【免费下载】超导电力技术-中英文
超导材料 英语
超导材料英语Superconducting MaterialsSuperconducting materials are a group of materials that exhibit zero electrical resistance when cooled below their critical temperature. This phenomenon, called superconductivity, is a fascinating and valuable propertythat has many useful applications in modern technology.Types of Superconducting MaterialsThere are several types of superconductors, classified based on their properties and structures. The two main types are:1. Type-I Superconductors: These are metals or alloysthat have a very low critical temperature and exhibitcomplete expulsion of magnetic fields when cooled below their critical temperature.2. Type-II Superconductors: These are materials that exhibit both type-I and type-II behavior depending on the temperature, magnetic field, and current applied. They are usually made of ceramics or metallic alloys and have higher critical temperatures than type-I superconductors.Applications of Superconducting MaterialsSuperconducting materials have many real-world applications, including:1. Electromagnets: Due to their ability to conduct electricity without resistance, superconducting materials are ideal for making powerful electromagnets used in MRI machines, particle accelerators, and magnetic levitation trains.2. Power transmission: Superconducting materials canenhance the efficiency of power transmission systems by reducing energy losses during transmission, which can save a lot of money and reduce carbon emissions.3. Computing and memory: High-speed switching devices made from superconducting materials could make computing and memory devices faster and more energy-efficient.4. Energy storage: Superconducting materials can be used in energy storage systems such as flywheel batteries that store energy using a spinning rotor made of superconducting material.Challenges and Future ProspectsDespite their many promising applications, there arestill several challenges that need to be overcome before superconducting materials can become more widespread in the industry, including their high cost and the need for cryogenic cooling.However, with ongoing technological advancements and research, it is likely that new and improved superconducting materials will emerge, with better performance and more accessibility, making the benefits of superconductivity more widely available for a range of applications.。
超导科普文章英文及译文
超导科普文章英文及译文Here's a superconductivity科普文章 in English, written in an informal and conversational tone, with each paragraph maintaining independence and variety in language style:Paragraph 1:Ever heard of superconductivity? It's this crazy thing where some materials lose all resistance to electricity flow at really low temperatures. Imagine a wire thatdoesn't heat up or lose energy as electricity passes through it. That's superconductivity in a nutshell!Translation 段落1:听说过超导性吗?它是一种奇特的现象,当一些材料在极低的温度下时,会失去对所有电流流动的阻力。
想象一下,有一根电线在电流通过时既不会发热也不会损失能量。
这就是超导性的简单解释!Paragraph 2:So why is this important? Well, superconductors can make powerful electric magnets and efficient energytransport possible. Imagine having zero energy loss inpower lines. That would be a game-changer for our energy consumption and efficiency.Translation 段落2:那么这为什么重要呢?嗯,超导体可以使强大的电磁铁和高效的能量传输成为可能。
电力专业英语翻译(第二版)
A decrease in the field current gives rise to lagging (inductive) current in the stator; and increase in the field current that overexcites the motor causes a leading (capacitive) current to appear in the stator.励磁电流减小时,定子电流感性增强;励磁电流增加使电机过励时将在定子中产生容性电流。
An induction machine is an AC two-winding unit in which only one (primary, usually the stator) winding is supplied with an alternating current at a constant frequency ω1 from an external source.感应电机是一种具有双绕组的交流电气设备,它只有一个绕组(一次侧,通常是定子)通过外电源输入固定频率为ω1的交变电流。
Current transformers for protection are essentially similar to those used for the operation of ammeters, watthourmeters and other instruments.保护用电流互感器基本上同操作用的电流表、电能表和其他仪器类似。
DG planning also involves arranging for connection of the renewable power generator with the local grid, and for support of any local electric load when the renewable source is not available.分布式发电规划还包括安排可再生能源发电机与地方电网相连接,这样当可再生能源不可用时,本地电力负荷仍能得到支持。
超导技术在电力系统中的应用
超导技术在电力系统中的应用近年来,随着能源消耗的增加和对环境保护的认识加强,人们对电力系统的安全性、可靠性、效率性等方面的要求也越来越高。
而超导技术就是一种可以有效提高电力系统运行性能的技术。
一、超导技术的原理及应用所谓超导,是指在超导材料中,当温度降到一定程度以下时,电流可以在材料内无损耗地流动。
这种无损耗的电流流动,可以使得传输线路没有热损失和电能损耗,从而可大幅提高电力系统的效率和节约能源。
另外,由于超导材料对磁场具有特殊的超导性质,因此也可以在发电机和变压器等电力设备中应用。
1. 超导电缆超导电缆是一种核心包覆式超导电缆,在铜套中包覆多丝超导带材,制成环型导体用于输配电,可显著降低输电线路的电阻和电动势降低,提高电力系统的传输能力和电能传输效率,使得系统的损耗更小,可行的输电距离更远。
与同等电阻的高压电缆相比,超导电缆的直径更小,重量更轻,故布设和维护成本也更低。
2. 超导发电机目前,利用超导技术的发电机已经得到了广泛应用。
传统发电机的旋转部分都是由导体制成,如铜等。
发电时导体的运动会产生磁通量,在大功率的情况下会产生很大的磁化电流,这会使得导体的温升加剧,增大铜质线圈的电阻,降低了发电机的效率。
而利用超导技术制造的发电机,铜材交替覆盖超导带材,这样可以大幅度降低发电机线圈的电阻,提高输出功率,而且还可以减少断路电压和抑制振动等现象,从而使得设备具备更高的稳定性和寿命。
3. 超导变压器超导变压器是利用超导材料制成的线圈来替代传统的铜线圈的变压器。
这种变压器具有更高的能量效率、更低的损耗和更小的体积,使得传统变压器的设计和使用方式得到了极大的改善。
二、超导技术在电力系统中的优势与传统电力系统相比,采用超导技术的电力系统具有如下优势:1. 高效性由于超导材料在低温下电流可以无损耗地流动,因此超导线路的效率可以明显地提高。
具体而言,超导线路的损耗比普通导线的损耗要低得多,从而可以实现更高的能量传输效率。
超导技术及其应用
超导技术及其应用超导技术是一种利用超导材料的独特电学特性来制造电子设备的技术,在多个领域得到广泛应用。
本文将探讨超导技术的原理、发展历程以及在能源、医学、计算机等领域的应用。
一、超导技术简介超导材料是一种在低于临界温度下(临界温度是一个物质进入超导状态的临界点。
)电阻变为零的材料。
这意味着,超导状态下的电能可以在不产生能量损耗的情况下在材料内部传输。
超导材料的这些独特电学特性使得它们在电路、磁学、能源和医学等领域中具有广泛的应用前景。
二、超导技术的历史和发展超导技术最初出现于1911年,当时Dutch Physicist Heike Kamerlingh Onnes首次发现,当他把汞降温至4.2K(几乎是绝对零度的温度)时,其电阻率为零,即呈超导状态。
从那时起,超导材料的研究一直在不断进步。
1941年,美国物理学家William Shockley首次提出了超导技术的概念,指出了超导技术在电路和自我感应方面的应用前景。
1957年,超导材料Nb3Sn被发现,在它的超导状态下,临界温度为18K。
3亿磁感应强度在18K-20K的Nb3Sn,比铜线的电阻小多了,这意味着使用这种材料作为电线可以节省大量的电力。
1962年,IBM物理学家Robert Schrieffer、Leon Cooper和John Bardeen首次提出了超导理论,并因此获得了1965年的诺贝尔物理学奖。
到了20世纪80年代,开发出了高温超导材料,其中最具代表性的是La-Ba-Cu-O材料。
这种材料的临界温度高达140K,这使得超导技术可以被更加广泛地应用于实际应用中。
三、超导技术的应用能源领域超导技术在电力输送和电网稳定性方面有着广泛的应用。
由于超导材料在超导状态下可以实现电流不损耗传输,它们被广泛用于输电线路和电缆制造。
超导电缆可以节约大量的能源,减少能源损耗,保证电网的稳定运行。
医学领域MRI成像技术通常使用超导体来产生磁场,该技术可以在体内生成非常强的磁场,使得弱磁性细胞和组织成像变得更加清晰,这是大多数其他技术无法实现的。
(完整版)电力系统外文英语文献资料
(完整版)电力系统外文英语文献资料Electric Power SystemElectrical power system refers to remove power and electric parts of the part,It includes substation, power station and distribution. The role of the power grid is connected power plants and users and with the minimum transmission and distribution network disturbance through transport power, with the highest efficiency and possibility will voltage and frequency of the power transmission to the user fixed .Grid can be divided into several levels based on the operating voltage transmission system, substructure, transmission system and distribution system, the highest level of voltage transmission system is ZhuWangJia or considered the high power grids. From the two aspects of function and operation, power can be roughly divided into two parts, the transmission system and substation. The farthest from the maximum output power and the power of the highest voltage grade usually through line to load. Secondary transmission usually refers to the transmission and distribution system is that part of the middle. If a plant is located in or near the load, it might have no power. It will be direct access to secondary transmission and distribution system. Secondary transmission system voltage grade transmission and distribution system between voltage level. Some systems only single second transmission voltage, but usually more than one. Distribution system is part of the power system and its retail service to users, commercial users and residents of some small industrial users. It is to maintain and in the correct voltage power to users responsible. In most of the system, Distribution system accounts for 35% of the total investment system President to 45%, andtotal loss of system of the half .More than 220kv voltage are usually referred to as Ultra high pressure, over 800kv called high pressure, ultra high voltage and high pressure have important advantages, For example, each route high capacity, reduce the power needed for the number of transmission. In as high voltage to transmission in order to save a conductor material seem desirable, however, must be aware that high voltage transmission can lead to transformer, switch equipment and other instruments of spending increases, so, for the voltage transmission to have certain restriction, allows it to specific circumstances in economic use. Although at present, power transmission most is through the exchange of HVDC transmission, and the growing interest in, mercury arc rectifier and brake flow pipe into the ac power generation and distribution that change for the high voltage dc transmission possible.Compared with the high-voltage dc high-voltage ac transmission has the following some advantages: (1) the communication with high energy; (2) substation of simple maintenance and communication cost is low; (3) ac voltage can easily and effectively raise or lower, it makes the power transmission and high pressure With safety voltage distribution HVDC transmission and high-voltage ac transmission has the following advantages: (1) it only need two phase conductors and ac transmission to three-phase conductors; (2) in the dc transmission impedance, no RongKang, phase shift and impact overvoltage; (3) due to the same load impedance, no dc voltage, and transfer of the transmission line voltage drop less communication lines, and for this reason dc transmission line voltage regulator has better properties; (4) in dc system withoutskin effect. Therefore, the entire section of route conductors are using; (5) for the same work, dc voltage potential