高考数学一轮复习专题: 排列与组合(教案及同步练习)
高中数学教案:排列与组合
高中数学教案:排列与组合一、教学目标:1. 让学生理解排列与组合的概念,掌握排列与组合的计算方法。
2. 培养学生的逻辑思维能力,提高学生解决实际问题的能力。
3. 引导学生运用排列与组合的知识解决生活中的问题,提高学生的数学应用意识。
二、教学内容:1. 排列的概念及计算方法2. 组合的概念及计算方法3. 排列与组合的应用三、教学重点与难点:1. 重点:排列与组合的计算方法,以及它们在实际问题中的应用。
2. 难点:排列与组合的原理理解,以及如何解决实际问题。
四、教学方法:1. 采用讲解法,引导学生理解排列与组合的概念。
2. 采用案例分析法,让学生通过实际例子掌握排列与组合的计算方法。
3. 采用问题驱动法,激发学生的思考,提高学生解决问题的能力。
五、教学过程:1. 导入新课:通过生活中的实际问题,引入排列与组合的概念。
2. 讲解排列与组合的概念,让学生理解它们的含义。
3. 讲解排列与组合的计算方法,让学生掌握计算技巧。
4. 案例分析:通过实际例子,让学生运用排列与组合的知识解决问题。
5. 练习与讨论:让学生进行练习,巩固所学知识,并引导学生进行讨论,分享解题心得。
6. 总结与拓展:对本节课的内容进行总结,并引导学生思考排列与组合在生活中的应用。
7. 布置作业:让学生课后巩固所学知识,提高解决实际问题的能力。
六、教学评价:1. 通过课堂讲解、练习和讨论,评价学生对排列与组合概念的理解程度。
2. 通过课后作业和实际问题解决,评价学生对排列与组合计算方法的掌握情况。
3. 结合学生的课堂表现和作业完成情况,评价学生的逻辑思维能力和数学应用意识。
七、教学准备:1. 准备相关的生活案例和实际问题,用于引导学生理解和应用排列与组合知识。
2. 准备排列与组合的计算方法讲解PPT,以便进行清晰的教学演示。
3. 准备练习题和讨论题目,用于巩固学生所学知识和促进学生思考。
八、教学反思:1. 反思教学过程中的有效性和学生的参与程度,考虑如何改进教学方法以提高教学效果。
数学高中排列和组合教案
数学高中排列和组合教案教学目标:1. 理解排列与组合的概念和原理;2. 能够运用排列与组合的知识解决实际问题;3. 提高学生的逻辑思维能力和解决问题的能力。
教学内容:1. 排列和组合的定义与区别;2. 排列的计算方法;3. 组合的计算方法;4. 实际问题解决。
教学步骤:1. 引入:通过一个实际问题引入排列与组合的概念,激发学生的兴趣;2. 讲解:介绍排列和组合的概念,讲解排列和组合的计算方法;3. 练习:让学生进行一些简单的排列与组合计算练习;4. 拓展:给学生一些更复杂的排列与组合问题,提高他们的解决问题能力;5. 总结:总结排列与组合的知识要点,强化学生的学习效果。
教学过程:1. 引入:假设有5个人要坐在一排,问有多少种不同的坐法?这就是一个排列问题。
2. 讲解:排列是指从一组不同元素中按照一定的顺序选取若干元素进行排列。
排列的计算公式是P(n,r)=n!/(n-r)!,其中n表示元素的个数,r表示选取的个数。
3. 练习:让学生计算几个简单的排列问题,如三个人站成一排的排列方式有多少种。
4. 拓展:给学生一些组合问题,让他们思考如何计算。
组合是指从一组不同元素中选取若干元素组成一个集合,不考虑元素之间的顺序。
组合的计算公式是C(n,r)=n!/(r!(n-r)!)。
5. 总结:总结排列与组合的知识点,让学生明确两者的区别和应用场景。
教学评估:1. 通过课堂练习和作业检查学生对排列与组合的掌握程度;2. 考察学生解决实际问题的能力;3. 进行小测验,检测学生的掌握情况。
教学反思:1. 学生对排列与组合的概念理解不够深入,可以适时进行针对性的讲解;2. 需要多举一些实际问题,让学生更好地理解排列与组合的意义;3. 注意引导学生拓展思维,提高他们解决问题的能力。
高三数学一轮复习教学案:排列、组合、二项式定理 学案
排列、组合、二项式定理2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.3.理解组合的意义,掌握组合数计算公式和组合数性质,并能用它们解决一些简单的应用问题.4.掌握二排列与组合高考重点考察学生理解问题、综合运用分类计数原理和分步计数原理分析问题和解决问题的能力及分类讨论思想.它是高中数学中从内容到方法都比较独特的一个组成部分,是进一步学习概率论的基础知识.由于这部分内容概念性强,抽象性强,思维方法新颖,同时解题过程中极易犯“重复”或“遗漏”的错误,而且结果数目较大,无法一一检验,因此学生要学好本节有一定的难度.解决该问题的关键是学习时要注意加深对概念的理解,掌握知识的内在联系和区别,严谨而周密地去思考分析问题.二项式定理是进一步学习概率论和数理统计的基础知识,高考重点考查展开式及通项,难度与课本内容相当.另外利用二项式定理及二项式系数的性质解决一些较简单而有趣的小题,在高考中也时有出现.第1课时两1.分类计数原理(也称加法原理):做一件事情,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事共有N =种不同的方法.2.分步计数原理(也称乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做n 步有m n 种不同的方法,那么完成这件事共有N =种不同的方法.3.解题方法:枚举法、插空法、隔板法.(2)、(3)班分别有学生48,50,52人(1) 从中选1人当学生代表的方法有多少种?(2) 从每班选1人组成演讲队的方法有多少种?(3) 从这150名学生中选4人参加学代会有多少种方法?(4) 从这150名学生中选4人参加数理化四个课外活动小组,共有多少种方法?解:(1)48+50+52=150种 (2)48×50×52=124800种 (3)4150C (4)4150A 变式训练1:在直角坐标x -o -y 平面上,平行直线x=n ,(n=0,1,2,3,4,5),y=n ,(n=0,1,2,3,4,5),组成的图形中,矩形共有( )A 、25个B 、36个C 、100个D 、225个解:在垂直于x 轴的6条直线中任意取2条,在垂直于y 轴的6条直线中任意取2条,这样的4条直线相交便得到一个矩形,所以根据分步记数原理知道:得到的矩形共有22515152626=⨯=⋅C C 个, 故选D 。
排列与组合+讲义-2024届高三数学一轮复习
排列与组合一、学习目标理解排列、组合的概念,能利用计数原理推导排列数公式、组合数公式.二、知识梳理1.排列与组合的概念(1)排列:从n 个不同元素中取出m (m ≤n ) 个元素,按照 排成一列.(2)组合:从n 个不同元素中取出m (m ≤n ) 个元素作为一组.2.排列数、组合数的定义、公式、性质(1)排列数(i ) 从n 个不同元素中取出m (m ≤n ) 个元素的所有 的个数.(ii)A n m =n (n −1)(n −2)…(n −m +1)= .(iii)A n n =n ! ,0!=1 .(2)组合数(i ) 从n 个不同元素中取出m (m ≤n ) 个元素的所有 的个数.(ii)C n m =A nm A m m =n (n−1)(n−2)…(n−m+1)m != .(iii)C n m =C n n−m ,C n m +C n m−1=C n+1m ,C n n =1 ,C n 0=1 .三、典例探究例1 已知7位同学站成一排.(1)甲站在中间的位置,共有多少种不同的排法?(2)甲、乙只能站在两端的排法共有多少种?(3)甲、乙两同学必须相邻的排法共有多少种?(4)甲、乙两同学不能相邻的排法共有多少种?变式:3男3女共6位同学站成一排,则3位女生中有且只有2位女生相邻的不同排法种数是( )A. 576B. 432C. 388D. 216例2小明在学校里学习了二十四节气歌后,打算在网上搜集一些与二十四节气有关的古诗,他准备在冬季的6个节气:立冬、小雪、大雪、冬至、小寒、大寒与春季的6个节气:立春、雨水、惊蛰、春分、清明、谷雨中一共选出4个节气,搜集与之相关的古诗,如果冬季节气和春季节气各至少被选出1个,那么小明选取节气的不同情况的种数是( ) A. 345 B. 465 C. 1 620 D. 1 860变式:共有10级台阶,某人一步可跨一级台阶,也可跨两级台阶或三级台阶,则他恰好6步上完全部台阶的方法种数是( )A. 30B. 90C. 75D. 60方法感悟1.解排列、组合问题要遵循的两个原则(1)按元素(位置)的性质进行分类.(2)按事情发生的过程进行分步.2.两类含有附加条件的组合问题的解题方法(1)“含”或“不含”某些元素的组合题型:若“含”,则先将这些元素取出,再由另外元素补足;若“不含”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”或“至多”含有几个元素的组合题型:“至少”与“至多”问题用直接法或间接法都可以求解,用直接法分类复杂时,可用间接法求解.四、课堂练习1.从4本不同的课外读物中,买3本送给3名同学,每人各1本,则不同的送法种数是()A.12B.24C.64D.812.6名学生排成两排,每排3人,则不同的排法种数为()A.36B.120C.720D.2403.现有3名学生报名参加校园文化活动的3个项目,每人须报1项且只报1项,则恰有2名学生报同一项目的报名方法有( )A. 36种B. 18种C. 9种D. 6种4.某市从6名优秀教师中选派3名同时去3个灾区支教(每地1人),其中甲和乙不同去,则不同的选派方案的种数为()A.48B.60C.96D.1685. 从4本不同的课外读物中,选3本送给3位同学,每人1本,则不同的送法种数是( )A. 12B. 24C. 64D. 816. 6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A. 120种B. 90种C. 60种D. 30种。
高中数学排列和组合教案
高中数学排列和组合教案教学目标:1. 理解排列和组合的基本概念和性质;2. 掌握排列和组合的计算方法;3. 能够应用排列和组合解决实际问题。
教学重点:1. 排列的定义和计算方法;2. 组合的定义和计算方法;3. 排列和组合的应用。
教学难点:1. 理解排列和组合的区别和联系;2. 掌握排列和组合的计算方法;3. 能够独立应用排列和组合解决问题。
教学内容:一、排列的概念和性质1. 排列的定义和表示方法;2. 排列的计算公式;3. 排列的性质和应用。
二、组合的概念和性质1. 组合的定义和表示方法;2. 组合的计算公式;3. 组合的性质和应用。
三、排列组合的应用1. 排列组合在实际问题中的应用;2. 利用排列组合解决概率问题;3. 拓展应用:排列组合在计算机科学和密码学中的应用。
教学方法:1. 讲解结合示例,引导学生理解排列和组合的概念;2. 培养学生进行思维的激活和训练,提高学生学习数学的兴趣;3. 组织学生进行小组讨论,促进学生之间的互动与合作;4. 设计案例分析,引导学生进行综合运用排列和组合解决问题。
教学过程:1. 导入:通过一个生活中的例子引出排列和组合的概念;2. 讲解:介绍排列和组合的定义、性质和计算方法;3. 练习:让学生进行排列和组合的计算练习;4. 拓展:引导学生应用排列和组合解决不同类型的实际问题;5. 总结:总结本节课的重点和难点,强调排列和组合的应用价值。
教学资源:1. 教科书及课件资料;2. 练习题和案例分析资料;3. 实物或图片示例。
教学评价:1. 常规考核:作业、小测、考试等形式;2. 实践评价:学生综合运用排列和组合解决问题的能力;3. 学生反馈:收集学生对本节课的评价和建议,及时调整教学方法。
教学反思:1. 总结本节课的教学效果和问题;2. 思考下节课的教学目标和重难点。
以上为《高中数学排列和组合》教案范本,希朶对您有所帮助。
高考一轮复习教案十二(2)排列与组合的基本方法(学生)理科用
模块: 十二、排列组合、二项式定理、概率统计课题: 2、排列与组合的基本方法教学目标: 理解排列与组合的意义,掌握排列数与组合数的计算公式,掌握组合数的性质. 通过应用排列数与组合数的计算公式以及两个计数原理,解决简单的计数问题,掌握化归、枚举、分类讨论等数学思想和方法,提高逻辑思维能力以及分析问题、解决问题的能力.重难点: 在解决综性问题分类时,保证不重复、不遗漏的原则.一、 知识要点1、排列的定义:从n 个不同的元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.2、排列数:从n 个不同的元素中取出m(m≤n)个元素的所有排列的个数,用符号m n P 表示3、组合的定义:从n 个不同元素中,任取m(m≤n)个元素,并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.4、组合数:从n 个不同的元素中取出m(m≤n)个元素的所有组合的个数,用符号m n C 表示.5、公式与性质:(1)排列数组合数(1)(2)(1)m n p n n n n m =---+ (1)(2)(1)!m mn n m m p n n n n m C p m ---+==或)!(!!m n m n C m n -=(,,m n N m n *∈≤) (2)全排列数:(1)(2)21!n n p n n n n =--⋅=(叫做n 的阶乘)规定0!1=.(3)排列数的另一个计算公式:m n p =!()!n n m - (4)组合数的性质1:m n n m n C C -=(5)组合数的性质2:m n C 1+=m n C +1-m n C二、 例题精讲例1、有编号为1、2、…10的10盏路灯,为节约用电将其中3盏灯熄灭,但不能熄灭相邻的2盏灯,而两端却不能熄灭,问有几种不同的熄灭方法?例2、平面上有7个点,其中有且仅有三点共线,则一共可以连成________条不同的线.例3、8个人排成一排,若甲、乙两人之间必须有3个人,则不同的排法有_________种.例4、若用1,2,3,4,5这五个数字,组成比20000大,并且百位数不是3的没有重复的五位数,那么这样的五位数个数为_____________个.例5、从1,2,3,4,6,8,9中取两个不同数作为对数的真数与底数,共得_________个不同的对数值.例6、分别求出符合下列要求的不同排法的种数(1)6名学生排3排,前排1人,中排2人,后排3人;(2)6名学生排成一排,甲不在排头也不在排尾;(3)从6名运动员中选出4人参加4×100米接力赛,甲不跑第一棒,乙不跑第四棒;(4)6人排成一排,甲、乙必须相邻;(5)6人排成一排,甲、乙不相邻;(6)6人排成一排,限定甲要排在乙的左边,乙要排在丙的左边(甲、乙、丙可以不相邻).例7、假设在100件产品中有3件是次品,从中任意抽取5件,求下列抽取方法各多少种?(1)没有次品;(2)恰有两件是次品;(3)至少有两件是次品.例8、求证:①111m m m n n n P mP P ---+= ;②12112++-+=++m n m n m n m n C C C C例9、四面体的顶点和各棱的中点共10个点(1)设一个顶点为A ,从其他9点中取3个点,使它们和点A 在同一平面上,不同的取法有多少种? (2)在这10点中取4个不共面的点,不同的取法有多少种?三、 课堂练习1、从甲地到乙地,可以乘火车,也可以乘汽车,一天中火车有3班,汽车有2班,那么一天中,乘坐这些交通工具从甲地到乙地共有__5____种方法2、 有三名学生分配到四个车间去参加劳动,共有_______64________种不同的分法.3、以长方体的顶点为顶点的三棱锥的个数有_____58_________个.4、5样不同的玩具分给4个小孩,每人都有,共有_____240______种不同的分法.5、4名教师、6名学生站于一排照相,教师互不相邻,则有___604800___种不同的站法.6、从1,2,3,5,7这五个数字中任取两个分别作为对数的底和真数,则共能组成不同的对数____13___________个.四、 课后作业一、填空题1、由0,3,5,7,9这五个数组成无重复数字的三位数,其中是5的倍数的共有多少个_______.2、学校召开学生代表大会,高二年级的3个班共选6名代表,每班至少1名,代表的名额分配方案种数是______________.3、从3名男工和7名女工中选派2男3女去做5项不同的工作,若每人各做一项,不同的选派方法有____________________种.4、从全班52名学生中选10名学生参加某项活动,如果正、副班长至少有一个在内,那么有__________种选法.5、4人坐在一排10个座位上,若使每人的两边都有空位,则有_______________种不同的坐法.6、象棋比赛中,2人,他们各赛了3场后,因故退出了比赛,这样,这次比赛共进行了83场,比赛开始时参赛者有__________________人二、选择题7、四支足球队争夺冠、亚军,不同的结果有( )A .8种B .10种C .12种D .16种8、五种不同商品在货架上排成一排,其中,A B 两种必须连排,而,C D 两种不能连排,则不同的排法共有( )A .12种B .20种C .24种D .48种9、从9,5,0,1,2,3,7--七个数中,每次选不重复的三个数作为直线方程0ax by c ++=的系数,则倾斜角为钝角的直线共有( )条.A . 14B .30C . 70D .60三、解答题11、三年级4个班举行班级之间男、女排球单循环赛,问:① 男女各需比赛多少场?②组织这次比赛共需安排多少场比赛?11、(1)分队有10名歌舞演员,其中7人能唱歌,5人善跳舞,今从10人中选4人参加演出,2人唱歌,2人跳舞的选法有多少种?(2)商店的橱窗中陈列着七件不同样品,现要将其中的三件样品调换位置,另外四件位置不动,共有不同的调换方法多少种?12、(1)10只不同的试验产品,其中有4只次品,6只正品,现每次取一只测试,直到4只次品全测出为止,求最后一只次品正好在第五次测试时被发现的不同情形有多少种?(2)九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数?。
高中数学排列与组合教案
高中数学排列与组合教案教学目标:1. 理解排列与组合的概念。
2. 能够应用排列与组合的知识解决实际问题。
3. 提高学生的逻辑思维能力和解决问题的能力。
教学内容:1. 排列的概念及其性质。
2. 组合的概念及其性质。
3. 排列与组合的应用。
教学过程:第一课时:1. 引入排列与组合的概念,通过实际例子引发学生对排列与组合的认识。
2. 讲解排列的定义和性质,例如排列中元素不重复出现的特点。
3. 给学生布置一些排列练习题,让他们熟悉排列的运算方法和规律。
第二课时:1. 复习排列的概念和性质。
2. 讲解组合的定义和性质,例如组合中元素可重复出现的特点。
3. 给学生布置一些组合练习题,让他们熟悉组合的运算方法和规律。
第三课时:1. 复习排列与组合的概念和性质。
2. 讲解排列与组合的应用,例如在排队、选做题目等实际问题中的运用。
3. 给学生布置一些综合排列与组合的练习题,让他们能够灵活运用排列与组合的知识解决问题。
教学反馈:1. 对学生在排列与组合方面的理解进行总结和反馈。
2. 引导学生思考排列与组合在日常生活中的应用,并展开讨论。
教学评价:通过作业、课堂表现和练习题的表现评价学生对排列与组合的掌握程度和应用能力。
教学延伸:鼓励学生深入学习排列与组合知识,并拓展到更高级的数学领域,如概率论等。
教学资源:教科书、课件、练习题。
教学提醒:教师应注意引导学生通过实例来理解排列与组合的概念,激发学生的学习兴趣和思考能力。
同时,要关注学生的学习状态,及时调整教学方法,确保学生的学习效果。
