《储层表征与建模》-储层表征与建模的基本步骤
《储层表征与建模》确定性建模
n
z* x0 i zxi i 1
第一节 克里金插值方法
克里金方法(Kriging), 是以南非矿业 工程师D.G.Krige (克里格)名字命名的一项 实用空间估计技术,是地质统计学 (Matheron,1963) 的重要组成部分,是地质 统计学的核心。
地质统计学
空间函数的相关性分析 克里金估计 随机模拟
克里金插值
根据待估点周围的
若干已知信息,应用变
差函数的性质,对待估
点的未知值作出无偏、 最优的估计。
x0
n
z* x0 i zxi i 1
无偏 E Zx0 Z * x0 0 最优 Var Zx0 Z * x0 min
c为基台值,a为变程, h为滞后距。
接近原点处,变差函 数呈线性形状,在变
程处达到基台值。
原点处变差函数的切 线在变程的2/3处与 基台值相交。
h0 ha
ha
指数模型:
h
c
Exp
h a
c
1
exp
3h a
变差函数渐近地逼近 基台值。
第四章
确定性建模
Deterministic Modeling
确定性建模概述 地质统计学克里金方法
三维地质建模
数据库
油藏数模
模型粗化
三维构造建模 三维相建模
三维储层参数建模
地层-构造建模
构造模型反映储层的空间格架。在建立储层 属性的空间分布之前,应进行构造建模。
三维断层(fault)模型 三维层面(horizon)模型
储层宏观表征与建模
储层表征与建模
2020/8/3
Reservoir Characterization and Model building
4、储层宏观非均质性表征
层内非均质性
指单砂层垂向上储层性质的变化,是控制和影响砂层组内一个 单砂层垂向上注入剂波及体积的关键因素。
粒度的韵律性:单砂体内部粒度大小在垂向的变化序列
储层表征与建模
2020/8/3
Reservoir Characterization and Model building
一、宏观表征与建模 的研究内容与流程
储层表征与建模
2020/8/3
Reservoir Characterization and Model building
1、储层地质概念模型
储层表征与建模
2020/8/3
Reservoir Characterization and Model building
储层结构模型
碎屑沉积环境的三种基本储层类型 (K.J.Weber和L.C.Van Geuns,1989)
陆相
海岸相
海相
千层饼 状
席状洪积物 湖泊席状砂 风成砂丘
障壁坝 海岸沙脊沉积物
有效厚度系数:有效厚度与砂层厚度的比值,反映层内油 气的饱满程度,越大越均质。
储层表征与建模
2020/8/3
Reservoir Characterization and Model building
平均砂层厚度:砂层总厚度与总层数的比值,反映 砂体的分散程度,越大越均质。 砂岩钻遇率:钻遇砂岩的井数与总井数的比值,其 值越大砂体分布越广。 连通系数:砂厚大于平均厚度的井数与总井数的比 值,反映砂层厚度的变化,越大连通性越好。 分布系数:钻遇油层的井数与钻遇砂层的井数的比 值,反映油层的分布范围,越大油层分布越广。
储层表征概论
储层表征内容与阶段性 储层表征内容
储层参数分布
储层流动单元分布
储层动态地质模型
储层表征内容与阶段性 储层表征内容
二、不同阶段储层表征内容 1. 油藏评价阶段
•6
探明油气藏 评价油气藏 开发可行性评价
-2350 -2300 -2200
-2350 -2300 -2200
A 2•
•1
•4 A’
A 2• •3
(孔隙度、渗透率、 含油饱和度等)
储层表征规模与多维性
2.点解释
√针对砂层, 按8点/米的密度 进行储层参数解释。
井深 孔隙度 (m) (%) 2100.000 17.0 2100.125 18.0 2100.250 18.1 2100.375 18.2 2100.500 20.5
渗透率 (×10-3μm2)
储层的非均质性,因此,可克服用二维图件描 述三维储层的局限性。