stress than insulation. Therefore dc Wire need less insulation; (6) dc transmission line loss, corona to little interference lines of communication; (7) HVDC transmission without loss of dielectric, especially in cable transmission; (8) in dc system without stability and synchronization of trouble.A transmission and the second transmission lines terminated in substation or distribution substations, the substation and distribution substations, the equipment including power and instrument transformer and lightning arrester, with circuit breaker, isolating switch, capacitor set, bus and a substation control equipment, with relays for the control room of the equipment. Some of the equipment may include more transformer substations and some less, depending on their role in the operation. Some of the substation is manual and other is automatic. Power distribution system through the distribution substations. Some of them by many large capacity transformer feeders, large area to other minor power transformer capacity, only a near load control, sometimes only a doubly-fed wire feeders (single single variable substation)Now for economic concerns, three-phase three-wire type communication network is widely used, however, the power distribution, four lines using three-phase ac networks.Coal-fired power means of main power generating drive generators, if coal energy is used to produce is pushing the impeller, then generate steam force is called the fire. Use coal produces steam to promote the rotating impeller machine plant called coal-fired power plants. In the combustion process, the energy stored in the coal to heat released,then the energy can be transformed into the form within vapor. Steam into the impeller machine work transformed into electrical energy.Coal-fired power plants could fuel coal, oil and natural gas is. In coal-fired power plant, coal and coal into small pieces first through the break fast, and then put out. The coal conveyer from coal unloader point to crush, then break from coal, coal room to pile and thence to power. In most installations, according to the needs of coal is, Smash the coal storage place, no coal is through the adjustable coal to supply coal, the broken pieces of coal is according to the load changes to control needs. Through the broken into the chamber, the coal dust was in the second wind need enough air to ensure coal burning.In function, impeller machine is used to high temperature and high pressure steam energy into kinetic energy through the rotation, spin and convert electricity generator. Steam through and through a series of impeller machine parts, each of which consists of a set of stable blade, called the pipe mouth parts, even in the rotor blades of mobile Li called. In the mouth parts (channel by tube nozzle, the steam is accelerating formation) to high speed, and the fight in Li kinetic energy is transformed into the shaft. In fact, most of the steam generator is used for air is, there is spread into depression, steam turbine of low-pressure steam from the coagulation turbine, steam into the condenses into water, and finally the condensate water is to implement and circulation.In order to continuous cycle, these must be uninterrupted supply: (1) fuel; (2) the air (oxygen) to the fuel gas burning in the configuration is a must; (3) and condenser, condensed from the condensed water supply, sea and river to lake. Common coolingtower; (4) since water vapour in some places in circulation, will damage process of plenty Clean the supply.The steam power plant auxiliary system is running. For a thermal power plant, the main auxiliary system including water system, burning gas and exhaust systems, condensation system and fuel system. The main auxiliary system running in the water pump, condensation and booster pump, coal-fired power plants in the mill equipment. Other power plant auxiliary equipment including air compressors, water and cooling water system, lighting and heating systems, coal processing system. Auxiliary equipment operation is driven by motor, use some big output by mechanical drive pump and some of the impeller blades, machine drive out from the main use of water vaporimpeller machine. In coal-fired power plant auxiliary equipment, water supply pump and induced draft fan is the biggest need horsepower.Most of the auxiliary power generating unit volume increased significantly in recent years, the reason is required to reduce environment pollution equipment. Air quality control equipment, such as electrostatic precipitator, dust collection of flue gas desulfurization, often used in dust in the new coal-fired power plants, and in many already built in power plant, the natural drive or mechanical drive, fountain, cooling tower in a lake or cooling canal has been applied in coal-fired power plants and plants, where the heat release need to assist cooling system.In coal-fired power stations, some device is used to increase the thermal energy, they are (1) economizer and air preheater, they can reduce the heat loss; (2) water heater, he can increase the temperature of water into boiling water heaters; (3) they can increase and filter the thermal impeller.Coal-fired power plants usually requires a lot of coal and coal reservoirs, however the fuel system in power plant fuel handling equipment is very simple, and almost no fuel oil plants.The gas turbine power plants use gas turbine, where work is burning gas fluid. Although the gas turbine must burn more expensive oil or gas, but their low cost and time is short, and can quickly start, they are very applicable load power plant. The gas turbine burn gas can achieve 538 degrees Celsius in the condensing turbine, however, the temperature is lower, if gas turbine and condenser machine, can produce high thermal efficiency. In gas turbine turbine a combined cycle power plant. The gas through a gas turbine, steam generator heat recovery in there were used to generate vapor heat consumption. Water vapor and then through a heated turbine. Usually a steam turbine, and one to four gas turbine power plant, it must be rated output power.。
电力系统专业单词中英文对照
常用专业词汇中英文对照屏蔽双绞pair twisted screened常闭接点normally closed contact常开接点normally open contact备自投Automatic Takeover to Stand-by Supply遥信Remote indicationUnit-generator step-up transformers发变组Be subject to 服从于Step-up transformer升压变High-side(high voltage side) of the transformer变压器高压侧Low-side of the transtormer变压器低压侧Magnetizing inrush current励磁涌流Undervoltage Load Shedding 低电压甩负荷Margin 余地边界页面空白利润Yield 产生Dilute 冲淡稀释This includes compliance with IEEE and IEC standards for electrostatic discharge, fast transients, radiated emissions, surge-withstand capability, dielectric strength, pulsed magnetic fields, and disturbances.Specify optional具体指定的选择Open CT-------CT断线open or shorted CT conditions-------CT断线或短路状态including single- and dual-busbar, transfer-bus, tie-breaker分段Buscoupler 母联(母线并联)breaker-and-a-half, ring-bus, and double-bus/double-breakerconfigurations.重瓦斯heavy gasAccessories附件Bypass旁路,分流,绕开Inflexion拐点is converted to转换为over-current blocked by complex voltage复合电压闭锁过流Advances the State of the Art先进的技术发展水平act in concert(音乐会)with与…相呼应in minimum operation mode 最小运行方式in conjunction with与…协力disconnect auxiliary contacts. 隔离刀辅助接点(SEL说明书)Buscoupler母联(SEL说明书)tie-breaker分断断路器(SEL说明书)Coupler Security Logic母联逻辑(SEL说明书)Tag n标签,vt加标签Put tag贴标签Have you put tags on your luggage?Transfer Bus 旁母Main bus 主母Dedicated 专用的优点与缺点advantages and disadvantages极性标记(同名端)Polarity markconservative settings 保守的定值(笨的定值)开口三角Broken-Delta ;Open-Delta减出力decrease power output突然加电inadvertent energization励磁field失磁out-of-field合闸位置 closed position(肯定对)分闸位置 open position(肯定对)/trip position防跳 antibumping原理图Elementary Diagram接线图 Wiring Diagram单线图 One Line Diagram方块图、结构图 Block Diagram展开图 Developing Diagram简图 Schematic Diagram略图 Schema控制转换开关Control and Transfer Switch多层开关 Multiple Switch多功能开关 Multi-Function Switch把手、手柄 Handle端子箱 Terminal Cabinet端子排 Terminal Block监视 Monitoring测量 Metering瓦斯保护继电器 Buchholz Protector动作机理Mechanism of Action操作机构Operation Mechanism转换 Commutate保护动作 Protection Action启动 Starting up升高/降低(动) Raise/Go down升高/降低(动) Raise/Reduce增加/减少 Increase/Decrease高/低(名) Upper/lower接地 Grounding接地 Earthing压板 Clamp辅助结点 Auxiliary Contact电流回路测试盒 Test Block隔离刀闸 Isolator隔离刀闸 Disconnectorshielded twisted pair屏蔽双绞线intelligent electrical device 智能测控装置generator 发电机transformer 变压器/互感器motor 电动机meter 仪表power automation system 电力自动化系统phase mark相别substation automation system 变电站自动化系统oscillation /swing振荡chip 芯片resolution 分辨率relay 继电器parameter 参数frequency 频率power factor 功率因数2×16 character liquid crystal display 2行X16字符液晶显示dual RS485 communication interface 带双路RS-485通信接口three-phase voltage/current input 三相电压/电流输入active power 有功功率reactive power 无功功率configuration 配置maintenance 维护debugging 调试live wire 火线SOE(sequence of event) 事件顺序记录transient process暂态过程Input/output 输入/输出transducer 变送器rated voltage/current/frequency 额定电压/电流/频率impedance 阻抗earthing resistance 接地电阻circuit breakers 断路器vacuum circuit breakers 真空断路器rated main busbar current 主母线额定电流enclosure/internal 外壳/内部supply voltage/current 电源电压/电流petrolic engine 汽油发动机diesel engine 柴油发动机micro ammeter 微安表high voltage testing transformer 高压试验变压器metallic door handle金属门把手DC double bridge 直流双臂电桥transformer ratio bridge 变压比电桥relay protection tester 继电保护测试仪micro ohmmeter 微电阻测量仪earthing resistance meter 接地电阻表digital multimeter数字万用表megohmmeter 兆欧表electronic megohmmeter 电子兆欧表power distribution compartment 配电室alternation switch 转换开关high/low voltage switchgear高/低压开关柜earthing