PCB高频布线基本知识
PCB布线规则详解
PCB布线规则详解首先,布线规则包括了几个方面,其中包括走线规则、阻抗控制、电磁兼容性、信号完整性等。
走线规则是PCB布线中最基本的规则之一、在进行布线时,需要遵循走线的最短路径原则,尽量减小线路的长度,降低延迟和功耗。
同时,应该尽量减少线路之间的交叉和重叠,以减小串扰和干扰。
阻抗控制是保证信号传输质量的关键因素。
在高频信号传输中,信号的传播速度和波形会受到阻抗的影响。
因此,布线时需要根据设计要求来选择合适的走线宽度和间距,以控制信号的阻抗。
电磁兼容性是指电路在工作过程中不受外界电磁场的干扰,同时也不对周围环境产生干扰。
为了提高电磁兼容性,布线时需要尽量减小回路面积,减小回路的环形电流,合理安排信号线和电源线的位置,采用合适的屏蔽措施等。
信号完整性是指信号在传输过程中能够保持原始波形和稳定性。
布线时需要注意信号线的走线长度、走线路径以及信号线与电源线之间的距离等因素。
同时,还需要合理的串扰抑制措施,如通过地线隔离、差分串扰抵消、电源滤波等手段来保证信号的完整性。
除了上述的基本规则外,还需要考虑电气安全、机械强度和规划性等因素。
电气安全方面,应保证回路之间的绝缘性,避免发生触电等危险情况。
机械强度方面,需要考虑布线的嵌入度和支撑度,以避免线路断裂等问题。
规划性方面,则需考虑到后续的维护和修改,合理安排设备的布局和排线,以方便后期操作。
在实际操作中,布线规则通常会有一些特殊的要求,需要根据具体的设计需求来进行调整。
例如,对于模拟电路和数字电路,布线规则可能会有所不同。
对于高速线路和低速线路,布线规则也可能会有所不同。
因此,在进行PCB布线时,需要根据具体的电路设计要求和特点来确定合适的布线规则。
总之,PCB布线规则是保证电路性能和可靠性的重要因素。
通过遵循走线原则、控制阻抗、保证电磁兼容性和信号完整性等规则,可以提高电路的性能,降低干扰,保证电路的稳定运行。
同时,还需要考虑电气安全、机械强度和规划性等方面的要求,使电路设计达到最佳状态。
PCB布局布线要点
PCB布局布线要点1.尽量减少线路长度:线路长度过长会导致信号延迟和互相干扰。
在布局时,应尽量将相关信号线放在一起,尽量减少线路的长度。
2.分隔高频和低频信号:高频信号和低频信号在传输特性和干扰问题上有很大差异。
在布线时,应尽量将高频信号和低频信号分开布局,以避免互相干扰。
3.避免信号线和电源线相交:信号线和电源线的交叉会导致互相干扰,产生噪声。
在布线时,应尽量避免信号线和电源线相交。
4.保持信号线的对称布局:对称布局可以使信号线的长度保持一致,从而减少互相干扰。
在布局时,应尽量保持信号线的对称布局。
5.地线的布局:地线是整个电路的共用参考点,它承载着回流电流和抑制噪声的功能。
在布线时,应尽量保持地线的宽度一致,减小回流电流的路径阻抗。
6.电源线的布局:电源线应尽量靠近地线布局,以减小回流电流路径的阻抗。
同时,电源线应避免与信号线相交,以减少互相干扰。
7.信号线与地线的配对布局:在高速传输中,差分信号线的布局对信号的传输质量有很大影响。
应尽量将差分信号线与地线配对布局,以减小信号之间的干扰。
8.规避信号线和边缘的平行布局:信号线和边缘平行布局会导致辐射噪声和电磁干扰。
在布线时,应尽量规避信号线和边缘的平行布局。
9.PCB层次布局:PCB可以分为多个逻辑层次,在布局时应尽量将相关的电路模块放在同一层次上,以减少信号线的跨层穿越。
10.确保足够的间距和间隙:在布线时,应确保信号线之间和信号线与其他元件之间有足够的间距和间隙,以避免互相干扰和产生串扰。
11.使用规范的信号线宽度和间距:信号线宽度和间距的设置直接影响信号传输的质量和速度。
在布线时,应使用规范的信号线宽度和间距,以满足设计要求。
12.使用较好的布线工具和规则检查:在布线过程中,可以使用专业的布线工具和规则检查功能,以提高布线效率和准确性。
总之,PCB布局布线的核心目标是尽量减小信号传输的延迟和干扰,以保证系统的性能和可靠性。
通过合理的布局和布线,可以提高产品的性能和降低故障率。
PCB布线的技巧及注意事项
PCB布线的技巧及注意事项布线技巧:1.确定电路结构:在布线之前,需要先确定电路结构。
将电路分成模拟、数字和电源部分,然后分别布线。
这样可以减少干扰和交叉耦合。
2.分区布线:将电路分成不同的区域进行布线,每个区域都有自己的电源和地线。
这可以减少干扰和噪声,提高信号完整性。
3.高频和低频信号分离:将高频和低频信号分开布线,避免相互干扰。
可以通过设立地板隔离和电源隔离来降低电磁干扰。
4.绕规则:维持布线规则,如保持电流回路的闭合、尽量避免导线交叉、保持电线夹角90度等。
这样可以减少丢失信号和干扰。
5.简化布线:简化布线路径,尽量缩短导线长度。
短导线可以减少信号传输延迟,并提高电路稳定性。
6.差分线布线:对于高速信号和差分信号,应该采用差分线布线。
差分线布线可以减少信号的传输损耗和干扰。
7.用地平面:在PCB设计中,应该用地平面层绕过整个电路板。
地平面可以提供一个低阻抗回路,减少对地回路电流的干扰。
8.参考层对称布线:如果PCB板有多层,应该选择参考层对称布线。
参考层对称布线可以减少干扰,并提高信号完整性。
注意事项:1.信号/电源分离:要避免信号线与电源线共享同一层,以减少互相干扰。
2.减小射频干扰:布线时要特别注意射频信号传输的地方,采取屏蔽措施,如避免长线路、使用高频宽接地等。
3.避免过长接口线:如果接口线过长,则信号传输时间会增加,可能导致原始信号失真。
4.避免过短导线:过短的导线也可能引发一些问题,如噪声、串扰等。
通常导线长度至少应该为信号上升时间的三分之一5.接地技巧:为了减少地回路的电流噪声,应该尽量缩短接地回路路径,并通过增加地线来提高接地效果。
6.隔离高压部分:对于高压电路,应该采取隔离措施,避免对其他电路产生干扰和损坏。
7.注重信号完整性:对于高速和差分信号,应该特别注重信号完整性。
可以采用阻抗匹配和差分线布线等技术来提高信号传输的稳定性。
总结起来,PCB布线需要遵循一些基本原则,如简化布线、分区布线、差分线布线等,同时需要注意电源和信号的分离、射频干扰的减小等问题。
PCB布线基本规则
PCB布线基本规则PCB(Printed Circuit Board)是电子设备中最基本的组成部分之一,它通过导线、电路和元件等连接,起到电气信号传导和支持电子元器件的作用。
PCB布线是指在PCB上进行导线和元件布局的过程,它的设计和布线方案对整个电子设备功能和性能有着重要影响。