高三数学复习排列与组合(含答案)
排列与组合1.排列与组合最根本的区别在于“有序”和“无序”。
取出元素后交换顺序,如果与顺序有关,则是排列;如果与顺序无关,则是组合。
2.排列、组合问题的求解方法与技巧①特殊元素优先安排;②合理分类与准确分步;③排列、组合混合问题要先选后排;④相邻问题捆绑处理;⑤不相邻问题插空处理;⑥定序问题倍缩法处理;⑦分排问题直排处理;⑧“小集团”排列问题先整体后局部;⑨构造模型;⑩正难则反,等价转化。
一、走进教材1.用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为()2.从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是()A.18 B.24二、走近高考3.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种4.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成________个没有重复数字的四位数。
(用数字作答)三、走出误区微提醒:①分类不清导致出错;②相邻元素看成一个整体,不相邻问题采用插空法是解决相邻与不相邻问题的基本方法。
5.从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装计算机和组装计算机各2台,则不同的取法有________种。
6.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种。
考点一简单的排列问题【例1】有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数。
(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻。
【变式训练】(1)某国际会议结束后,中、美、俄等21国领导人合影留念,他们站成两排,前排11人,后排10人,中国领导人站在前排正中间位置,美、俄两国领导人也站前排并与中国领导人相邻,如果对其他国家领导人所站位置不做要求,那么不同的站法共有()A.A1818种B.A2020种C.A23A318A1010种D.A22A1818种(2)甲、乙两人要在一排8个空座上就坐,若要求甲、乙两人每人的两旁都有空座,则不同的坐法有()A.10种B.16种C.20种D.24种考点二组合问题【例2】(1)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种。
排列与组合教案
排列与组合教案排列与组合教案一、引言排列与组合是高中数学中的一个重要概念,也是数学中的一种常见问题解决方法。
通过排列与组合的学习,可以培养学生的逻辑思维和问题解决能力。
本教案将介绍排列与组合的基本概念和应用,以及一些教学方法和案例分析,帮助学生更好地理解和运用排列与组合。
二、基本概念1. 排列排列是指从给定的元素中选取若干个元素按一定的顺序排列的方式。
排列的数目可以通过阶乘来计算,例如n个元素的全排列数目为n!。
2. 组合组合是指从给定的元素中选取若干个元素不考虑顺序的方式。
组合的数目可以通过排列数目的除法来计算,例如从n个元素中选取m个元素的组合数目为C(n,m)。
三、教学方法1. 理论讲解结合实例分析在教学过程中,可以通过理论的讲解来介绍排列与组合的基本概念和计算方法,然后通过实例分析来帮助学生更好地理解和运用。
2. 互动讨论通过提出问题和让学生进行互动讨论,可以激发学生的思维和兴趣,培养他们的解决问题的能力。
3. 案例分析通过分析一些实际问题的解决方法,可以帮助学生将排列与组合的概念与实际问题相结合,提高他们的应用能力。
四、应用案例1. 生日问题假设一个班级有30个学生,问至少有两个学生生日相同的概率是多少?通过排列与组合的计算,可以得出答案为1-365P30/365^30。
2. 选课问题某校有5个选修课程,每个学生可以选择其中的3门课程,问选课的可能性有多少种?通过组合的计算,可以得出答案为C(5,3)。
3. 制作团队某公司有10个员工,需要从中选取一个由5人组成的团队,问有多少种不同的选择方式?通过排列的计算,可以得出答案为A(10,5)。
五、总结通过本教案的学习,学生可以掌握排列与组合的基本概念和计算方法,并能够运用到实际问题中。
通过互动讨论和案例分析,可以提高学生的解决问题的能力和应用能力。
希望学生能够通过本教案的学习,对排列与组合有更深入的理解,并能够在实际生活中灵活运用。
高考数学一轮复习学案:10.2 排列与组合(含答案)
高考数学一轮复习学案:10.2 排列与组合(含答案)10.2排列与组合排列与组合最新考纲考情考向分析1.理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题2.理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题.以理解和应用排列.组合的概念为主,常常以实际问题为载体,考查分类讨论思想,考查分析.解决问题的能力,题型以选择.填空为主,难度为中档.1排列与组合的概念名称定义排列从n个不同元素中取出mmn个元素按照一定的顺序排成一列组合合成一组2.排列数与组合数1排列数的定义从n个不同元素中取出mmn 个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用Amn表示2组合数的定义从n个不同元素中取出mmn个元素的所有不同组合的个数,叫做从n个不同元素中取出m 个元素的组合数,用Cmn表示3排列数.组合数的公式及性质公式1Amnnn1n2nm1nnm2CmnAmnAmmnn1n2nm1mnmnm性质301;Annn4CmnCnmn;Cmn1CmnCm1n__题组一思考辨析1判断下列结论是否正确请在括号中打“”或“”1所有元素完全相同的两个排列为相同排列2一个组合中取出的元素讲究元素的先后顺序3两个组合相同的充要条件是其中的元素完全相同4n1nnn.5若组合式CxnCmn,则xm成立6kCknnCk1n1.题组二教材改编2P27A组T76把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为A144B120C72D24答案D解析“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A3443224.3P19例4用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为A8B24C48D120答案C解析末位数字排法有A12种,其他位置排法有A34种,共有A12A3448种排法,所以偶数的个数为48.题组三易错自纠4六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有A192种B216种C240种D288种答案B解析第一类甲在左端,有A5554321120种排法;第二类乙在最左端,甲不在最右端,有4A444432196种排法所以共有12096216种排法5为发展国外孔子学院,教育部选派6名中文教师到泰国.马来西亚.缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为A180B240C540D630答案C解析依题意,选派方案分为三类一个国家派4名,另两个国家各派1名,有C46C12C11A22A3390种;一个国家派3名,一个国家派2名,一个国家派1名,有C36C23C11A33360种;每个国家各派2名,有C26C24C22A33A3390种,故不同的选派方案种数为9036090540.6寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位一排共五个座位,上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种用数字作答答案45解析设5名同学也用A,B,C,D,E来表示,若恰有一人坐对与自己车票相符的坐法,设E同学坐在自己的座位上,则其他四位都不坐自己的座位,则有BADC,BDAC,BCDA,CADB,CDAB,CDBA,DABC,DCAB,DCBA,共9种坐法,则恰有一人坐对与自己车票相符座位的坐法有9545种.题型一题型一排列问题排列问题1某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了________条毕业留言用数字作答答案1560解析由题意知两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A24040391560条留言2用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为A18B108C216D432答案D解析根据题意,分三步进行第一步,先将1,3,5分成两组,共C23A22种排法;第二步,将2,4,6排成一排,共A33种排法;第三步,将两组奇数插入三个偶数形成的四个空位,共A24种排法综上,共有C23A22A33A2432612432种排法,故选D.3将7个人其中包括甲.乙.丙.丁4人排成一排,若甲不能在排头,乙不能在排尾,丙.丁两人必须相邻,则不同的排法共有A1108种B1008种C960种D504种答案B解析将丙.丁两人进行捆绑,看成一人将6人全排列有A22A66种排法;将甲排在排头,有A22A55种排法;乙排在排尾,有A22A55种排法;甲排在排头,乙排在排尾,有A22A44种排法则甲不能在排头,乙不能在排尾,丙.丁两人必须相邻的不同排法共有A22A66A22A55A22A55A22A441008种思维升华排列应用问题的分类与解法1对于有限制条件的排列问题,分析问题时有位置分析法.元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法2对相邻问题采用捆绑法.不相邻问题采用插空法.定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二题型二组合问题组合问题典例某市工商局对35种商品进行抽样检查,已知其中有15种假货现从35种商品中选取3种1其中某一种假货必须在内,不同的取法有多少种2其中某一种假货不能在内,不同的取法有多少种3恰有2种假货在内,不同的取法有多少种4至少有2种假货在内,不同的取法有多少种5至多有2种假货在内,不同的取法有多少种解1从余下的34种商品中,选取2种有C234561种取法,某一种假货必须在内的不同取法有561种2从34种可选商品中,选取3种,有C334种或者C335C234C3345984种取法某一种假货不能在内的不同取法有5984种3从20种真货中选取1种,从15种假货中选取2种有C120C2152100种取法恰有2种假货在内的不同的取法有2100种4选取2种假货有C120C215种,选取3种假货有C315种,共有选取方式C120C215C31521004552555种至少有2种假货在内的不同的取法有2555种5方法一间接法选取3种的总数为C335,因此共有选取方式C335C31565454556090种至多有2种假货在内的不同的取法有6090种方法二直接法共有选取方式C320C220C115C120C2156090种至多有2种假货在内的不同的取法有6090种思维升华组合问题常有以下两类题型变化1“含有”或“不含有”某些元素的组合题型“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取2“至少”或“至多”含有几个元素的组合题型解这类题必须分重视“至少”与“至多”这两个【关键词】的含义,谨防重复与漏解用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理跟踪训练1在某校xx年举办的第32届秋季运动会上,甲.乙两位同学从四个不同的运动项目中各选两个项目报名,则甲.乙两位同学所选的项目中至少有1个不相同的选法种数为A30B36C60D72答案A解析因为甲.乙两位同学从四个不同的项目中各选两个项目的选法有C24C24种其中甲.乙所选的项目完全相同的选法有C24种,所以甲.乙所选的项目中至少有1个不相同的选法共有C24C24C2430种故选A.2xx武汉二模若从1,2,3,,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A60种B63种C65种D66种答案D解析共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有C45C44C25C2466种题型三题型三排列与组合问题的综合应用排列与组合问题的综合应用命题点1相邻.相间及特殊元素位置问题典例1xx青岛模拟在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________答案60解析2位男生不能连续出场的排法共有N1A33A2472种,女生甲排第一个且2位男生不连续出场的排法共有N2A22A2312种,所以出场顺序的排法种数为NN1N260.2xx上饶一模大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲.乙两辆汽车出去游玩,每车限坐4名乘同一辆车的4个孩子不考虑位置,其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有A18种B24种C36种D48种答案B解析根据题意,分两种情况讨论A家庭的孪生姐妹在甲车上,甲车上另外的两个孩子要来自不同的家庭,可以在剩下的三个家庭中任选2个,再从每个家庭的2个孩子中任选一个来乘坐甲车,有C23C12C1212种乘坐方式;A家庭的孪生姐妹不在甲车上,需要在剩下的三个家庭中任选1个,让其2个孩子都在甲车上,对于剩余的两个家庭,从每个家庭的2个孩子中任选一个来乘坐甲车,有C13C12C1212种乘坐方式,故共有121224种乘坐方式,故选B.命题点2分组与分配问题典例1国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法答案90解析先把6个毕业生平均分成3组,有C26C24C22A3315种方法,再将3组毕业生分到3所学校,有A336种方法,故6个毕业生平均分到3所学校,共有C26C24C22A33A3390种分派方法2xx 广州调研有4名优秀学生A,B,C,D全部被保送到甲.乙.丙3所学校,每所学校至少去一名,则不同的保送方案共有________种答案36解析先把4名学生分为2,1,1共3组,有C24C12C11A226种分法,再将3组对应3个学校,有A336种情况,则共有6636种不同的保送方案思维升华1解排列.组合问题要遵循的两个原则按元素位置的性质进行分类;按事情发生的过程进行分步具体地说,解排列.组合问题常以元素位置为主体,即先满足特殊元素位置,再考虑其他元素位置2分组.分配问题的求解策略对不同元素的分配问题a对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以Annn为均分的组数,避免重复计数b对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数c对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数对于相同元素的“分配”问题,常用方法是采用“隔板法”跟踪训练1xx全国安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A12种B18种C24种D36种答案D 解析由题意可知,其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C13C24A2236种,或列式为C13C24C123432236种故选D.2xx浙江从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法用数字作答答案660解析方法一只有1名女生时,先选1名女生,有C12种方法;再选3名男生,有C36种方法;然后排队长.副队长位置,有A24种方法由分步乘法计数原理知,共有C12C36A24480种选法有2名女生时,再选2名男生,有C26种方法;然后排队长.副队长位置,有A24种方法由分步乘法计数原理知,共有C26A24180种选法所以依据分类加法计数原理知,共有480180660种不同的选法方法二不考虑限制条件,共有A28C26种不同的选法,而没有女生的选法有A26C24种,故至少有1名女生的选法有A28C26A26C24840180660种3把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有______种答案36解析将产品A与B捆绑在一起,然后与其他三种产品进行全排列,共有A22A44种方法,将产品A,B,C捆绑在一起,且A在中间,然后与其他两种产品进行全排列,共有A22A33种方法于是符合题意的摆法共有A22A44A22A3336种。
高三数学专题复习排列、组合与概率 人教版 教案
高三数学专题复习排列、组合与概率一、基本知识点回顾: (一)排列、组合 1、 知识结构表:2、 两个基本原理: (1) 分类计数原理 (2) 分步计数原理3、 排列(1) 排列、排列数定义 (2) 排列数公式:)1()1()!(!+-⋅⋅⋅-=-=m n n n m n n A mn(3) 全排列公式:!n A nn =4、 组合(1) 组合、组合数定义 (2) 组合数公式:12)1()1()1()!(!!⨯⨯⋅⋅⋅⨯-⨯+-⋅⋅⋅-=-=m m m n n n m n m n C mn(3) 组合数性质:①m n n m n C C -= ②r n r n r n C C C 11+-=+ ③11--•=r n r n C n rC④nn nn n n C C C C 2210=+⋅⋅⋅+++⑤0)1(210=-+⋅⋅⋅++-n n n n n n C C C C 即:1314202-=⋅⋅⋅++=⋅⋅⋅++n n n n n n C C C C C5、 思想方法(1) 解排列组合应用题的基本思路:① 将具体问题抽象为排列组合问题,是解排列组合应用题的关键一步② 对“组合数”恰当的分类计算是解组合题的常用方法;③ 是用“直接法”还是用“间接法”解组合题,其前提是“正难则反”; (2) 解排列组合题的基本方法: ① 优限法:元素分析法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;② 排异法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
③ 分类处理:某些问题总体不好解决时,常常分成若干类,再由分类计数原理得出结论;注意:分类不重复不遗漏。
④ 分步处理:对某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决;在解题过程中,常常要既要分类,以要分步,其原则是先分类,再分步。
⑤ 插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间。
高考数学一轮总复习 第十章 排列与组合
组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数
(1)从中任取4张,共有________种不同取法;
(3)甲、乙两人至少有一人参加,有多少种选法?