有利于油田勘探开发工作者进 行合理的油藏评价及开发管理
储层表征规模与多维性
★建模目的
2. 可更精确地计算油气储量
常规的储量计算
储量计算单元:原则上以油藏(一个油水系统)
为计算单元。
纵向上:油组、砂组、小层、单层 横向上:一个圈闭,或更小单元。
三维数据体
储层表征规模与多维性
三维网格化 (3D griding)
网块尺寸越小,标志着模型越细;每个网
块上参数值与实际误差愈小,标志着模型
的精度愈高。
(精细油藏描述)
储层表征规模与多维性
数值模型----即三维数据体----图形显示
三维显示 任意旋转 任意切片
从不同角度显示储层的外 部形态及其内部特点
/流动单元平面分布 (3)隔夹层平面分布
【课程思政教学案例】《储层表征与建模》课程
课程名称:《储层表征与建模》课程性质:专业核心课所属一级学科:地质资源与地质工程总学时:48学时一、课程简介《储层表征与建模》课程是国家一流学科“地质资源与地质工程”(A+学科)的重要支撑课程,是油气田开发地质领域研究生的一门专业核心课。
本课程主要阐述地下非均质储层描述、预测和三维建模的理论、方法和技术。
主要教学内容包括:①储层表征内涵、信息解析与科学思维;②储层构型样式与研究方法;③储层质量差异机理与研究方法;④确定性建模原理与方法;⑤随机建模原理与方法。
采用启发性讲授、实训、研讨、习题、自学相结合的教学方式。
二、课程思政典型教学案例(一)案例名称多元融合课程思政教学模式构建与实践(二)教学目标课程教学目标:使学生掌握综合应用多学科信息和方法进行地下非均质储层描述、预测和三维建模的理论、方法和技术,并提升分析和解决复杂问题的能力、创新思维能力、团队合作能力、表达能力、自主学习能力等可迁移能力,为今后从事油气田开发地质研究工作奠定必要的基础,并为终身发展、适应和引领未来社会奠定良好的基础。
课程思政教学目标:在培养学生掌握油气储层表征与建模的基本理论和方法、提高地下地质分析和预测能力的同时,增强学生家国情怀和使命担当,坚定“我为祖国献石油”的理想与信念,使他们成为新时代“铁人精神”的传承者;同时具备创新思维能力、团队合作能力、自主学习能力等可迁移能力,为祖国石油工业培养德才兼备的合格接班人。
(三)教学过程与方法紧密围绕课程教学目标,坚持“以学生发展为中心”的原则,遵循“知识、思维、能力、素质教育并重”的课程教学理念,创新形成了一套多元融合的教学方法。
1.思维导引式授课课内理论教学环节实施思维导引式授课。
不同于传统的“单向传递”知识,思维导引式授课是根据学生课前自学测试结果构建问题链,进行层层递进的问题解析,引导学生思考,进行互动交流,得到合理认识,融知识建构与思维训练于一体,提升创新意识和高阶思维。
petrel中储层建模具体操作
储层建模的步骤目前普遍的认识是,储层建模应分为油藏构造建模、沉积(微)相建模和油藏属性建模三步完成。
构造模型反应储层的空间格架,在建立储层属性的空间分布之前,应进行构造建模。
由于沉积相对储层物性有决定性的作用,油藏属性建模多采用相控建模,即先建立沉积微相模型,然后以此为基础进行油藏属性建模。
张天渠油田长2油藏的储层地质模型是以测井资料为基础资料,采用确定性建模的储层建模方法建立的。
储层建模的整个过程包括4个主要环节,即数据准备、构造建模、油藏属性建模、模型的应用。
一、数据准备与预处理1.数据准备一般从数据来源看,建模数据包括岩心、测井、地震、试井、开发动态等方面的数据。
从建模的内容来看,基本数据包括以下四类:①坐标数据:包括井位坐标、地震测网坐标等;②分层数据:各井的油组、砂组、小层、砂体划分对比数据;地震解释层面数据;③断层数据:断层位置、断点、断距等;④储层数据:储层数据是储层建模中最重要的数据。
包括井眼储层数据、地震储层数据和试井数据。
井眼数据为岩心和测井解释数据,包括井内相、砂体、隔夹层、孔隙度、渗透率、含油饱和度等数据,这是储层建模的硬数据。
对不同来源的数据进行质量检查是储层建模中十分重要的环节。
为了提高储层建模的精度,必须尽量保证用于建模的原始数据特别是硬数据的准确性。
