1)首先研究曲柄 AO与套筒A 的组合 画受力图 列平衡方程
Mi 0, M1 FA r sin 30 0
解得
FA
FO
2M1 r
M1
O
FO
FA
FA
FO
2M1 r
2)再选取摆杆 BO1 为研究对象
画受力图
列平衡方程
Mi 0, M 2 FA AO1 0
的平行力称为一个力偶,记作 F, F。
dF F
二、力偶矩 定义
M Fd
为平面内力偶 F, F 的矩,简称力偶矩。
说明: 1)平面内力偶矩为代数量,其正负号表转向,一般规定 逆时针转向为正,反之为负。
力矩和平面力偶理论课件
FO
FB
FA
M1 r sin 30
8
kN
作业:P49~P53 3-5、3-10、3-11
FA
A
O
M1
FO
C
M2
A
FA
FB
B
解:先取圆轮为研究对象,因为力偶只
能与力偶平衡,所以,力FA 与FO 构成一 力偶,故FA= –FO。
M 0, M1 FAr sin 0
解得
FA
M1 r sin 30
再取摇杆BC为研究对象。
M 0,
M2
FA
r
sin
0
其中 FA FA
解得 M 2 4M1 8 kN m
M 0, M FA l cos 45 0
解得
FA
FB
M l cos 45
2M l
例3-7 :
如图所示的铰接四连杆机构OABD,在杆OA和BD上分 别作用着矩为M1和M2的力偶,而使机构在图示位置处于 平衡。已知OA=r,DB=2r,α=30°,不计杆重,试求M1和 M2间的关系。
Aα
M1
O
=
=
=
M FRd F1d F2d Fnd M1 M2 Mn
n
M Mi Mi
i 1
平面力偶系平衡的充要条件 M = 0,有如下平衡方程
Mi 0
平面力偶系平衡的必要和充分条件是:所有各力偶 矩的代数和等于零。
例3-1
已知: F=1400N, θ 20 , r 60mm 求: MO F .
所以求得
M2
1 2
M1
例3-8 :
C
M2
Ar O
M1
B
如图所示机构的自重不计。圆轮 上的销子A放在摇杆BC上的光滑导槽 内。圆轮上作用一力偶,其力偶矩为 M1=2 kN·m , OA = r =0.5 m。图示位 置时OA与OB垂直,角α=30o , 且系统 平衡。求作用于摇杆BC上的力偶的矩 M2 及铰链O,B处的约束反力。
工程力学第三章力矩力偶系
M ( F ) r F sin O
定理:如果力系存在合力,则合力对某一点的矩等于力 系中各分力对同一点的矩的矢量和。
即:若作用在刚体上 { F , F , , F } { F } 1 2 n R
则:
M ( F ) M ( F O R O i)
i 1
n
例 水平梁 AB 受按三角形分布的载荷作用。载荷的最 大值为 q ,梁长为 l 。试求合力作用线的位置。
0
将 Q 和 q(x) 的数值代入可得
xC
2 l 3
§3-2 力偶理论
一.力偶和力偶矩
1、力偶 · 力偶的作用 效果 ·力偶的第一性质
力偶的定义:由大小相等,方 向相反且不共线的两个平行力 所组成的力系,称为力偶。记 之为: ( F, F ' )
F
hபைடு நூலகம்
F
'
h——力偶臂
力与力偶的作用效果比较:
FA
第三章 力矩 力偶系理论
§3-1 力对点之矩(力矩) 力对刚体的移动效应用力矢量来度量 力对刚体的转动效应用力矩来度量 一、力对点之矩
B F O
定义:
r
h
A
M r F oF
矢量积形式
M r F oF
二、 合力矩定理
大小: r F F h 2 OAB 方向: 由右手定则判定
25 N 0.4 m
M=10 Nm
25 N
§3-3 力偶系的合成与平衡
力偶系合成的结果为一合力偶
{ M , M , , M } { M } 1 2 n R
n
即:
M R Mi
i 1
力偶平衡的充分必要条件:
大学本科理论力学课程第3章力矩与平面力偶理论
理论力学电子教程
O2
第三章 力矩与平面力偶理论
A D
FB B
O1
E
F
H
FC AC
C
理论力学电子教程
第A三章 力矩与平面力偶理论
O
O1
FD 沿O1DO2
F
E
D
H
FE AC
O2 A
FA 沿AO2, AC
FD 沿O2DO1 D
D
FB B
A
FA 沿AO2, AC
O2
FB
B
E
F
D
FD
理论力学电子教程
第三章 力矩与平面力偶理论
思考题 不计自重的三杆组成系统,判断固定铰支座B和C处约 束反力方向(即画整体受力图)
A
a D
a B
E
F
H
C
a
a
理论力学电子教程
第三章 力矩与平面力偶理论
A O1
D
E
F
H
O2
FB B
C
(1)分析整体,FC的作用点为C,故无论其方向如何FC与F二者的 力的作用线必交于C点,利用三力平衡汇交原理判断固定铰支座对 DB处提供的约束反力合力的方位(沿BC)指向待定,FC的方向待 定。
H
FC AC
C
O1
E FE AC FC A
C
理论力学电子教程
第三章 力矩与平面力偶理论
第三章 力矩与平面力偶理论