• 拓直展接提法高 求把解符排合列条应件用的问排题列的数主直要接方列法式计算
优先法 优先安排特殊元素或特殊位置
故共有 C16C25C33=60(种).
(2)有序不均匀分组问题. 由于甲、乙、丙是不同的三人,在(1)题基础上,还应考虑 再分配,共有 C16C25C33A33=360(种). (3)无序均匀分组问题. 先分三步,则应是 C26C24C22种方法,但是这里出现了重复.不 妨记六本书为 A,B,C,D,E,F,若第一步取了 AB,第二步 取了 CD,第三步取了 EF,记该种分法为(AB,CD,EF),则 C26C24C22种分法中还有(AB,EF,CD),
拓展提高 组合问题常有以下两类题型:
法二 (特殊位置优先法)首尾位置可安排另 6 人中的两人, 拓展提高 均匀分组与不均匀分组、无序分组与有序分组是组合问题的常见题型.解决此类问题的关键是正确判断分组是均匀分组还
是不均匀分组,无序均匀分组要除以均匀组数的阶乘数,还要充分考虑到是否与顺序有关;
正难则有反、A等价26种转化排的方法法 ,其他有 A55种排法,共有 A26A55=3 600(种).
• 思路点拨 要注意分析特殊元素是“含”、“不含”、“至少”、 “至多”.
[解] (1)共有 C318=816(种). (2)共有 C518=8 568(种). (3)分两类:甲、乙中有一人参加,甲、乙都参加,共有 C12C418+C318=6 936(种). (4)(间接法):由总数中减去五名都是内科医生和五名都是 外科医生的选法种数,得 C520-(C512+C58)=14 656(种).
【学科精品】高考数学一轮复习 第10章第2节排列与组合 教案.doc
第二节排列与组合[考纲传真](教师用书独具)1.理解排列与组合的概念.2.理解排列数公式、组合数公式.3.能利用公式解决一些简单的实际问题.(对应学生用书第170页)[基础知识填充]1.排列、组合的定义1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)所有元素完全相同的两个排列为相同排列.( )(2)两个组合相同的充要条件是其中的元素完全相同.( )(3)若组合式Cx n=Cm n,则x=m成立.( )n-1.( )(4)k Ck n=n Ck1[答案](1)×(2)√(3)×(4)√2.(教材改编)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了毕业留言( )A.1 560条B.780条C.1 600条D.800条A[由题意,得毕业留言共A240=1 560条.]3.(2017·全国卷Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种B.18种C.24种D.36种D[由题意可得其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C13·C24·A22=36(种),或列式为C13·C24·C12=3×4×32×2=36(种).故选D.]4.某市委从组织机关10名科员中选3人担任驻村第一书记,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( )A.85 B.56C.49 D.28C[法一(直接法):甲、乙两人均入选,有C17C22种方法,甲、乙两人只有1人入选,有C12C27种方法,由分类加法计数原理,共有C22C17+C12C27=49种选法.法二(间接法):从9人中选3人有C39种方法,其中甲、乙均不入选有C37种方法,所以满足条件的选排方法有C39-C37=84-35=49种.]5.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有________种.60[5人的全排列,B站在A的右边与A站在B的右边各占一半,所以满足条件的不同排法共12A55=60种.](对应学生用书第171页)有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻.[解](1)从7人中选5人排列,有A57=7×6×5×4×3=2 520(种).(2)分两步完成,先选3人站前排,有A37种方法,余下4人站后排,有A44种方法,共有A37·A44=5 040(种).(3)法一:(特殊元素优先法)先排甲,有5种方法,其余6人有A66种排列方法,共有5×A66=3 600(种).法二:(特殊位置优先法)首尾位置可安排另6人中的两人,有A26种排法,其他有A55种排法,共有A26A55=3 600(种).(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有A44种方法,再将女生全排列,有A44种方法,共有A44·A44=576(种).(5)(插空法)先排女生,有A44种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有A35种方法,共有A44·A35=1 440(种).[规律方法]求解排列应用问题的六种常用方法[跟踪训练] (1)在航天员进行的一项太空试验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,问试验顺序的编排方法共有( )A .34种B .48种C .96种D .144种 (2)(2017·北京西城区质检)把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有________种.(1)C (2)36 [(1)程序A 的顺序有A12=2种结果,将程序B 和C 看作一个元素与除A 外的元素排列有A22A44=48种结果,由分步乘法计数原理,试验编排共有2×48=96种方法.(2)记其余两种产品为D ,E ,A ,B 相邻视为一个元素,先与D ,E 排列,有A22A33种方法.再将C 插入,仅有3个空位可选,共有A22A33C13=2×6×3=36种不同的摆法.]某课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生当选;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选.[解](1)只有一名女生当选等价于有一名女生和四名男生当选.故共有C15·C48=350种.(2)两队长当选,共有C22·C311=165种.(3)至少有一名队长当选含有两类:只有一名队长当选,有两名队长当选.故共有C12·C411+C22·C311=825种.(或采用排除法:C513-C511=825(种)).(4)至多有两名女生当选含有三类:有两名女生当选,只有一名女生当选,没有女生当选.故选法共有C25·C38+C15·C48+C58=966种.检)某地实行高考改革,考生除参加语文、数学、外语统一考试外,还需从物理、化学、生物、政治、历史、地理六科中选考三科,要求物理、化学、生物三科至少选一科,政治、历史、地理三科至少选一科,则考生选考方法种数共有( )【导学号:79140342】A.6 B.12C.18 D.24(2)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A.60种B.63种C.65种D.66种(1)C(2)D[(1)法一:所有选考方法可分两类:第一类可分两步,第一步,考生从物理、化学、生物三科中任选一科有C13种不同的选法,第二步,考生从政治、历史、地理三科中任选二科有C23种不同的选法,根据分步乘法计数原理,共有C13C23种不同的选法;第二类可分两步,第一步,考生从物理、化学、生物三科中任选二科有C23种不同的选法,第二步,从政治、历史、地理三科中任选一科有C13种不同的选法,根据分步乘法计数原理,共有C23C13种不同的选法.根据分类加法计数原理,考生共有C13C23+C23C13=18种不同的选考方法,故选C.法二:依题意,考生共有C36-2C33=18种不同的选考方法,故选C.(2)共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,所以不同的取法共有C45+C44+C25C24=66种.](1)从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )A.300 B.216C.180 D.162(2)(2017·江南名校联考)将甲、乙等5位同学分别保送到北京大学,上海交通大学,浙江大学三所大学就读,则每所大学至少保送一人的不同保送的方法有( ) A.240种B.180种C.150种D.540种(1)C(2)C[(1)分两类:第1类,不取0,即从1,2,3,4,5中任取两个奇数和两个偶数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C23C22A44=72个没有重复数字的四位数;第2类,取0,此时2和4只能取一个,再取两个奇数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C12C23(A44-A33)=108个没有重复数字的四位数.根据分类加法计数原理可知,满足题意的四位数共有72+108=180(个).(2)5名学生可分为2,2,1和3,1,1两组方式.当5名学生分成2,2,1时,共有12C25C23A33=90种方法;当5名学生分成3,1,1时,共有C35A33=60种方法.由分类加法计数原理知共有90+60=150种保送方法.](一))哈市某公司有五个不同部门,现有4名在校大学生来该公司实习.要求安排到该公司的两个部门,且每部门安排两名,则不同的安排方案种数为( )【导学号:79140343】A.40 B.60C.120 D.240(2)(2017·浙江高考)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)(1)B(2)660[从五个不同部门选取两个部门有C25种选法,将4名大学生分别安排在这两个部门有C24C22种方法,所以不同的安排方案有C25C24C22=60种,故选B.(2)法一:只有1名女生时,先选1名女生,有C12种方法;再选3名男生,有C36种方法;然后排队长、副队长位置,有A24种方法.由分步乘法计数原理,知共有C12C36A24=480(种)选法.有2名女生时,再选2名男生,有C26种方法;然后排队长、副队长位置,有A24种方法.由分步乘法计数原理,知共有C26A24=180(种)选法.所以依据分类加法计数原理知共有480+180=660(种)不同的选法.法二:不考虑限制条件,共有A28C26种不同的选法,而没有女生的选法有A26C24种,故至少有1名女生的选法有A28C26-A26C24=840-180=660(种).]。
2024年高考数学一轮复习(新高考版) 第10章10.2 排列与组合
§10.2排列与组合考试要求1.理解排列、组合的概念.2.能利用计数原理推导排列数公式、组合数公式.3.能利用排列、组合解决简单的实际问题.知识梳理1.排列与组合的概念名称定义排列从n 个不同元素中取出m (m ≤n )个元素按照一定的顺序排成一列组合作为一组2.排列数与组合数(1)排列数:从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数,用符号A m n 表示.(2)组合数:从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数,用符号C m n 表示.3.排列数、组合数的公式及性质公式(1)A m n =n (n -1)(n -2)…(n -m +1)=n ! n -m !(n ,m ∈N *,且m ≤n ).(2)C mn =A m n A mm =n !m ! n -m !(n ,m ∈N *,且m ≤n ).特别地,C 0n =1性质(1)0!=1;A n n =n !.(2)C m n =C n -m n ;C m n +1=C m n +C m -1n常用结论1.排列数、组合数常用公式(1)A m n =(n -m +1)A m -1n .(2)A m n =n A m -1n -1.(3)(n +1)!-n !=n ·n !.(4)k C k n =n C k -1n -1.(5)C m n +C m n -1+…+C m m +1+C m m =C m +1n +1.2.解决排列、组合问题的十种技巧(1)特殊元素优先安排.(2)合理分类与准确分步.(3)排列、组合混合问题要先选后排.(4)相邻问题捆绑处理.(5)不相邻问题插空处理.(6)定序问题倍缩法处理.(7)分排问题直排处理.(8)“小集团”排列问题先整体后局部.(9)构造模型.(10)正难则反,等价转化.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列.(×)(2)两个组合相同的充要条件是其中的元素完全相同.(√)(3)若组合式C x n =C mn ,则x =m 成立.(×)(4)A m n =n (n -1)(n -2)…(n -m ).(×)教材改编题1.A 24+C 37等于()A .35B .47C .45D .57答案B解析A 24+C 37=4×3+7×6×53×2×1=47.2.从4名男同学和3名女同学中选出3名参加某项活动,则男、女生都有的选法种数是()A .18B .24C .30D .36答案C 解析选出的3人中有2名男同学1名女同学的方法有C 24C 13=18(种),选出的3人中有1名男同学2名女同学的方法有C 14C 23=12(种),故3名学生中男、女生都有的选法有C 24C 13+C 14C 23=30(种).3.将4名学生分别安排到甲、乙、丙三地参加社会实践活动,每个地方至少安排一名学生参加,则不同的安排方案共有________种.答案36解析第一步,先从4名学生中任取两人组成一组,与剩下2人分成三组,有C 24=6(种)不同的方法;第二步,将分成的三组安排到甲、乙、丙三地,则有A 33=6(种)不同的方法.故共有6×6=36(种)不同的安排方案.题型一排列问题例1(1)中国国家滑雪队将开展自由式滑雪项目中的空中技巧、雪上技巧、障碍追逐和U型场地技巧四个项目表演,现安排两名男队员和两名女队员组队参演,参演选手每人展示其中一个不同的项目,雪上技巧项目必须由女队员展示,则所有不同出场顺序与项目展示方案种数为()A.576B.288C.144D.48答案B解析根据题意,雪上技巧项目必须由女队员展示,有2种情况,剩下3人表演其他3个项目,有A33=6(种)情况,而4个项目之间的排法有A44=24(种)顺序,则有2×6×24=288(种)展示方案.(2)用0,1,2,3,4,5这六个数字可以组成________个无重复数字且不大于4310的四位偶数.答案110解析①当千位上排1或3时,符合题意的共有A12A13A24个.②当千位上排2时,符合题意的共有A12A24个.③当千位上排4时,形如40××,42××的偶数各有A13个符合题意,形如41××的偶数有A12A13个符合题意,形如43××的偶数只有4310和4302这两个数符合题意.故共有A12A13A24+A12A24+2A13+A12A13+2=110(个)符合题意.思维升华对于有限制条件的排列问题,分析问题时,有位置分析法、元素分析法,在实际进行排列时,一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.跟踪训练1(1)(2023·武汉模拟)源于探索外太空的渴望,航天事业在21世纪获得了长足的发展.太空中的环境为某些科学实验提供了有利条件,宇航员常常在太空旅行中进行科学实验.在某次太空旅行中,宇航员们负责的科学实验要经过5道程序,其中A,B两道程序既不能放在最前,也不能放在最后,则该实验不同程序的顺序安排共有()A.18种B.36种C.72种D.108种答案B解析先排A,B两道程序,其既不能放在最前,也不能放在最后,则在第2,3,4道程序选两个放A,B,共有A23种放法;再排剩余的3道程序,共有A33种放法.则共有A23·A33=36(种)放法.(2)8人站成前后两排,每排4人,其中甲、乙两人必须在前排,丙在后排,则共有________种排法.答案5760解析先排甲、乙,有A24种排法,再排丙,有A14种排法,其余5人有A55种排法,故不同的排法共有A24A14A55=5760(种).题型二组合问题例2(1)(多选)从6名男生和4名女生中选出4人去参加一项创新大赛,则下列说法正确的有()A.如果4人全部为男生,那么有30种不同的选法B.如果4人中男生、女生各有2人,那么有30种不同的选法C.