因此,必须对数据进行全面的质量检查,如检查岩心分析的孔渗参数的奇异值是否符合地质实际,测井解释的孔渗饱是否正确等等。
建模过程中能被储层建模软件所采用的资料来源于这些基础资料,但它们有特殊的格式要求,需要转换成不同格式要求的文本文件才能以正确的格式导入到Petrel软件中。
从文件类型上来看,它们包括井头文件(Well head)、井斜文件或井轨迹文件(Well deviation)和测井数据文件(Well log)。
它们的格式和作用分别如下:①井头文件:文件内容包括井名、井位坐标(X、Y)、地面补心海拔(补心高与地面海拔之和)以及目标井段深度(井段顶部深度和测井段底部深度)。
《储层表征与建模》储层构型模式
3st BS within a sandstone-dominated lateral-accretion deposits
Allen(1977)在第一届国际河流沉积学会议(卡尔 加里)明确提出了Fluvial architecture的概念,描述河流
层序中河道和溢岸沉积的几何形态(geometry)及内部组合 (internal arrangement )。
Reservoir architecture
不同级次储层构成 单元的几何形态、大小 、方向及其相互关系。
第二章
储层构型
Reservoir architecture
储层构型基本概念 储层构型模式(河流相) 储层构型分析
储层沉积类型
回顾内容
•冲积扇砂砾岩体 •河流砂体
滩坝 浊积岩 冲积扇
1.5 4.5
6
•湖泊砂体 •风成砂体 •海岸 砂体 •海洋三角洲砂体
42
三角洲
46
河流
我国陆相储油砂体成因类型
•陆棚(浅海)砂体
碳酸盐岩台地-盆地
第一代模式
First generation model
第二代模式
Second generation model 内部构型
第一节 储层构型基本概念
Reservoir architecture
Architecture:
日常用语: 建筑学、建筑结构、 体系结构、结构格式
地质学用语: 构型、构形、结构、 建筑结构、构成单元
构型界面 构型规模 构型要素 岩相分类
储层微观表征与建模
储层表征与建模
2020/8/3
Reservoir Characterization and Model building
泥质岩的分析鉴定 X衍射:粘土矿物含量及矿物混层比 热解分析:矿物最大热峰 镜质体反射率:有机岩成熟度
4、微观表征与建模的重点和难点
微观参数众多,如何挑选最具代表性的参数
微观参数获取困难,目前主要依靠岩心进行各种分 析化验来获得,应拓宽微观参数的获取途径,使得 其规律能够反映地下储层变化规律。
微观参数的分辨率相差悬殊
如何使得微观参数的研究和表征与宏观参数的表征 相结合,只有微观与宏观相结合,才能使微观表征 直接应用于生产。
储层表征与建模
2020/8/3
Reservoir Characterization and Model building
一、微观表征与建模概述
储层表征与建模
2020/8/3
Reservoir Characterization and Model building
微观表征与建模的研究目的意义 微观表征与建模的研究内容 微观表征与建模的研究方法 微观表征与建模的研究流程 微观表征与建模的重点和难点
一种矿物被另一种矿物所置换
方
颗 粒 边 缘 交 代
解 石 大 面 积 交 代
粘
土
储层表征与建模
2020/8/3
重结晶作用
Reservoir Characterization and Model building
储层表征与建模
2020/8/3
破裂作用
Reservoir Characterization and Model building
中国石油大学《储层表征与建模》吴胜和 第四章
变差函数及结构分析
克里金插值方法
变差函数及结构分析
地质变量相关性的各向异性
☼1 ☼3 ☼3
☼3 ☼1 ☼1
☼3 ☼2 ☼1
h a
γ (h) = C(0) – C(h)
基台值(Sill):代表变量在空间上的总变异性大小。