§3-1力矩的概念与计算 §3-2力偶及平面力偶系
理论力学电子教程
第三章 力矩与平面力偶理论
力对物体作用时可以产生移动和转动两种效应。 力的移动效应取决于力的大小和方向; 为了度量力的转动效应,需引入力矩的概念。
第三章 平面力偶系
FA
AM
D
解: 1)分析BD杆
C
450 E
M = 0, M1 - FE ·a = 0 FB = FE = M1 / a
M1
B FB FB B
D
E FE
M1
2)分析整体 FA = FB = M1 / a M = 0, M1 - M = 0 M = M1
27
作业:习题 P54 3—1
3—4 3—7(F ) Fd A 225N m M C (F ) Fd C
F AD F CD
sin 30 sin 30
B
75 N m
2)由合力矩定理 M B (F ) Fx AB Fy AD
求对B点的矩 F cos 30 AB F sin 30 AD
144N
FB FA 144N
(2)取CD杆
M 0, M 0 FC CD cos 0
cos
0.24
0.182 0.242
FC
5M 0 4 0.32m
5 40N m 4 0.32m
156N
FE FD FD FC 156N
FNB可知由力偶概念可知FNA FNB
F’NA
Fy 0, FT W
24
课上练习3
B M C
l
已知:结构中AB为r的圆弧,l=2r,M已知。 求:A和C处的反力。
解:1)分析AB:
可知是二力构件,受力如图
A
F'B
FB
r
M
2)分析BC:受力如图
FA
M 0, M FBd 0
工程力学-力矩与平面力偶
RA
RB
2 Pa RB R A l cos α
[练习2]
在一钻床上水平放置工件,在工件上同时钻四个等
直径的孔,每个钻头的力偶矩为 m1 m 2 m3 m 4 15 N m 求工件的总切削力偶矩和A 、B端水平反力? 解:
NA NB
各力偶的合力偶距为
M m1 m 2 m 3 m 4 4 ( 15 ) 60 N m
mo ( F ) F ( h x )
mo ( F ) F x
mo ( F , F ) F ( h x ) F x F h
性质3:力偶等效定理 作用在同一平面的两个力偶,只要它的力偶矩相等,则该两个力偶彼此等 效。
包含以下内容: ①力偶可以在其作用面内任意移动,而不影响它对刚体的
l d Q 0 l
2、研究曲柄ACD
l2 d2 m 0 N AB l d M 0 l2 d2 M Q N AB l d
思考题: 1、m可否又BC上移至AC上?
a
m
结构视为一体时,m 可移动,若分开考虑,则 m不能从一体移至另一体。
2.既然一个力不能与力偶平衡,为什么下图的圆轮能平衡?
M O ( F ) 2 S ABC
① 说明: M O (F ) 是代数量。
② F↑,h↑转动效应明显。
③ M O (F ) 是影响转动的独立因素。当F=0 或 h=0时,M O ( F ) 0 ④国际单位Nm。
2、解析式 y
Fy
F
Fx
M O ( F ) F h Fr sin
解: 1、研究对象二力杆:AD
RC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Mi 0
平面力偶系合成的结果是一个力偶,合力 偶矩等于力偶系中所有各力偶矩的代数和。
利用这个平衡条件,可以求解一个未知量。
§3-3 平面力偶系的合成与平衡
例 3-3
Me
Me
A
B
FA A
Mi 0
Me – FAl=0
FA=FB= Me /l=100N
小节
§3-1 关于力矩的概念与计算 §3-2 关于力偶的概念 §3-3 平面力偶系的合成与平衡
§3-1 关于力矩的概念及其计算
力对物体作用时可以产生移动和转动两个外效 应。
§3-1 关于力矩的概念及其计算
力F对O点之矩定 义为:
Mo(F)=±Fd
矩心:O;
力臂:d。 通常规定:力使物体绕矩心逆时针方向转动时,
合力矩定理:
y Fy
Mo(FR)=FRd=FRrsin(α-θ) =FRr(sinα cosθ-sinθ cosα)
FR
=FRsinα rcosθ-rsinθ FRcosα =xAFy - yA Fx
α
=Mo(Fy)+Mo(Fx)
y’ O
r
xA A
θ θ
α-αθ
yA
Fx
FRsinα=Fy; FRcosα = Fx; x rsinθ =yA; rcosθ = xA.
力矩为正,反之为负。
§3-1 关于力矩的概念及其计算
在平面问题中,力对点之矩只取决于力矩的大小及 其旋转的方向(力矩正负),可视为一个代数量。
力矩的单位是牛顿•米(N•m)。 力F对点O的矩也可用图中∆OAB的面积的2倍表示:
Mo(F)=±2A∆OAB
§3-1 关于力矩的概念及其计算
特性:
投影为0; 力偶不能合成为一个力。 F’
力偶对物体不产生移动 O
-
效应,只产生转动效应.
ab
+
x
cd
注意:既然力偶在任何坐标 轴上的投影等于零,那它的 合力也等于零。这种说法对 不对?