如果男生中的甲和女生中的乙必须在内,那么有28种不同的选法D.如果男生中的甲和女生中的乙至少要有1人在内,那么有140种不同的选法答案CD解析如果4人全部为男生,选法有C46=15(种),故A错误;如果4人中男生、女生各有2人,男生的选法有C26=15(种),女生的选法有C24=6(种),则4人中男生、女生各有2人的选法有15×6=90(种),B错误;如果男生中的甲和女生中的乙必须在内,在剩下的8人中再选2人即可,有C28=28(种),故C正确;在10人中任选4人,有C410=210(种),甲、乙都不在其中的选法有C48=70(种),故男生中的甲和女生中的乙至少要有1人在内的选法有210-70=140(种),故D正确.(2)在某场新闻发布会上,主持人要从5名国内记者与4名国外记者中依次选出3名来提问,要求3人中既有国内记者又有国外记者,且不能连续选国内记者,则不同的选法有() A.80种B.180种C.260种D.420种答案C解析根据题意,分2种情况讨论,①选出的3人中有1名国外记者、2名国内记者,则有C25C14A22=80(种)选法,②选出的3人中有2名国外记者、1名国内记者,则有C15C24A33=180(种)选法,由分类加法计数原理可知,共有80+180=260(种)选法.思维升华组合问题常有以下两类题型(1)“含有”或“不含有”问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”问题:用直接法和间接法都可以求解,通常用直接法,分类复杂时,考虑逆向思维,用间接法处理.跟踪训练2(1)从4名男生和3名女生中选派4人去参加课外活动,要求至少有一名女生参加,则不同的选派种数为()A.12B.24C.34D.60答案C解析由题可知,选派4人去的总的选派种数为C47=35,选派4人全部是男生的选派种数为1,所以至少有一名女生参加的不同的选派种数为35-1=34.(2)如图,从上往下读(不能跳读,即念完标号为②的国字后只能念下一行标号为③或④的荣字,又如标号为⑤的校字只能接在标号为④的荣字后念),构成句子“爱国荣校做市西卓越学生”的不同读法总数为________.答案252解析构成句子“爱国荣校做市西卓越学生”的不同读法需10步完成(从上一个字到下一个字为一步),其中5步是从上往左下角方向读,余下5步是从上往右下角方向读,故共有不同读法C510=252(种).题型三排列与组合的综合问题命题点1相邻、相间问题例3(多选)有3名男生,4名女生,在下列不同条件下,正确的是()A.全体站成一排,女生必须站在一起有144种排法B.全体站成一排,男生互不相邻有1440种排法C.任选其中3人相互调整座位,其余4人座位不变,则不同的调整方案有70种D.全体站成一排,甲不站排头,乙不站排尾有3720种排法答案BCD解析对于A,将女生看成一个整体,考虑女生之间的顺序,有A44种排法,再将女生的整体与3名男生在一起进行全排列,有A44种排法,故共有A44·A44=576(种)排法,故A错误;对于B,先排女生,将4名女生全排列,有A44种排法,再安排男生,由于男生互不相邻,可以在女生之间及首尾空出的5个空位中任选3个空位排男生,有A35种排法,故共有A44·A35=1440(种)排法,故B正确;对于C ,任选其中3人相互调整座位,其余4人座位不变,则不同的调整方案有C 37×2×1=70(种),故C 正确;对于D ,若甲站在排尾,则有A 66种排法,若甲不站在排尾,则有A 15A 15A 55种排法,故共有A 66+A 15A 15A 55=3720(种)排法,故D 正确.命题点2定序问题例4有4名男生,3名女生,其中3名女生高矮各不相同,将7名学生排成一行,要求从左到右,女生从矮到高排列(不一定相邻),不同的排法共有________种.答案840解析7名学生的排列共有A 77种,其中女生的排列共有A 33种,按照从左到右,女生从矮到高的排列只是其中的一种,故有A 77A 33=A 47=840(种)不同的排法.命题点3分组、分配问题例5(1)(2023·岳阳模拟)中国书法历史悠久,源远流长,书法作为一门艺术,以文字为载体,不断地反映着和丰富着华夏民族的自然观、宇宙观和人生观,谈到书法艺术,就离不开汉字,汉字是书法艺术的精髓,汉字本身具有丰富的意象和可塑的规律性,使汉字书写成为一门独特的艺术,我国书法大体可分为篆、隶、楷、行、草五种书体,如图,以“国”字为例,现有5张分别写有一种书体的临摹纸,将其全部分给3名书法爱好者,每人至少1张,则不同的分法种数为()A .60B .90C .120D .150答案D解析满足条件的分法可分为两类,第一类,一人三张,另两人各一张,符合条件的分法有C 35A 33种,即60种,第二类,其中一人一张,另两人各两张,符合条件的分法有C 25C 23A 22A 33种,即90种,由分类加法计数原理可得,满足条件的不同分法种数为150.(2)中国空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱.假设中国空间站要安排6名航天员开展实验,其中每个舱安排2人.若甲、乙两人不被安排在同一个舱内做实验,则不同的安排方案共有()A .20种B .36种C .72种D .84种答案C解析将6名航天员每个舱安排2人开展实验的所有安排方法数为C 26C 24C 22,其中甲、乙两人被安排在同一个舱内做实验的安排方法数为C 22·C 24C 22A 22·A 33,所以满足条件的不同的安排方案数为C 26C 24C 22-C 22·C 24C 22A 22·A 33=90-18=72.思维升华求解排列、组合应用问题的常用方法捆绑法把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法对于不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中定序问题对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列跟踪训练3(1)(多选)已知A ,B ,C ,D ,E 五个人并排站在一起,则下列说法正确的有()A .若A ,B 不相邻,共有72种排法B .若A 不站在最左边,B 不站在最右边,有72种排法C .若A 在B 右边有60种排法D .若A ,B 两人站在一起有48种排法答案ACD解析对于A ,若A ,B 不相邻,共有A 33A 24=72(种)排法,故A 正确;对于B ,若A 不站在最左边,B 不站在最右边,利用间接法有A 55-2A 44+A 33=78(种)排法,故B 错误;对于C ,若A 在B 右边有A 55A 22=60(种)排法,故C 正确;对于D ,若A ,B 两人站在一起有A 22A 44=48(种)排法,故D 正确.(2)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,同类节目不相邻的排法种数是()A .72B .120C .144D .168答案B解析先安排小品节目和相声节目,然后让歌舞节目去插空.安排小品节目和相声节目的顺序有三种:“小品,小品,相声”、“小品,相声,小品”和“相声,小品,小品”.对于第一种情况,形式为“□小品歌舞小品□相声□”,有A 22C 13A 23=36(种)安排方法;同理,第三种情况也有36种安排方法;对于第二种情况,三个节目形成4个空,其形式为“□小品□相声□小品□”,有A 22A 34=48(种)安排方法,故共有36+36+48=120(种)安排方法.(3)将9名大学生志愿者安排在星期五、星期六及星期日3天参加社区公益活动,每天分别安排3人,每人参加一次,则不同的安排方案共有________种.(用数字作答)答案1680解析先选出3人,有C39种选法,再从剩下的6人中选出3人,有C36种选法,最后剩下的3人为一组,有C33种选法.由分步乘法计数原理以及每A33中只能算一种不同的分组方法,可知不同的安排方案共有C39C36C33A33·A33=1680(种).课时精练1.若A3m=6C4m,则m等于()A.9B.8C.7D.6答案C解析因为A3m=6C4m,所以m(m-1)(m-2)=6×m m-1 m-2 m-34×3×2×1,即1=m-34,解得m=7.2.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为()A.10B.20C.30D.40答案B解析将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么必然是一个宿舍2名,而另一个宿舍3名,共有C35C22A22=20(种).3.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()A.1440种B.960种C.720种D.480种答案B解析先将5名志愿者排好,有A55种排法,2位老人只能排在5名志愿者之间的4个空隙中,先将2位老人排好,有A22种排法,再把它作为一个元素插入空隙中,有4种插法.所以共有不同的排法4A22A55=960(种).4.由0,1,2,…,9这十个数字组成的无重复数字的四位数中,个位数字与百位数字之差的绝对值等于8的有()A.98个B.105个C.112个D.210个答案D解析当个位数字与百位数字为0,8时,有A28A22个;当个位数字与百位数字为1,9时,有A17A17A22个,所以个位数字与百位数字之差的绝对值等于8的共有A28A22+A17A17A22=210(个).5.将标号为1,2,3,4的四个篮球分给三位小朋友,每位小朋友至少分到一个篮球,且标号为1,2的两个篮球不能分给同一个小朋友,则不同的分法种数为()A.15B.20C.30D.42答案C解析四个篮球分成三组有C24种分法,三组篮球进行全排列有A33种分法,标号为1,2的两个篮球分给同一个小朋友有A33种分法,所以有C24A33-A33=36-6=30(种)分法.6.(2023·济宁模拟)2022年7月19日,亚奥理事会宣布将于2023年9月23日至10月8日在杭州举办第19届亚运会,为了办好这届体育文化盛会,杭州亚运会组委会决定进行赛前志愿者招募,此举得到在杭大学生的积极参与.某高校3位男同学和2位女同学通过筛选加入志愿者服务,通过培训,拟安排在游泳、篮球、射击、体操四个项目进行志愿者服务,这四个项目都有人参加,要求2位女同学不安排在一起,且男同学小王、女同学大雅由于专业需要必须分开,则不同的安排方法种数为()A.144B.150C.168D.192答案D解析由题可得,参与志愿者服务的项目人数为2,1,1,1,若没有限制则共有C25·A44=240(种)安排方法;当两个女同学在一起时有A44=24(种)安排方法;当男同学小王、女同学大雅在一起时有A44=24(种)方法,所以按题设要求不同的安排方法种数为240-24-24=192.7.如图是由6个正方形拼成的矩形图案,从图中的12个顶点中任取3个点作为一组.其中可以构成三角形的组数为()A.208B.204C.200D.196答案C解析任取的3个顶点不能构成三角形的情形有3种:一是3条横线上的4个点,其组数为3C34;二是4条竖线上的3个点,其组数为4C33;三是4条对角线上的3个点,其组数为4C33,所以可以构成三角形的组数为C312-3C34-8C33=200.8.(多选)现有4个编号为1,2,3,4的不同的球和4个编号为1,2,3,4的不同的盒子,把球全部放入盒子内.则下列说法正确的是()A.恰有1个盒子不放球,共有72种放法B.每个盒子内只放一个球,且球的编号和盒子的编号不同的放法有9种C.有2个盒子内不放球,另外两个盒子内各放2个球的放法有36种D.恰有2个盒子不放球,共有84种放法答案BCD解析对于A,恰有1个盒子不放球,先选1个空盒子,再选一个盒子放两个球,则C14C24A33=144≠72,故A不正确;对于B,编号为1的球有C13种放法,把与编号为1的球所放盒子的编号相同的球放入1号盒子或者其他两个盒子,共有1+C12=3(种),即3×3=9(种),故B正确;对于C,首先选出两个空盒子,再取两个球放剩下的两个盒子中的一个,共有C24C24=36(种),故C正确;对于D,恰有2个盒子不放球,首先选出两个空盒子,再将4个球分为3,1或2,2两种情况,放入盒子,共有C24(C14C12+C24)=6×14=84(种),故D正确.9.(2022·大同模拟)在5G,AI,MR等技术的支持下,新闻媒体推出诸多创新融媒产品,将5G技术引入新闻生产,有效扩展了新闻的应用场景,云采访、云访谈、云直播等云端对话成为报道的新常态.现有4名新闻媒体记者采用云采访、云访谈、云直播三种方式进行报道,每种方式至少有一名记者采用,则不同的安排方法种数为________.答案36解析依题意将4名新闻媒体记者分成三组,共有C24种方法﹐再将其进行全排列共有A33种方法﹐由分步乘法计数原理得,共有C24A33=36(种)安排方法.10.某小区共有3个核酸检测点同时进行检测,有6名志愿者被分配到这3个检测点参加服务,6人中有4名“熟手”和2名“生手”,1名“生手”至少需要1名“熟手”进行检测工作的传授,每个检测点至少需要1名“熟手”,且2名“生手”不能分配到同一个检测点,则不同的分配方案种数是________.答案216解析根据题意,可先把4名“熟手”分为人数为2,1,1的三组,再分配到3个检测点,共有C24C12C11·A33种分法,A22然后把2名“生手”分配到3个检测点中的2个,有A23种分法,所以共有C24C12C11A22·A33·A23=216(种)不同的分配方案.11.(2023·苏州模拟)阳春三月,草长莺飞;丝绦拂堤,尽飘香玉.三个家庭的3位妈妈带着3名女孩和2名男孩共8人踏春.在沿行一条小溪时,为了安全起见,他们排队前进,三位母亲互不相邻照顾孩子;3名女孩相邻且不排最前面也不排最后面;为了防止2名男孩打闹,2人不相邻,且不排最前面也不排最后面.则不同的排法共有()A.144种B.216种C.288种D.432种答案C解析第一步:先将3名母亲全排列,共有A33种排法;第二步:将3名女孩“捆绑”在一起,共有A33种排法;第三步:将“捆绑”在一起的3名女孩作为一个元素,在第一步形成的2个空中选择1个插入,有A12种排法;第四步:首先将2名男孩之中的一人,插入第三步后相邻的两个妈妈中间,然后将另一个男孩插入由女孩与妈妈形成的2个空中的其中1个,共有C12C12种排法.所以不同的排法共有A33A33A12C12C12=288(种).12.把座位编号为1,2,3,4,5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为________(用数字作答).答案96解析先将票分为符合条件的4份,由题意,4人分5张票,且每人至少一张,至多两张,则三人每人一张,一人2张,且分得的票必须是连号,相当于将1,2,3,4,5这五个数用3个板子隔开,分为四部分且不存在三连号.在4个空位插3个板子,共有C34=4(种)分法,再对应到4个人,有A44=24(种)分法,则共有4×24=96(种)分法.13.(2022·济南模拟)某部队在一次军演中要先后执行A,B,C,D,E,F六项不同的任务,要求任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B,C不能相邻,则不同的执行方案共有()A.36种B.44种C.48种D.54种答案B解析由题意知任务A,E必须相邻,且只能安排为AE,由此分三类完成:(1)当AE排第一、二位置时,用○表示其他任务,则顺序为AE○○○○,余下四项任务,先全排D,F两项任务,然后将任务B,C插入D,F两项任务形成的三个空隙中,有A22A23种方法.(2)当AE排第二、三位置时,顺序为○AE○○○,余下四项任务又分为两类:①B,C两项任务中一项排在第一个位置,剩余三项任务排在后三个位置,有A12A33种方法;②D,F两项任务中一项排在第一个位置,剩余三项任务排在后三个位置,且任务B,C不相邻,有A12A22种方法.(3)当AE排第三、四位置时,顺序为○○AE○○,第一、二位置必须分别排来自B,C和D,F 中的一个,余下两项任务排在后两个位置,有C12C12A22A22种方法,根据分类加法计数原理知,不同的执行方案共有A22A23+A12A33+A12A22+C12C12A22A22=44(种).14.某共享汽车停放点的停车位成一排且恰好全部空闲,假设最先来停车点停车的3辆共享汽车都是随机停放的,且这3辆共享汽车都不相邻的排法与这3辆共享汽车恰有2辆相邻的排法相等,则该停车点的车位数为________.答案10解析设停车位有n个,这3辆共享汽车都不相邻相当于先将(n-3)个停车位排放好,再将这3辆共享汽车插入到所成的(n-2)个间隔中,故有A3n2种.恰有2辆共享汽车相邻,可先-把其中2辆捆绑在一起看作一个复合元素,再和另一辆插入到将(n-3)个停车位排好所成的(n -2)个间隔中,故有A23A2n-2种.因为这3辆共享汽车都不相邻的排法与这3辆共享汽车恰有2辆相邻的排法相等,所以A3n2=A23A2n-2,解得n=10.-。