即为变差函数在h大于变程时的值, 为块金值c0和拱高cc之和。 (拱高:在取得的有效数据的尺度上,可观测得到的 变异性幅度大小)。
克里金插值方法 平稳假设
二阶平稳
任何统计学均 要求平稳性假设
• 空间各点处随机变量的集合构成一个随机函数。
(将空间位置作为随机函数的自变量)
P
① 在研究区内有Z(u)的数学期望存在, 且等于常数,即:E[Z(u)] = E[Z(u+h)] = m(常数) ② 在研究区内,Z(u)的协方差函数 Cov{Z(u),Z(u+h)}存在且平稳 (即只依赖于滞后距h,而与u无关)
三维空间的水道迁移
A7 A2 A6 A1 A4 A3 A5
单井侧积层界面点提取
侧积面三维视图
确定性建模概述
地质模式拟合
确定性建模概述
三、数学插值
1. 传统数学插值
侧积层镂空视图
传统数学插值 克里金插值
如:三角剖分法(三角网方法)、 距离反比加权法等 将变量视为纯随机变量, 未考虑变量的空间结构性 仅考虑待估点位置与已知数 据位置的相互关系。
i =1
最小的估计方差,即克里金方差,可用以下公式求解:
当随机函数不满足二阶平稳,而满足内蕴(本征)假设时, 可用变差函数来表示克里金方程组: ⎧n γ (xi − x j )λi + μ = γ (x0 − x j ) ( j = 1,K, n ) ⎪ ⎪∑ i =1 ⎨ n ⎪ λi = 1 ∑ Z*(x0) ⎪ i =1 ⎩
《储层表征与建模》作业:三维储层建模报告
储层表征与建模作业四三维储层建模报告一、作业概况及要求1、工区概况本次作业建模工区的范围沿x、y、z方向为1000 X 1300 X 20米。
三维网格数为100 X 130 X 10,网格大小为10 X 10 X 2米。
主要沉积的砂体为发育在泛滥平原泥岩上的河道砂体,且河道砂体近东西向展布。
另有部分河道发育决口扇砂体。
所有350井均为直井。
垂向上每口井分为10个小层,每层厚度为2米井数据文件(well.dat)中给出了每口井的x,y坐标和每个小层的中部深度,以及每个小层的沉积相类型和波阻抗、孔隙度、渗透率数据,数据格式为Gslib格式。
提供的三维波阻抗数据体文件(imped.dat)也采用了Gslib的格式。
波阻抗的三维网格划分与建模工区一致。
使用软件为斯坦福大学油藏预测中心开发的SGeMS。
2、作业要求要求根据所提供的建模工区及相应350口井的井数据、三维波阻抗数据体,进行三维储层建模。
其主要内容包括对储层参数的数据分析、变差函数分析及拟合变差函数的求取、三维相确定性和随机模型的建立、三维储层确定性和随机模型的建立。
二、作业实施1、数据分析主要包括:绘制各变量直方图,统计各个变量的分布(均值、方差等);绘制不同变量交会图,研究变量之间相关性;了解工区储层相以及参数特征等为后续建模工作做准备。
(1)沉积相分布如图1所示,1,2,3分别代表河道(channel),决口扇(crevasse),泛滥平原(floodplain)。
可知,上述三种沉积相的比例分别为0.51,0.06,0.43。
在建模中,使用该相比例作为三维模拟的约束条件。
图1 沉积相比例图(2)沉积相与孔隙度、渗透率的相关性由图2可知,各种相的孔隙度差别不大。
其中,河道砂体孔隙度分布比较集中且值较大;决口扇孔隙度变化范围大,孔隙度值中等;泛滥平原孔隙度值较小。
图2 沉积相与孔隙度关系图3 沉积相与渗透率关系由图3可知,各种相的渗透率差异较为明显,其分布与孔隙度类似,河道砂体渗透率变化范围大;决口扇渗透率分布较为集中;泛滥平原渗透率值较小。
储层建模步骤.doc
储层建模步骤当前国内外储层地质建模的总体思路和方法基本上是一致的,即在广泛收集地质(包括露头、钻井及综合测试)、地震及测井资料的基础上,利用沉积学、储层地质学和一系列数学方法来定量表征二维或三维储层的宏观几何形态及内部特性参数的空间变化,最终利用计算机来动态地模拟储层的空间变化特征。
三维建模一般遵循从点----面---体的步骤,即首选建立各井点的一维垂向模型,其次建立储层的框架(由一系列叠置的二维层面模型构成),然后在储层框架基础上,建立储层各种属性的三维分布模型。
