5x5,高斯,整数模板
1.8高斯函数
高斯函数本节我们约定:全体实数的集合简称实数集,记作R 不超过实数x 的最大整数记作[]x 。
例如,[]3π=,2=⎡⎤⎣⎦1,[]-1.3=-2。
函数[],y x x R =∈叫做高斯(Grauss )函数.值得注意的是,高斯函数通常也叫做取整函数.因此常出现类似[]-1.3=-1的错误.显然[]x 是整数,且满足[][]11x x x x -<≤<+,当且仅当x 为整数时“=”成立。
请读者自己画出函数[]y x =的图像,并说明图像的特征。
高斯函数有如下性质。
性质1 函数[]y x =是不减函数,即若12x x ≤,则有[][]12x x ≤。
证明:由定义知[]11x x ≤,又12x x ≤,故[]12x x ≤,这说明[]1x 是不超过2x 的一个整数,而[]2x 是不超过2x 的最大整数,所以[][]12x x ≤性质2 若n 是整数,则[][]x n n x +=+,即整数可以从方括号中提出。
性质3 [][][],()1.()x x z x x x z ⎧-∈⎪-=⎨--∉⎪⎩证明:当x 是整数时,显然有[][]x x -=-;当x 不是整数时,设[](01)x x αα=+<<,则[][]1(1),x x x αα-=--=--+-故[][]1(1)x x α⎡⎤-=--+-⎣⎦[]()11x α=--+-⎡⎤⎣⎦[]1x =--性质4 若[][]x y =,则1x y -<.证明:设[][](01),(01),x x y y ααββ=+≤<=+≤<两式相减,得[][]()()x y x y αβαβ-=+-+=-所以x y αβ-=-。
由01,01,αβ≤<≤<得1αβ-<, 故1x y -<性质5 [][][].x y x y +≤+证明:设[][](01),(01)x x y y ααββ=+≤<=+≤<,两式相加,得[][][][]()()().x y x y x y αβαβ+=+++=+++由02αβ≤+<,得[]0αβ+≥,所以[][][].x y x y +≤+性质6 若0,0x y ≥≥,则[][][].xy x y ≥证明:设[][](01),(01)x x y y ααββ=+≤<=+≤<, 则[][]0,0x x y y ≥≥≥≥,故[][]xy x y ≥,即[][]x y 为不超过xy 的一个整数,故[][][].xy x y ≥例1 若a bq r =+,其中,,,a b q r 均为正整数,且0r b ≤<,求证:a q b ⎡⎤=⎢⎥⎣⎦证明:因为bq r a=+所以(01)a r r a bbb=+≤<故a q b⎡⎤=⎢⎥⎣⎦例2[]x x x n =n n ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦若是实数,是正整数,则 [][][][][]:,1,n x<n(1),x x n x (1),1,1,n n x x ,=n n x x a a a a a n n a n a a a a a x a n ⎡⎤=≤<+≤+⎢⎥⎣⎦⎡⎤≤<+≤<+<<+⎢⎥⎣⎦⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦证明设则故从而即所以所以即定理1设x 是正实数,n 是正整数,则从1到x 的整数中,n 的 倍数有x n⎡⎤⎢⎥⎣⎦个:1,n x<(+1)n x n n 2n 3n,n x x x n n n x x n n x n x n ⎡⎤⎡⎤≤<+⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤•≤•⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎣⎦⎡⎤⎢⎥⎣⎦证明因为所以这还说明1到的整数中,的倍数有下列个,,……,,定理2在n !的标准分解式中,质因数p 的指数是12n n n h=+++().p p p k k k p n p +⎡⎤⎡⎤⎡⎤≤<⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦…… 证明:因为p 是质数,所以n !中p 的指数h 等于把2,3,4, ……, n 都分解成标准分解式后,各分解式中p 的指数的总和.由定理1可 知,在2,3,4,…,n 中有n p ⎡⎤⎢⎥⎣⎦个p 的倍数,有2n p ⎡⎤⎢⎥⎣⎦个2p 的倍数,……1k+1+22n n ===np p n n n h=+++p p p k k k k p n p +⎡⎤⎡⎤≤<⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦设,则……,所以……例3 求7在2 000!中的最高幂指数. 解:因为73 = 343 < 2 000 < 2 401=74而所以7在2 000!中的最高幂指数为285+40+5=330.例4 求2 001!中末尾0的个数.分析:因为10 = 2X5,所以2 001!中末尾0的个数相当于2 001 !的质因数分解式中2X5的个数.由于2<5,故2 001!的质因数分解式中所含2的个数要比含5的个数多(为什么?),因此只需考察2 001!中含有质因数5的个数. 解:因为625=54<2 001<55= 3 125,所以2 001!中含有质因数5的最高幂指数为 错误!未找到引用源。
c语言高精度运算模板
c语言高精度运算模板
好的,下面为你提供一个C语言高精度运算模板,包括高精度加法、减法和乘法:
高精度加法:直接对位相加,当某位超过10直接取模运算,然后下一位直接对加相应多出的数即可。
高精度减法:当输入的$ss1$小于$ss2$时,需要交换两者的顺序,并率先输出一个负号。
然后执行循环,在循环中如果$a(i)<b(i)$,则直接向下一位借位,然后本位加10,$a(i)$加10。
高精度乘法:使用双重循环,$c$下标对应关系为$i+j-1$($i=j=1$开始)。
在循环中,将$a(i)$和$b(j)$相乘后的结果累加到$c(i+j-1)$中。
你可以根据实际需求对模板进行修改和调整,以满足不同的计算需求。
如果你还有其他问题,请随时向我提问。
10下4高斯函数
x∈ Z, x∉ Z, x∈ Z, x ∉ Z;
探索: 探索: [ x-y]与[ x]-[ y]之间的关系 与 之间的关系 (1)证:∵[ x] ≤ x ≤ y < [ y] +1 , ∴ [ x] ≤ [ y].