knife switch 接地刀开关interlocking device 连锁装置hexagonal rotation axis 六角转轴back cover board 后盖板fuse 熔断器AI (analog input) 模拟量/遥测量cable incoming, outgoing 电缆进、出线breaking capacity 开断容量arrester 避雷器electrical equipment 电气设备busbar 母线load switch 负荷开关secondary components 二次元件truck 手车earthing line 接地线coil 线圈contactor 接触器sensor 传感器winding 绕组high voltage output 高压输出AC withstand voltage test 交流耐压试验earthing bar 接地棒attracting voltage 吸合电压releasing voltage 释放电压protection device sampling debugging 装置采样调试protection device instantaneous over-current debugging 装置速断保护调试protection device definite-time over-current debugging 装置过流保护调试zero-sequence protection debugging 装置零序保护调试pressure relief flap压力释放板branched busbar 分支母线bottom board 底板removable partition装卸式隔板secondary plug二次插头small busbar terminal box 小母线端子terminal block端子排disconnect contact device 隔离触头装置control wire duct控制线槽feeder 一回输电线路semiconductor 半导体mechanical endurance机械寿命electrical endurance 电寿命operation startup current 操作启动电流rectifier 整流器tripping current of the opening coil 分闸线圈脱扣电流monitor 监视器connection diagrams 接线图polarity极性power supply units and master modules 主控机与电源单元coupling modules 耦合模块accessories 附件analog modules 模拟量模块application modules 应用模块digital input/output modules 数字量输入/输出模块brake contact制动接点overvoltage protection module 过电压保护模块station board 配电屏electromechanical 机电一体thermistor 热敏电阻baud rate 波特率superconductor 超导体power plant 发电厂tap 分接头LED(light-emitting diode)发光二极管controller 控制器hydraulic power plant 水电站instrument board 仪表盘UPS (Uninterruptable Power Supply) 不间断电源indicator 指示器DC (direct current) 直流AC (alternating current) 交流active defect 运行故障active output 有功输出active-power loss 有功功率损耗active standard 现行标准AC voltage stabilizer 交流稳压器pulse 脉冲air switch 空气开关water vapor 水蒸汽terminal board 接线板short-circuit 短路shielding layer 屏蔽层export 导出electricity measurement 电量测量signal acquisition 信号采集LCD (liquid crystal display) 液晶显示remote communication 远程通信dual RS485 communication interface 双路RS485通信接口three-phase voltage/current input 三相电压/电流输入protocol 规约,协议four digital inputs 4路数字量输入rolling record 循环记录V,I,P,Q,F,Cosф,E电压、电流、有功功率、无功功率、频率、功率因数、有功电度voltage/current transformation ratio 电压/电流变比photoelectric isolation 光电隔离PT (potential transformer) 电压互感器default value 默认值CT (current transformer) 电流互感器calibration parameter 校准参数RMS (root mean square) 均方根,有效值filmy button 薄膜按键Wye system 星形系统energy counter input 电度chain controller 回路控制器message format 报文格式DI (digital input) 遥信量real-time data 实时数据power energy 电能front panel 面板bit change 变位electromagnetic fields 电磁场intelligent switching cabinet 智能开关柜form-C dry contact C型干触点Integrated substation automation 变电站综合自动化Harmonic 谐波Wave recorder 录波Workstation 工作站Public electric utility 市电电源Central alarm unit for electric fire leakage 电气火灾漏电集中告警器Computer protection system计算机保护系统Industry and building substation and distribution automation system 工业及楼宇变配电自动化系统Communication control unit 通讯主控单元Three-phase operation box 三相操作箱Voltage switch box 电压切换箱Transformer extension relay box 变压器重动箱Neutral point earthing resistance cubicle 中性点接地电阻柜Hydraulic car crane 液压汽车吊Automotive truck 载重汽车Coach 载人客车Mobile machinery shop with four seats 双排座工程车Hydraulic fork lift truck液压叉车Engine driven capstan 机动缴磨Welding machine 电焊机Press pliers压接钳Chain wheel 链条葫芦Bench drill 台钻Electric portable drill 手电钻Churn drill 冲击钻Jack 千斤顶Welding tool 气焊工具Electromotive refacer 电动磨光机Petrol gas heating 石油气加热项目Bolt clipper 断线钳Tensile strength meter 拉力表Moment spanner 力矩扳手Adjustable auto transformer 自藕调压器Phase sequence meter 相序表Withstand voltage tester 耐压试验装置Water level 水准仪Stop watch 秒表Micro-ohmmeter 微欧计Micro-processor protection panel 微机保护屏Fundamental current 基波电流Power transmission and substation engineering 输变电工程Electric Supply Authority 供电局Schweitzer Engineering Laboratories SEL公司全称储能 charging合闸 closing分闸 opening绝缘 insulation性能 performance过载 overload故障 fault多路传输 multiplex transmission备用 back-up比特、位 bit检修 overhaul冗余的 redundancy消耗 consumption冷却 cooling有功的active放大 amplify人造的 artificial手工的,人工的 manualFARAD 200 SEA4.0软件类(software)parallel interface 并行接口serial interface 串行接口application management 应用程序管理clipboard 剪贴板event system 事件系统browser 浏览器event log 事件日志removable storage 可移动存储routing and remote access 路由与远程访问server 服务器daily qualification rate 日合格率inhibit operation 禁止操作tele-indication blockage 遥信封锁invalid object 对象无效exactitude rate/success rate 正确率/成功率event handling 事件处理designer 设计人员operator 操作人员remote access server 远程访问服务器paste function 粘贴函数database 数据库file 文件edit 编辑view 视图insert (v.) insertion (n.) 插入tools 工具format 格式paste special 选择性粘贴alignment 对齐font 字体favorite 收藏夹peak value 峰值valley value 谷值normal(level) value 平值hyperlink 超级链接development environment 开发环境operation environment 运行环境graphic edit 图形编辑alarm event and handling 报警事件及处理PDR and recurrence 事故追忆与重演history data and real-time data retrieval 历史数据与实时数据检索fault diagnosis 故障诊断dual computers hot standby 双机热备remote maintenance 远程维护front controller 前端控制器thread 线程multimedia graphical user interface 多媒体图形界面transparent network technology 透明网络技术data acquisition technology 数据采集技术micro-kernel control and dispatching technology 微内核控制调度技术virtual reality scenes 虚拟现实场景variable 变量node 节点dynamic/line/fill/text property 动态/线/填充/文本属性time strings 时间串hotkey 热键alarm dead band 报警死区customization 定制reference frequency 基准频率window position fixation 窗口位置固定initialization full-screen display 初始化全屏显示initialization picture adaptation 初始化画面自适应task manager 任务管理器alarm appearance color 报警消失颜色synchronization 同步network congestion 网络堵塞supervisory control picture 监控画面homepage 主页print preview 打印预览standard serial port communication 标准串口通讯slash 斜线backslash 反斜线more/greater than 大于号less than 小于号asterisk 星号period 句号question mark 问号quotation mark 引号vertical bar 竖线transverse line 横线colon 冒号semicolon 分号parity check 奇偶校验data mapping table 数据映射表scroll bar 滚动条refresh 刷新list box 列表框bypass replacement 旁路替代bitmap file 位图文件consolidate 合并gateway 网关grid structure 网状结构subassembly programming 组件编程single-server 单机multi-server 多机browsing station 浏览站ODBC: Open Database Connectivity 开放式数据库互连distributed system architecture 分布式系统结构template database 模版库dual-device/computers/network redundancy 双设备/机/网络冗余history/curve database 历史/曲线数据库alarm voice file 报警语音文件pop-up picture file 弹出画面文件default path 缺省路径high-density curve 高密度曲线analog data overview模拟量一览digital data overview 开关量一览counter input data overview 电度量一览real-time alarm 实时报警communication fault 通讯故障report system 报表系统electrical report function 电力报表函数load 加载invoke 调用communication driver 通讯驱动snapshot 快照expression 表达式operational status 运行状况user manual 用户手册free disk space 硬盘余留空间program group 程序组registration number 注册号system/network configuration 系统/网络配置user right 用户权限auto start 自动启动password 口令shortcut 快捷方式directory for storing executable program 可执行程序存放目录auto logon 自动登录operation ticket 操作票symbol directory 图元库目录menu bar 菜单栏activate 激活project database 工程数据库table control 表格控件enable dual-computers hot standby 双机热备投用standby server query period 备机查询周期timeout time 超时时间history database synchronization days 历史数据库同步天数computer table 计算机表dial-up workstation 拨号工作站standard serial port communication 标准串口通讯upper/lower computer 上/下位机remark 备注object table 对象表logic relationship 逻辑关系interval 间隔deletion (n.) delete (v.) 删除power equipment 电力设备read only 只读prompt 提示subdirectory 子目录current directory 当前目录command/channel timeout 命令/通道超时master station address 主站地址title bar 标题栏toolbar 工具栏previous 上页next 下页picture file 图形文件real-time bar chart 实时棒图subsection electricity bar chart 分段电量棒图logout 退出,退路multi-electricity pie chart 多电量饼图printout 打印输出print setup 打印设置zoom in 缩小zoom out 放大scroll display 滚动显示daily/monthly report 日/月报表unqualified daily minutes 日不合格分钟数average value 平均值monthly trips due to faults月故障跳闸次数monthly repair time 月检修时间reactor电抗器The fuse blew out and the house was in darkness.保险丝烧断使得整个房子漆黑一片。
超导技术
超导技术一.什么是超导?超导是超导电性的简称,是指导电材料在温度接近绝对零度的时候,金属、合金及其他材料的电阻趋近于0的性质。
超导材料的发现是最近几十年来物理学与材料科学领域的重大突破之一,已引起全世界的广泛关注,世界各国科技工作者参与超导材料的研究和发展工作,人们很快就能感受到它给社会生活带来的重大变革。
目前超导这一得天独厚的特性使得超导材料在医疗、电子输送、交通方面获得广泛应用。
二.超导现象的发现在发现超导现象之前,物理学界关于超低温区电阻的变化情况形成两种对立的观点:① Kelven 提出的“随着温度的降低,电阻会在趋于某一个极小值后会由于电子凝聚在原子周围而使得电阻趋于∞”。
② Nernst 提出的“电阻随温度减小并最终在绝对零度处消失”。
1908年,Kirchhoff 的得意门生Onnes 首次将最后一个“永久气体”He 液化,并得到了低于4K 的低温。
1911年,他在测量一个固态汞样品的电阻与温度的关系时发现,当温度下降到4.2K 附近时,样品的电阻突然减小到仪器无法察觉出的一个小值。
这种现象后来被称为超导现象,这一使电阻突然变小的温度4.2K 被称为临界温度Tc 。
1912年,Onnes 在铅和锡上发现了类似的现象,说明超导现象并非孤立。
三.两个主要性质①零电阻:超导体的电阻为0或无限接近于0,因此一旦它内部产生电流后,只要保持超导状态不变,其电流就不会减小,因此就称这种电流为持续电流。
正常导体因为有电阻,所以为了在导体中产生恒定电流就需要外加电场。
对超导体来讲,由于它的电阻为0,所以一旦在其中有电流产生就不会消失,也就是说,维持该电流不需要加电场,导体内部场强为0。
a. 那么怎样在超导体中产生持续电流?由法拉第电磁感应定律可知:”随时间变化的磁场会在空间激发出涡旋电场”,当将一个条形磁铁靠近超导体时,导体中就会产生涡旋电场并产生涡旋电流和留有一定的磁通量,当磁铁拿走后,超导体中的磁通量应该维持不变,因为如果磁通量改变,超导体中将产生电场,与超导体中电场为0相矛盾,而这个磁通量是通过超导体表面的持续电流来维持的。
什么是超导电力技术
什么是超导电力技术编者按:超导电力技术是利用超导体的特殊物理性质与电力工程相结合而发展起来的一门新技术。
本文简要介绍了超导电力装置的特点及国际发展动态,概述了中科院电工所超导电力研究的发展情况超导体具有诸多奇特的物理性质,如零电阻特性、完全抗磁特性、宏观量子相干效应等,利用超导体的这些特殊性质可以获得强磁场、储存电能、制作超导电力装置、实现磁悬浮以及测量微弱磁场信号等。
超导电力技术主要研究、开发各种超导电力装置、研究含超导装置的电力系统的各种特性,包括电力系统和超导电力装置的相互作用和影响、系统规划、设计、运行、控制、保护等。
许多电力装备都可以采用超导体来提高其性能,如输电电缆、电机、变压器和储能装置等,同时还可采用超导体研制出常规技术无法实现的新型电力设备,如超导故障电流限制器等。
超导电力装置具有体积小、重量轻、容量大等特点,在电力系统中应用超导技术可提高电机单机容量、提高电网的输送容量、降低电网的损耗、实现电能储存、限制短路电流,因而可以改善电能的质量、提高电力系统运行的稳定性和可靠性,从而为电网向高效安全和超大规模方向发展提供了新的技术途径。
超导电力技术多年来一直受到了世界各国的重视,特别是1986年发现高超导材料以后,由于高超导体可以在比低超导体所需的液氦区(4.2K)高得多的液氮区(77K)下运行,高超导电力装置的研究更是备受重视。
同时,由于美国和欧洲近年来相继发生了多次大的停电事故,因而促使西方和工业界进一步加快超导电力技术的研究步伐。
1999年,美国开始了S PI(Superconductivity Partnership Initiative)研究计划,开展了如超导电机、超导电缆、超导变压器、超导限流器、超导磁悬浮飞轮储能等项目的研究,在“美国电网2030”计划中,提出了采用超导电力技术建设骨干电网等建议,美国还在其海军舰船先进电力系统计划中列入了超导推进电机等研究项目。
日本在20世纪90年代曾实施了SuperGM等超导电力技术研究计划,并成立了国际超导技术研究中心(ISTEC),其主要电力公司及电机制造厂家均积极参与超导电力技术研究工作。