不对,在任何坐标轴上投
影为零的力系合力为零是针 对平面汇交力系。
§3-2 关于力偶的概念
力偶矩 :力偶对物体的转动效应。
M(F, F’)=±Fd
M (F , F ) 2 AABC 力偶的三要素:力偶距的大小、力偶
A
C
d
F
O
Bx
F
的转向、力偶的作用面。
力偶对作用面内任一点之矩的大小恒等于力偶中 一力的大小和力偶臂的乘积,与矩心的位置无关。
§3-2 关于力偶的概念
(1)根据加减平衡力系公理, 对受力偶(F,F’)作用的刚体 增加一对平衡力(Q,Q’),不 改变刚体的作用效应,则有 (F,F’) =(F,F’ ,Q,Q’)。
(2)由力F,Q求得合力P,由 力F’,Q’,从而有 (F,F’ ,Q,Q’) Q =(P,P’) 。
(3)将力P和P’沿各自的作用 P
线移至任意点A’,B’,根
据力的可传性原理,有 (P,P’) =(P1,P1’) 。
A′
P1′
P1
B′
F′ P′
A
B Q′
F
§3-2 关于力偶的概念
(4) M (F, F) AB BD 2AABD, M(P, P') AB BC 2AABC
【例】扳手上受力F作用F=200N,a=30°,OA=20cm,计算该
力对螺母O之矩。 MO(F) F d F OA cos a 200 0.2 cos 30o
O
y
F Aa
34.64N m
d
根据合力矩定理,还可以将F分解到
D
x
如图所示x,y方向分别计算其对O点力矩,
在求和得F对O点之矩。
§3-3 平面力偶系的合成与平衡
F1d1 = F11d=M1
F’ 1
F1
F’ 2
F2
F’22
d
F1R1
F’1R1
F22
F2d2= F22d=-M2
MR = FRd= (F11-F22)d= F11 d -F22 d = M1+M2
§3-3 平面力偶系的合成与平衡
平衡 平面力偶系平衡的充分必要条件是:力偶
§3-2 关于力偶的概念
力偶:一对等值、反向而不共线的平行力,用 符号(F ,F′)表示。
力偶臂:两个力作用
线之间的垂直距离d。
F’
F
力偶的作用面:两个
力作用线所决定的平
面
§3-2 关于力偶的概念
F
d
F
d
F
转动游戏方向盘
F
拧水龙头
F
d
F
扳手拧螺母
§3-2 关于力偶的概念
力偶的性质:
y
力偶在任何坐标轴上的
d
x’ y' AD Mo(Fx)=- yA Fx
D
y' AO
Mo(Fy)=xA Fy
OAD
§3-1 关于力矩的概念及其计算
合力矩定理:
平面汇交力系的合力对作用面内任一点的矩等于力系 中各分力对同一点之矩的代数和。
三角函数和角公式:正余同余正,余余反正正。
§3-1 关于力矩的概念及其计算
等效?为什么?
z
F2
O
x F1
F1
F2 y
力偶等效,必须在同一平面内
§3-3 平面力偶系的合成与平衡
平面力偶系:物体上作用的若干力偶的作用 面在同一平面内。
合成
在平面力偶系中,力偶矩是代数量,力偶 的合成即是代数量相加。
MR M1 M2 …… Mn Mi
平面力偶系合成的结果是一个力偶,合力偶 矩等于力偶系中所有各力偶矩的代数和。
(1)力对点之矩,不仅取决于力的大小,还与矩心的位置有关。 力矩随矩心的位置变化而变化。
(2)力对任一点之矩,不因该力的作用点沿其作用线移动而改变。 *(3)力的大小等于零或其作用线通过矩心时,力矩等于零。 (4)互成平衡的两个力对同一点之矩的代数和为零。
Mo(F)=±Fd
§3-1 关于力矩的概念及其计算
显然,AABD AABC
Q
并注意到力偶矩的转向也相同,
则有M (F, F) M (P, P)
P
显然,M (P1, P1) M (P, P)
从而有M,(F, F) M (P1, P1)
A′
P1′
P1
b
D
B′
F′
C
P′
A
A
B Q′
F
力偶等效
M (F, F) M (P1, P1)
§3-2 关于力偶的概念
同一平面内力偶的等效定理:
在同一平面内的两个力偶,如它们的力偶矩大小相等,而且 转向相同,则此两力偶等效。
推论1 力偶可在其作用面内任意移动和转动,而不会改变它对 物体的效应。
推论2 只要保持力偶矩不变,可同时改变力偶中力的大小和力 偶臂的长度,而不会改变它对物体的作用效应。
一力偶( F1 , F1 )作用在平面Oxy内,另一力偶( F2 , F2)作用在 平面Oyz内,他们的力偶矩大小相等。试问此两力偶是否