严格不等式 !
( 4 ) [x] + [y] ≤ [x+y] ≤[x] + [y] +1,其中等号有 且仅有一个成立 ; 0≤{x + y}≤{x}+{y }.
n − 1 1 2 [ x] + x + + x + + L + x + = [ nx ]. n n n 这里 x ∈ R + , n ∈ Z + .
( 3)
证明思路1: 凑整: 证明思路 凑整: 等式左边可以分成两部分: 等式左边可以分成两部分:一是 x 的整数部分相 加.二是由 x 的小数部分加上 i / n ( i =1, 2, …, n- - 1), 然后取整得到的.再与右边比较。 然后取整得到的.再与右边比较。 证明思路2: 证明思路 :函数思想 ( 构造函数 f(x) 为等式右侧减
末尾连续地有24位全是数字 位全是数字0. 故100! 末尾连续地有 位全是数字 .
100!=9332621544394415268169923885626670049071596826438162146859 29638952175999932299156089414639761565182862536979208272237582 ∞ n 51185210916864000000000000000000000000 m m=1 p
第七节 高斯函数[x] 高斯函数[
四川大学数字图像处理.总复习
19
图像平滑滤波
• 均值滤波、中值滤波
高斯 噪声
椒盐 噪声
5x5均值滤波
3x3中值滤波
20
均值滤波vs.中值滤波
• 均值滤波和中值滤波是两种常用的平滑滤 波方法,用于去除图像中的噪声
主要计算 适合应用 图像模糊 细线损害
均值滤波
平均
去除高斯 噪声
严重
轻微
中值滤波
排序
去除脉冲、 基本不存
椒盐噪声
在
– 常用的方法如亮度分割法和变换法
• 真彩色增强
– 针对真实的彩色图像 – 真彩色增强中常用HSI模型,将亮度分量I和色
度分量(色度H和饱和度S)进行分离,并对 亮度分量进行变换(按灰度图象增强方法)
25
图像压缩
• 凡是涉及到图像数据的传输、交换与存储的领域 均要求进行图像数据的压缩编码
• 图像压缩的可能性来自于图像数据中的冗余,包 括编码冗余、空间时间冗余、和心理视觉冗余等
严重
21
图像锐化滤波
• 锐化滤波的目的是突出图像中的细节或增 强被模糊了的细节
图像细节
边缘
灰度变化
微分/梯度
22
锐化算子
• 锐化算子是基于图像微分/梯度定义的模板,通过 与图像的模板卷积运算实现对图像边缘的增强或提 取(因此也称为边缘检测算子)
• 不同的锐化算子使用了不同的近似梯度计算方法
Prewitt算子
我们学了什么?
基本知识
数字图像处理绪论 图像知识和运算
图像增强处理
图像处理 与分析基 本技术
图像压缩编码 图像分割基本方法
图像分析
4
图像的基本概念
“像”是人的视觉 系统对图的接收在 大脑中形成的印象 或认识
有符号5位整数乘法器设计与制作
哈尔滨工业大学(威海)信息科学与工程学院EDA课程设计报告有符号5位整数乘法器设计与制作指导老师:胡屏学生班级:0802102学生姓名:傅愉学生学号:0802102102009年11月10日目录1.课程设计的性质、目的和任务 (1)2.题目要求 (1)3.总体设计 (1)3.1算法设计 (1)3.2整体框图及原理 (2)4.电路设计 (4)4.1 乘法器总体电路原理图: (4)4.2分时输入模块电路图: ........................................................... - 5 -4.3乘法运算电路图: (6)4.4阀门控制模块电路: ............................................................... - 9 -4.5计数单元电路图: ................................................................. - 12 -4.6数码管显示单元电路: ......................................................... - 14 -4.7报警电路示意: ......................................... 错误!未定义书签。
5.调试过程中出现的问题以及解决办法 .......................................... - 19 -6.心得体会........................................................................................... - 20 -7.建议:............................................................................................... - 21 -1.课程设计的性质、目的和任务创新精神和实践能力二者之中,实践能力是基础和根本。
各种边缘检测的比较