为了确保PCB的正常工作和稳定性,有一些基本的布线规则需要遵守。
下面是一些常见的PCB布线基本规则:1.布局规则:-合理布局:将元件、信号和电源布置在合理的位置,以减少干扰和噪声。
-划分区域:将电路板划分为不同区域,例如,将模拟和数字电路分开,以减少相互干扰。
-选择合适的层次:根据电路的复杂性和布线密度,选择合适的PCB板层次,如单面、双面或多层板。
-保留充足的过孔和通孔空间:确保在布线过程中留有足够的过孔和通孔空间,以确保布线的正常进行。
2.导线布线规则:-信号同方向布线:将信号线和地线平行布线,以减少互相干扰。
-异方向布线:将时钟线和其他信号线垂直布线,以降低串扰。
-避免冗余布线:避免导线交叉和冗余布线,以减少互相干扰和飞线。
-控制走线的长度:尽量控制导线的长度短,以减少信号时延和信号损耗。
3.为高频信号和低频信号做不同处理:-高频信号布线:使用短而直的导线布线,以减少信号的延迟和损耗。
-低频信号布线:使用较宽的导线布线,以增加信号的稳定性和可靠性。
4.过孔和通孔规则:-过孔布局规则:过孔应尽量集中布置,以减少PCB板空间的占用并提高布线的自由度。
-避免与元件冲突:过孔位置应避免与元件的引脚冲突,以确保元件的正确安装和连接。
-保持通孔通畅:在布线过程中,保持通孔的畅通,以确保信号和电源的正常传导。
5.地线规则:-分离数字和模拟地:将数字和模拟地面隔离开,以减少互相干扰。
-回路规划:在PCB上布置完善的地回路,以确保信号和电源的正常回路。
最后,为了确保布线的可靠性和性能,可以使用电磁仿真软件对布线进行检查和优化。
同时,对于特定的高速或高频电路,可以参考相关的PCB设计规范和标准,以确保布线的正确和稳定。
高频信号的PCB走线
高频信号PCB布局经验(2011-08-31 14:21:00)转载▼标签:元器件焊盘电路高频信号线it1 布局的设计先采用手工布局的方法优化调整部分元器件的位置,再结合自动布局完成PCB的整体设计。
布局的合理与否直接影响到产品的寿命、稳定性、EMC (电磁兼容)等,必须从电路板的整体布局、布线的可通性和PCB的可制造性、机械结构、散热、EMI(电磁干扰) 、可靠性、信号的完整性等方面综合考虑。
一般先放置与机械尺寸有关的固定位置的元器件,再放置特殊的和较大的元器件,最后放置小元器件。
同时,要兼顾布线方面的要求,高频元器件的放置要尽量紧凑,信号线的布线才能尽可能短,从而降低信号线的交叉干扰等。
1.1 与机械尺寸有关的定位插件的放置电源插座、开关、PCB之间的接口、指示灯等都是与机械尺寸有关的定位插件。
通常,电源与PCB之间的接口放到PCB的边缘处,并与PCB 边缘要有3 mm~5 mm的间距;指示发光二极管应根据需要准确地放置;开关和一些微调元器件,如可调电感、可调电阻等应放置在靠近PCB 边缘的位置,以便于调整和连接;需要经常更换的元器件必须放置在器件比较少的位置,以易于更换。
1.2 特殊元器件的放置大功率管、变压器、整流管等发热器件,在高频状态下工作时产生的热量较多,所以在布局时应充分考虑通风和散热,将这类元器件放置在PCB上空气容易流通的地方。
大功率整流管和调整管等应装有散热器,并要远离变压器。
电解电容器之类怕热的元件也应远离发热器件,否则电解液会被烤干,造成其电阻增大,性能变差,影响电路的稳定性。
易发生故障的元器件,如调整管、电解电容器、继电器等,在放置时还要考虑到维修方便。
对经常需要测量的测试点,在布置元器件时应注意保证测试棒能够方便地接触。
由于电源设备内部会产生50 Hz泄漏磁场,当它与低频放大器的某些部分交连时,会对低频放大器产生干扰。
因此,必须将它们隔离开或者进行屏蔽处理。
放大器各级最好能按原理图排成直线形式,如此排法的优点是各级的接地电流就在本级闭合流动,不影响其他电路的工作。
PCB高频布线基本知识
高频布线基本知识内容目录1. 引言2. 信号完整性问题3. 电磁兼容性问题4. 电源完整性问题5. 高频电路设计一般规范6. 数模混合电路设计一般规范一:高频电路的定义*在数字电路中,是否是高频电路取决于信号的上升沿和下降沿,而不是信号的频率。
公式:F2 =1/(Tr×π),Tr为信号的上升/下降延时间。
*F2 > 100MHz,就应该按照高频电路进行考虑,下列情况必须按高频规则进行设计–系统时钟频率超过50MHz–采用了上升/下降时间少于5ns的器件–数字/模拟混合电路*逻辑器件的上升/下降时间和布线长度限制上升/下主要谐波频谱分布最大传输线最大传输降时间Tr分量F2=1/Fmax=10*距离(微带)线距离(微带线)πTr F274HC 13-15ns24MHz 240 MHz 117cm 91cm74LS 9.5ns 34 MHz 340MHz 85.5cm 66.5cm74H 4-6ns 80 MHz 800MHz 35 2874S 3-4ns 106 MHz 1.1GHz 27 2174HCT 5-15ns 64 MHz 640MHz 45 3474ALS 2-10ns 160 MHz 1.6GHz 18 1374FCT 2-5ns 160 MHz 1.6GHz 18 1374F 1.5ns 212 MHz 2.1GHz 12.5 10.5ECL12K 1.5ns 212 MHz 2.1GHz 12.5 10.5ECL100K 0.75ns 424 MHz 4.2GHz 6 5传统的PCB设计方法效率低:原理图,传统的设计方法设计和输入布局、布线没有任何质量控制点,制作PCB每一步设计都是凭经验,发现问题就必须从头开始,功能、性能测试问题的查找非常困难信号完整性问题:1.反射问题2.串扰问题3.过冲和振荡4.时延反射问题:传输线上的回波。
信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。
详细的PCB布线基本原则
详细的PCB布线基本原则PCB(Printed Circuit Board)布线是电子设备中不可或缺的一环,其目的是将电子元器件之间的电路连接起来,并确保信号传输的可靠性和稳定性。
正确的布线可以提高电路的工作性能,同时降低由于电磁干扰和信号串扰而产生的问题。
以下是PCB布线的一些基本原则。
1.分隔高频和低频信号:将高频和低频信号的路径分隔开,以防止互相干扰。
高频信号的路径应该尽可能短,并避免穿越大地平面或其他高频信号路径。
低频信号的路径可以较长,但要避免与高频信号路径平行。
2.按照信号传输方向布线:信号的传输方向应该在布线时考虑到。
例如,时钟信号的传输通常是单向的,因此应该将时钟信号源与接收器位置相对接近,并减少信号路径中的转弯。