高三数学一轮复习精品教案2:排列与组合教学设计
10.6.2 排列与组合考纲传真1.理解排列、组合的概念.2.能利用计数原理推导排列数公式、组合数公式.3.能解决简单的实际问题.1.排列与排列数 (1)排列从n 个不同元素中取出m (m ≤n )个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,记作A m n .2.组合与组合数 (1)组合从n 个不同元素中取出m (m ≤n )个元素组成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,记作C m n .3.排列数、组合数的公式及性质公式(1)Am n =n (n -1)(n -2)…(n -m +1)=n !(n -m )!(2)C mn =A m n A m m=n (n -1)(n -2)…(n -m +1)m !=n!m!(n-m)!(n,m∈N*,且m≤n).特别地C0n=1.性质(1)0!=1;(2)A n n=n!.(2)①C m n=C n-mn ;②C m n+1=C m n+C m-1n.1.(人教A版教材习题改编)从1,2,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有()A.9个B.24个C.36个D.54个『解析』选出符合题意的三个数字有C13C23种方法,这三个数可组成C13C23A33=54个没有重复数字的三位数.『答案』D2.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有()A.6种B.12种C.30种D.36种『解析』从反面考虑:甲、乙所选的课程,共有C24C24种不同的选法,其中甲、乙所选的课程都相同的选法有C24种.故甲、乙所选的课程至少有1门不同有C24C24-C24=30(种).『答案』C3.A、B、C、D、E五人并排站成一排,如果B必须站在A的右边(A、B可以不相邻),那么不同的排法共有()A.24种B.60种C.90种D.120种『解析』可先排C、D、E三人,共A35种排法,剩余A、B两人只有一种排法,由分步计数原理满足条件的排法共A35=60(种).『答案』B4.(2012·浙江高考)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种『解析』满足题设的取法可分为三类:一是四个奇数相加,其和为偶数,在5个奇数1,3,5,7,9中,任意取4个,有C45=5(种);二是两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有C25·C24=60(种);三是四个偶数相加,其和为偶数,4个偶数的取法有1种,所以满足条件的取法共有5+60+1=66(种).『答案』D5.(2012·济宁模拟)从5位男生,4位女生中选派4位代表参加一项活动,其中至少有2位男生,且至少有1位女生的选法共有()A.80种B.100种C.120种D.240种『解析』依题意分两类,选派的4位代表中,有2位男生、2位女生或3位男生、1位女生,因此,共有C25C24+C35C14=100种选法.『答案』B排列应用题4个男同学,3个女同学站成一排.(1)3个女同学必须排在一起,有多少种不同的排法?(2)任何两个女同学彼此不相邻,有多少种不同的排法?(3)甲、乙两人相邻,但都不与丙相邻,有多少种不同的排法?『尝试解答』(1)3个女同学是特殊元素,共有A33种排法;由于3个女同学必须排在一起,视排好的女同学为一整体,再与4个男同学排队,应有A55种排法.由分步乘法计数原理,有A33A55=720种不同排法.(2)先将男生排好,共有A44种排法,再在这4个男生的中间及两头的5个空档中插入3个女生有A35种方法.故符合条件的排法共有A44A35=1 440种不同排法.(3)先排甲、乙和丙3人以外的其他4人,有A44种排法;由于甲、乙要相邻,故再把甲、乙排好,有A22种排法;最后把甲、乙排好的这个整体与丙分别插入原先排好的4人的空档中有A25种排法.总共有A44A22A25=960种不同排法.,1.对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.2.对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.在本例中,条件不变,把第(1)、(2)小题改为下面两问题:(1)甲不站排头,乙不站排尾,有多少种不同的排法?(2)若甲乙两同学之间必须有3人,有多少种不同的排法?『解』(1)用间接法,4名男生,3名女生站成一排的方法共有A77种.甲站排头的方法有A66种,乙站排尾的方法有A66种.甲站排头,乙站排尾的方法有A55种.∴符合题意的排法有:A77-2A66+A55=3 720种.(2)先排甲、乙,有A22种排法,再从其他5位同学中选3人排在甲、乙中间,有A35种排法,最后把甲、乙及中间3人作为一个整体与剩余的2人全排列,有A33种排法.所以共有A22A35·A33=720种不同排法.组合应用题男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)至少有1名女运动员;(2)既要有队长,又要有女运动员.『思路点拨』第(1)问可以用直接法或间接法求解.第(2)问根据有无女队长分类求解.『尝试解答』(1)法一至少有1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男.由分类加法计数原理可得总选法数为C14C46+C24C36+C34C26+C44C16=246(种).法二“至少有1名女运动员”的反面为“全是男运动员”可用间接法求解.从10人中任选5人有C510种选法,其中全是男运动员的选法有C56种.所以“至少有1名女运动员”的选法为C510-C56=246(种).(2)当有女队长时,其他人选法任意,共有C49种选法.不选女队长时,必选男队长,共有C48种选法.其中不含女运动员的选法有C45种,所以不选女队长时共有C48-C45种选法,所以既有队长又有女运动员的选法共有C49+C48-C45=191(种).,1.本题中第(1)小题,含“至少”条件,正面求解情况较多时,可考虑用间接法.第(2)小题恰当分类是关键.2.组合问题常有以下两类题型变化(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解.(2012·陕西高考)两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )A .10种B .15种C .20种D .30种『解析』 由题意知比赛场数至少为3场,最多为5场.分三类: 当为3场时,情况为甲或乙连赢3场,共2种.当为4场时,若甲赢,则前3场中甲赢2场,最后一场甲赢,共有C 23=3(种)情况;同理,若乙赢也有3种情况.共有6种情况.当为5场时,前4场,甲、乙各赢2场,最后1场胜出的人赢,共有2C 24=12(种)情况. 由上综合知,共有20种情况. 『答案』 C排列组合的综合应用(1)(2012·北京高考)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A .24B .18C .12D .6(2)某校高二年级共有6个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( )A .A 26C 24 B.12A 26C 24 C .A 26A 24 D .2A 26『思路点拨』 (1)0是特殊元素,不能排在百位和个位,按选出的数字是否含0分类.(2)可将4名同学分成两组(每组2人),再分配到两个班级.『尝试解答』 (1)根据所选偶数为0和2分类讨论求解.①当选数字0时,再从1,3,5中取出2个数字排在个位与百位.∴排成的三位奇数有C 23A 22=6个. ②当取出数字2时,再从1,3,5中取2个数字有C 23种方法. 然后将选中的两个奇数数字选一个排在个位,其余2个数字全排列.∴排成的三位奇数有C 23A 12A 22=12个.∴由加法计数原理,共有A 23+A 12·A 23=18个三位奇数.(2)法一 将4人平均分成两组有12C 24种方法,将此两组分配到6个班级中的2个班有A 26种,所以不同的安排方法有12C 24A 26种. 法二 先从6个班级中选2个班级有C 26种不同方法,然后安排学生有C 24C 22种,故有C 26C 24=12A 26C 24种. 『答案』 (1)B (2)B ,1.解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).2.不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:(1)不均匀分组.(2)均匀分组.(3)部分均匀分组,注意各种分组类型中,不同分组方法的求法.(2013·石家庄模拟)已知集合A ={5},B ={1,2},C ={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A .33B .34C .35D .36『解析』 (1)若从集合B 中取元素2时,再从C 中任取一个元素,则确定的不同点的个数为C 13A 33.(2)当从集合B 中取元素1,且从C 中取元素1,则确定的不同点有C 13×1=C 13. (3)当从B 中取元素1,且从C 中取出元素3或4,则确定的不同点有C 12A 33个. ∴由分类计数原理,共确定不同的点有C 13A 33+C 13+C 12A 33=33个.『答案』 A一个区别排列与组合最根本的区别在于“有序”和“无序”.取出元素后交换顺序,如果与顺序有关是排列,如果与顺序无关即是组合.两个公式1.排列数公式A m n=n!(n-m)!.2.组合数公式C m n=n!m!(n-m)!.三个优先1.先特殊后一般.2.先组合后排列.3.先分组再分配.四字口诀求解排列组合问题的思路:“排组分清,加乘明确;有序排列,无序组合;分类相加,分步相乘.”从近两年的高考试题来看,排列、组合及排列与组合的综合应用是高考的热点,题型以选择题、填空题为主,中等难度,在解答题中,排列、组合常与概率、分布列的有关知识结合在一起考查.易错辨析之十七实际意义理解不清导致计数错误(2012·山东高考改编)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()A.232B.256C.472D.484『错解』第一类,含有一张红色卡片,取出红色卡片有C14种方法,再从黄、蓝、绿三色中选出两色并各取一张卡片有C23C14C14种方法,因此满足条件的取法有C14·C23C14C14=192种.第二类,不含有红色卡片,从其余三色卡片中各取一张有C14C14C14=64种取法.∴由分类计数原理,不同的取法共有192+64=256种.『答案』B错因分析:(1)错解的原因是没有理解“3张卡片不能是同一种颜色”的含义,误认为“取出的三种颜色不同”.(2)运用间接法求“不含有红色卡片”时,忽视“3张卡片不能是同一种颜色”,误求为C312,导致错选D.防范措施:(1)准确理解题意,抓住关键字词的含义,“3张卡片不能是同一种颜色”是指“两种颜色或三种颜色”都满足要求.(2)选择恰当分类标准,避免重复遗漏,出现“至少、至多”型问题,注意间接法的运用.『正解』第一类,含有1张红色卡片,共有不同的取法C14C212=264(种).第二类,不含有红色卡片,共有不同的取法C312-3C34=220-12=208(种).由分类加法计数原理知不同的取法有264+208=472(种).『答案』C1.(2012·辽宁高考)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A.3×3! B.3×(3!)3C.(3!)4D.9!『解析』把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种.『答案』C2.(2013·海淀区模拟)从甲、乙等5个人中选出3人排成一列,则甲不在排头的排法种数是()A.12 B.24 C.36 D.48『解析』①选出的3人中无甲,应有C34A33种排法.②三人中有甲,且甲不在排头,则有C24C12A22种排法.∴一共有C34A33+C24C12A22=48(种)排法.『答案』D。
高考数学一轮复习总教案:12.2 排列与组合
12.2 排列与组合典例精析题型一 排列数与组合数的计算【例1】 计算:(1)8!+A66A28-A410;(2) C33+C34+…+C310. 【解析】(1)原式=8×7×6×5×4×3×2×1+6×5×4×3×2×18×7-10×9×8×7=57×6×5×4×3×256×(-89)=-5 130623. (2)原式=C44+C34+C35+…+C310=C45+C35+…+C310=C46+C36+…+C310=C411=330.【点拨】在使用排列数公式Am n =n !(n -m)!进行计算时,要注意公式成立的条件:m ,n ∈N+,m≤n.另外,应注意组合数的性质的灵活运用.【变式训练1】解不等式x 9A >629A -x .【解析】原不等式即9!(9-x)!>6×9!(11-x)!, 也就是1(9-x)!>)!9)10()11(6x x x ---••,化简得x2-21x +104>0,解得x <8或x >13,又因为2≤x≤9,且x ∈N*,所以原不等式的解集为{2,3,4,5,6,7}.题型二 有限制条件的排列问题【例2】 3男3女共6个同学排成一行.(1)女生都排在一起,有多少种排法?(2)女生与男生相间,有多少种排法?(3)任何两个男生都不相邻,有多少种排法?(4)3名男生不排在一起,有多少种排法?(5)男生甲与男生乙中间必须排而且只能排2位女生,女生又不能排在队伍的两端,有几种排法?【解析】(1)将3名女生看作一人,就是4个元素的全排列,有A44种排法.又3名女生内部可有A33种排法,所以共有A44·A33=144种排法.(2)男生自己排,女生也自己排,然后相间插入(此时有2种插法),所以女生与男生相间共有2A33·A33=72种排法.(3)女生先排,女生之间及首尾共有4个空隙,任取其中3个安插男生即可,因而任何两个男生都不相邻的排法共有A33·A34=144种.(4)直接分类较复杂,可用间接法.即从6个人的排列总数中,减去3名男生排在一起的排法种数,得3名男生不排在一起的排法种数为A66-A33A44=576种.(5)先将2个女生排在男生甲、乙之间,有A23种排法.又甲、乙之间还有A22种排法.这样就有A23·A22种排法.然后把他们4人看成一个元素(相当于一个男生),这一元素及另1名男生排在首尾,有A22种排法.最后将余下的女生排在其间,有1种排法.故总排法为A23A22A22=24种.【点拨】排列问题的本质就是“元素”占“位子”问题,有限制条件的排列问题的限制主要表现在:某些元素“排”或“不排”在哪个位子上,某些元素“相邻”或“不相邻”.对于这类问题,在分析时,主要按照“优先”原则,即优先安排特殊元素或优先满足特殊位子,对于“相邻”问题可用“捆绑法”,对于“不相邻”问题可用“插空法”.对于直接考虑较困难的问题,可以采用间接法. 【变式训练2】把1,2,3,4,5这五个数字组成无重复数字的五位数,并把它们按由小到大的顺序排列构成一个数列.(1)43 251是这个数列的第几项?(2)这个数列的第97项是多少?【解析】(1)不大于43 251的五位数A55-(A44+A33+A22)=88个,即为此数列的第88项. (2)此数列共有120项,而以5开头的五位数恰好有A44=24个,所以以5开头的五位数中最小的一个就是该数列的第97项,即51234.题型三有限制条件的组合问题【例3】要从12人中选出5人去参加一项活动.(1)A,B,C三人必须入选有多少种不同选法?(2)A,B,C三人都不能入选有多少种不同选法?(3)A,B,C三人只有一人入选有多少种不同选法?(4)A,B,C三人至少一人入选有多少种不同选法?(5)A,B,C三人至多二人入选有多少种不同选法?【解析】(1)只须从A,B,C之外的9人中选择2人,C29=36种不同选法.(2)由A,B,C三人都不能入选只须从余下9人中选择5人,即有C59=C49=126种选法.(3)可分两步,先从A,B,C三人中选出1人,有C13种选法,再从余下的9人中选4人,有C49种选法,所以共有C13·C49=378种选法.(4)可考虑间接法,从12人中选5人共有C512种,再减去A,B,C三人都不入选的情况C59,共有C512-C59=666种选法.(5)可考虑间接法,从12人中选5人共有C512种,再减去A,B,C三人都入选的情况C29种,所以共有C512-C29=756种选法.【点拨】遇到至多、至少的有关计数问题,可以用间接法求解.对于有限制条件的问题,一般要根据特殊元素分类.【变式训练3】四面体的顶点和各棱中点共有10个点.(1)在其中取4个共面的点,共有多少种不同的取法?(2)在其中取4个不共面的点,共有多少种不同的取法?【解析】(1)四个点共面的取法可分三类.第一类:在同一个面上取,共有4C46种;第二类:在一条棱上取三点,再在它所对的棱上取中点,共有6种;第三类:在六条棱的六个中点中取,取两对对棱的4个中点,共有C23=3种.故有69种.(2)用间接法.共C410-69=141种.总结提高解有条件限制的排列与组合问题的思路:(1)正确选择原理,确定分类或分步计数;(2)特殊元素、特殊位置优先考虑;(3)再考虑其余元素或其余位置.。