各类边缘检测算子的比较摘要:边缘检测是图像处理和计算机视觉中的基本问题,其目的标识数字图像中亮度变化明显的点。
图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。
有许多方法用于边缘检测,它们的绝大部分可以划分为两类:基于搜索和基于零交叉。
基于搜索的边缘检测算子有:Roberts算子,Prewitt算子,Sobel算子,Canny算子,罗盘算子。
基于零交叉的边缘检测算子有Marr-Hildreth边缘检测器。
本篇论文分析了各种检测算子的特点,并对各种边缘检测算法的检测结果进行了比较。
关键词:边缘检测;图像处理;算子0 引言图像边缘是图像的重要特征,是计算机视觉、模式识别等的基础,因此边缘检测是图像处理中一个重要的环节。
然而,图像边缘受很多因素的影响。
这些包括(i)深度上不连续、(ii)表面方向不连续、(iii)物质属性变化和(iv)场景照明变化。
目前,常用的边缘检测算法没有哪一种具有绝对的优越性。
因此,对各种边缘检测算子的性能进行比较分析,根据图像边缘的特征选择比较合理的边缘检测显得尤为重要。
1 基于搜索的边缘检测算子基于搜索的边缘检测方法首先计算边缘强度,通常用一阶导数表示,例如梯度模;然后,用计算估计边缘的局部方向,通常采用梯度的方向,并利用此方向找到局部梯度模的最大值。
1.1 Roberts算子Roberts算子【1】是一种利用局部差分算子寻找边缘的算子,它由下式给出 :g ( x , y) = [ f ( x , y) - f ( x + 1 , y + 1) ]2 +[ f ( x + 1 , y) - f ( x , y + 1) ]2(1)其中 f ( x , y ) 、 f ( x + 1 , y ) 、 f ( x , y + 1) 和 f ( x + 1 , y + 1) 分别为 4领域的坐标,且是具有整数像素坐标的输入图像。
Roberts算子是2X 2 算子模板。
空间域滤波器(实验报告)
数字图像处理作业——空间域滤波器摘要在图像处理的过程中,消除图像的噪声干扰是一个非常重要的问题。
本文利用matlab软件,采用空域滤波的方式,对图像进行平滑和锐化处理。
平滑空间滤波器用于模糊处理和减小噪声,经常在图像的预处理中使用;锐化空间滤波器主要用于突出图像中的细节或者增强被模糊了的细节。
本文使用的平滑滤波器有中值滤波器和高斯低通滤波器,其中,中值滤波器对去除椒盐噪声特别有效,高斯低通滤波器对去除高斯噪声效果比较好。
使用的锐化滤波器有反锐化掩膜滤波、Sobel边缘检测、Laplacian边缘检测以及Canny算子边缘检测滤波器。
不同的滤波方式,在特定的图像处理应用中有着不同的效果和各自的优势。
1、分别用高斯滤波器和中值滤波器去平滑测试图像test1和2,模板大小分别是3x3 , 5x5 ,7x7;利用固定方差 sigma=1.5产生高斯滤波器. 附件有产生高斯滤波器的方法。
实验原理分析:空域滤波是直接对图像的数据做空间变换达到滤波的目的。
它是一种邻域运算,其机理就是在待处理的图像中逐点地移动模板,滤波器在该点地响应通过事先定义的滤波器系数与滤波模板扫过区域的相应像素值的关系来计算。
如果输出像素是输入像素邻域像素的线性组合则称为线性滤波(例如最常见的均值滤波和高斯滤波),否则为非线性滤波(中值滤波、边缘保持滤波等)。
空域滤波器从处理效果上可以平滑空间滤波器和锐化空间滤波器:平滑空间滤波器用于模糊处理和减小噪声,经常在图像的预处理中使用;锐化空间滤波器主要用于突出图像中的细节或者增强被模糊了的细节。
模板在源图像中移动的过程中,当模板的一条边与图像轮廓重合后,模板中心继续向图像边缘靠近,那么模板的某一行或列就会处于图像平面之外,此时最简单的方法就是将模板中心点的移动范围限制在距离图像边缘不小于(n-1)/2个像素处,单处理后的图像比原始图像稍小。
如果要处理整幅图像,可以在图像轮廓边缘时用全部包含于图像中的模板部分来滤波所有图像,或者在图像边缘以外再补上一行和一列灰度为零的像素点(或者将边缘复制补在图像之外)。
图像平滑与滤波
定义 均值滤波方法是,对待处理的当前像素,选择一个模板,该模板为其邻近的若干个像素 组成,用模板的均值来替代原像素的值的方法。
如下图,1~8 为(x,y)的邻近像素。
权系数矩阵模板
g = (f(x-1,y-1)+ f(x,y-1)+ f(x+1,y-1) + f(x-1,y) + f(x,y) + f(x+1,y) + f(x-1,y+1) + f(x,y+1) + f(x+1,y+1))/9 实例