一般的,广义的三维储层建模主要包含六个环节,即数据准备、构造建模、储层相建模、储层参数建模、储量计算、如果要将储层模型用于油藏数值模拟,应对其进行粗化。
2.1 数据准备储层建模是以数据库作为基础的,数据的丰富程度以及准确性在很大程度上决定着所建模型的精度。
从数据来源看,建模数据包含岩芯、测井、地震、试井、开发动态等方面的数据。
2.1.1 建模数据(1)井数据井数据包括井基本信息、岩心数据、测井及其解释数据、分层数据、断点数据等。
1.基本信息主要指钻井信息,包括井名称、井别、井口坐标、补心海拔、完井深度、完井时间及井身轨迹等。
这些数据可从完井地质报告中得到,目前大部分油田单位已将其建成了数据库。
在建模软件中加载了井信息数据后,应对井信息及轨迹逐一进行细致检查,特别是进行可视化检查。
例如,为了检查井身轨迹的准确性,首先,从三维视窗中查看井轨迹的整体形态;第二,在导入井分层数据后,逐层与现场已有井位底图进行对比检查,确保数据无误。
2.岩心数据岩心数据包括岩心照片、岩心描述以及岩心钻孔分析数据等,是岩性解释、沉积相划分、含油气性解释、储层质量评价以及隔夹层识别等的第一性资料。
建模过程中,岩心数据主要作为测井数据的标定。
3.测井及其解释数据测井作为研究井筒周围地层、岩石及流体特征的重要技术手段,包括电法测井、声波测井、放射性测井、地层倾角测井、气测井、生产测井以及随钻测井等多个类别,一般数据按每米8个数据点记录。
储层表征与建模
储层表征与建模储层表征与建模是石油勘探开发过程中的重要组成部分。
通过对储层进行表征和建模,可以帮助工程师更好地了解储层的地质特征、储层中的油气分布情况以及储层的物理和化学性质,从而更好地进行石油勘探开发。
储层表征是指对储层进行地质学、物理学和化学学等方面的综合描述和分析。
它包括对储层岩石类型、岩石结构、质地、孔隙类型、孔隙度、渗透率、压力、饱和度等多方面信息的描述。
不同储层的地质构成会有所不同,因此储层表征需要根据实际地质情况进行分类和细化。
首先,对储层的岩石结构进行描述。
岩石结构是指岩石中各个粒子之间的排列方式,包括岩石的成分、化学结构、结晶状态、晶粒度、含水量等因素。
在储层表征中,需要对岩石的成分、结晶状态和晶粒度进行综合描述,其中成分的描述包括岩石的矿物质组成、化学成分和地球化学特征等;结晶状态的描述包括晶体形态、晶体大小和晶体排列方式等;晶粒度的描述包括粗细程度、均匀性和分布情况等。
其次,对储层的孔隙类型、孔隙度和渗透率进行描述。
孔隙度是指储层中孔隙体积所占的比例,是一个重要的物理参数,直接关系到油气的运移和储存能力。
因此,对孔隙度的描述需要从不同尺度上进行,分别描述微观孔隙、介观孔隙和宏观孔隙。
渗透率是指储层中油气流动能力的大小,是另一个重要的物理参数。
在储层表征中,需要对渗透率的大小、分布和变化进行描述,这样可以更好地了解储层中油气的运移方式和储存能力。
最后,对储层的压力、饱和度和物性等方面进行描述。
压力是指储层中油气所受的压力,包括孔隙水压和地层压力等,需要进行准确的测量和分析,通过建立压力场模型,可以帮助预测油气运移和储存的情况。
饱和度是指储层中油气所占的比例,是根据测量数据和流体力学原理进行计算的。
物性包括油气相对密度、粘度、温度等参数,对储层中油气的运动规律和物理特性有着重要的影响,需要进行详细的物性分析和测量。
除了储层表征,建立储层模型是石油勘探开发过程中的另一个重要步骤。
《储层表征与建模》绪论
时间安排 ----研06级 总学时:32
周五 上午第1~4节 8:00 ~ 12:00
5月11日 (第10周)
5月18日 (第11周)
5月25日 (第12周) 6月 1日 (第13周) 6月 8日 (第14周) 6月15日 (第15周) 6月22日 (第16周) 6月29日 (第17周)
讲课(二教211)
25-35% 未采出的 可动油
必须用昂贵的 化学剂才能采 出的石油储量
被储层各种非均质性 隔挡在地下,当前 正在挖潜的对象
开发早期阶段
优化开发方案 优化管理及调整方案 提高油藏开发效率