3.避免信号与电源路径的交叉:信号路径和电源路径的交叉会引起信号串扰和电磁干扰。
为了避免这种问题,应将信号和电源路径分开,并相互保持一定的距离。
4.最短路径原则:信号传输的路径应尽量保持短。
较长的路径会增加信号的传输延迟和失真的概率。
当需要穿越其他信号路径或电源路径时,应该选择避开或找到合适的桥接方法。
5.地线参考面:地线是电路中非常重要的一部分,它提供信号的参考电位。
在布线时,应尽可能保持地线平面的连续性,并避免信号和电源线干扰地线。
地线参考面可以是整个PCB板上的铜层,或者是单独的地线平面。
6.电源线宽度和容量:电源线应根据所需的电流容量和耦合噪声的要求来设计。
较宽的电源线可以减小线路的电阻和电压降,从而提供更稳定的电源。
同时,在布线时应避免电源线与信号线的交叉和平行。
7.信号层和电源层的分离:为了减小信号的串扰和电磁干扰,可以将信号层和电源层分离。
通过使用电源和地层之间的晶体管来隔离不同信号之间的互相干扰,以及信号层和电源层之间的电磁干扰。
8.差分信号布线:对于差分信号,可以采用相邻信号线进行正负极性的布线。
通过将正负信号线紧密地靠近并平行布线,可以最大限度地减小串扰和噪声的影响。
高频电路PCB布线技巧
高频电路PCB布线技巧一、多层板布线:高频电路往往集成度较高,布线密度大,采用多层板既是布线所必须,也是降低干扰的有效手段。
在PCBLayout阶段,合理的选择一定层数的印制板尺寸,能充分利用中间层来设置屏蔽,更好地实现就近接地,并有效地降低寄生电感和缩短信号的传输长度,同时还能大幅度地降低信号的交叉干扰等,所有这些方法都对高频电路的可靠性有利。
同种材料时,四层板要比双面板的噪声低20dB。
但是,同时也存在一个问题,PCB半层数越高,制造工艺越复杂,单位成本也就越高,这就要求在进行PCBLayout时,除了选择合适的层数的PCB板,还需要进行合理的元器件布局规划,并采用正确的布线规则来完成设计。
1、高频电路器件管脚间的引线层间交替越少越好所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好。
一个过孔可带来约0.5pF的分布电容,减少过孔数能显着提高速度和减少数据出错的可能性。
2、高频电路器件管脚间的引线越短越好信号的辐射强度是和信号线的走线长度成正比的,高频的信号引线越长,它就越容易耦合到靠近它的元器件上去,所以对于诸如信号的时钟、晶振、DDR的数据、LVDS线、USB 线、HDMI线等高频信号线都是要求尽可能的走线越短越好。
3、高速电子器件管脚间的引线弯折越少越好高频电路布线的引线最好采用全直线,需要转折,可用45度折线或者圆弧转折,这种要求在低频电路中仅仅用于提高铜箔的固着强度,而在高频电路中,满足这一要求却可以减少高频信号对外的发射和相互间的耦合。
4、注意信号线近距离平行走线引入的“串扰”高频电路布线要注意信号线近距离平行走线所引入的“串扰”,串扰是指没有直接连接的信号线之间的耦合现象。
由于高频信号沿着传输线是以电磁波的形式传输的,信号线会起到天线的作用,电磁场的能量会在传输线的周围发射,信号之间由于电磁场的相互耦合而产生的不期望的噪声信号称为串扰(Crosstalk)。
高频PCB板布线规则
高频PCB板布线规则1. 元件排列规则1).在通常条件下,所有的元件均应布置在印制电路的同一面上,只有在顶层元件过密时,才能将一些高度有限并且发热量小的器件,如贴片电阻、贴片电容、贴IC等放在底层。
2).在保证电气性能的前提下,元件应放置在栅格上且相互平行或垂直排列,以求整齐、美观,一般情况下不允许元件重叠;元件排列要紧凑,输入和输出元件尽量远离。
3).某元器件或导线之间可能存在较高的电位差,应加大它们的距离,以免因放电、击穿而引起意外短路。
4).带高电压的元件应尽量布置在调试时手不易触及的地方。
5).位于板边缘的元件,离板边缘至少有2个板厚的距离6).元件在整个板面上应分布均匀、疏密一致。
2. 按照信号走向布局原则1).通常按照信号流程逐个安排各个功能电路单元位置,以每个功能电路的核心元件为中心,围绕它进行布局。
2).元件的布局应便于信号流通,使信号尽可能保持一致的方向。
多数情况下,信号的流向安排为从左到右或从上到下,与输入、输出端直接相连的元件应当放在靠近输入、输出接插件或连接器的地方。
3. 防止电磁干扰1).对辐射电磁场较强的元件,以及对电磁感应较灵敏的元件,应加大它们相互之间的距离或加以屏蔽,元件放置的方向应与相邻的印制导线交叉。
2).尽量避免高低电压器件相互混杂、强弱信号的器件交错在一起。
3).对于会产生磁场的元件,如变压器、扬声器、电感等,布局时应注意减少磁力线对印制导线的切割,相邻元件磁场方向应相互垂直,减少彼此之间的耦合。
4).对干扰源进行屏蔽,屏蔽罩应有良好的接地。
5).在高频工作的电路,要考虑元件之间的分布参数的影响。
4. 抑制热干扰1).对于发热元件,应优先安排在利于散热的位置,必要时可以单独设置散热器或小风扇,以降低温度,减少对邻近元件的影响。
2).一些功耗大的集成块、大或中功率管、电阻等元件,要布置在容易散热的地方,并与其它元件隔开距离。
3).热敏元件应紧贴被测元件并远离高温区域,以免受到其它发热功当量元件影响,引起误动作。
高频PCB板布线规则
高频PCB板布线规则1. 元件排列规则1).在通常条件下,所有的元件均应布置在印制电路的同一面上,只有在顶层元件过密时,才能将一些高度有限并且发热量小的器件,如贴片电阻、贴片电容、贴IC等放在底层。
2).在保证电气性能的前提下,元件应放置在栅格上且相互平行或垂直排列,以求整齐、美观,一般情况下不允许元件重叠;元件排列要紧凑,输入和输出元件尽量远离。
3).某元器件或导线之间可能存在较高的电位差,应加大它们的距离,以免因放电、击穿而引起意外短路。
4).带高电压的元件应尽量布置在调试时手不易触及的地方。
5).位于板边缘的元件,离板边缘至少有2个板厚的距离6).元件在整个板面上应分布均匀、疏密一致。
2. 按照信号走向布局原则1).通常按照信号流程逐个安排各个功能电路单元位置,以每个功能电路的核心元件为中心,围绕它进行布局。
2).元件的布局应便于信号流通,使信号尽可能保持一致的方向。
多数情况下,信号的流向安排为从左到右或从上到下,与输入、输出端直接相连的元件应当放在靠近输入、输出接插件或连接器的地方。
3. 防止电磁干扰1).对辐射电磁场较强的元件,以及对电磁感应较灵敏的元件,应加大它们相互之间的距离或加以屏蔽,元件放置的方向应与相邻的印制导线交叉。