如上图所示由二维高斯图像可知, 如上图所示由二维高斯图像可知 标准差越小, 二维高斯图像越窄小, 平滑效果不明显 平滑效果不明显; 标准差越大,而为高斯图像越矮宽 而为高斯图像越矮宽,滤波效果比较明显。 高斯滤波器模板的生成最重要的参数就是高斯分布的标准差 σ。 标准差代表着数据的离 散程度,如果 σ 较小,那么生成的模板的中心系数较大 那么生成的模板的中心系数较大,而周围的系数较小 而周围的系数较小,这样对图像的 平滑效果就不是很明显;反之 反之,σ 较大,则生成的模板的各个系数相差就不是很大 则生成的模板的各个系数相差就不是很大,比较类 似均值模板,对图像的平滑效果比较明显 对图像的平滑效果比较明显。 σ 越大,分布越分散,各部分比重差别不大 各部分比重差别不大,于是生成的模板各元素值差别不大 于是生成的模板各元素值差别不大,类似 于平均模板; σ 越小,分布越集中,中间部分所占比重远远高于其他部分 中间部分所占比重远远高于其他部分,反映到高斯模板上就是中 反映到高斯模板上就是中 心元素值远远大于其他元素值 于是自然而然就相当于中间值得点运算。 心元素值远远大于其他元素值,于是自然而然就相当于中间值得点运算 例如:要产生一个 3×3 的高斯滤波器模板(卷积核),以模板的中心位置为坐标原点进行 以模板的中心位置为坐标原点进行 取样。模板在各个位置的坐标 模板在各个位置的坐标,如下所示(x 轴水平向右,y 轴竖直向下)
高斯函数——精选推荐
⾼斯函数⾼斯函数⼀、定义对于任意R x ∈,[]x 是不超过x 的最⼤整数,称[]x 为x 的整数部分。
y=[]x 称为定义在实数集上的函数,即取整函数,⼜称为⾼斯函数。
由定义知,[]x x ≤,故[]0≥-x x ,称[]x x -为x 的⼩数部分,记作{}x 。
y={}x 称为x 的⼩数部分函数。
如[]23.2=,[]33.2-=-,[]025.0=;{}3.03,2=,{}7.03.2=-,{}25.025.0=,{}75.025.0=-。
⼆、性质1、[]x y =的定义域为R ,值域为Z ;{}x y =的定义域为R ,值域为[)1,0。
2、[][]11+<≤<-x x x x3、y=[x]是不减函数,即若21x x ≤,则[][]21x x ≤4、[x+n]=n+[x],{x+n}={x},其中x ∈R,n ∈N. 证明:因为n+x=n+[x]+{x}及0≤{x}<1, 所以n+[x]≤n+x5、[x+y]≥[x]+[y],其中x,y ∈R ,且{x}+{y}≥{x+y} 证明:x+y=[x]+[y]+{x}+{y},0≤{x}<1,0≤{y}<1 x+y=[x+y]+ {x+y}即[x]+[y]+{x}+{y}=[x+y]+ {x+y} 因为{x}+{y}≥{x+y}所以[x+y]≥[x]+[y]说明:{x}+{y}≥{x+y}是显然成⽴的。
0≤{x}+{y}<2 若{x},{y}都⼩于1/2⼀般地,[]∑∑==≥ni i n i i x x 11 ,R x i ∈,[][]x n nx ≥特别地,??≥?b a n b na ,N n ∈ 6、[][][]y x xy ?≥,其中+∈R y x ,,⼀般地有[]+==∈≥∏∏R x x x i ni i n i i ,11特别地[][]x x nn ≤,+∈R x7、[]??=n x n x ,其中N n R x ∈∈, [][]x n nx =,??=???mn x n m x 证明:(1)因为[][]11+<≤<-x x x x 所以[][])1(+<≤x n nx x n ,由性质5,[][][])1(+<≤x n nx x n 所以[][][]1+<≤x nnx x因此[][]x n nx =??。
边缘(edge)是指图像局部强度变化最显著的部分边缘主要.
梯度交叉算子
G[i, j ] f [i, j ] f [i 1, j 1] f [i 1, j ] f [i, j 1]
2X2梯度算子?
3X3梯度算子!
Sobel算子:
梯度幅值:
M
2 2 sx sy
其中的偏导数用下式计算:
2、术语定义 边缘点:在亮度显著变化的位置上的点.
边缘段:对应于边缘点坐标及其方位.
边缘检测器:从图像中抽取边缘集合的算法.
轮廓:边缘列表或一条表示边缘列表的拟合曲线.
边缘连接:从无序边缘表形成有序边缘表的过程.
边缘跟踪:一个用来确定轮廊的图像搜索过程.
Edge point, Edge segment, Edge detector, Boundary,
二阶方向导数
已知图像曲面,方向导数为
f f ( x, y ) f ( x, y ) sin cos x y
二阶方向导数为
2 f
2
2 f ( x, y) x 2
2 2 f ( x , y ) f ( x, y) 2 sin2 2 sin cos cos 2 xy y
基本步骤:
滤波:改善与噪声有关的边缘检测器的性能; 一般滤波器降导致了边缘的损失; 增强边缘和降低噪声之间需要折衷.
增强:将邻域强度值有显著变化的点突显出来. 边缘增强一般是通过计算梯度幅值来完成的.
检测:最简单的边缘检测判据是梯度幅值阈值
定位:边缘的位置和方位在子像素分辨率上估计。
Roberts算子:
第六章 边缘检测
• 边缘(edge)是指图像局部强度变化最显著的部分.边缘 主要存在于目标与目标、目标与背景、区域与区域(包括 不同色彩)之间, •图像分割、纹理特征和形状特征等图像分析的重要基 础. •图像强度的不连续可分为: (1) 阶跃不连续,即图像强度在不连续处的两边的像素灰 度值有着显著的差异; (2) 线条不连续,即图像强度突然从一个值变化到另一个 值,保持一较小行程后又回到原来的值.