储层非均质性 储层敏感性 储层地质模型
井网布置 配产配注 射孔方案
开发中后期阶段
提高油田最终采收率
注水开发调整 优化三次采油方案
Reservoir Description
70年代斯仑贝谢公司提出的以测井为主的RDS Reservoir Description Service
对油藏各种特征(圈闭、储层、流体)进行 三维定量描述和预测
最终成果:建立反映油藏特征的三维油藏地质模型。
油藏地质建模 是油藏描述的核心。
³Â ± ¤ÓÍ Ìï ³Â 3¶Ï ¿é K2t1-K2cÓÍ ²Ø ÆÊ Ãæ ͼ
二、关于课程
储层表征
Reservoir Characterization
定量地研究和描述储层,并 建立储层地质模型,为油气 田勘探和开发服务。
1985年国际储层表征会议对 储层表征的定义:
“量化油藏特性,识别 地质信息和空间变化不确定 性的一个过程”
三个层次: 特征识别 特征描述 储层建模
油藏评价 开发早期 开发中后期
流体
储层建模步骤(共25张PPT)
A、储层相模型(储层结构模型)
储层内部相单元的三维空间分布。能定量表述储集体大小、几何形态 及三维空间分布,实际为储层结构模型。实践表明:相带分布强烈地影响 地下流体的流动。合理的相模型是精确建立岩石物性模型的必要前提。
B、流动单元模型
流动单元是指根据影响流体流动的地质参数(如:K、φ、Kv/Kh、
②构造建模
构造模型反映储层的空间格架。因此,在建立储层属性的空 间分布之前,应进行构造建模。构造模型由断层模型和层面模 型组成。
断层模型反映的是三维空间上的断层面,主要根据地震解释 及井资料校正的断层文件,建立断层在三维空间的分布。
层模型反映的是地层界面的三维分布。叠合的层面模型即为地层格 架模型。建模的基础资料主要为分层数据,及地震解释的层面数据等。 一般通过插值法(也可应用随机模拟方法),应用分层数据,生成各 个等时层的顶底层面模型(即层面构造模型),然后将各个层面模型 进行空间叠合,建立储层的空间格架。
广义的储层模型(reservoir model)实际上为油藏模型。在国 外的文献中,reservoir一词往往指含有油气的储集体,因此,广义
的储层模型包括构造模型、储层属性分布模型及流体分布模型。从这 个意义上讲,应用各种资料建立广义的储层模型的过程就是油藏描述。
地下储层是在三维空间分布的。长期以来,人们习惯于用二维图件 (各种小层平面图、油层剖面图)及准三维图件(栅状图)来描述三维 储层,如用平面渗透率等值线图来描述一套(或一层)储层的渗透率分 布,显然,这种描述存在一定的局限性,关键是掩盖了储层的层内非均 质性以及平面非均质性。
其二是二维裂缝密度模型,表 征裂缝的发育程度。
裂缝分布模型的建立具有一定的 难度,特别是地下油藏的裂缝网络 模型,因此,需应用多学科方法、 技术,如岩心分析、测井解释、试 井分析、地震多分量研究及地质统 计学随机模拟技术等进行综合研究 和建模。
储层表征
胜坨油田胜二 区74小层不同 含水期渗透率 实现对比图
胜坨油 田胜二 区沙二 段74小 层不同 含水期 含油饱 和度模 型
内容提要
一、储层表征的概念
二、储层模型的分类 三、储层建模的概念 四、地质统计学基础知识 五、随机建模方法简介
六、随机建模步骤、策略
建模的目的
白化过程
测井信息与解释
地质信息与解释
地震信息与解释
油藏工程信息与解释
实质:井间储层参数的预测
• 确定性建模
两种技术
• 随机建模
确定性vs随机性
以确定性资料为基础,给出井 确定性 间确定的、唯一的储层参数。
储层地震地质学 储层沉积学 地质统计学克里金方法
确定性vs随机性
储层系统的复杂性 资料的不完备性
1 3 3 3 1 1 3 2 1 1 3 3
特殊地,当h=0时,上式变为 Var[Z(u)]=C(0),
u u+h
即方差存在且为常数。
本征假设
intrinsic hypothese
(比二阶平稳更弱的平稳假设)
当区域化变量Z(u)的增量[Z(u)-Z(u+h)]满足下列二 条件时,称其为满足本征假设或内蕴假设。 ①在整个研究区内有 E[Z(u)-Z(u+h)] = 0