高考复习教案: 排列与组合
第二节排列与组合排列与组合(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式.(3)能解决简单的实际问题.知识点一排列与排列数1.排列从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫作从n个不同元素中任意取出m个元素的一个排列.2.排列数从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫作从n个不同元素中取出m个元素的排列数,记作A m n.3.排列数公式及性质(1)排列数公式A m n=n(n-1)(n-2)…(n-m+1)=n!(n-m)!(m,n∈N*且m≤n)(2)性质①A n n=n!;②0!=1.易误提醒(1)计算A m n时易错算为n(n-1)(n-2)…(n-m).(2)易混淆排列与排列数,排列是一个具体的排法,不是数是一件事,而排列数是所有排列的个数,是一个正整数.[自测练习]1.A、B、C、D、E五人并排站成一排,如果B必须站在A的右边(A、B可以不相邻),那么不同的排法共有()A.24种B.60种C.90种D.120种解析:可先排C、D、E三人,共A35种排法,剩余A,B两人只有一种排法,由分步乘法计数原理满足条件的排法共A35=60(种).答案:B2.方程3A 3x =2A 2x +1+6A 2x 的解为________.解析:由排列数公式可知3x (x -1)(x -2)=2(x +1)x +6x (x -1), ∵x ≥3且x ∈N *,∴3(x -1)(x -2)=2(x +1)+6(x -1), 即3x 2-17x +10=0,解得x =5或23(舍去),∴x =5. 答案:5知识点二 组合与组合数 1.组合从n 个不同元素中任取m (m ≤n )个元素为一组,叫作从n 个不同元素中取出m 个元素的一个组合.2.组合数从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数,叫作从n 个不同元素中取出m 个元素的组合数,记作C m n .3.组合数公式及性质 (1)组合数公式C mn =A m n A m m =n (n -1)…(n -m +1)m !=n !m !(n -m )!.(2)性质 ①C 0n =1.②C m n =C n -m n.③C m n +C m -1n =C m n +1.易误提醒 易混淆排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.必备方法 排列问题与组合问题的识别方法:识别方法排列若交换某两个元素的位置对结果产生影响,则是排列问题,即排列问题与选取元素顺序有关组合若交换某两个元素的位置对结果没有影响,则是组合问题,即组合问题与选取元素顺序无关[自测练习]3.若A 3n =6C 4n ,则n 的值为________.解析:因为A 3n =6C 4n ,所以n !(n -3)!=6×n !(n -4)!×4!,所以n -3=4,所以n =7. 答案:74.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为________.解析:第一类,含有1张红色卡片,不同的取法C 14C 212=264种. 第二类,不含有红色卡片,不同的取法C 312-3C 34=220-12=208种.由分类加法计数原理知,不同的取法共有264+208=472种. 答案:472考点一 排列问题|1.室内体育课上王老师为了丰富课堂内容,调动同学们的积极性,他把第四排的8名同学请出座位并且编号为1,2,3,4,5,6,7,8.通过观察这8名同学的身体特征,王老师决定,按照1,2号相邻,3,4号相邻,5,6号相邻,而7号与8号不相邻的要求站成一排做一种游戏,则有________种排法.(用数字作答)解析:把编号相邻的3组同学每两名同学捆成一捆,这3捆之间有A 33=6(种)排序方法,并且形成4个空当,再将7号与8号插进空当中,有A 24=12(种)插法,而捆好的3捆中每相邻的两名同学都有A 22=2(种)排法.所以不同的排法种数为23×6×12=576. 答案:5762.6名同学排成1排照相,要求同学甲既不站在最左边又不站在最右边,共有________种不同站法.解析:法一:(位置分析法)先从其他5人中安排2人站在最左边和最右边,再安排余下4人的位置,分为两步:第1步,从除甲外的5人中选2人站在最左边和最右边,有A 25种站法;第2步,余下4人(含甲)站在剩下的4个位置上,有A 44种站法. 由分步乘法计数原理可知,共有A 25A 44=480(种)不同的站法.法二:(元素分析法)先安排甲的位置(既不站在最左边又不站在最右边),再安排其他5人的位置,分为两步:第1步,将甲排在除最左边、最右边外的任意位置上,有A 14种站法;第2步,余下5人站在剩下的5个位置上,有A55种站法.由分步乘法计数原理可知,共有A14A55=480(种)不同的站法.法三:(间接法)6人无限制条件排队有A66种站法,甲站在最左边或最右边时6人排队有2A55种站法,因此符合条件的不同站法共有A66-2A55=480(种).答案:4803.(2016·甘肃模拟)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为________.解析:首先应考虑“0”,当0排在个位时,有A29=9×8=72(个),当0不排在个位时,有A14A18=4×8=32(个).当不含0时,有A14·A28=4×7×8=224(个),由分类加法计数原理,得符合题意的偶数共有72+32+224=328(个).答案:328求解排列问题的常用方法(1)直接法:把符合条件的排列数直接列式计算.(2)特殊元素(或位置)优先安排的方法,即先排特殊元素或特殊位置.(3)捆绑法:相邻问题捆绑处理的方法,即可以把相邻元素看作一个整体参与其他元素排列,同时注意捆绑元素的内部排列.(4)插空法:不相邻问题插空处理的方法,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中.(5)分排问题直排处理的方法.(6)“小集团”排列问题中先集体后局部的处理方法.(7)定序问题除法处理的方法,即可以先不考虑顺序限制,排列后再除以定序元素的全排列.考点二组合问题|(1)某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为()A.85B.86C.91 D.90(2)在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为________.(结果用最简分数表示)[解析](1)法一:(直接法)由题意,可分三类考虑:第1类,男生甲入选,女生乙不入选,则方法种数为C 13C 24+C 23C 14+C 33=31; 第2类,男生甲不入选,女生乙入选,则方法种数为C 14C 23+C 24C 13+C 34=34; 第3类,男生甲入选,女生乙入选,则方法种数为C 23+C 14C 13+C 24=21.所以男生甲与女生乙至少有1人入选的方法种数为31+34+21=86.法二:(间接法)从5名男生和4名女生中任意选出4人,男、女生都有的选法有C 49-C 45-C 44=120(种);男、女生都有,且男生甲与女生乙都没有入选的方法有C 47-C 44=34(种).所以男生甲与女生乙至少有1人入选的方法种数为120-34=86.(2)所取的2瓶都是不过保质期的饮料的概率为C 227C 230=117145,则至少取到1瓶已过保质期饮料的概率为1-117145=28145.[答案] (1)B (2)28145组合问题的常见题型(1)“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”“最多”的问题:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.1.现有10个优秀指标分配给6个班级,每个班至少一个,共有________种不同的分配方法?解析:从结果入手,理解相同元素的分堆问题,设计“隔板法分堆”,将一种分配方法和一个组合建立一一对应关系,实际问题化归为组合数求解.该事件的实质为将10个相同的元素分成6堆,每一堆至少一个元素,利用“隔板法分堆”,即在10个相同元素构成的9个空中插入5个隔板,其不同的分配方案有C 59=126(种). 答案:126考点三 分组分配问题|按下列要求分配6本不同的书,各有多少种不同的分配方式? (1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本; (3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本; (5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本; (7)甲得1本,乙得1本,丙得4本. [解] (1)无序不均匀分组问题.先选1本,有C 16种选法;再从余下的5本中选2本,有C 25种选法;最后余下3本全选,有C 33种选法.故共有C 16C 25C 33=60(种).(2)有序不均匀分组问题.由于甲、乙、丙是不同的三人,在第(1)题的基础上,还应考虑再分配,共有C 16C 25C 33A 33=360(种).(3)无序均匀分组问题.先分三步,则应是C 26C 24C 22种方法,但是这里出现了重复.不妨记六本书为A ,B ,C ,D ,E ,F ,若第一步取了AB ,第二步取了CD ,第三步取了EF ,记该种分法为(AB ,CD ,EF ),则C 26C 24C 22种分法中还有(AB ,EF ,CD ),(CD ,AB ,EF ),(CD ,EF ,AB ),(EF ,CD ,AB ),(EF ,AB ,CD ),共有A 33种情况,而这A 33种情况仅是AB ,CD ,EF 的顺序不同,因此只能作为一种分法,故分配方式有C 26C 24C 22A 33=15(种).(4)有序均匀分组问题. 在(3)的基础上再分配给3个人,共有分配方式C 46C 24C 22A 33·A 33=C 26C 24C 22=90(种). (5)无序部分均匀分组问题.共有C 46C 12C 11A 22=15(种).(6)有序部分均匀分组问题. 在(5)的基础上再分配给3个人,共有分配方式C 46C 12C 11A 22·A 33=90(种). (7)直接分配问题,甲选1本有C 16种方法,乙从余下5本中选1本有C 15种方法,余下4本留给两种C 44种方法,共有C 16·C 15C 44=30(种).解决分组分配问题的策略(1)对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n (n 为均分的组数)、避免重复计数.(2)对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m 组元素个数相等,则分组时应除以m !,一个分组过程中有几个这样的均匀分组就要除以几个这样的全排列数.(3)对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.2.(2016·内江模拟)某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为( )A .144B .72C .36D .48解析:分两步完成:第一步将4名调研员按2,1,1分成三组,其分法有C 24C 12C 11A 22;第二步将分好的三组分配到3个学校,其分法有A 33种,所以满足条件的分配方案有C 24C 12C 11A 22·A 33=36种.答案:C29.模型法巧解排列组合问题【典例】 把20个相同的球全部装入编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不小于其编号数,则共有________种不同的放法.[思路点拨] 本题可先向1,2,3号三个盒子中分别装入0,1,2个球,再将剩下的17个球随意分成三份装入盒子中即可.[解析] 题目有限制条件,不能直接运用隔板法,但可转化为隔板问题,向1,2,3号三个盒子中分别装入0,1,2个球后,还剩余17个球,然后再把这17个球分成3份,每份至少一球,运用隔板法,共有C 216=120(种)不同的放法.[答案] 120[方法点评] 排列与组合的根本区别在于是“有序”还是“无序”,对于将若干个相同小球放入几个不同的盒子中这类问题可利用“隔板法”求解,实质上是最终转化为组合问题.根据问题的特点,把握问题的本质,通过联想、类比构建模型是求解排列、组合问题的关键.[跟踪练习] (2015·浙江金华质检)4个不同的小球放入编号为1,2,3,4的4个盒中,则恰有1个空盒的放法共有________种.(用数字作答)解析:把4个球分成3组,每组至少1个,即分成小球个数分别为2,1,1的3组,有C 24C 12C 11A 22种.最后将3组球放入4个盒中的3个,分配方法有A 34种,因此,放法共有C 24C 12C 11A 22×A 34=144种.答案:144A组考点能力演练1.(2016·大连模拟)某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有()A.3种B.6种C.9种D.18种解析:由题知有2门A类选修课,3门B类选修课,从里边选出3门的选法有C35=10种.两类课程都有的对立事件是选了3门B类选修课,这种情况只有1种.满足题意的选法有10-1=9种.所以选C.答案:C2.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案种数是()A.150 B.300C.600 D.900解析:若甲去,则乙不去,丙去,再从剩余的5名教师中选2名,有C25×A44=240种方法;若甲不去,则丙不去,乙可去可不去,从6名教师中选4名,共有C46×A44=360种方法.因此共有600种不同的选派方案.答案:C3.如果小明在某一周的第一天和第七天分别吃了3个水果,且从这周的第二天开始,每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么,小明在这一周中每天所吃水果个数的不同选择方案共有() A.50种B.51种C.140种D.141种解析:因为第一天和第七天吃的水果数相同,所以中间“多一个”或“少一个”的天数必须相同,都是0,1,2,3,共4种情况,所以共有C06+C16C15+C26C24+C36C33=141种,故选D.答案:D4.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加,则他们发言时不能相邻,那么不同的发言顺序的种数为()A.360 B.520C.600 D.720解析:依题意进行分类计数:第一类,甲、乙两名同学中恰有一人参加,满足题意的不同发言顺序有C 12·C 35·A 44=480种,第二类,甲、乙两名同学均参加,满足题意的不同发言顺序有C 22·C 25·A 22·A 23=120种.因此,满足题意的不同发言顺序有480+120=600种,故选C.答案:C5.(2016·昆明调研)航空母舰“辽宁舰”将进行一次编队配置科学试验,要求2艘攻击型核潜艇一前一后,3艘驱逐舰和3艘护卫舰分列左右,每侧3艘,同侧不能都是同种舰艇,则舰艇分配方案的方法数为( )A .72B .324C .648D .1 296解析:核潜艇排列数为A 22,6艘舰艇任意排列的排列数为A 66,同侧均是同种舰艇的排列数为A 33A 33×2,则舰艇分配方案的方法数为A 22(A 66-A 33A 33×2)=1 296.