5-5的高斯模板
竭诚为您提供优质文档/双击可除5*5的高斯模板篇一:高斯五点公式详细计算方法高斯五点公式详细计算方法ka1Ra,knb1Rb,kabkbka则p点坐标如下:xpxali12kabl2Ricosa(kalviVi 2lsn2kabl2Risina(kalviVi 2ls2ypyali1sp点方位角:apa(kalkabl2ls)式中:=起始方位角l=p点到a的距离l=曲线总长=p 点切线方位角p五节点系R数3:R1R50.1184634425444428095R2R40.239314335249683V11V50.0469100700.2844444444V21V40.2307653449V30.5四节点系数:R1=R4=0.1739274266R2=R3=0.3260725774V1=1-V4=0.0694318442V2=1-V3=0.330009478 2三节点系数:R1=R3=0.27777778R2=0.44444444V1=1-V3=0.1127016654V2=0.5其中:kla180lRalkarkabl22ls90l(RaRb)2lsRaRblr2kabr(2ls)(其中式中:=起始方位角l=p点到a的距离l=曲线总as长=p点切线方位角p起点a的曲率为k,终点b的曲率为k,R为曲线半径。
ab±表示曲线元的偏向,当曲线元左偏时取负号,当曲线元右偏时取正号。
公式推导:xnpxali1n2kabl2Ricosa(kalviVi)2ls=xakllRicosalvi(kaabVi)2lsi1na=x=x=x因lv (i1a(ab)l2abls li1Ricosalvi(1a(1b1a)l2lsVi)nali111()l1Ricosalvi(Via2ls)a1(ab)llRicosalvi(Vi)a2ablsi1nVi)计算出来是弧度,所以将其转换成度=xnali1180lvi1(ab)lRicosa(Vi)a2abls。
数字图像处理空域滤波
中值滤波器
中值滤波算法的特点:
(1)在去除噪音的同时,可以比较好地保
留边的锐度和图像的细节(优于均值滤波器)
(2)能够有效去除脉冲噪声:以黑白点
(椒盐噪声)叠加在图像上中。
中值滤波器
原图
3x3均值滤波
3x3中值滤波
实例
原图像
高斯噪声
高斯噪声图的5×5
十字中值滤波噪声
椒盐噪声
椒盐噪声图的5×5
两个重要性质:
(1)梯度的方向是在函数f(x,y)最大变化率方向上
(2)梯度的幅度用G[f(x,y)]表示:
对于数字图像,则用离散的式子表示
简化
f(i,j)
f(i+1,j)
f(i,j+1)
f(i,j)
f(i,j+1)
f(i+1,j) f(i+1,j+1)
Roberts梯度算子
结论
梯度的近似值和相邻象素的灰度差成正比,因此在图
k0
k1
s6
s7
s8
k6
k7
k8
y
R
X
0
x
(a)
X
0
(b)
模板的输出为: R k0 s0 k1s1 k8 s8
x
(c)
平滑空域滤波器
作用
(1)模糊处理:去除图像中一些不重要
的细节。
(2)减小噪声。
平滑空间滤波器的分类
(1)线性滤波器:均值滤波器
(2)非线性滤波器
最大值滤波器
-1
-1
-1
-1
0
1
0
0
0
-1
0
opencv——边缘检测算法(总结)
opencv——边缘检测算法(总结)前⾔耐⼼看完⼀定会有收获的,⼤部分内容也会在代码中体现,结合理论知识和代码进⾏理解会更有效。
代码⽤opencv4.5.1(c++)版实现⼀、边缘检测算法边缘检测算法是指利⽤灰度值的不连续性质,以灰度突变为基础分割出⽬标区域。
对铝铸件表⾯进⾏成像后会产⽣⼀些带缺陷的区域,这些区域的灰度值⽐较低,与背景图像相⽐在灰度上会有突变,这是由于这些区域对光线产⽣散射所引起的。
因此边缘检测算⼦可以⽤来对特征的提取。
1、⼀阶算⼦⼀种是基于⼀阶微分的算⼦,也称基于搜索的算⼦,⾸先通过⼀阶导数计算边缘强度,然后采⽤梯度的⽅向来对边缘的局部⽅向进⾏寻找,同时根据该⽅向来寻找出局部梯度模的最⼤值,由此定位边缘,如Roberts Cross算⼦,Prewitt算⼦Sobel算⼦,Kirsch算⼦,Canny算⼦,罗盘算⼦等;图像中的边缘区域,像素值会发⽣“跳跃”,对这些像素求导,在其⼀阶导数在边缘位置为极值,这就是Sobel算⼦使⽤的原理——极值处就是边缘。
2、⼆阶算⼦另⼀种是基于⼆阶微分的算⼦,也称基于零交叉的算⼦,通过寻找由图像得到的⼆阶导数的过零点来定位检测边缘,如Marr-Hildreth算⼦,Laplacian算⼦,LOG算⼦等。
如果对像素值求⼆阶导数,会发现边缘处的导数值为0。
⼆、⼀阶算⼦分析⼀阶微分算⼦进⾏边缘检测的思路⼤致就是通过指定⼤⼩的核(kernal)(也称为算⼦)与图像进⾏卷积,将得到的梯度进⾏平⽅和或者最⼤值作为新的梯度赋值给对应的像素点,不同的⼀阶微分算⼦主要的不同在于其算⼦即核的元素不同以及核的⼤⼩不⼀样以下是连续函数的⼀阶导数求导公式:因为图像是⼀个⾯,就相当于是灰度值关于x,y两个⽅向的函数,要求某⼀点的导数,则是各个⽅向的偏导数的平⽅和再进⾏开⽅运算。
离散函数的⼀阶导数公式:y'=[y(x0+h)-y(x0-h)]/(2h);这是⼀维函数的⼀阶求导,h是步长,在图像处理中⼀般为1⾸先复习⼀下什么是卷积?卷积就是对应的元素相乘再进⾏累加的过程实例图⽚:1、Roberts算⼦Robert算⼦是⽤于求解对⾓线⽅向的梯度,因为根据算⼦GX和GY的元素设置可以看到,只有对⾓线上的元素⾮零,其本质就是以对⾓线作为差分的⽅向来检测。
高斯滤波
Gaussian Filters
高斯平滑滤波分析
华侨大学机电学院
1
高斯滤波
Gaussian Filters 高斯平滑滤波分析
图像与噪声
图像滤波
高斯平滑滤波
参考文献 华侨大学机电学院
2
高斯滤波
Gaussian Filters
1
图像与噪声