2).尽量避免高低电压器件相互混杂、强弱信号的器件交错在一起。
3).对于会产生磁场的元件,如变压器、扬声器、电感等,布局时应注意减少磁力线对印制导线的切割,相邻元件磁场方向应相互垂直,减少彼此之间的耦合。
4).对干扰源进行屏蔽,屏蔽罩应有良好的接地。
5).在高频工作的电路,要考虑元件之间的分布参数的影响。
4. 抑制热干扰1).对于发热元件,应优先安排在利于散热的位置,必要时可以单独设置散热器或小风扇,以降低温度,减少对邻近元件的影响。
2).一些功耗大的集成块、大或中功率管、电阻等元件,要布置在容易散热的地方,并与其它元件隔开距离。
3).热敏元件应紧贴被测元件并远离高温区域,以免受到其它发热功当量元件影响,引起误动作。
高频在pcb中的布线规则
1)注意晶振布线,见图1。
晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。
此措施可解决许多疑难问题。
图1 正确配置晶振2)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响,见图2。
注意高频电容的布线,图a和图b的效果相差很大,图c比图b的效果更好。
图a的布线增大了电容的等效串联电阻,影响了滤波效果。
/xuexishequ/UploadFiles_9463/200609/20060904104533276.gif图2 IC并接高频电容3)布线时避免90度折线,减少高频噪声发射,见图3。
图3 正确布线4)提高敏感器件抗干扰性能的常用措施如下:(a)布线时尽量减少回路环的面积,以降低感应噪声,见图4。
(b)布线时,电源线和地线要尽量粗。
除减小压降外,更重要的是降低耦合噪声。
(c)对于单片机闲置的I/O口,不要悬空,要接地或接电源。
其它IC的闲置端在不改变系统逻辑的情况下接地或接电源。
图4 减少回路环面积由于时钟频率越高,高频能量辐射越强,因此在数字电路中不要使用过高的时钟频率。
线路板上的总线、较大的环路面积和较长的导线都是强辐射源,因此,除非必要,要尽量避免这些情况的出现。
线路板上的走线是主要的辐射源。
走线产生辐射主要是由于逻辑电路中电流的突变,在导线的电感上产生了感应电压,这个电压会产生较强的辐射。
另外,由于导线其着辐射天线的作用,因此导线的长度越长,辐射的效率越高。
因此,线路板布线的基本原则是,减小导线的电感,例如使用最短的走线电流较大的电源线和地线要粗一些。
5)电容特性电容的引线长度是一个十分重要的参数,引线越长,则电感越大,电容的谐振频率越低。
因此在实际工程中,要使电容器的引线尽量短,电容器的正确安装方法和不正确安装方法如图5 所示。
图5 滤波电容的正确安装方法与错误安装方法根据LC 电路串联谐振的原理,谐振点不仅与电感有关,还与电容值有关,电容越大,谐振点越低。
PCB高频板设计
PCB高频板设计随着电子产品的不断更新迭代,对于PCB高频板的需求也越来越高。
高频板设计通常是指设计、制作和优化高频线路板,以实现更高的频率、更好的信噪比和更小的失真。
在高频电路设计中,考虑的因素很多,例如信号的反射、损耗、串扰、噪声等等。
本文将对PCB高频板设计的一些重要内容进行探讨。
一、PCB高频线路设计的基本概念PCB是印制电路板的简称,其最基本的结构包括信号层、电源层、地层等。
在高频电路中,信号层的平面电容和漏磁电感很大程度上导致信号传输的失真和降噪。
因此,在高频电路设计中,需要尽可能地减小这些影响,例如通过增加信号引出和地引出的数量,增加信号层和地层之间的铜箔间隙等等。
二、PCB高频线路中的信号引出和地引出在高频电路设计中,对于每个端口来说,都必须有一个良好的信号引出和地引出。
通常,对于高频板中的任何一个元件,其信号引出和地引出距离越近,就能够减少串扰、提高信噪比和防止反射。
同时,对于大功率应用,将信号引出和地引出相互缠绕也能够有效地消耗热量,从而进一步降低电路噪声。
三、高频PCB板中的电源层和地层在高频电路设计中,电源层和地层同样非常重要。
在高频板中,电源层和地层的规划必须能够满足以下要求:1.选择合适的电源层和地层位置,确保它们尽可能地接近整个高频电路。
2.确保电源层和地层之间有良好的分离和铜箔间隙,以减少板间串扰。
3.将保护层铺满电源层和地层之间的空隙,以防止外界干扰和EMC问题。
四、高频PCB线路中的电容、电感和衰减器在高频线路设计中,需要考虑使用正确类型的电容和电感,以实现正常的信号传输。
电容和电感存在于许多板中,包括微带线、陶瓷电容和铝电解电容等等。
在高频PCB设计中,陶瓷电容和以往的铝电解电容相比,具有更好的抗干扰性和更低的损耗系数。
对于高频电路,使用SMD电感或通过安装小型电感来获得更好的信号传输和噪声控制。
高频线路中的衰减器是另一个重要因素。
在PCB高频电路中,衰减器可以在信号源和输出间提供可调的传输功率范围,以尽可能地提高最终输出信号的精度和质量。
PCB布线的技巧及注意事项
PCB布线的技巧及注意事项1.合理规划电路板上的元件布局:在进行布线之前,需要根据电路的功能和结构合理规划元件的布局。
合理布局可以减少跨线和交叉线,简化布线过程,并提高电路的可靠性和抗干扰能力。
例如,将相互关联的元件集中在一起,以减少连线长度和信号传输的损耗。
2.使用地平面和电源平面:地平面和电源平面是PCB布线中非常重要的一部分。
通过在PCB中设置地平面和电源平面,可以有效减少地线和电源线的长度,减小同轴电缆的干扰和耦合,提高信号完整性和抗干扰能力。
3.利用电网连接:电网连接是PCB布线中常用的一种布线方式。
电网连接可以减小线宽和线间距,减小电路板上的导线一阶传输延迟,提高信号完整性和抗干扰能力。
在布局时,应尽量合理规划电网的结构和布线的路径。
4.分析和优化信号传输路径:信号传输路径是PCB布线中需要特别关注的一部分。
通过分析信号传输路径,可以了解信号在电路板上的传输特性,并进行优化。
例如,可以采用直线传输路径,减小信号传输的损耗和干扰;可以避免信号线与电源线、地线和其他高频信号线的交叉,减小互相干扰。
5.处理高频和高速信号:在布线中,对于高频和高速信号需要特别注意。
高频信号容易受到串扰和反射的影响,因此对于高频信号,应避免长线和小弯曲。
对于高速信号,需要注意控制传输线的阻抗匹配,减小信号的反射和射频干扰。
6.使用适当的布线规则和约束:在进行布线之前,需要根据电路设计的要求和约束设置适当的布线规则。
布线规则可以包括连线宽度、线间距、最小孔径等要素。
合理设置布线规则可以减小静电干扰和交叉干扰,提高电路的性能和可靠性。