答案:D6.5名同学站成一排,其中甲同学不站排头,则不同的排法种数是________(用数字作答).解析:依题意,满足题意的不同的排法种数是C 14·A 44=96. 答案:967.4位同学参加某种形式的竞赛,竞赛规则规定:选甲题答对得100分,答错得-100分,选乙题答对得90分,答错得-90分,若4位同学的总分为0分,则这4位同学不同得分情况的种数是________.解析:由于4位同学的总分为0分,故4位同学选甲、乙题的人数有且只有三种情况:①甲:4人,乙:0人;②甲:2人,乙:2人;③甲:0人,乙:4人.对于①,须2人答对,2人答错,共有C 24=6种情况;对于②,有C 24C 12C 12=24种情况;对于③,与①相同,有6种情况,故共有6+24+6=36种不同的情况.答案:368.(2016·济南模拟)航天员拟在太空授课,准备进行标号为0,1,2,3,4,5的六项实验,向全世界人民普及太空知识,其中0号实验不能放在第一项,最后一项的标号小于它前面相邻一项的标号,则实验顺序的编排方法种数为________(用数字作答).解析:本题考查排列组合,难度中等.优先安排第一项实验,再利用定序问题相除法求解.由于0号实验不能放在第一项,所以第一项实验有5种选择.最后两项实验的顺序确定,所以共有5A 55A 22=300种不同的编排方法.答案:3009.将7个相同的小球放入4个不同的盒子中. (1)不出现空盒时的放入方式共有多少种? (2)可出现空盒时的放入方式共有多少种?解:(1)将7个相同的小球排成一排,在中间形成的6个空当中插入无区别的3个“隔板”将球分成4份,一种插入隔板的方式对应一种球的放入方式,则共有C36=20种不同的放入方式.(2)每种放入方式对应于将7个相同的小球与3个相同的“隔板”进行一次排列,即从10个位置中选3个位置安排隔板,故共有C310=120种放入方式.10.从1到9的9个数字中取3个偶数4个奇数,试问:(1)能组成多少个没有重复数字的七位数?(2)上述七位数中,3个偶数排在一起的有几个?(3)(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个?解:(1)分三步完成:第一步,在4个偶数中取3个,有C34种情况;第二步,在5个奇数中取4个,有C45种情况;第三步,3个偶数,4个奇数进行排列,有A77种情况.所以符合题意的七位数有C34C45A77=100 800个.(2)上述七位数中,3个偶数排在一起的有C34C45A55A33=14 400个.(3)上述七位数中,3个偶数排在一起,4个奇数也排在一起的有C34C45A33A44A22=5 760个.B组高考题型专练1.(2014·高考四川卷)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种解析:若最左端排甲,其他位置共有A55=120种排法;若最左端排乙,最右端共有4种排法,其余4个位置有A44=24种排法,所以共有120+4×24=216种排法.答案:B2.(2014·高考辽宁卷)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120C.72 D.24解析:先把三把椅子隔开摆好,它们之间和两端有4个位置,再把三人带椅子插放在四个位置,共有A34=24种放法,故选D.答案:D3.(2014·高考安徽卷)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有()A.24对B.30对C.48对D.60对解析:利用正方体中两个独立的正四面体解题,如图,淘宝店铺:漫兮教育它们的棱是原正方体的12条面对角线.一个正四面体中两条棱成60°角的有(C26-3)对,两个正四面体有(C26-3)×2对.又正方体的面对角线中平行成对,所以共有(C26-3)×2×2=48对.故选C.答案:C4.(2015·高考四川卷)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个解析:数字0,1,2,3,4,5中仅有0,2,4三个偶数,比40 000大的偶数为以4开头与以5开头的数.其中以4开头的偶数又分以0结尾与以2结尾,有2A34=48个;同理,以5开头的有3A34=72个.于是共有48+72=120个,故选B.答案:B5.(2015·高考广东卷)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答)解析:∵同学之间两两彼此给对方仅写一条毕业留言,且全班共有40人,∴全班共写了40×39=1 560条毕业留言.答案:1 560。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫作从n个不同元素中取出m个元素的排列数,用A m n表示.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫作从n个不同元素中取出m个元素的组合数,用C m n表示.3.排列数、组合数的公式及性质【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列.(×)(2)一个组合中取出的元素讲究元素的先后顺序.(×)(3)两个组合相同的充要条件是其中的元素完全相同.(√)(4)(n+1)!-n!=n·n!.(√).(√)(5)A m n=n A m-1n-1(6)k C k n=n C k-1.(√)n-11.(2016·四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24 B.48C.60 D.72答案D解析由题可知,五位数要为奇数,则个位数只能是1,3,5;分为两步:先从1,3,5三个数中选一个作为个位数有C13种情况,再将剩下的4个数字排列得到A44种情况,则满足条件的五位数有C13·A44=72(个).故选D.2.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.24答案D解析“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.3.(教材改编)用数字1,2,3,4,5组成的无重复数字的四位数,其中偶数的个数为()A.8 B.24 C.48 D.120答案C解析末位数字排法有A12种,其他位置排法有A34种,共有A12A34=48(种).4.某高三毕业班有40人,同学这间两两彼此给对方写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答)答案 1 560解析依题意知两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A240=40×39=1 560(条)留言.5.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有________种.答案14解析分两类:①有1名女生:C12C34=8.②有2名女生:C22C24=6.∴不同的选派方案有8+6=14(种).题型一排列问题例1(1)3名男生,4名女生,选其中5人排成一排,则有________种不同的排法.(2)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有________种.答案(1)2 520(2)216解析(1)问题即为从7个元素中选出5个全排列,有A57=2 520(种)排法.(2)当最左端排甲时,不同的排法共有A55种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有C14A44种.故不同的排法共有A55+C14A44=120+96=216(种).引申探究1.本例(1)中若将条件“选其中5人排成一排”改为“排成前后两排,前排3人,后排4人”,其他条件不变,则有多少种不同的排法?解前排3人,后排4人,相当于排成一排,共有A77=5 040(种)排法.2.本例(1)中若将条件“选其中5人排成一排”改为“全体站成一排,男、女各站在一起”,其他条件不变,则有多少种不同的排法?解相邻问题(捆绑法):男生必须站在一起,是男生的全排列,有A33种排法;女生必须站在一起,是女生的全排列,有A44种排法;全体男生、女生各视为一个元素,有A22种排法.根据分步乘法计数原理,共有A33·A44·A22=288(种)排法.3.本例(1)中若将条件“选其中5人排成一排”改为“全体站成一排,男生不能站在一起”,其他条件不变,则有多少种不同的排法?解不相邻问题(插空法):先安排女生共有A44种排法,男生在4个女生隔成的5个空中安排共有A35种排法,故共有A44·A35=1 440(种)排法.4.本例(1)中若将条件“选其中5人排成一排”改为“全体站成一排,甲不站排头也不站排尾”,其他条件不变,则有多少种不同的排法?解先安排甲,从除去排头和排尾的5个位置中安排甲,有A15=5(种)排法;再安排其他人,有A66=720(种)排法.所以共有A15·A66=3 600(种)排法.思维升华排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.由0,1,2,3,4,5这六个数字组成的无重复数字的自然数.求:(1)有多少个含2,3,但它们不相邻的五位数?(2)有多少个含数字1,2,3,且必须按由大到小顺序排列的六位数?解(1)先不考虑0是否在首位,0,1,4,5先排三个位置,则有A34个,2,3去排四个空档,有A24个,即有A34A24个;而0在首位时,有A23A23个,即有A34A24-A23A23=252(个)含有2,3,但它们不相邻的五位数.(2)在六个位置先排0,4,5,先不考虑0是否在首位,则有A36个,去掉0在首位,即有A36-A25个,0,4,5三个元素排在六个位置上留下了三个空位,1,2,3必须由大到小进入相应位置,并不能自由排列,所以有A36-A25=100(个)六位数.题型二组合问题例2(1)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法的种数是() A.60 B.63C.65 D.66(2)要从12人中选出5人去参加一项活动,A,B,C三人必须入选,则有________种不同选法.答案(1)D(2)36解析(1)因为1,2,3,…,9中共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数或全为偶数或2个奇数和2个偶数,故有C45+C44+C25C24=66(种)不同的取法.(2)只需从A,B,C之外的9人中选择2人,即有C29=36(种)不同的选法.引申探究1.本例(2)中若将条件“A,B,C三人必须入选”改为“A,B,C三人都不能入选”,其他条件不变,则不同的选法有多少种?解由A,B,C三人都不能入选只需从余下9人中选择5人,即有C59=C49=126(种)不同的选法.2.本例(2)中若将条件“A,B,C三人必须入选”改为“A,B,C三人只有一人入选”,其他条件不变,则不同的选法有多少种?解可分两步,先从A,B,C三人中选出1人,有C13种选法,再从余下的9人中选4人,有C49种选法,所以共有C13×C49=378(种)不同的选法.3.本例(2)中若将条件“A,B,C三人必须入选”改为“A,B,C三人至少一人入选”,其他条件不变,则不同的选法有多少种?解可考虑间接法,从12人中选5人共有C512种,再减去A,B,C三人都不入选的情况C59种,共有C512-C59=666(种)不同的选法.思维升华组合问题常有以下两类题型变化(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?解(1)从余下的34种商品中,选取2种有C234=561(种),∴某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984(种).∴某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1件,从15种假货中选取2件有C120C215=2 100(种).∴恰有2种假货在内的不同的取法有2 100种.(4)选取2件假货有C120C215种,选取3件假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555(种).∴至少有2种假货在内的不同的取法有2 555种. (5)选取3件的总数为C 335,因此共有选取方式C 335-C 315=6 545-455=6 090(种).∴至多有2种假货在内的不同的取法有6 090种. 题型三 排列与组合问题的综合应用 命题点1 相邻问题例3 (2017·济南调研)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( ) A .3×3! B .3×(3!)3 C .(3!)4 D .9!答案 C解析 把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种坐法. 命题点2 相间问题例4 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________. 答案 120解析 先安排小品节目和相声节目,然后让歌舞节目去插空.安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”,“小品1,相声,小品2”和“相声,小品1,小品2”.对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A 22C 13A 23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A 22A 34=48(种)安排方法.由分类加法计数原理知共有36+36+48=120(种)安排方法. 命题点3 特殊元素(位置)问题例5 (2016·郑州检测)从1,2,3,4,5这五个数字中任取3个组成无重复数字的三位数,当三个数字中有2和3时,2需排在3的前面(不一定相邻),这样的三位数有________个. 答案 51解析 分三类:第一类,没有2,3,由其他三个数字组成三位数,有A 33=6(个);第二类,只有2或3其中的一个,需从1,4,5中选两个数字组成三位数,有2C 23A 33=36(个);第三类,2,3均有,再从1,4,5中选一个,因为2需排在3的前面,所以可组成12C 13A 33=9(个).由分类加法计数原理,知这样的三位数共有51个. 思维升华 排列与组合综合问题的常见类型及解题策略(1)相邻问题捆绑法.在特定条件下,将几个相关元素视为一个元素来考虑,待整个问题排好之后,再考虑它们“内部”的排列.(2)相间问题插空法.先把一般元素排好,然后把特定元素插在它们之间或两端的空当中,它与捆绑法有同等作用.(3)特殊元素(位置)优先安排法.优先考虑问题中的特殊元素或位置,然后再排列其他一般元素或位置. (4)多元问题分类法.将符合条件的排列分为几类,而每一类的排列数较易求出,然后根据分类加法计数原理求出排列总数.(1)(2016·山西四校联考三)有5名优秀毕业生到母校的3个班去做学习经验交流,则每个班至少去一名的不同分派方法种数为( ) A .150 B .180 C .200D .280(2)将甲、乙、丙、丁、戊五位同学分别保送到北大、上海交大和浙大3所大学,若每所大学至少保送1人,甲不能被保送到北大,则不同的保送方案共有( ) A .150种 B .114种 C .100种 D .72种答案 (1)A (2)C解析 (1)分两类:一类,3个班分派的毕业生人数分别为2,2,1,则有C 25C 23A 22·A 33=90(种)分派方法;另一类,3个班分派的毕业生人数分别为1,1,3,则有C 35·A 33=60(种)分派方法,所以不同分派方法种数为90+60=150,故选A.(2)先将五人分成三组,因为要求每组至少一人,所以可选择的只有2,2,1或者3,1,1,所以共有C 25C 23C 112+C 35C 12C 112=25(种)分组方法.因为甲不能被保送到北大,所以有甲的那组只有上海交大和浙大两个选择,剩下的两组无限制,一共有4种方法,所以不同的保送方案共有25×4=100(种).14.排列、组合问题典例 有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取法有________种. 