1.1 图像 一幅原始图像在获取和传输过程中会受到各种噪 声的干扰,使图像质量下降,对分析图像不利。 声的干扰,使图像质量下降,对分析图像不利。反映 到画面上,主要有两种典型的噪声。 到画面上,主要有两种典型的噪声。一种是幅值基本 相同,但出现的位置很随机的椒盐噪声。 相同,但出现的位置很随机的椒盐噪声。另一种则每 一点都存在,但幅值随机分布的随机噪声。 一点都存在,但幅值随机分布的随机噪声。为了抑制 噪声、改善图像质量,要对图像进行平滑处理。 噪声、改善图像质量,要对图像进行平滑处理。
华侨大学机电学院
11
高斯滤波
Gaussian Filters { for(j=0;j<N+1;j++) { Itemp[(N+i)*(2*N+1)+(N+j)] =int(Ftemp[i*(N+1)+j]*C+0.5); } } for(i=N;i<2*N+1;i++) //给模板左下角付值 给模板左下角付值 { for(j=0;j<N+1;j++) { Itemp[i*(2*N+1)+j] =Itemp[i*(2*N+1)+(2*N-j)]; } } for(i=0;i<N;i++) //给模板上半部分付值 给模板上半部分付值 { for(j=0;j<2*N+1;j++) { Itemp[i*(2*N+1)+j] =Itemp[(2*N-i)*(2*N+1)+j];} } for(i=0;i<2*N+1;i++) //计算总的系数 计算总的系数 { for(j=0;j<2*N+1;j++) { Cof +=(float )Itemp[i*(2*N+1)+j]; } } Cof=(float)( 1.0/Cof);
数字图像处理第四次作西安交大
数字图像处理第四次作业姓名:班级:学号:提交日期:摘要本次作业学习了空域滤波器的使用,并且学习了如何产生高斯函数。
通过对实验结果的分析可以发现高斯函数对于细小的噪声优化效果较好,而中值滤波对于大噪声也有一定的优化效果。
而后面的边缘提取作业,很明显的可以看出使用Canny算子的图片处理效果要好很多,虽然仍旧存在边缘不连续的问题,但是整体的边缘已经提取了出来。
一、空域低通滤波器:分别用高斯滤波器和中值滤波器去平滑测试图像test1和2,模板大小分别是3x3 ,5x5 ,7x7;(利用固定方差sigma=1.5产生高斯滤波器)(一)中值滤波器:一个数值集合的中值n是这样的数值,即数值集合中有一半小于或等。
于n,还有一半大于或等于n。
为了对一幅图像上的某点进行中值滤波处理,首先将领域内的像素分类排序,确定其中值,并将中值赋予滤波后图像中的相应像素点。
这样,中值滤波器的主要公式是使拥有不同灰度的点看起来更接近于它的相邻点。
事实上,我们使用mxm中值滤波器来去除那些相对于其领域像素更亮或更暗并且其区域小于m^2/2(滤波区域的一半)的鼓励像素族。
在这种情况下,“去除”的意思是强制为领域的中值灰度。
较大的族所受到的影响明显较小。
程序运行结果:结果观察:通过运行结果可以看出从处理后的图像看,图像的平滑效果较为明显,且受窗口的影响,窗口越大,平滑效果越明显,图像细节越模糊,尤其是test2中人脸图像的眼睛部分,随着滤波器模板的增大,可以明显的感受到图像模糊的效果。
这三个模板中,感觉5x5的模板滤波效果最好。
(二)高斯滤波器:(1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的。
一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向。
(2)高斯函数是单值函数。
这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的。
1高斯函数
第一讲:高斯函数 1第一讲:高斯函数高斯函数是数论中的重要函数,从小学、初中、高中,直到大学的各级、各类数学竞赛均有涉及,是数学竞赛极独特的内容.定义:[x]表示不超过实数x 的最大整数.则y=[x]称为高斯函数,也叫取整函数.由任一实数都能写成整数部分与非负纯小数之和,即x=[x]+α(0≤α<1),这里,[x]称为x 的整数部分,而α,即x-[x]称为x 的小数部分,记{x}=x-[x].函数性质:①高斯函数y=[x]的定义域是R,值域是Z;函数y={x}的定义域是R,值域是[0,1);②函数y=[x]与y=x-[x],即y={x}的图像分别为:③函数y=[x]是一个分段表达的不减的无界函数,即当x 1≤x 2时,有[x 1]≤[x 2];y={x}是一有界、周期为1的非单调函数;等式性质:①[n+x]=n+[x],{x+n}={x},其中x ∈R,n ∈Z;②[-x]=⎩⎨⎧∉--∈-)(1][)]([Z x x Z x x ;③若n ∈N +,x ∈R,则[n nx ][]=[x],特别地,[n x ][]=[n x],[nm x][]=[mn x ](证明:由x-1<[x]≤x<[x]⇒n[x]≤nx<n([x]+1)⇒[x]≤[n nx ][]>[x]+1⇒[n nx ][]=[x])不等性质:①若x ∈R,则x-1<[x]≤x<[x]+1;②若x,y ∈R,则[x+y]≥[x]+[y],且{x}+{y}≥{x+y},一般地,若x i ∈R,则[∑=ni i x 1]≥∑=ni i x 1][,特别地,[nx]≥n[x],[b na ]≥n[b a ];③若x,y ∈R +,则[xy]≥[x][y],特别地,][][y x ≥[yx],一般地,若x i ∈R +,则[∏=ni i x 1]≥∏=ni i x 1][,特别地,[x n ]≥[x]n ,[x]≥[n x ]n;厄米特恒等式:若x ∈R,n ∈N 6,则[x]+[x+n 1]+[x+n 2]+…+[x+nn 1-]=[nx]; 证明:引入辅助函数f(x)=[nx]-([x]+[x+n 1]+[x+n 2]+…+[x+n n 1-])⇒f(x+n 1)=[nx+1]-([x+n 1]+[x+n2]+…+[x+n n 1-]+[x+n 1+n n 1-])=[nx]+1-([x+n 1]+[x+n 2]+…+[x+n n 1-]+[x]+1)=f(x)⇒f(x)是一个以n1为周期的周期函数,而当x ∈[0,n1]时,直接计算知f(x)=0.