超导输电技术
现代社会,人们在生产、生活等各方面都离不开电能,几乎每隔十年,人类对电能的需求就会增加一倍,能源短缺将成为中国所面临的最大挑战,节电已经迫在眉睫。
2005年4月19日超导电缆在昆明普吉变电站投入运行,其部分性能指标优于目前已经并网运行的美国和丹麦的高温超导电缆,超导输电将是一个很好的途径。
本文主要对超导输电技术进行一些介绍。
一、超导效应1911年,荷兰莱顿大学的卡茂林-昂尼斯意外地发现,将汞冷却到-268.98°C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡茂林-昂尼斯称之为超导效应。
卡茂林由于他的这一发现获得了1913年诺贝尔奖。
这一发现引起了世界范围内的震动。
在他之超导输电技术电力系李高明【内容提要】超导输电技术主要包括超导电缆的结构与输电方式、超导电气设备等内容,是一种未来电网的输电方式。
本文主要介绍超导输电技术在电力系统的应用。
【关键词】超导输电节能暂的生产过程,对设备是一个短时间的工作行为,为向运行单位提供安全可靠的设备,就需要向运行单位交代设备的结构和特点,做好设计交代。
并及时征询运行单位的意见。
以便吸取运行经验和事故教训,有针对性的改进设备的生产质量,满足电网的运行需求。
二、要保持三相负荷均衡冬季和夏季气温不同,配电变压器三相负荷也会相应不同,应每周定期对配电变压器的三相负荷进行测试和调整。
根据中性线接线的不同,其不平衡电流的允许值分别不应超过配电变压器额定电流的25%和40%,若超过此值,应立即对顾客用户进行相间负荷调整,使其达到平衡。
冬春季用电高峰时段,应及时增加配电变压器的测量和巡查次数,及时掌握配电变压器的运行状况。
如其电流超过单台配电变压器额定电流15%时,应增投一台配电变压器运行。
这样既保障了有电供得出,也确保了供电设备安全、可靠的正常运行。
三、要谨防雨雪堆积发生闪络,造成短路,引起火灾的发生雨雪天气之后要及时对配电变压器台架上下及周围堆积的雪、冰进行清除,并加强保护。
超导电工技术
超导电工技术姓名:史佳惠系别:机电系专业:电气工程及其自动化班级:15Z电气1学号:158320001超导电工技术实用超导线与超导磁体技术与应用的发展,以及初步产业化的实现是20世纪下半叶电工新技术的重大成就。
在21世纪上半叶,无论是聚变电站、磁流体发电,还是磁浮列车,磁流体推进船的商业化,均将促使超导电工继续长足地向前发展,成为一个重要的电工产业。
1超导现象1911年,荷兰莱顿大学的昂纳斯(H.Kamerligh Onnes)意外地发现,将水银冷却到-268.98℃时,水银的电阻突然消失;后来他又发现许多金属和合金都具有与上述水银相类似的低温下失去电阻的特性,由于它的特殊导电性能,昂纳斯称之为超导态。
电阻的消失叫做零电阻效应,是超导态的两个基本性质之一。
超导态的另一个基本性质是完全抗磁性,完全抗磁性是指磁场中的金属处于超导状态时,体内的磁感应强度为零的现象。
这一现象是德国科学家迈斯纳发现的,因此又称为迈斯纳效应。
他在实验中发现,放在磁场中的球形的锡在过渡到超导态的时候,锡球周围的磁场都突然发生了变化,磁力线似乎一下子被排斥到导体之外。
进一步研究发现,原来超导体表面能够产生一个无损耗的抗磁超导电流,这一电流产生的磁场,恰巧抵消了超导体内部的磁场。
利用这一现象可以实现磁悬浮。
2超导技术的应用2.1超导电机超导电机是指绕组由实用超导线制成的电机。
其研究对象主要是超导同步发电机和超导单级发电机。
我国上海发电设备成套设计研究所于1977年试制了一台400kw超导同步发电机,其转子磁力线圈由HbTi超导线绕制,最大磁感应强度达1T。
在此基础上,于1988年又研制成一台400-800kw超导同步发电机,并进行了短时间发电并网试验,发电容量达167kw,最大输出容量达400kw。
与常规发电机相比,超导同步发电机具有效率高、重量轻、体积小、单机容量大和稳定性能好等优点,但是要使超导同步发电机打到实用要求,还要在电机设计、制造和安全可靠运行方面解决一系列关键技术问题。
超导技术及其应用
超导技术及其应用1911年,荷兰科学家昂内斯用液氦冷却水银,当温度下降到4.2K时发现水银的电阻完全消失,这种现象称为超导电性。
1933年,迈斯纳和奥克森菲尔德两位科学家发现,假如把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。
超导电性和抗磁性是超导体的两个重要特性。
使超导体电阻为零的温度,叫超导临界温度。
经过科学家们数十年的努力,超导材料的磁电障碍已被跨越,下一个难关是突破温度障碍,即寻求高温超导材料。
1973年,人们发现了超导合金――铌锗合金,其临界超导温度为23.2K,该记录保持了13年。
1986年,设在瑞士苏黎士的美国IBM公司的研究中心报道了一种氧化物(镧-钡-铜-氧)具有35K的高温超导性,打破了传统“氧化物陶瓷是绝缘体”的观点,引起世界科学界的轰动。
此后,科学家们争分夺秒地攻关,几乎每隔几天,就有新的研究成果出现。
1986年底,美国贝尔实验室研究的氧化物超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。
1987年2月,美国华裔科学家朱经武和中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提升到90K以上,液氮的禁区(77K)也奇迹般地被突破了。
1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提升到125K。
从1986-1987年的短短一年多的时间里,临界超导温度竟然提升了100K以上,这在材料发展史,乃至科技发展史上都堪称是一大奇迹!高温超导材料的持续问世,为超导材料从实验室走向应用铺平了道路。
超群的超导磁体超导材料最诱人的应用是发电、输电和储能。
因为超导材料在超导状态下具有零电阻和完全的抗磁性,所以只需消耗极少的电能,就能够获得10万高斯以上的稳态强磁场。
而用常规导体做磁体,要产生这么大的磁场,需要消耗3.5兆瓦的电能及大量的冷却水,投资巨大。
超导磁体可用于制作交流超导发电机、磁流体发电机和超导输电线路等。
超导电力输电
超导电力输电超导电力输电是一种利用超导材料传输电能的新型技术,具有高效、低损耗、大容量等优势。
本文将介绍超导电力输电的原理、应用以及发展前景。
一、超导电力输电的原理超导电力输电的原理是利用材料在极低温下表现出无电阻的特性,使电能在输电过程中几乎没有能量损耗。
在极低温下,超导体的电阻几乎降为零,电流可以在其中无阻地流动,从而实现高效的电力输送。
二、超导电力输电的应用1. 环保节能:超导电力输电相比传统输电方式,能够大幅度降低电能损耗,提高输电效率。
这意味着更少的能源消耗和排放,进一步推动环保和可持续发展。
2. 提高输电能力:超导电力输电具有高容量的特点,可以大幅度提高电网的输电能力,解决长距离输电过程中传统输电线路存在的电能损耗和电压降低的问题。
3. 促进电力互联互通:超导电力输电可以实现不同地区、不同国家之间的电力互联互通,促进能源资源优化配置和共享,提高电力供给的安全性和可靠性。
4. 增加输电距离:超导电力输电技术可以有效地解决远距离输电中线损耗问题,使输电距离无限延伸,推动电力输电网络的全球化发展。
三、超导电力输电的发展前景超导电力输电技术在能源领域具有巨大的发展潜力和广阔的应用前景。
1. 技术不断突破:随着材料学、工艺学等领域的不断发展,超导材料的制备技术和制冷技术得到了重大突破,使得超导电力输电技术逐渐实现商业化应用。
2. 推动清洁能源发展:超导电力输电技术可以更有效地将清洁能源输送到用电地区,推动清洁能源的发展和利用,减少对传统能源的依赖。
3. 打破传统电力输电限制:超导电力输电技术的应用,可以有效解决传统电力输电线路存在的限制和问题,为电力系统的可持续发展提供了新的途径。
4. 推动能源革命:超导电力输电技术的推广应用,将对整个能源行业产生重大影响,促进能源结构的革新和转型。
综上所述,超导电力输电技术具有巨大的潜力和广阔的应用前景。
未来随着技术的不断发展和成熟,超导电力输电将成为电力系统和能源行业的重要发展方向,推动能源的可持续发展和清洁能源的广泛应用。
电气专业外文翻译
外文资料翻译Reliability of Lightning ResistantOverhead Distribution LinesLighting continues to be the major cause of outages on overhead power distribution lines. Through laboratory testing and field observations and measurements, the properties of a lightning stroke and its effects on electrical distribution system components are well-understood phenomena. This paper presents a compilation of 32 years of historical records for outage causes, duration, and locations for eight distribution feeders at the Oak Ridge National Laboratory (ORNL) .Distribution type lightning arresters are placed at dead-end and angle structures at pole mounted wormer locations and at high points on the overhead line. Station class lightning arresters are used to protect underground cable runs, pad mounted switchgear and unit substation transformers. Resistance to earth of each pole ground is typically 15 ohms or less. At higher elevations in the system, resistance to earth is substantially greater than 15 ohms, especially during the dry summer months. At these high points, ground rods were riven and bonded to the pole grounding systems in the 1960's in an attempt to decrease lightning outages. These attempts were only partially successful in lowering the outage rate. From a surge protection standpoint the variety of pole structures used (in-line, corner, angle, dead end, etc.) and the variety of insulators and hardware used does not allow each 13.8 kV overhead line to be categorized with a uniform impulse flashover rating (170 kV, etc.) or a numerical BIL voltage class (95 kV BIL; etc.). For simplicity purposes in the analysis, each overhead line was categorized with a nominal voltage construction class (15 kV, 34 kV, or 69 KV). Six of the eight overhead lines (feeders 1 through 6) were built with typical REA Standard horizontal wood cross arm construction utilizing single ANSI Class 55-5 porcelain pin insulators (nominal 15 kV insulation). The shield angle ofthe overhead ground wire to the phase conductors is typically 45 degrees. One overhead line (feeder 7) was built with transmission type wood pole construction because the line extended to a research facility which was to have generated electrical power to feed back into the grid. Pole structure of this line are of durable wood cross a construction which utilize double ANSI 52-3 porcelain suspension insulators to support the conductors (nominal 34 kV insulation). The shield angle of the overhead ground wire to the phase conductors for feeder 7 is typically 30 degrees. In 1969, an overhead line (feeder 8) was intentionally built with "lightning resistant" construction in an attempt to reduce lightning caused outages. Pole structures of the line have phase over phase 24-inch long fiberglass suspension brackets with double ANSI 52-3 porcelain suspension insulators to support the conductors (nominal 69 kV insulation). The shield angle of the overhead ground wire to the phase conductors for feeder 8 is typically 30 degrees. The failure data was compiled for each of the eight 13.8 kV feeders and is presented in Table, along with pertinent information regarding feeder construction, elevation, length, and age.A key finding of the failure analysis is that weather-related events account for over half (56%) of the feeder outages recorded. Fifty-seven of the 76 weather-related outages were attributed to lightning. Insulation breakdown damage due to lightning is also suspected in at least a dozen of the equipment failures observed. The data indicates overhead lines which pass over high terrain are less reliable because of the greater exposure to lightning. For example, feeder 3 had the most recorded outages (48), of which two-thirds were due to weather-related events; this feeder is also the highest line on the plant site, rising to an elevation of 450 above the reference valley elevation. Overhead lines that are longer and to which more substations and equipment are attached were also observed to be less reliable (more exposure to lightning and more equipment to fail). The age of the line does not appear to significantly lessen its reliability as long as adequate maintenance is performed; none of the lines have had a notable increase in the frequency ofoutages as the lines have aged. As would be expected, the empirical data presented in Table I confirms the two overhead lines which have been insulated to a higher level (34 or 69 KV) have significantly better reliability records than those utilizing 15 kV class construction. Feeder 7 (insulated to 34 KV) and feeder 8 (insulated to 69 kV) have bad only 3 outages each over their 32 and 23 year life spans, respectively. These lines follow similar terrain and are comparable in length and age to the 15 kV class lines, yet they have a combined failure rate of 0.22 failures per year versus 4.32 failures per year for the remaining feeders.On typical 15 kV insulated line construction, lightning flashovers often cause 60 cycle power follow and feeder trip. With the higher insulation construction, outage rates are reduced by limiting the number of flashovers and the resultant power follow which causes an over current device to trip. This allows lightning arresters to perform their duty of dissipating lightning energy to earth. The number of re closer actions and their resultant momentary outages are also reduced. This is beneficial for critical facilities and processes which cannot tolerate even momentary outages. An additional benefit is that outages due to animal contact are also reduced because of the greater distance from phase conductor to ground on pole structures. Distribution line equipment to increase line insulation values are "off the shelf" items and proven technology. New lightning resistant construction typical by utilizes horizontal line posts, fiberglass standoff brackets or any other method which world increase the insulation value. The replacement of standard pin insulators with line post insulators of greater flashover