变差函数(或叫变程方差函数,或变异函数)是 地质统计学所特有的基本工具。它既能描述区域化 变量的空间结构性变化,又能描述其随机性变化。
跃迁现象
一维情况下的定义:
假设空间点x只在一维的x轴上变化,则将区域化 变量Z(x)在x,x+h两点处的值之差的方差之半定义 为Z(x)在x轴方向上的变差函数,记为 ( x, h)
二、储层模型的分类 三、储层建模的概念 四、地质统计学基础知识 五、随机建模方法简介
《储层表征与建模》期末考试试卷及答案
《储层表征与建模》A卷答题时间:2小时专业年级姓名学号分数一、判断题(对的打 ,错的打 ;每题3分,共30分)1.按照Miall(1996)的观点,曲流河点坝的顶界面属于5级界面。
()2.高岭石易发育于碱性水成岩环境,方解石易发育于酸性水成岩环境()3.钙质胶结带一般平行于地层层面分布。
()。
4.收缩裂缝的分布受控于局部构造。
()5.在其它条件相同的情况下,孔喉分布越均匀,原油的微观采出程度越高。
()6.含铁方解石的油层在低矿化度水的影响下容易发生水敏性。
()7.流动单元的分布受控于沉积相,但与成岩作用关系不大。
()8.基于目标的随机建模方法的不足之一是不能忠实于井资料。
()9.基于变差函数的估值方法属于多点统计学的范畴。
()10.序贯指示模拟可建立三维沉积相模型,因此属于基于目标的建模方法。
()二、简述题(30分)1.简述Miall(1996)构型界面的划分(6级划分)及基本特征。
(15分)2.简述储层随机建模的流程(15分)三、论述题(40分)试论述曲流河储层的宏观非均质特征。
《储层表征与建模》A卷参考答案一、判断题(对的打✓,错的打⨯;每题3分,共30分)1.按照Miall(1996)的观点,曲流河点坝的顶界面属于5级界面。
(⨯)是4级的界面。
2.高岭石易发育于碱性水成岩环境,方解石易发育于酸性水成岩环境(⨯)反了3.钙质胶结带一般平行于地层层面分布。
(⨯)。
4.收缩裂缝的分布受控于局部构造。
(⨯)5.在其它条件相同的情况下,孔喉分布越均匀,原油的微观采出程度越高。
(✓)6.含铁方解石的油层在低矿化度水的影响下容易发生水敏性。
(⨯)盐敏性7.流动单元的分布受控于沉积相,但与成岩作用关系不大。
(⨯)8.基于目标的随机建模方法的不足之一是不能忠实于井资料。
(⨯)9.基于变差函数的估值方法属于多点统计学的范畴。
(⨯)地质统计学10.序贯指示模拟可建立三维沉积相模型,因此属于基于目标的建模方法。
(⨯)二、简述题(30分)1.简述Miall(1996)构型界面的划分(6级划分)及基本特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(回顾内容)
相对与绝对 规模与层层间非均质 平面非均质 层内非均质 微观非均质
储层纵向分布的复杂程度 分层系数 砂岩密度
层间渗透率非均质程度
层间隔层 层间裂缝
(2)平面非均质性
砂体的平面差异性
砂体几何形态 砂体规模与各向连续性 砂体连通性 渗透率平面变化 平面渗透率的方向性
(3)低渗近致密储层(1-0.1)
孔喉半径小,接近油层下限;
几无自然产能,需大型压裂投产
(4) 低渗致密储层 (<0.1)
只能作为储气层(非常规气层),
标准致密储层(0.1-0.01) 非常致密储层 (0.01-0.001) 超致密储层 (0.001-0.0001)
标准岩心分析和测井解释不能提供可靠的资料, 需进行大型压裂等措施才能获得工业产能
总孔隙: 有效孔隙:连通的毛管孔隙及超毛管孔隙
(D= 0.2~500m) (D>500m)
无效孔隙:微毛管孔隙、死孔隙
(D=< 0.2m)
总孔隙度和有效孔隙度
测定手段:岩心 测井 ( ?) 地震 ( ?)
渗透性
在一定压差下流体可在其中流动
绝对渗透率 有效渗透率 相对渗透率
110-3m2 1.013md
≥2000 md 2000> k ≥500 500 > k ≥50 50 > k ≥10
<10
低渗透储层
低渗储层的渗透率上限?
100? 50? 10?