故对任意x ∈R,厄米特等式成立. 1.函数性质:[例1]:(2010年全国高中数学联赛天津预赛试题)若关于x 的函数f(x)=|x-[x+a]|存在最大值M(a),则正实数a 的取值范是 (其中[x]表示不超过x 的最大整数).[解析]:设x+a=n+α,其中,n ∈Z,0≤α<1,则f(x)=|x-[x+a]|=|n+α-a-n|=|α-a|;①当0<a<21时,由-a ≤α-a<1-a,因|1-a|>|-a|⇒f(x)无最大值;②当a ≥21时,由-a ≤α-a<1-a,因|1-a|≤|-a|⇒f(x)有最大值.故a 的取值范是[21,+∞).[练习1]:2 第一讲:高斯函数1.(1994年全国高中数学联赛河北预赛试题)设f(x)=xa +11-21,且[m]表示不超过m 的最大整数,则[f(x)]+[f(-x)]的值域是 .2.(2012年全国高中数学联赛甘肃预赛试题)设f(x)=⎩⎨⎧>-≤-)0)(1()0]([x x f x x x ,其中[x]表示不超过x 的最大整数,若f(x)=kx+k(k>0)有三个不同的实数根,则实数k 的取值范围是 .3.(2008年全国高中数学联赛湖南预赛试题)某学校数学课外活动小组,在坐标纸上某沙漠设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,x k =x k-1+1-5[51-k ]+5[52-k ],y k =y k-1+[51-k ]-[52-k ].其中,[a]表示实数a 的整数部分,例如[206]=2,[0.6]=0.按此方案,第2008棵树种植点的坐标为 .2.求值问题:[例2]:(1993年全国高中数学联赛试题)整数[310103193+]的末两位数是_______.[解析]:由[310103193+]=[3103)310(313393+-+]=[(1031)2-1031×3+32-3103313+]=(1031)2-1031×3+32-1=1031(1031-3)+8⇒末两位数是08.[练习2]:1.(2006年上海市TI 杯高二年级数学竞赛试题)有一个根据某年某月某日计算“星期几”的有趣公式:d+[2.6m-0.2]+y+[4y]+ 月份 1 2 3 4 5 6 7 8 9 10 11 12[4c]-2c 除以7的余数,其中,c 表示年的前两位数字(即世纪),y 表示年的后两位数字,d 表示日,m 表示月对应的数字(见表). [x]表 示不于x 的最大整数.则2008年6月18日是星期 .2.①(2008年北京市中学生数学竞赛高一年级初试试题)以[x]表示不超过x 的最大整数,试确定[sin1]+[sin2]+[sin3]+ [sin4]+[sin5]的值.②(2011年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[sin1]+[cos2]+[tan3]+[sin4]+[cos5] +[tan6]= .3.①(2005年上海市高中数学竞赛试题)设[x]表示不超过实数x 的最大整数,求集合{n|n=[20052k ],1≤k ≤2004,k ∈N}的元素个数.②(2010年全国高中数学联赛山西预赛试题)设a n =21⋅+32⋅+…+)1(+n n ,则[na n2]= . ③(2011年全国高中数学联赛福建预赛试题)对正整数n,设x n 是关于x 的方程nx 3+2x-n=0的实数根,记a n =[(n+1)x n ](n= 2,3,…)([x]表示不超过x 的最大整数).则10051(a 2+a 3+…+a 2011)= . ④(2007年全国高中数学联赛四川预赛试题)[x]表示不超过实数x 的最大整数,比如[3.14]=3,[0]=0,[-3.14]=-4.数列满足{a n }:a n =3n-2,若b n =[5na ],则b 1+b 2+…+b 2007= . 3.求和问题:[例3]:(2012年全国高中数学联赛河南预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+ 第一讲:高斯函数 3[log 22012]= .[解析]:我们来解决一般性问题:设a ∈N +,且a ≥2,求和[log a 1]+[log a 2]+[log a 3]+…+[log a n].当a t≤k<a t+1时,[log a k]=t,t=0,1,2,…,且在区间[a t,a t+1)中的正整数有(a-1)a t个.并设a m≤n<a m+1,n=a m+b(b ∈N +),则 [log a 1]+[log a 2]+[log a 3]+…+[log a n]=(a-1)[0×a 0+1×a+2×a 2+…+(m-1)×a m-1]+mb=(a-1){[1-a a (m-1)-2)1(-a a ]a m-1+ 2)1(-a a }+mb=[a(m-1)-1-a a ]a m-1+1-a a +m(b+1) 回到本题:a=2,由210<2012<211⇒m=10,由2012-210=2012-1024=988⇒b=988⇒和为(2×9-2)29+2+10×989=18084.[练习3]:对应的m 值 11 12 1 2 3 4 5 6 7 8 9 101.①(2008年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+[log 2500]= .