7.进行电磁兼容性(EMC)设计:在进行布线时,需要考虑电磁兼容性设计。
电磁辐射和电磁敏感性是电路板设计中常见的问题,可以通过合理的布线和使用滤波器来减小电磁干扰。
8.进行仿真和测试:在完成布线之后,需要进行仿真和测试来验证电路的性能和可靠性。
通过仿真和测试,可以检测电路中可能存在的问题,并做出相应的调整。
PCB小常识23——高速信号PCB布线技巧
PCB小常识23——高速信号PCB布线技巧高速信号布线的时候,需要用到传输线理论,布线过程中,有些方法和传统的一般信号布线也有所不同,下面大致给出了一些高频信号线的布线技巧。
1.多层布线高速信号布线电路往往集成度较高,布线密度大,采用多层板既是布线所必须的,也是降低干扰的有效手段。
合理选择层数能大幅度降低印板尺寸,能充分利用中间层来设置屏蔽,能更好地实现就近接地,能有效地降低寄生电感,能有效缩短信号的传输长度,能大幅度地降低信号间的交叉干扰等等,所有这些都对高速电路的可靠二工作有利。
有资料显示,同种材料时,四层板要比双面板的噪声低20dB。
但是,板层数越高,制造工艺越复杂,成本越高。
2.引线弯折越少越好高速电路器件管脚间的引线弯折越少越好。
高速信号布线电路布线的引线最好采用全直线,需要转折,可用45°折线或圆弧转折(如图1所示),这种要求在低频电路中仅仅用于提高钢箔的固着强度,而在高速电路中,满足这一要求却可以减少高速信号对外的发射和相互间的耦合,减少信号的辐射和反射。
图1 布线的转折方式3.引线越短越好高速信号布线电路器件管脚间的引线越短越好。
引线越长,带来的分布电感和分布电容值越大,对系统的高频信号的通过产生很多的影响,同时也会改变电路的特性阻抗,导致系统发生反射、振荡等。
这些我们要避免的问题。
4.引线层间交替越少越好高速电路器件管脚间的引线层间交替越少越好。
所谓“引线的层间交替越少越好”,是指元件连接过程中所用的过孔越少越好。
据测,一个过孔可带来约0.5pf的分布电容,导致电路的延时明显增加,减少过孔数能显着提高速度。
这个在后面的过孔的高频特性中将详细说明。
5.注意平行交叉干扰高速信号布线电路布线要注意信号线近距离平行走线所引入的“交叉干扰”,若无法避免平行分布,可在平行信号线的反面布置大面积“地”来大幅度减少干扰。
同一·层内的平行走线几乎无法避免,但是在相邻的两个层,走线的方向务必取为相互垂直。
高频电路PCB布线技巧
高频电路PCB布线技巧一、多层板布线:高频电路往往集成度较高,布线密度大,采用多层板既是布线所必须,也是降低干扰的有效手段。
在PCBLayout阶段,合理的选择一定层数的印制板尺寸,能充分利用中间层来设置屏蔽,更好地实现就近接地,并有效地降低寄生电感和缩短信号的传输长度,同时还能大幅度地降低信号的交叉干扰等,所有这些方法都对高频电路的可靠性有利。
同种材料时,四层板要比双面板的噪声低20dB 。
但是,同时也存在一个问题,PCB 半层数越高,制造工艺越复杂,单位成本也就越高,这就要求在进行PCBLayout时,除了选择合适的层数的PCB板,还需要进行合理的元器件布局规划,并采用正确的布线规则来完成设计。
1、高频电路器件管脚间的引线层间交替越少越好所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好。
一个过孔可带来约0.5pF 的分布电容,减少过孔数能显着提高速度和减少数据出错的可能性。
2、高频电路器件管脚间的引线越短越好信号的辐射强度是和信号线的走线长度成正比的,高频的信号引线越长,它就越容易耦合到靠近它的元器件上去,所以对于诸如信号的时钟、晶振、DDR的数据、LVDS线、USB线、HDMI 线等高频信号线都是要求尽可能的走线越短越好。
3、高速电子器件管脚间的引线弯折越少越好高频电路布线的引线最好采用全直线,需要转折,可用45度折线或者圆弧转折,这种要求在低频电路中仅仅用于提高铜箔的固着强度,而在高频电路中,满足这一要求却可以减少高频信号对外的发射和相互间的耦合。
4、注意信号线近距离平行走线引入的“串扰” 高频电路布线要注意信号线近距离平行走线所引入的“串扰” ,串扰是指没有直接连接的信号线之间的耦合现象。
由于高频信号沿着传输线是以电磁波的形式传输的,信号线会起到天线的作用,电磁场的能量会在传输线的周围发射,信号之间由于电磁场的相互耦合而产生的不期望的噪声信号称为串扰(Crosstalk)。
PCB板基础知识、布局原则、布线技巧、设计规则
PCB 板基础知识一、PCB 板的元素1、 工作层面对于印制电路板来说,工作层面可以分为6大类,信号层 (signal layer )内部电源/接地层 (internal plane layer )机械层(mechanical layer ) 主要用来放置物理边界和放置尺寸标注等信息,起到相应的提示作用。
EDA软件可以提供16层的机械层。
防护层(mask layer ) 包括锡膏层和阻焊层两大类。
锡膏层主要用于将表面贴元器件粘贴在PCB上,阻焊层用于防止焊锡镀在不应该焊接的地方。
丝印层(silkscreen layer ) 在PCB 板的TOP 和BOTTOM 层表面绘制元器件的外观轮廓和放置字符串等。
例如元器件的标识、标称值等以及放置厂家标志,生产日期等。
同时也是印制电路板上用来焊接元器件位置的依据,作用是使PCB 板具有可读性,便于电路的安装和维修。
其他工作层(other layer ) 禁止布线层 Keep Out Layer钻孔导引层 drill guide layer钻孔图层 drill drawing layer复合层 multi-layer2、 元器件封装是实际元器件焊接到PCB 板时的焊接位置与焊接形状,包括了实际元器件的外形尺寸,所占空间位置,各管脚之间的间距等。
元器件封装是一个空间的功能,对于不同的元器件可以有相同的封装,同样相同功能的元器件可以有不同的封装。
因此在制作PCB 板时必须同时知道元器件的名称和封装形式。
(1) 元器件封装分类通孔式元器件封装(THT ,through hole technology )表面贴元件封装 (SMT Surface mounted technology )另一种常用的分类方法是从封装外形分类: SIP 单列直插封装DIP 双列直插封装PLCC 塑料引线芯片载体封装PQFP 塑料四方扁平封装SOP 小尺寸封装TSOP 薄型小尺寸封装PPGA 塑料针状栅格阵列封装PBGA 塑料球栅阵列封装CSP 芯片级封装(2) 元器件封装编号编号原则:元器件类型+引脚距离(或引脚数)+元器件外形尺寸例如 AXIAL-0.3 DIP14 RAD0.1 RB7.6-15 等。