错解展示解析先从一等品中取1个,有C116种取法;再从余下的19个零件中任取2个,有C219种不同取法,共有C116×C219=2 736(种)不同取法.答案 2 736现场纠错解析方法一将“至少有1个是一等品的不同取法”分三类:“恰有1个一等品”,“恰有2个一等品”,“恰有3个一等品”,由分类加法计数原理,知有C116C24+C216C14+C316=1 136(种).方法二考虑其对立事件“3个都是二等品”,用间接法:C320-C34=1 136(种).答案 1 136纠错心得(1)解排列、组合问题的基本原则:特殊优先,先分组再分解,先取后排;较复杂问题可采用间接法,转化为求它的对立事件.(2)解题时要细心、周全,做到不重不漏.1.两家夫妇各带一个小孩一起到动物园游玩,购票后排队依次入园,为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为()A.48 B.36 C.24 D.12答案C解析(捆绑法)爸爸排法有A22种,两个小孩排在一起故看成一体,有A22种排法,妈妈和孩子共有A33种排法,∴排法种数共有A22A22A33=24(种).故选C.2.(2016·黄山月考)某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为()A.16 B.18 C.24 D.32答案C解析将四个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在三个车位上任意排列,有A33=6(种)排法,再将捆绑在一起的四个车位插入4个空档中,有4种方法,故共有4×6=24(种)方法.3.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,问实验顺序的编排方法共有()A.34种B.48种C.96种D.144种答案 C解析 程序A 有A 12=2(种)结果,将程序B 和C 看作一个元素与除A 外的3个元素排列有A 22A 44=48(种),由分步乘法计数原理,知实验编排共有2×48=96(种)方法.4.将A ,B ,C ,D ,E 排成一列,要求A ,B ,C 在排列中顺序为“A ,B ,C ”或“C ,B ,A ”(可以不相邻),这样的排列数有( ) A .12种 B .20种 C .40种 D .60种答案 C解析 (消序法)五个元素没有限制全排列为A 55, 由于要求A ,B ,C 的次序一定(按A ,B ,C 或C ,B ,A ), 故除以这三个元素的全排列A 33, 可得A 55A 33×2=40(种).5.(2016·长沙模拟)某校高二年级共有6个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( )A .A 26C 24 B.12A 26C 24 C .A 26A 24D .2A 26答案 B解析 方法一 将4人平均分成两组有12C 24种方法,将此两组分配到6个班级中的2个班有A 26种. 所以不同的安排方法有12C 24A 26(种). 方法二 先从6个班级中选2个班级有26C 种不同方法,然后安排学生有C 24C 22种,故有222642C C C =12A 26C 24(种). 6.(2017·汉中质检)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( ) A .24对 B .30对 C .48对 D .60对答案 C解析 正方体中共有12条面对角线,任取两条作为一对共有C 212=66(对),12条对角线中的两条所构成的关系有平行、垂直、成60°角.相对两面上的4条对角线组成的C 24=6(对)组合中,平行有2对,垂直有4对,所以所有的平行和垂直共有3C 24=18(对).所以成60°角的有C 212-3C 24=66-18=48(对).7.(2016·北京西城区期末)现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有________种.(用数字作答)答案54解析第一类,把甲、乙看作一个复合元素,另外3人分成两组,再分配到3个小组中,有C23A33=18(种);第二类,先把另外的3人分配到3个小组,再把甲、乙分配到其中2个小组,有A33A23=36(种).根据分类加法计数原理可得,共有36+18=54(种).8.(2017·福州质检)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)答案60解析分两类:第一类:3张中奖奖券分给3个人,共A34种分法;第二类:3张中奖奖券分给2个人相当于把3张中奖奖券分两组再分给4人中的2人,共有C23A24种分法.总获奖情况共有A34+C23A24=60(种).9.把5件不同产品摆成一排,若产品A与产品B相邻,产品A与产品C不相邻,则不同的摆法有________种.答案36解析先考虑产品A与B相邻,把A,B作为一个元素有A44种方法,而A,B可交换位置,所以有2A44=48(种)摆法,又当A,B相邻且又满足A,C相邻,有2A33=12(种)摆法,故满足条件的摆法有48-12=36(种).10.若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种.答案11解析把g、o、o、d 4个字母排一列,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o.共一种排法,所以总的排法种数为A24=12.其中正确的有一种,所以错误的共有A24-1=12-1=11(种).11.将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种.(用数字作答)答案480解析从左往右看,若C排在第1位,共有A55=120(种)排法;若C排在第2位,A和B有C右边的4个位置可以选,共有A24·A33=72(种)排法;若C排在第3位,则A,B可排C的左侧或右侧,共有A22·A33+A23·A33=48(种)排法;若C排在第4,5,6位时,其排法数与排在第3,2,1位相同,故共有2×(120+72+48)=480(种)排法.12.(2017·青岛月考)2016年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10 000个号码中选择.公司规定:凡卡号的后四位恰带有两个数字“6”或恰带有两个数字“8”的一律作为“金猴卡”,享受一定优惠政策.如后四位数为“2663”,“8685”为“金猴卡”,求这组号码中“金猴卡”的张数.解①当后四位数恰有2个6时,“金猴卡”共有C24×9×9=486(张);②当后四位数恰有2个8时,“金猴卡”也共有C24×9×9=486(张).但这两种情况都包含了后四位数是由2个6和2个8组成的这种情况,所以要减掉C24=6,即“金猴卡”共有486×2-6=966(张).13.有9名学生,其中2名会下象棋但不会下围棋,3名会下围棋但不会下象棋,4名既会下围棋又会下象棋.现在要从这9名学生中选出2名学生,一名参加象棋比赛,另一名参加围棋比赛,共有多少种不同的选派方法?解设2名会下象棋但不会下围棋的同学组成集合A,3名会下围棋但不会下象棋的同学组成集合B,4名既会下围棋又会下象棋的同学组成集合C,则选派2名参赛同学的方法可以分为以下4类:第一类:A中选1人参加象棋比赛,B中选1人参加围棋比赛,方法数为C12·C13=6(种);第二类:C中选1人参加象棋比赛,B中选1人参加围棋比赛,方法数为C14·C13=12(种);第三类:C中选1人参加围棋比赛,A中选1人参加象棋比赛,方法数为C14·C12=8(种);第四类:C中选2人分别参加两项比赛,方法数为A24=12(种).由分类加法计数原理,知不同的选派方法共有6+12+8+12=38(种).*14.(2017·洛阳预测)设三位数n=abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有多少个?解a,b,c要能构成三角形的边长,显然均不为0,即a,b,c∈{1,2,3,…,9}.①若构成等边三角形,设这样的三位数的个数为n1,由于三位数中三个数字都相同,所以n1=C19=9;②若构成等腰(非等边)三角形,设这样的三位数的个数为n2,由于三位数中只有2个不同数字,设为a,b,注意到三角形腰与底可以互换,所以可取的数组(a,b)共有2C29组,但当大数为底时,设a>b,必须满足b<a<2b,此时,不能构成三角形的数字是共20种情况.同时,每个数组(a,b)中的两个数字填上三个数位,有C23种情况,故n2=C23(2C29-20)=156.综上,n=n1+n2=165.第2讲排列与组合一、选择题1.2013年春节放假安排:农历除夕至正月初六放假,共7天.某单位安排7位员工值班,每人值班1天,每天安排1人.若甲不在除夕值班,乙不在正月初一值班,而且丙和甲在相邻的两天值班,则不同的安排方案共有( )A.1 440种 B.1 360种C.1 282种 D.1 128种解析采取对丙和甲进行捆绑的方法:如果不考虑“乙不在正月初一值班”,则安排方案有:A66·A22=1 440种,如果“乙在正月初一值班”,则安排方案有:C11·A14·A22·A44=192种,若“甲在除夕值班”,则“丙在初一值班”,则安排方案有:A55=120种.则不同的安排方案共有1 440-192-120=1 128(种).答案 D2.A、B、C、D、E五人并排站成一排,如果B必须站在A的右边(A、B可以不相邻),那么不同的排法共有().A.24种B.60种C.90种D.120种解析可先排C、D、E三人,共A35种排法,剩余A、B两人只有一种排法,由分步计数原理满足条件的排法共A35=60(种).答案B3.如果n是正偶数,则C0n+C2n+…+C n-2n+C n n=().A.2n B.2n-1C.2n-2D.(n-1)2n-1解析(特例法)当n=2时,代入得C02+C22=2,排除答案A、C;当n=4时,代入得C04+C24+C44=8,排除答案D.故选B.答案B4.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为().A.42B.30C.20D.12解析可分为两类:两个节目相邻或两个节目不相邻,若两个节目相邻,则有A22A16=12种排法;若两个节目不相邻,则有A 26=30种排法.由分类计数原理共有12+30=42种排法(或A 27=42).答案 A5.某校开设A 类选修课3门,B 类选修课4门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有( ).A .30种B .35种C .42种D .48种解析 法一 可分两种互斥情况:A 类选1门,B 类选2门或A 类选2门,B 类选1门,共有C 13C 24+C 23C 14=18+12=30(种)选法.法二 总共有C 37=35(种)选法,减去只选A 类的C 33=1(种),再减去只选B 类的C 34=4(种),共有30种选法. 答案 A6.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( ). A .232B .252C .472D .484解析 若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色则有C 14×C 14×C 14=64种,若2张同色,则有C 23×C 12×C 24×C 14=144种;若红色卡片有1张,剩余2张不同色,则有C 14×C 23×C 14×C 14=192种,乘余2张同色,则有C 14×C 13×C 24=72种,所以共有64+144+192+72=472种不同的取法.故选C. 答案 C 二、填空题7.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求男、女医生都有,则不同的组队方案共有________种.解析 分1名男医生2名女医生、2名男医生1名女医生两种情况,或者用间接法.直接法:C 15C 24+C 25C 14=70. 间接法:C 39-C 35-C 34=70.答案 708.有五名男同志去外地出差,住宿安排在三个房间内,要求甲、乙两人不住同一房间,且每个房间最多住两人,则不同的住宿安排有________种(用数字作答).解析 甲、乙住在同一个房间,此时只能把另外三人分为两组,这时的方法总数是C 13A 33=18,而总的分配方法数是把五人分为三组再进行分配,方法数是C15C24C22A22A33=90,故不同的住宿安排共有90-18=72种.答案729.某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人不同的出牌方法共有________种.解析出牌的方法可分为以下几类:(1)5张牌全部分开出,有A55种方法;(2)2张2一起出,3张A一起出,有A25种方法;(3)2张2一起出,3张A分3次出,有A45种方法;(4)2张2一起出,3张A分两次出,有C23A35种方法;(5)2张2分开出,3张A一起出,有A35种方法;(6)2张2分开出,3张A分两次出,有C23A45种方法.因此,共有不同的出牌方法A55+A25+A45+C23A35+A35+C23A45=860(种).答案86010.小王在练习电脑编程,其中有一道程序题的要求如下:它由A,B,C,D,E,F六个子程序构成,且程序B必须在程序A之后,程序C必须在程序B之后,执行程序C后须立即执行程序D,按此要求,小王的编程方法有__________种.解析对于位置有特殊要求的元素可采用插空法排列,把CD看成整体,A,B,C,D产生四个空,所以E有4种不同编程方法,然后四个程序又产生5个空,所以F有5种不同编程方法,所以小王有20种不同编程方法.答案20三、解答题11.7名男生5名女生中选取5人,分别求符合下列条件的选法总数有多少种.(1)A,B必须当选;(2)A,B必不当选;(3)A,B不全当选;(4)至少有2名女生当选;(5)选取3名男生和2名女生分别担任班长、体育委员等5种不同的工作,但体育委员必须由男生担任,班长必须由女生担任.解(1)由于A,B必须当选,那么从剩下的10人中选取3人即可,故有C310=120种选法.(2)从除去的A,B两人的10人中选5人即可,故有C510=252种选法.(3)全部选法有C512种,A,B全当选有C310种,故A,B不全当选有C512-C310=672种选法.(4)注意到“至少有2名女生”的反面是只有一名女生或没有女生,故可用间接法进行.所以有C 512-C 15·C 47-C 57=596种选法.(5)分三步进行;第1步,选1男1女分别担任两个职务有C 17·C 15种选法. 第2步,选2男1女补足5人有C 26·C 14种选法.第3步,为这3人安排工作有A 33方法.由分步乘法计数原理,共有C 17C 15·C 26C 14·A 33=12 600种选法.12.要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法?(1)至少有1名女生入选;(2)至多有2名女生入选;(3)男生甲和女生乙入选;(4)男生甲和女生乙不能同时入选;(5)男生甲、女生乙至少有一个人入选.解 (1)C 512-C 57=771; (2)C 57+C 15C 47+C 25C 37=546; (3)C 22C 310=120; (4)C 512-C 22C 310=672; (5)C 512-C 510=540.13.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中: (1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法? (2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法? 解 (1)只需从其他18人中选3人即可,共有C 318=816(种); (2)只需从其他18人中选5人即可,共有C 518=8 568(种); (3)分两类:甲、乙中有一人参加,甲、乙都参加,共有C 12C 418+C 318=6 936(种);(4)方法一 (直接法):至少有一名内科医生和一名外科医生的选法可分四类: 一内四外;二内三外;三内二外;四内一外,所以共有C 112C 48+C 212C 38+C 312C 28+C 412C 18=14 656(种).方法二 (间接法):由总数中减去五名都是内科医生和五名都是外科医生的选法种数,得C 520-(C 512+C 58)=14。