value is an effective means to retrofit existing wood cross arm construction. The doubling and tripling of dead end and suspension insulators is also a means of increasing flashover values on existing angle and dead-end structures. Current fiberglass, polymer, and epoxy technologies provide an affordable means to increase line insulation.While the use of increased insulation levels to reduce lightning flashovers and the resultant outages on overhead distribution lines has been thoroughlytested and demonstrated in laboratory and experimental tests [5], long term history field data has positively demonstrated that the use of "lightning resistant" construction can greatly reduce outages. Field use at ORNL has shown that in areas which are vulnerable to lightning, the use of increased insulation and a smaller shielding angle is an impressive and cost effective means to appreciably increase the reliability of overhead distribution lines. This reliability study clearly illustrates that the insulation requirements for high-reliability distribution feeders should be determined not by the 60 Hz operating voltage but rather by withstand requirements for the lightning transients or other high voltage transients that are impressed upon the line. Electrical equipment (switchgear, insulators, transformers, cables, etc.) have a reserve (BE level or flashover value) to handle momentary over voltages, and by increasing that reserve, the service reliability is appreciably increased. As the electrical industry gradually moves away from standard wood cross arm construction and moves toward more fiberglass, polymer and epoxy construction, increased insulation methods can be applied as part of new construction or as part of an upgrade or replacement effort. In considering new or upgraded overhead line construction, the incremental increased cost of the higher insulation equipment is d in proportion to the total costs of construction (labor, capital equipment, cables, electric poles, right-of-way acquisition), Its cost effectiveness varies with the application and the conditions to which it is be applied. Economic benefits include increased electrical service reliability and its inherent ability to keep manufacturing processes and critical loads in service. Other more direct benefits include less repair of overhead distribution lines, which can have a significant reduction in maintenance cost due to less replacement materials and a large reduction in overtime hours for maintenance crews.抗雷击架空配电线路的可靠性闪电仍然是架空配电线路上的中断1的主要原因。
外文翻译—电力电子技术(英文+译文)
1 Power Electronic ConceptsPower electronics is a rapidly developing technology. Components are tting higher current and voltage ratings, the power losses decrease and the devices become more reliable. The devices are also very easy tocontrol with a mega scale power amplification. The prices are still going down pr. kVA and power converters are becoming attractive as a mean to improve the performance of a wind turbine. This chapter will discuss the standard power converter topologies from the simplest converters for starting up the turbine to advanced power converter topologies, where the whole power is flowing through the converter. Further, different park solutions using power electronics arealso discussed.1.1 Criteria for concept evaluationThe most common topologies are selected and discussed in respect to advantages and drawbacks. Very advanced power converters, where many extra devices are necessary in order to get a proper operation, are omitted.1.2 Power convertersMany different power converters can be used in wind turbine applications. In the case of using an induction generator, the power converter has to convert from a fixed voltage and frequency to a variable voltage and frequency. This may be implemented in many different ways, as it will be seen in the next section. Other generator types can demand other complex protection. However, the most used topology so far is a soft-starter, which is used during start up in order to limit the in-rush current and thereby reduce the disturbances to the grid.1.2.1 Soft starterThe soft starter is a power converter, which has been introduced to fixedspeed wind turbines to reduce the transient current during connection or disconnection of the generator to the grid. When the generator speed exceeds the synchronous speed, the soft-starter is connected. Using firing angle control of the thyristors in the soft starter the generator is smoothly connected to the grid over a predefined number of grid periods. An example of connection diagram for the softstarter with a generator is presented in Figure1.Figure 1. Connection diagram of soft starter with generators.The commutating devices are two thyristors for each phase. These are connected in anti-parallel. The relationship between the firing angle (﹤) and the resulting amplification of the soft starter is non-linear and depends additionally on the power factor of the connected element. In the case of a resistive load, may vary between 0 (full on) and 90 (full off) degrees, in the case of a purely inductive load between 90 (full on) and 180 (full off) degrees. For any power factor between 0 and 90 degrees, w ill be somewhere between the limits sketched in Figure 2.Figure 2. Control characteristic for a fully controlled soft starter.When the generator is completely connected to the grid a contactor (Kbyp) bypass the soft-starter in order to reduce the losses during normal operation. The soft-starter is very cheap and it is a standard converter in many wind turbines.1.2.2 Capacitor bankFor the power factor compensation of the reactive power in the generator, AC capacitor banks are used, as shown in Figure 3. The generators are normally compensated into whole power range. The switching of capacitors is done as a function of the average value of measured reactive power during a certain period.Figure 3. Capacitor bank configuration for power factor compensation ina wind turbine.The capacitor banks are usually mounted in the bottom of the tower or in thenacelle. In order to reduce the current at connection/disconnection of capacitors a coil (L) can be connected in series. The capacitors may be heavy loaded and damaged in the case of over-voltages to the grid and thereby they may increase the maintenance cost.1.2.3 Diode rectifierThe diode rectifier is the most common used topology in power electronic applications. For a three-phase system it consists of six diodes. It is shown in Figure 4.Figure 4. Diode rectifier for three-phase ac/dc conversionThe diode rectifier can only be used in one quadrant, it is simple and it is notpossible to control it. It could be used in some applications with a dc-bus.1.2.4 The back-to-back PWM-VSIThe back-to-back PWM-VSI is a bi-directional power converter consisting of two conventional PWM-VSI. The topology is shown in Figure 5.To achieve full control of the grid current, the DC-link voltage must be boosted to a level higher than the amplitude of the grid line-line voltage. The power flow of the grid side converter is controlled in orderto keep the DC-link voltage constant, while the control of the generator side is set to suit the magnetization demand and the reference speed. The control of the back-to-back PWM-VSI in the wind turbine application is described in several papers (Bogalecka, 1993), (Knowles-Spittle et al., 1998), (Pena et al., 1996), (Yifan & Longya, 1992), (Yifan & Longya, 1995).Figure 5. The back-to-back PWM-VSI converter topology.1.2.4.1 Advantages related to the use of the back-to-back PWM-VSIThe PWM-VSI is the most frequently used three-phase frequency converter. As a consequence of this, the knowledge available in the field is extensive and well established. The literature and the available documentation exceed that for any of the other converters considered in this survey. Furthermore, many manufacturers produce components especially designed for use in this type of converter (e.g., a transistor-pack comprising six bridge coupled transistors and anti paralleled diodes). Due to this, the component costs can be low compared to converters requiring components designed for a niche production.A technical advantage of the PWM-VSI is the capacitor decoupling between the grid inverter and the generator inverter. Besides affording some protection, this decoupling offers separate control of the two inverters, allowing compensation of asymmetry both on the generator side and on the grid side, independently.The inclusion of a boost inductance in the DC-link circuit increases the component count, but a positive effect is that the boost inductance reduces the demands on the performance of the grid side harmonic filter, and offers some protection of the converter against abnormal conditions on the grid.1.2.4.2 Disadvantages of applying the back-to-back PWM-VSIThis section highlights some of the reported disadvantages of the back-to-back PWM-VSI which justify the search for a more suitable alternative converter:In several papers concerning adjustable speed drives, the presence of the DC link capacitor is mentioned as a drawback, since it is heavy and bulky, it increases the costs and maybe of most importance, - it reduces the overall lifetime of the system. (Wen-Song & Ying-Yu, 1998); (Kim & Sul, 1993); (Siyoung Kim et al., 1998).Another important drawback of the back-to-back PWM-VSI is the switching losses. Every commutation in both the grid inverter and the generator inverter between the upper and lower DC-link branch is