高频布线
高频PCB布线:1、高频电路器件管脚间的引线层间交替越少越好2、高频电路器件管脚间的引线越短越好3、高速电子器件管脚间的引线弯折越少越好4、注意信号线近距离平行走线引入的“串扰”5、高频数字信号的地线和模拟信号地线做隔离6、集成电路块的电源引脚增加高频退藕电容7、避免走线形成的环路8、必须保证良好的信号阻抗匹配1、高频电路器件管脚间的引线层间交替越少越好所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好。
一个过孔可带来约0.5pF的分布电容,减少过孔数能显着提高速度和减少数据出错的可能性。
2、高频电路器件管脚间的引线越短越好信号的辐射强度是和信号线的走线长度成正比的,高频的信号引线越长,它就越容易耦合到靠近它的元器件上去,所以对于诸如信号的时钟、晶振、DDR的数据、LVDS线、USB线、HDMI线等高频信号线都是要求尽可能的走线越短越好。
3、高速电子器件管脚间的引线弯折越少越好高频电路布线的引线最好采用全直线,需要转折,可用45度折线或者圆弧转折,这种要求在低频电路中仅仅用于提高铜箔的固着强度,而在高频电路中,满足这一要求却可以减少高频信号对外的发射和相互间的耦合。
4、注意信号线近距离平行走线引入的“串扰”高频电路布线要注意信号线近距离平行走线所引入的“串扰”,串扰是指没有直接连接的信号线之间的耦合现象。
由于高频信号沿着传输线是以电磁波的形式传输的,信号线会起到天线的作用,电磁场的能量会在传输线的周围发射,信号之间由于电磁场的相互耦合而产生的不期望的噪声信号称为串扰(Crosstalk)。
PCB板层的参数、信号线的间距、驱动端和接收端的电气特性以及信号线端接方式对串扰都有一定的影响。
所以为了减少高频信号的串扰,在布线的时候要求尽可能的做到以下几点:(1)在布线空间允许的条件下,在串扰较严重的两条线之间插入一条地线或地平面,可以起到隔离的作用而减少串扰;(2)当信号线周围的空间本身就存在时变的电磁场时,若无法避免平行分布,可在平行信号线的反面布置大面积“地”来大幅减少干扰;(3)在布线空间许可的前提下,加大相邻信号线间的间距,减小信号线的平行长度,时钟线尽量与关键信号线垂直而不要平行;(4)如果同一层内的平行走线几乎无法避免,在相邻两个层,走线的方向务必却为相互垂直;(5)在数字电路中,通常的时钟信号都是边沿变化快的信号,对外串扰大。
高频电路的PCB布线规则和技巧解析
高频电路往往集成度较高,密度大,采用既是布线所必须,也是降低干扰的有效手段。
在PCBLayout阶段,合理的选择一定的印制板尺寸,能充分利用中间层来设置屏蔽,更好地实现就近接地,并有效地降低寄生和缩短信号的传输长度,同时还能大幅度地降低信号的交叉干扰等,所有这些方法都对高频电路的可靠性有利。
同种材料时,要比的噪声低20dB.但是,同时也存在一个问题,PCB 半层数越高,工艺越复杂,单位成本也就越高,这就要求在进行PCB Layout时,除了选择合适的层数的,还需要进行合理的布局规划,并采用正确的布线规则来完成设计。
1、高频电路器件管脚间的引线层间交替越少越好所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好。
一个过孔可带来约0.5pF的分布,减少过孔数能显着提高速度和减少数据出错的可能性。
2、高频电路器件管脚间的引线越短越好信号的辐射强度是和信号线的走线长度成正比的,高频的信号引线越长,它就越容易到靠近它的元器件上去,所以对于诸如信号的、、DDR的数据、LVDS 线、线、线等高频信号线都是要求尽可能的走线越短越好。
3、高速电子器件管脚间的引线弯折越少越好高频电路布线的引线最好采用全直线,需要转折,可用45度折线或者圆弧转折,这种要求在低频电路中仅仅用于提高铜箔的固着强度,而在高频电路中,满足这一要求却可以减少高频信号对外的发射和相互间的耦合。
4、注意信号线近距离平行走线引入的“串扰”高频电路布线要注意信号线近距离平行走线所引入的“串扰”,串扰是指没有直接连接的信号线之间的耦合现象。
由于高频信号沿着传输线是以电磁波的形式传输的,信号线会起到天线的作用,电磁场的能量会在传输线的周围发射,信号之间由于电磁场的相互耦合而产生的不期望的噪声信号称为串扰(Crosstalk)。
PCB板层的参数、信号线的间距、驱动端和接收端的电气特性以及信号线端接方式对串扰都有一定的影响。
所以为了减少高频信号的串扰,在布线的时候要求尽可能的做到以下几点:(1)在布线空间允许的条件下,在串扰较严重的两条线之间插入一条地线或地平面,可以起到隔离的作用而减少串扰;(2)当信号线周围的空间本身就存在时变的电磁场时,若无法避免平行分布,可在平行信号线的反面布置大面积“地”来大幅减少干扰;(3)在布线空间许可的前提下,加大相邻信号线间的间距,减小信号线的平行长度,时钟线尽量与关键信号线垂直而不要平行;(4)如果同一层内的平行走线几乎无法避免,在相邻两个层,走线的方向务必却为相互垂直;(5)在数字电路中,通常的时钟信号都是边沿变化快的信号,对外串扰大。
PCB布线的基本规则与技巧
PCB布线的基本规则与技巧PCB(Printed Circuit Board,印刷电路板)布线是电子产品设计中非常重要的一环,它涉及到电路设计的优化、信号传输的质量以及电路板的可靠性等方面。
以下是一些PCB布线的基本规则与技巧。
1.分隔高频与低频信号:在布线过程中,应将高频和低频信号分隔开来,以减少相互干扰。
可以通过增加地线、使用地层或远离干扰源等方式实现。
2.避免信号线与电源线、地线交叉:信号线与电源线、地线交叉会引起互相干扰,影响信号的传输质量。
在布线时应尽量避免信号线与其他线路的交叉,并采取合适的措施进行隔离。
3.保持信号线的相互垂直:信号线之间保持垂直可以减少信号之间的干扰。
在布线时,应尽量使信号线垂直地通过其他信号线或电源线、地线。
4.尽量缩短信号线的长度:信号线的长度会对信号传输的延迟和损耗产生影响,因此在布线时应尽量缩短信号线的长度。
对于高频信号尤为重要。
5.使用平面与过孔进行地线连接:地线是电路板中非常重要的一条线路,它可以提供整个电路的参考电平。
在布线时,可以通过使用平面层与过孔来进行地线的连接,提高地线的连续性。
6.使用平面与过孔进行电源线连接:电源线的布线也是非常重要的,尤其是对于供电要求较高的芯片或模块。
在布线时,可以通过使用平面层与过孔来进行电源线的连接,减少电源线的阻抗。
7.控制线宽和线距:PCB布线中的线宽和线距对电路的阻抗、信号的传输速度以及电流的承载能力等都是有影响的。