分类
依据:渗透率大小、渗流特征、开采方式
(1)常规低渗储层(50-10)
具自然产能,储层敏感性一般较强
(2)特低渗储层(10-1)
微孔隙发育,束缚水饱和度高,测井解释有难度; 自然产能一般达不到工业标准,需压裂投产
垂向(组、准层序组、层序)
分辨率:横(数千米)、纵(数十米)
哈山古水系
德仑山古水系 泛滥平原
乌伦古北部古水系 洪积扇
湖泊
三角洲 湖泊
辩状河 泛滥平原
四棵树古水系
依林黑比尔根山古水系
圈闭预探
圈闭评价 圈闭含油性
沉积相 有利储集相
沉积体系与沉积相
研究单元:横向(二级构造带或圈闭) 垂向(段、准层序、准层序组)
(3)层内非均质性
定义:单砂层内垂向上储层性质的变化。
粒度韵律、渗透率韵律及高渗层位置 层理构造及渗透率各向异性 层内渗透率非均质程度 层内夹层(产状、频率、密度) 层内裂缝
(4)微观非均质性
微观规模孔隙、颗粒、填隙物等性质的差异。
孔隙非均质性
孔喉形状、大小、分选及相互连通关系
颗粒非均质性
基本地质特征
(1)孔喉半径小,渗透率低
K = (r)2/8Fs2
高孔低渗?、中孔低渗、低孔低渗
(2)毛管压力及束缚水饱和度高 Pc = 7.5/r
束缚水成因:毛管滞水、薄膜滞水 导致:测井解释油气层的困难
降低油气相渗,常规开采困难
+ Na,Ca,H2O
(3)天然裂缝相对发育
低渗 致密 性脆
(4)储层敏感性强 水敏、速敏、酸敏 孔喉小,易受伤害
储层研究的特点
★储层研究的阶段性 ★储层研究的多维性 ★研究资料的不完备性 ★储层研究的多学科综合性
一、储层研究的阶段性
区域勘探 圈闭预探
区域储层评价 (着重储集性能)
油藏评价
开发储层评价 (着重渗流性能)
开发早期
开发中后期
岩相古地理图
区域勘探
有利储集相
体系域与沉积体系
“选凹定带” 研究单元:横向(盆地或凹陷)
(5)应力敏感性强 细小片状孔缝,受应力易压缩, 应力释放后易扩大
二、储层系统
★储层系统的层次性与复杂性 ★储层非均质性 ★储层敏感性
1. 储层系统的层次性与复杂性
地层层次
据Van Wagoner(1990)
106 104
102
1
储层层次
多砂体规模
(层序-层组)
单砂体规模
(层)
纹层组规模 纹层规模 孔隙规模
颗粒分选及排列的方向性
填隙物非均质性
3. 开发过程中的动态变化
油气储层与外来流体 发生各种物理或化学作 用而使储层孔隙结构和 渗透性发生变化。
水敏、盐敏、 速敏、酸敏、 碱敏、水锁
1-3
第二节 储层研究的特点
黑箱
井资料 地震资料 动态资料
灰箱
(部分信息已知, 部分信息未知)
“白化”模型
储层研究是一个“白化”过程
据Pettijion(1973)
储层层次界面 与层次结构
界面分级
Miall(1985,1988,1991,1996)
主要分为6级
(河流相)
同一层次内部的差异性
结构差异性 性能差异性
如:层规模
结构差异: 不同微相; 同一微相内部 的结构单元
储集性能差异
2. 储层非均质性
定义:储层分布及内部 各种属性在三维 空间上的不均一 变化,即为储层 非均质性
分辨率:横(数十米) 纵(0.2~0.5m)
井网布置 配产配注 射孔方案
沉积微相(组合) 储层非均质性 储层流动单元 储层敏感性 储层地质模型
孔隙性储层 孔-缝性储层 裂缝型储层 孔洞性储层 缝-洞性储层 孔-洞-缝复合型储层
按物性的分类
按孔隙度的分类:特高孔隙度 高孔隙度 中孔隙度 低孔隙度 特低孔隙度
按渗透率的分类: 特高渗 高渗 中渗 低渗 特低渗
≥30%
30%>e ≥25% 25%> e ≥15% 15%> e ≥10%
<10%
分辨率:横(数百米)、纵(数米)
油藏评价
探明油气藏 评价油气藏 开发可行性评价
研究单元:横向(油藏/油田) 垂向(砂组)
分辨率:横(数百-数十米) 纵(0.5~1.0m)
沉积亚相/微相 储层地质模型 含油性分布
开发早期
优化开发方案 优化管理及调整方案 提高油藏开发效率
研究单元:横向(油藏/油田) 垂向(小层)
绝对渗透率的测定:岩心(实验分析)? 测井(孔--渗关系)? 试井(大范围平均值) 地震(?)
储集岩分类
按岩性的分类
碎屑岩储层 碳酸盐岩储层 特殊岩性储层 火成岩储层
变质岩储层 泥岩储层
碳酸岩(Carbonatite) ?
岩浆成因的碳酸盐类岩石。 80%左右的方解石、白云石、菱镁矿。
按孔隙结构的分类
第一章
储层研究概论
Introduction to Reservoir Study
储层系统的复杂性 储层研究的特点 储层表征与建模的基本步骤
第一节 储层系统的复杂性
储集岩 储层系统
一、储集岩
(回顾内容)
储集岩的特性----孔渗性
孔隙性
岩石中各种孔隙、孔洞及裂缝组成的 储集空间,其中可储存流体。
所有具有孔隙的的岩石均可成为储集岩?