associated with a hard switching and a natural commutation. Since the back-to-back PWM-VSI consists of two inverters, the switching losses might be even more pronounced. The high switching speed to the grid may also require extra EMI-filters.To prevent high stresses on the generator insulation and to avoid bearing current problems (Salo & Tuusa, 1999), the voltage gradient may have to be limited by applying an output filter.1.2.5 Tandem converterThe tandem converter is quite a new topology and a few papers only have treated it up till now ((Marques & Verdelho, 1998); (Trzynadlowski et al., 1998a); (Trzynadlowski et al., 1998b)). However, the idea behind the converter is similar to those presented in ((Zhang et al., 1998b)), where the PWM-VSI is used as an active harmonic filter to compensate harmonic distortion. The topology of the tandem converter is shown inFigure 6.Figure 6. The tandem converter topology used in an induction generator wind turbine system.The tandem converter consists of a current source converter, CSC, in thefollowing designated the primary converter, and a back-to-back PWM-VSI, designated the secondary converter. Since the tandem converter consists of four controllable inverters, several degrees of freedom exist which enable sinusoidal input and sinusoidal output currents. However, in this context it is believed that the most advantageous control of the inverters is to control the primary converter to operate in square-wave current mode. Here, the switches in the CSC are turned on and off only once per fundamental period of the input- and output current respectively. In square wave current mode, the switches in the primary converter may either be GTO.s, or a series connection of an IGBT and a diode.Unlike the primary converter, the secondary converter has to operateat a high switching frequency, but the switched current is only a small fraction of the total load current. Figure 7 illustrates the current waveform for the primary converter, the secondary converter, is, and the total load current il.In order to achieve full control of the current to/from the back-to-back PWMVSI, the DC-link voltage is boosted to a level above the grid voltage. As mentioned, the control of the tandem converter is treated in only a few papers. However, the independent control of the CSC and the back-to-back PWM-VSI are both well established, (Mutschler & Meinhardt, 1998); (Nikolic & Jeftenic, 1998); (Salo & Tuusa, 1997); (Salo & Tuusa, 1999).Figure 7. Current waveform for the primary converter, ip, the secondary converter, is, and the total load current il.1.2.5.1Advantages in the use of the Tandem ConverterThe investigation of new converter topologies is commonly justifiedby thesearch for higher converter efficiency. Advantages of the tandem converter are the low switching frequency of the primary converter, and the low level of the switched current in the secondary converter. It is stated that the switching losses of a tandem inverter may be reduced by 70%, (Trzynadlowski et al., 1998a) in comparison with those of an equivalent VSI, and even though the conduction losses are higher for the tandem converter, the overall converter efficiency may be increased.Compared to the CSI, the voltage across the terminals of the tandem converter contains no voltage spikes since the DC-link capacitor of the secondary converter is always connected between each pair of input- and output lines (Trzynadlowski et al., 1998b).Concerning the dynamic properties, (Trzynadlowski et al., 1998a) states that the overall performance of the tandem converter is superior to both the CSC and the VSI. This is because current magnitude commands are handled by the voltage source converter, while phase-shift current commands are handled by the current source converter (Zhang et al., 1998b).Besides the main function, which is to compensate the current distortion introduced by the primary converter, the secondary converter may also act like an active resistor, providing damping of the primary inverter in light load conditions (Zhang et al., 1998b).1.2.5.2 Disadvantages of using the Tandem ConverterAn inherent obstacle to applying the tandem converter is the high number of components and sensors required. This increases the costs and complexity of both hardware and software. The complexity is justified by the redundancy of the system (Trzynadlowski et al., 1998a), however the system is only truly redundant if a reduction in power capability and performance is acceptable.Since the voltage across the generator terminals is set by the secondary inverter, the voltage stresses at the converter are high.Therefore the demands on the output filter are comparable to those when applying the back-to-back PWM-VSI.In the system shown in Figure 38, a problem for the tandem converter in comparison with the back-to-back PWM-VSI is the reduced generator voltage. By applying the CSI as the primary converter, only 0.866% of the grid voltage can be utilized. This means that the generator currents (and also the current through the switches) for the tandem converter must be higher in order to achieve the same power.1.2.6 Matrix converterIdeally, the matrix converter should be an all silicon solution with no passive components in the power circuit. The ideal conventional matrix converter topology is shown in Figure 8.Figure 8. The conventional matrix converter topology.The basic idea of the matrix converter is that a desired input current (to/from the supply), a desired output voltage and a desired output frequency may be obtained by properly connecting the output terminals of the converter to the input terminals of the converter. In order to protect the converter, the following two control rules must be complied with: Two (or three) switches in an output leg are never allowed to be on at the same time. All of the three output phases must be connected to an input phase at any instant of time. The actual combination of the switchesdepends on the modulation strategy.1.2.6.1 Advantages of using the Matrix ConverterThis section summarises some of the advantages of using the matrix converter in the control of an induction wind turbine generator. For a low output frequency of the converter the thermal stresses of the semiconductors in a conventional inverter are higher than those in a matrix converter. This arises from the fact that the semiconductors in a matrix converter are equally stressed, at least during every period of the grid voltage, while the period for the conventional inverter equals the output frequency. This reduces thethermal design problems for the matrix converter.Although the matrix converter includes six additional power switches compared to the back-to-back PWM-VSI, the absence of the DC-link capacitor may increase the efficiency and the lifetime for the converter (Schuster, 1998). Depending on the realization of the bi-directional switches, the switching losses of the matrix inverter may be less than those of the PWM-VSI, because the half of the switchings become natural commutations (soft switchings) (Wheeler & Grant, 1993).1.2.6.2 Disadvantages and problems of the matrix converterA disadvantage of the matrix converter is the intrinsic limitation of the output voltage. Without entering the over-modulation range, the maximum output voltage of the matrix converter is 0.866 times the input voltage. To achieve the same output power as the back-to-back PWM-VSI, the output current of the matrix converter has to be 1.15 times higher, giving rise to higher conducting losses in the converter (Wheeler & Grant, 1993).In many of the papers concerning the matrix converter, the unavailability of a true bi-directional switch is mentioned as one of the major obstacles for the propagation of the matrix converter. In the literature, three proposals for realizing a bi-directional switch exists. The diode embedded switch (Neft & Schauder, 1988) which acts like a truebi-directional switch, the common emitter switch and the common collector switch (Beasant et al., 1989).Since real switches do not have infinitesimal switching times (which is not desirable either) the commutation between two input phases constitutes a contradiction between the two basic control rules of the matrix converter. In the literature at least six different commutation strategies are reported, (Beasant et al., 1990); (Burany, 1989); (Jung & Gyu, 1991); (Hey et al., 1995); (Kwon et al., 1998); (Neft & Schauder, 1988). The most simple of the commutation strategies are those reported in (Beasant et al., 1990) and (Neft & Schauder, 1988), but neither of these strategies complies with the basic control rules.译文1 电力电子技术的内容电力电子技术是一门正在快速发展的技术,电力电子元器件有很高的额定电流和额定电压,它的功率减小元件变得更加可靠、耐用.这种元件还可以用来控制比它功率大很多倍的元件。
科技文献中英文翻译