在布线时要根据需要选择合适的线宽和线距,保证电路的性能。
8.避免信号环路:信号环路会引起信号的反馈和干扰,影响电路的正常工作。
在布线时应尽量避免信号环路的产生,可以采取断开一部分连接或改变布线路径等方式来解决。
9.保持信号对称性:对于差分信号线或时钟信号线,应保持信号的对称性。
在布线时应尽量使信号线的路径相同,长度相等,以减少差分信号之间的干扰。
10.考虑EMI(Electromagnetic Interference,电磁干扰):在布线过程中应考虑到电磁干扰的问题,采取一些措施来减少电磁辐射和干扰。
pcb布线规则及技巧
(一般)
24
2021/10/10
25
2021/10/10
元件封装中的元件中心和感光中心十字是自己 用2D线画出来的
26
实际问题反馈
2021/10/10
27
布线完成后,需检查元件开窗层与助焊层是否按要求处理,元件开窗不可过大,比元件焊盘大大约 0.05MM即可,否则易导致短路; 在铺铜是需注意元件周围需设置禁止铺铜区避免短路,禁止铺铜区域比元件大大约0.25—0.35MM即 可
2021/10/10
3
9. 在芯片中若出现成排电源引脚或地引脚(如AVDD和DGND)最好采用如下连接方 式(该方式可避免芯片发生偏移)
2021/10/10
4
10. 摄像头中信号线应尽量放在底层,布线时过孔应尽量打在芯片外部,所有布 线与最外层裁剪框应至少保证0.15MM距离。 11. 在摄像头中,布线结束后需将所有角转变成倒角,避免反射形成干扰;在转 接板中,若只是作为测试用,要求不高是可不必转成倒角,且在布线过程中允许 使用部分直角。 12. 布线时,板子左右两边边缘最好放置一条地线;铺铜时地线最好都能保证连 接以增加导电性。 13. 金手指布线时过孔只能打在补强以下。 14. 布线过程中,过孔的大小为硬板0.4/0.2,其余板0.35/0.15或0.3/0.1 15. MIPI接口是指串行差分接口,DVP接口是指并行传输接口
抑制干扰,如通讯电缆的终端电阻,电脑的机箱,变压器的屏蔽罩,用顺磁材料或抗磁材料来疏导或阻止电磁
场的穿行等等。EMI是产品投放市场前电工认证的一个必检内容。 我们平时经常见到一些产品由于EMI不过关
的报告或投诉。我们常见的开关电源入口处,有一个两个绕组的电感,这个电感是共模抑制电感,也起到减少
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频布线基本知识内容目录1. 引言2. 信号完整性问题3. 电磁兼容性问题4. 电源完整性问题5. 高频电路设计一般规范6. 数模混合电路设计一般规范一:高频电路的定义*在数字电路中,是否是高频电路取决于信号的上升沿和下降沿,而不是信号的频率。
公式:F2 =1/(Tr×π),Tr为信号的上升/下降延时间。
*F2 > 100MHz,就应该按照高频电路进行考虑,下列情况必须按高频规则进行设计–系统时钟频率超过50MHz–采用了上升/下降时间少于5ns的器件–数字/模拟混合电路*逻辑器件的上升/下降时间和布线长度限制上升/下主要谐波频谱分布最大传输线最大传输降时间Tr分量F2=1/Fmax=10*距离(微带)线距离(微带线)πTr F274HC 13-15ns24MHz 240 MHz 117cm 91cm74LS 9.5ns 34 MHz 340MHz 85.5cm 66.5cm74H 4-6ns 80 MHz 800MHz 35 2874S 3-4ns 106 MHz 1.1GHz 27 2174HCT 5-15ns 64 MHz 640MHz 45 3474ALS 2-10ns 160 MHz 1.6GHz 18 1374FCT 2-5ns 160 MHz 1.6GHz 18 1374F 1.5ns 212 MHz 2.1GHz 12.5 10.5ECL12K 1.5ns 212 MHz 2.1GHz 12.5 10.5ECL100K 0.75ns 424 MHz 4.2GHz 6 5传统的PCB设计方法效率低:原理图,传统的设计方法设计和输入布局、布线没有任何质量控制点,制作PCB每一步设计都是凭经验,发现问题就必须从头开始,功能、性能测试问题的查找非常困难信号完整性问题:1.反射问题2.串扰问题3.过冲和振荡4.时延反射问题:传输线上的回波。
信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。
多点反射反射原因:*源端与负载端阻抗不匹配*布线的几何形状*布线的走向,过孔*不正确的线端接*经过连接器的传输*电源平面的不连续等。
串扰问题:*串扰:两条信号线之间的耦合1.容性串扰*当线路以一定的距离彼此靠近时,会出现这种情况。
*容性耦合引发耦合电流2.感性串扰*不需要的变压器的原线圈和次级线圈之间的信号耦合*感性耦合引发耦合电压。
串扰问题:PCB板层的参数、信号线间距、驱动端和接收端的电气特性及线端接方式对串扰都有一定的影响。
*电容和电感的串扰随负载阻抗的增加而增加,因此所有易受串扰影响的线路都应当端接线路阻抗。
减少容性串扰的方法:*分离信号线路,可以减少信号线路间电容性耦合的能量。
*利用地线分离信号线路,可以减少电容的耦合。
为了提高有效性,地线应每隔λ/4英寸与地层连接。
(λ波长是指信号在单位时间传送的距离。
)///////////////////////////一般原则:每2-5cm打过孔。
容性串扰的仿真结果============减少感性串扰的方法*为了解决电感的串扰问题,应当尽可能地减小环路的大小。
*通过避免信号返回线路共享共同的路径这种情况,也可以减少电感串扰、过冲和振荡*过冲(overshoot):过冲能够引起假时钟或总线数据读/写错误。
*振荡(ringing) :振荡的现象是反复出现过冲和下冲。
信号的振荡和环绕振荡由线上过度的电感和电容引起,振荡属于欠阻尼状态而环绕振荡属于过阻尼状态。
振荡可以通过适当的端接予以减小,但不可能完全消除。
时延:一组总线内各信号线的不同时延时钟与信号:尽可能保证宽的窗口///////////////////////////电磁兼容性问题*电磁干扰(EMI)问题1.环路设计,形成天线效应2.电源层的槽缝会构成了四分之一波长的天线*密集过孔(如BGA封装器件)*大型接插件(特别是背板)3.感性元件。
注意:在元件面的两个平行放置的电感会构成变压器。
不合理的回流路径导致EMI地电平面不完整引起的EMI地电平面的不完整会引起大的EMI不考虑地电平面不完整情况的仿真是不精确的///////////////////////////电源完整性问题*大功率高速器件:需要很大的瞬态电流*地层、电源层不完整:1.分割、过孔 2.接插件*滤波电容:3.数量、容量、布局、电源滤波电容的选择:系统既有高频噪音也有低C0G(非铁磁的)类型的频噪音,通过并联大电0.01μF电容比其它类型容、小ESL器件、极小的0.1μF电容在高频时ESL器件可扩展滤波范具有更好的滤波性能///////////////////////////原理图设计规范信号完整性及电磁兼容性考虑PCB 完成后原理图与PCB的对应一般规则和要求*按统一的要求选择图纸幅面、图框格式、电路图中的图形符号、文字符号。
*应根据该产品的电工作原理,各元器件自右到左,自上而下的排成一列或数列。
*图面安排时,电源部分一般安排在左下方,输入端在右方,输出在左方。
*图中可动元件(如继电器)的工作状态,原则上处于开断,不加电的工作位置。
*将所有芯片的电源和地引脚全部利用。
///////////////////////////信号完整性及电磁兼容性考虑*对输入输出的信号要加相应的滤波/吸收器件;必要时加硅瞬变电压吸收二极管或压敏电阻SVC *在高频信号输出端串电阻。
*高频区的退耦电容要选低ESR的电解电容或钽电容*退耦电容容值确定时在满足纹波要求的条件下选择更小容值的电容,以提高其谐振频率点*各芯片的电源都要加退耦电容,同一芯片中各模块的电源要分别加退耦电容;如为高频则须在靠电源端加磁珠/电感。
///////////////////////////PCB 完成后原理图与PCB的对应对PCB分布参数敏感的元件(如滤波电容,时钟阻尼电阻,高频滤波的磁珠/电感等)的标称值进行核对优化,如有变更及时更新原理图和BOM,由PCB Layout 时重排标号信息更新原理图和BOM,生成的BOM文件中,元器件明细表中不允许出现无型号的器件。
相同型号的器件不允许采用不同的表示方法,如4.7K的电阻只能用4.7K表示,不允许采用4K7,4.7k等表示方法。
================================元器件库的制作元器件布局光学点的放置电源滤波线宽及间距高频时钟差分信号PCB分层考虑信号完整性及电磁兼容要求PCB设计规范元器件库的制作===================================///////////////////////////*严格按照元器件厂家提供的数据设计元器件库,必须排除累计误差。
*元器件的引脚焊盘过孔内径提供孔化后孔径,同时在向PCB厂家提供PCB设计文件时必须注明“所有孔径*尽可能参考评估板进行布局设计。
*要求模拟与数字空间隔离;接口模块与主控模块空间隔离;输入和输出隔离。
*高频滤波电容必须靠近器件的电源/地引脚。
*PCB底面放置元件时要考虑结构所允许的元件最高尺寸*靠近边框4mm内不允许放置元件。
*SMT与SMT零件间距0.5mm以上*SMT与DIP零件间距0.5mm以上*螺丝孔/定位孔的半径6mm内不可放置任何元件*跳线器或SOCKET的放置要考虑其易操做,不可放于高器件(如SLOT)之间*元器件放置要考虑散热:主发热元件靠近出风口,大体积元件的放置避开风路*BGA封装的元器件的放置要避免于PCB正中间等易变形区,元器件排列尽可能整齐(左右对齐)*极性方向力求相同。
排列在一起的小元件(电阻、电容、电感、二极管等),其标号尽可能连续。
/////////////光学点的放置*光学点用于SMT器件焊接定位用,为直径40mil的无孔无阻焊层焊盘。
*PCB板至少需二个以上的光学点,且须对角放置*BGA封装的器件及引脚数多于100(含100)条的其他封装器件,其对角线必须放置一对光学点。
*光学点应放置在器件外围5mm以内。
*光学点周围3mm之内不可放置任何元件.///////////////电源滤波*电源引入处必须考虑低频和高频的滤波。
*低频滤波电容均匀分布在PCB上,每个大功率器件应安装一个16uF以上的电解电容或钽电容;并由其所放位置处负载的特性及纹波要求确定适当的容值,ESR和ESL。
*元器件的每个(组)电源/地均应安装至少一个高频滤波电容。
*当元器件或模组的工作频率较高时要在相应的高频滤波电容靠系统电源端加电感或磁磁珠.*高频滤波电容必须靠近器件的电源/地引脚。
线宽及间距*尽可能保持宽线宽,所有布线必须8mil以上,特殊情况需要主管同意。
*常规线宽10mil以上。
*在BGA封装的元件面/焊接面的内层焊接球允许使用8mil引出,其他情况应使用10mil。
*模拟信号线的线宽12mil以上。
*线/线间距(外延):≥8mil*线/孔间距(外延):≥8mil*孔/孔间距(外延):≥8mil*总线中的线/线间距(外延):≥12mil///////////////////////////////高频时钟*高频时钟(20MHz以上的时钟,或上升沿少于5ns的时钟)必须有地线护送。
*时钟的线宽至少10mil,护送地线的线宽至少20mil。
高频信号线的保护地线两端必需由过孔与地层相连,且每5cm左右要打过孔与地层相连。
*时钟发送侧必须串接一个22-220欧姆左右的阻尼电阻。
地线护送,与数据线基本等长, 在发送侧加阻尼电阻,不走直角,手工布线...////////////////////差分信号差分信号要求在同一层上且尽可能的靠近平行走线,差分信号之间不允许插入任何信号。
并要求等长。
////////////////////PCB分层考虑*在有类似的评估板参考时,按照评估板进行。
*在多层板时,建议:–元件面、焊接面:敏感信号线–第二层、倒数第二层:地/电源层–没有电源/地平面隔离的两个信号层的信号走向尽可能的垂直。
*多电源环境下,不能每种电源一层,尽可能减少不同电压电源层相互覆盖。
*有BGA芯片时合理安排出线,减少PCB层数\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\信号完整性及电磁兼容要求1)高频时钟建议采用点对点连接或采用星型连接;采用T型连接时要保证等臂长;尽量减少过孔(Via)数量。
2)终端匹配用于终端匹配的电容、上拉电阻、下拉电阻、串接电阻等的布线、布局规则要参考评估板的设计。
该靠近driver或receiver侧的必须靠近driver或receiver,该放在receiver之前或之后的必须放在receiver之前或之后。
3)高频数字总线频率在50MHz以上的高频数字总线,应尽可能考虑总线中的每条信号线均串接一个22-300欧姆左右的阻尼电阻,频率在75MHz以上时,必须串接阻尼电阻。