Intelligent Power Supply英文With the rapid development of electronic technology, application field of electronic system is more and more extensive, electronic equipment, there are more and more people work with electronic equipment, life is increasingly close relationship. Any electronic equipment are inseparable from reliable power supply for power requirements, they more and more is also high. Electronic equipment miniaturized and low cost in the power of light and thin,small and efficient for development direction. The traditional transistors series adjustment manostat is continuous control linear manostat. This traditional manostat technology more mature, and there has been a large number of integrated linear manostat module, has the stable performance is good, output ripple voltage small, reliable operation, etc. But usually need are bulky and heavy industrial frequency transformer and bulk and weight are big filter.In the 1950s, NASA to miniaturization, light weight as the goal, for a rocket carrying the switch power development. In almost half a century of development process, switch power because of is small volume, light weight, high efficiency, wide range, voltage advantages in electric, control, computer, and many other areas of electronic equipment has been widely used. In the 1980s, a computer is made up of all of switch power supply, the first complete computer power generation. Throughout the 1990s, switching power supply in electronics,electrical equipment, into the rapid development. In addition, large scale integrated circuit technology, and the rapid development ofswitch power supply with a qualitative leap, raised high frequency power products of, miniaturization, modular tide.Power switch tube, PWM controller and high-frequency transformer is an indispensable part of the switch power supply. The traditional switch power supply is normally made by using high frequency power switch tube division and the pins, such as using PWM integrated controller UC3842 + MOSFET is domestic small power switch power supply, the design method of a more popularity.Since the 1970s, emerged in many function complete integrated control circuit, switch power supply circuit increasingly simplified, working frequency enhances unceasingly, improving efficiency, and for power miniaturization provides the broad prospect. Three end off-line pulse width modulation monolithic integrated circuit TOP (Three switch Line) will Terminal Off with power switch MOSFET PWM controller one package together, has become the mainstream of switch power lC development. Adopt TOP switch lC design switch power, can make the circuitsimplified,volume further narrowing, cost also is decreased obviousiy.Monolithic switching power supply has the monolithic integrated, the minimalist peripheral circuit, best performance index, no work frequency transformer can constitute a significant advantage switching power supply, etc. American Pl (with) company in Power in the mid 1990s first launched the new high frequency switching Power supply chip, known as the "top switch Power", with low cost, simple circuit, higher efficiency. The first generation of products launched in 1994 represented TOP100/200 series, the second generation product is the TOPSwitch - debuted in 1997 П .The above productsonce appeared showed strong vitality and he greatly simplifies the design of 150W following switching power supply and the development of new products for the new job, also, high efficiency and low cost switch power supply promotion and popularization created good condition, which can be widely used in instrumentation, notebook computers, mobile phones, TV, VCD and DVD, perturbation VCR, mobile phone battery chargers, power amplifier and other fields, and form various miniaturization, density, on price can compete with the linear manostat AC/DC power transformation module.Switching power supply to integrated direction of future development will be the main trend, power density will more and more big, to process requirements will increasingly high. In semiconductor devices and magnetic materials, no new breakthrough technology progress before major might find it hard to achieve, technology innovation will focus on how to improve the efficiency and focus on reducing weight. Therefore, craft level will be in the position of power supply manufacturing higher in. In addition, the application of digital control IC is the future direction of the development of a switch power. This trust in DSP for speed and anti-interference technology unceasing enhancement. As for advanced control method, now the individual feels haven't seen practicability of the method appears particularly strong, perhaps with the popularity of digital control, and there are some new control theory into switching power supply.(1) The technology: with high frequency switching frequencies increase, switch converter volume also decrease,power density has also been boosted, dynamic responseimproved. Small power DC - DC converter switch frequency will rise to MHz. But as the switch frequency unceasing enhancement, switch components and passive components loss increases, high-frequency parasitic parameters and high-frequency EMI and so on the new issues will also be caused.(2) Soft switching technologies: in order to improve the efficiency of non-linearity of various soft switch, commutation technical application and hygiene, representative of soft switch technology is passive and active soft switch technology, mainly including zero voltage switch/zero current switch (ZVS/ZCS) resonance, quasi resonant, zero voltage/zero current pulse width modulation technology (ZVS/ZCS - PWM) and zero voltage transition/zero current transition pulse width modulation (PWM) ZVT/ZCT - technical, etc. By means of soft switch technology can effectively reduce switch loss and switch stress, help converter transformation efficiency.(3) Power factor correction technology (IC simplifies PFC). At present mainly divided into IC simplifies PFC technology passive and active IC simplifies PFC technology using IC simplifies PFC technology two kinds big, IG simplifies PFC technology can improve AC - DC change device input power factor, reduce the harmonic pollution of power grid.(4) Modular technology. Modular technology can meet the needs of the distributed power system, enhance the system reliability.(5) Low output voltage technology. With the continuous development of semiconductor manufacturing technology, microprocessor and portable electronic devices work more and more low, this requires future DC - DG converter can providelow output voltage to adapt microprocessor and power supply requirement of portable electronic devicesPeople in switching power supply technical fields are edge developing related power electronics device, the side of frequency conversion technology, development of switch between mutual promotion push switch power supply with more than two year growth toward light, digital small, thin, low noise and high reliability, anti-interference direction. Switching power supply can be divided into the AC/DC and DC/DC two kinds big, also have AC/AC DC/AC as inverter DC/DC converter is now realize modular, and design technology and production process at home and abroad, are mature and standardization, and has approved by users, but the AC/DC modular, because of its own characteristics in the process of making modular, meet more complex technology and craft manufacture problems. The following two types of switch power supply respectively on the structure and properties of this.Switching power supply is the development direction of high frequency, high reliability, low consumption, low noise, anti-jamming and modular. Because light switch power, small, thin key techniques are changed, so high overseas each big switch power supply manufacturer are devoted to the development of new high intelligent synchronous rectifier, especially the improvement of secondary devices of the device, and power loss of Zn ferrite (Mn) material? By increasing scientific and technological innovation, to enhance in high frequency and larger magnetic flux density (Bs) can get high magnetic under the miniaturization of, and capacitor is a key technology. SMT technology application makes switching power supply has made considerable progress,both sides in the circuit board to ensure that decorate components of switch power supply light, small, thin. The high frequency switching power supply of the traditional PWM must innovate switch technology, to realize the ZCS ZVS, soft switch technology has become the mainstream of switch power supply technical, and greatly improve the efficiency of switch power. For high reliability index, America's switch power producers, reduce by lowering operating current measures such as junction temperature of the device, in order to reduce stress the reliability of products made greatly increased.Modularity is of the general development of switch power supply trend can be modular power component distributed power system, can be designed to N + 1 redundant system, and realize the capacity expansion parallel. According to switch power running large noise this one defect, if separate the pursuit of high frequency noise will increase its with the partial resonance, and transform circuit technology, high frequency can be realized in theory and can reduce the noise, but part of the practical application of resonant conversion technology still have a technical problem, so in this area still need to carry out a lot of work, in order to make the technology to practional utilization.Power electronic technology unceasing innovation, switch power supply industry has broad prospects for development. To speed up the development of switch power industry in China, we must walk speed of technological innovation road, combination with Chinese characteristics in the joint development path, for the high-speed development of national economy to make the contribution.中文智能开关电源随着电子技术的高速进展,电子系统的应用领域愈来愈普遍,电子设备的种类也愈来愈多,电子设备与人们的工作、生活的关系口益紧密。
超导技术的基本原理及应用介绍
超导技术的基本原理及应用介绍引言超导技术是一种在低温条件下,电阻为零的物理现象。
自从1911年荷兰物理学家海克·卡末林·奥斯特瓦尔特发现超导现象以来,超导技术已经在许多领域得到了广泛的应用。
本文将介绍超导技术的基本原理以及其在能源、医疗和交通等领域的应用。
一、超导技术的基本原理超导技术的基本原理是电子在低温下形成库珀对,从而导致电阻为零。
在常规导体中,电子会受到晶格振动的干扰,从而产生电阻。
而在超导体中,当温度降低到超导临界温度以下时,电子会以库珀对的形式运动,这种运动不受晶格振动的干扰,从而导致电阻为零。
超导技术的实现需要低温环境。
一般来说,超导体的超导临界温度较低,需要将其冷却到几个开尔文以下才能实现超导。
目前常用的低温制冷方法包括液氮制冷和液氦制冷。
液氮制冷可以将温度降低到77开尔文左右,而液氦制冷则可以将温度降低到4开尔文以下。
二、超导技术在能源领域的应用1. 超导电缆超导电缆是一种能够传输大电流而无能量损耗的电缆。
由于超导体的电阻为零,电流可以在超导电缆中无阻力地传输。
这使得超导电缆在能源输送方面具有巨大的潜力。
超导电缆可以用于输送大电流的直流电力,可以减少电力输送过程中的能量损耗,提高能源利用效率。
2. 超导发电机超导发电机是一种利用超导技术提高发电效率的发电设备。
传统的发电机在转动时会产生电阻,从而导致能量损耗。
而超导发电机利用超导体的无电阻特性,可以减少能量损耗,提高发电效率。
超导发电机在风力发电和水力发电等领域有广泛的应用前景。
三、超导技术在医疗领域的应用1. 磁共振成像(MRI)磁共振成像是一种利用超导技术进行医学影像诊断的方法。
在MRI设备中,超导磁体产生强大的磁场,通过对人体的磁共振信号进行检测和分析,可以获取人体内部的详细结构信息。
相比传统的X射线成像技术,MRI具有更高的分辨率和更少的辐射。
超导技术的应用使得MRI设备更加稳定和高效。
2. 超导磁刺激超导磁刺激是一种利用超导技术进行神经刺激的方法。
电力电子技术简介英语作文
Introduction to Power Electronics Technology(电力电子技术简介)Power electronic technology is divided into two branches: power electronic device manufacturing technology and current conversion technology.Now it has become an indispensable professional basic course for the modern electrical engineering and automation specialty, and plays an important role in training the professional talents.Power electronics technology is a new discipline based on electronics, electrical principles and automatic control. Because it is a high-power electrical technology, and mostly serves the industry using strong electricity, it is often classified as electrician. Power electronic technology mainly includes power electronic devices, power electronic circuits, power electronic devices and systems. Semiconductor is the basic material of power electronic devices, and monocrystalline silicon is the most commonly used material; Its theoretical basis is semiconductor physics; Its technology is semiconductor device technology. Microelectronics technology has been widely used in modernnew power electronic devices. Power electronic circuits have absorbed the theoretical basis of electronics. According to the characteristics of devices and the requirements of power conversion, many power conversion circuits have been developed. These circuits also include various secondary circuits and peripheral circuits such as control, trigger, protection, display, information processing, relay contact, etc. According to different application objects, these circuits are used to form complete machines for various purposes, which are called power electronic devices. These devices often form a system with loads and supporting equipment. Electronics, electrotechnics, automatic control, signal detection and processing and other technologies are often widely used in these devices and systems.。
超导技术
超导磁流体推进船
2009年10月10日,美国科学家合成物质 (Tl4Ba)Ba2Ca2Cu7O13+,将超导温度提高到254K,距离 冰点仅19℃,对于推广超导的实际应用具有极大的意 义. 目前,我国超导临界温度已提高到零下120℃即 153K左右 。
谢谢
柏彬 应物81 08093003
一般材料在温度接近绝对零度的时候,物体分子热运
动几乎消失,材料的电阻趋近于0,这种现象称为超导 现象,达到超导的温度称为临界温度。
超导发展史
1911年:超导电性的发现
1911年 卡末林—昂内斯意外地发现,将汞冷却到-
268.98℃时,汞的电阻突然消失;后来他发现许多金 属和合金都具有与上述汞相类似的低温下失去电阻的 特性 1913年 卡末林—昂内斯在诺贝尔领奖演说中指出:低 温下金属电阻的消失“不是逐渐的,而是突然的”, 水银在4.2K进入了一种新状态,由于它的特殊导电性 能,可以称为超导态。
1987年2月16日 美国国家科学基金会宣布,朱经武与吴 茂昆获得转变温度为98K的超导体。
1987年2月20日 中国也宣布发现100K以上超导体。1987年
3月3日,日本宣布发现123K超导体。
1987年3月27日 美国华裔科学家又发现在氧化物超导材料
中有转变温度为240K的超导迹象。
1987年12月30 美国休斯敦大学宣布,美籍华裔科学家朱
超导材料还可以用于制作超导电线和超导变压器,从而
把电力几乎无损耗地输送给用户。据统计,目前的铜或 铝导线输电,约有15%的电能损耗在输电线路上,光是 在中国,每年的电力损失即达1000多亿度。若改为超导 输电,节省的电能相当于新建数十个大型发电厂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附件5.电气学院(系、所)全英研究生课程简介(中英文各一份)课程名称:超导电力科学技术课程代码:131.512课程类型:□博士专修课程■硕士专修课程考核方式:全英文考试教学方式:全英文讲授适用专业:电气工程适用层次:■硕士□博士开课学期:总学时:32学分:2先修课程要求:电磁场、电力系统分析、超导应用基础、应用超导材料课程组教师姓名职称专业年龄学术方向唐跃进(负责人)教授电气工程54超导电力技术任丽副教授电气工程44超导电力技术石晶副教授电气工程32超导电力技术课程负责教师留学经历及学术专长简介:唐跃进,男,1958年生,华中科技大学教授,博士生导师,博士。
中国电机工程学会会员,日本电气学会会员,“十五”863计划材料领域超导技术专项专家组成员。
1982年毕业于华中工学院(华中科技大学前身)高电压技术专业,1984年获高电压技术专业硕士学位后留校任教,1990年赴日本名古屋大学留学,开始从事超导应用技术研究工作并获得博士学位,1996年任日本琉球大学副教授,从事电力系统的教学以及超导技术、高电压技术的研究工作。
1999年5月回国,主要从事超导电力应用技术研究。
课程教学目标:本课程主要目的是学习超导应用技术的相关知识,在简要复习超导基础知识的基础上,根据国内外最新研究进展、发展趋势为,学习超导电力、超导磁体、超导微弱电磁检测、超导应用实验技术。
授课形式:超导基础复习部分采用讲授形式,最新发展动向部分采用研讨形式。
课程大纲:(章节目录)第一章概论(2学时)§1.1 课程简介§1.2 超导电力技术的发展现状及发展趋势§1.3 分配研讨课题第二章超导基础知识(4学时)§2.1 超导的基本电磁物理特性,零电阻、麦斯纳效应、磁通量子效应、交流损耗、超导导线动态电磁特性等;§2.2 超导的约瑟夫森效应、磁通动力学。
第三章超导电力装置(6学时)§3.1 超导电机、超导变压器的特性要点,设计中的注意事项,交流损耗以及超导稳定性分析与设计方法;§3.2 超导电缆、超导磁悬浮的技术特点,设计要点,绝热措施及热损耗;§3.3 超导限流器的基本形式、动作原理及技术要点;§3.4 超导磁储能系统的基本原理、技术特点、以及关键技术难点;§3.5 超导脉冲功率应用技术的研究现状和技术难题;§3.6 查阅最新科技论文,撰写相关内容的调研报告。
第四章含超导装置电力系统特性(4学时)§4.1 超导电力装置对动态电流的响应、交流损耗、动态热稳定性;§4.2 含超导电力装置电力系统的动态特性分析方法、失超保护问题以及和电力系统常规控制保护装置的协调动作问题;§4.3 查阅最新科技论文,撰写相关内容的调研报告。
第五章超导强磁场磁体应用技术(4学时)§5.1 超导磁体的设计方法、技术要点、稳定性设计以及超导磁体电磁场、温度场、应力场综合优化;§5.2 超导磁体在科学研究中的应用简介:加速器、核聚变、磁悬浮、磁推进、磁分离、核磁共振成像等;§5.3 查阅最新科技论文,撰写相关内容的调研报告。
第六章超导电力中的实验测试技术(4学时)§6.1 超导材料电磁参数测量方法,临界电流、磁化、交流损耗;§6.2 超导应用技术中的其他关键参数测量手段,温度、失超传播速度;§6.3 查阅最新科技论文,撰写相关内容的调研报告。
第七章超导微弱电磁信号检测基础(6学时)§7.1 SQUID的形式、原理以及用SQUID进行微弱电磁检测的原理;§7.2 电压标准、心脑电磁检测等微弱电磁检测应用研究的进展;§7.3 查阅最新科技论文,撰写相关内容的调研报告。
第八章课程报告评点与考查(2学时)全英文教材:Bernd Seeber, Handbook of Applied Superconductivity, Institute of Physics Publishing,Bristol and Philadelphia,1998主要参考书:1. 唐跃进,任丽,石晶. 超导电力基础2. 王家素等,超导技术应用,成都科技大学出版社,19953.林良真等.超导电性及其应用.北京:北京工业大学出版社,1998年4. 国际权威杂志上发表的超导应用技术方面的最新论文附件5.电气学院(系、所)全英研究生课程简介(中英文各一份)课程名称:Superconducting power technology课程代码:131.512课程类型:□博士专修课程■硕士专修课程考核方式:全英文考试教学方式:全英文讲授适用专业:electrical engineering适用层次:■硕士□博士开课学期:总学时:32学分:2先修课程要求:electromagnetic field、Power system analysis、foundation of superconductivity application、应用超导材料课程组教师姓名职称专业年龄学术方向Tang Yue Jin (负责人)Professorelectricalengineering54Applied superconductivity课程负责教师留学经历及学术专长简介:Yuejin Tang, professor of HuaZhong University of Science and Technology. He received the B.Sc. and M.Sc. degree from Huazhong University of Science and Technology (HUST) in 1981 and 1984 respectively, and has been engaged in High Voltage Engineering in HUST until 1990. From Oct. 1990, he studied in Nagoya University, Japan, and received the Doctor Degree in Engineering, majoring in applied superconductivity in 1996. During this period, he participated the project of “Prospective Power Transmission Model System Integrated under Superconducting Environment (PROMISE)”. This project won the prize of progress on science and technology form IEE Japan in 1995. Then, he worked in Ryukyu’s University, Okinawa, Japan as an associate professor for three years, and had be engaged in the teaching and researching work on the Power System, the High Voltage Engineering and the Applied Superconductivity. In May 1999, he returned to China and joined to HUST. He is presently engaged in Applied Superconductivity and High Voltage Technology. Now, he is one of the members of Specific Committee on Applied Superconductivity, Institute of Electrical Technology of China.Teaching goals:The main objective of this course is to learn the relevant knowledge of Applied Superconductivity. Based on a brief review of superconducting knowledge and the latest domestic and foreign research progress and development trend,study superconducting power technology, superconducting magnet, superconducting electromagnetic detection and superconducting test technology.Course program:(List of chapters)Chapter 1 Introduction(2 hours)§1.1 Course introduction§1.2 Present station and development trend of superconducting power technology§1.3 Research topicChapter 2 Superconducting Basics(4 hours)§2.1 Basic e lectromagnetic properties of superconductors§2.2 Joseph Sen effect and flux dynamicsChapter 3 Superconducting power devices(6 hours)§3.1 Superconducting motor and transformer§3.2 Superconducting power cable and magnetic levitation§3.3 Superconducting current limiter§3.4 Superconducting magnetic energy storage system§3.5 Superconductor applied in pulsed power technology research and technical problems§3.6 Writing research reportsChapter 4 Research on p ower system containing superconducting power devices (4 hours)§4.1 Dynamic characteristics analysis on superconducting power devices§4.2 Coordination of quench protection and relay protection§4.3 Consulting the latest academic papers, writing research reportsChapter 5 Application of superconducting magnet for high magnetic field (4 hours)§5.1 Design method of superconducting magnets§5.2 Application of superconducting magnet in scientific research§5.3 Consulting the latest academic papers, written research reportsChapter Experimental test of superconducting power technology (4 hours)§6.1 Method for measuring electromagnetic parameters of superconducting materials, such as critical current, magnetic susceptibility, exchange losses;§6.2 Other means of measuring key parameters of superconducting technology, such as temperature and quench propagation velocity§6.3 Consulting the latest academic papers, written research reportsChapter 7 superconducting weak electromagnetic signal detection (6 hours)§7.1 The basic principle of SQUID§7.2 the research development of electromagnetic detection of weak magnetic detection applications§7.3 Consulting the latest academic papers, written research reportsChapter 8 Course report comments and examination (2 hours)teaching materials:Bernd Seeber, Handbook of Applied Superconductivity, Institute of Physics Publishing,Bristol and Philadelphia,1998Teaching materials and major reference books:1. Tang Yuejin, Ren Li, Shi Jing. Foundation of superconductivity application. China Electric Power Press, 20122. Wang Jiasu, et al. The Application of superconducting technology. Chengdu university of science and technology Press, 19953.Lin Liangzhen, et al. The superconductivity and its application. Beijingpolytechnic university press, 19984. The latest research papers about superconducting application published in international magazines。