②(2010年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[lg1]+[lg2]+[lg3]+…+[lg2010]= . ③(2009年北京市中学生数学竞赛高一年级初试试题)[x]表示不超过x 的最大整数,若[log 36]+[log 37]+[log 38]+…+ [log 3(n-1)]+[log 3n]=2009,试确定正整数n 的值.④(1991年第二届“希望杯”全国数学邀请赛试题){x}表示不小于实数x 的最小整数,则{log 21}+{log 22}+…+{log 21991} = .2.①(1990年第一届“希望杯”全国数学邀请赛试题)设[x]表示不超过x 的最大整数,则[1]+[2]+[3]+…+ [19901989⋅]+[-1]+[-2]+[-3]+…+[-19901989⋅]的值是 .②(2012年北京市中学生数学竞赛高中一年级初赛试题)若[x]表示不超过x 的最大整数,求满足方程[nlg2]+[nlg5]=2012的自然数n 的值.3.①(2012年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则∑+=+201201]222012[k k k = .②(2012年全国高中数学联赛福建预赛试题)对正整数x,记m=[2x ]+[22x ]+[32x ]+…+[k x 2],其中k 为满足2k≥x 的最小整数,符号[x]表示不超过x 的最大整数.x 与m 的差,即x-m 称为正整数x 的“亏损数”.(如x=100时,m=[2100]+[22100]+…+ [72100]=97,x-m=3,因此,数100的“亏损数”为3).则“亏损数”为9的最小正整数x 为________.4.方程问题:[例4]:(1995年全国高中数学联赛试题)用[x]表示不大于实数x 的最大整数,方程lg 2x-[lgx]-2=0的实根个数是_____.[解析]:由x ≥[x],lg 2x-[lgx]-2=0⇒lg 2x-2=[lgx]≤lgx ⇒-1≤lgx ≤2⇒[lgx]=-1,0,1,2;当[lgx]=-1时,lg 2x=1⇒lgx=-1;当[lgx]=0时,lg 2x=2⇒lgx=±2,无解;当[lgx]=1时,lg 2x=3⇒lgx=3;当[lgx]=2时,lg 2x=4⇒lgx=2⇒实根个数是3.[练习4]:1.①(2007年全国高中数学联赛湖北预赛试题)设[x]表示不大于x 的最大整数,集合A={x|x 2-2[x]=3},B={x|81<2x<8},则A ∩B= .②(2008年全国高中数学联赛江苏预赛试题)设集合A={x|x 2-[x]=2}和B={x||x|<2},其中符号[x]表示不大于x 的最大整数,则A ∩B= .③(1999年全国高中数学联赛广西预赛试题)[tanx]表示不超过tan 的最大整数,则方程[tanx]=2cos 2x 的解为 . ④(2009年上海市高中数学竞赛试题)若[a]表示不超过实数a 的最大整数,则方程[tanx]=2sin 2x 的解是 .2.①(2006年全国高中数学联赛湖南预赛试题)对于实数x,当且仅当n ≤x<n+1(n ∈N +)时,规定[x]=n.则不等式4[x]2-36[x] +45<0的解集为 .4 第一讲:高斯函数②(2009年全国高中数学联赛山东预赛试题)对任意的x ∈R,[x]表示不大于x 的最大整数,则满足[|x 2-1|]=10的x 的集合是( )(A)(-23,-11) (B)[11,23] (C)(-23,-11]∪[11,23) (D)[-23,-11)∪(11,23] ③(2009年全国高中数学联赛福建预赛试题)方程x [x]=29的实数解是 (其中[x]表示不超过x 的最大整数). 3.①(2011年全国高中数学联赛内蒙古预赛试题)方程x 2-8[x]+7=0的所有解为 .②(2007年第十八届“希望杯”全国数学邀请赛试题)若[x]表示不超过x 的最大整数,且x 2-2008[x]+2007=0,则[x]的值是 .③(1992年第三届“希望杯”全国数学邀请赛试题)[x]表示不超过实数x 的最大整数,则方程[3x-465]-2x-1=0的解是 .④(2011年全国高中数学联赛四川预赛试题)设x 为实数,定义[x]为不小于x 的最小整数,例如[π]=4,[-π]=-3,关于实数x 的方程[3x+1]=2x-21的全部实根之和等于 . 5.方程综合:[例5]:(1998年加拿大数学奥林匹克试题.2009年全国高中数学联赛安徽预赛试题)求方程[2x ]+[3x ]+[7x ]=x 的所有解([a]表示不超过实数a 的最大整数).[解析]:由方程知解x 是整数,设x=42p+q(p ∈Z,q ∈{0,1,…,41}),则(21p+[2q])+(14p+[3q ])+(6p+[7q ])=42p+q ⇒[2q ]+[3q ]+[7q]=p+q ⇒q=0,p=0,x=0;q=1,p=-1,x=-41;q=2,p=-1,x=-40;q=3,p=-1,x=-39,…,因此,方程的解集为{0, -6,-l2,-14,-18,-20,-21,-24,-26,-27,-28,-30,-32,-33,-34,-35,-36,-38,-39,-40,-41,-44,-45,-46,-47,-49,-50,- 51,-52,-53,-55,-57,-58,-59,-61,-64,-65,-67,-71,-73,-79,-85}.[练习5]:1.(2010年全国高中数学联赛福建预赛试题)将方程x 3-3[x]=4的实数解从小到大排列得x 1,x 2,…,x k ,则x 13+x 23+…+x k 3的值为 ([x]表示不超过x 的最大整数).2.①(1989年上海市高中数学竞赛试题)设[x]表示x 的整数部分,{x}=x −[x],则方程[x 3]+[x 2]+[x]={x}−1的所有实数根是 .②(1991年上海市高中数学竞赛试题)求满足[x 2−2x]=[x]2−2[x]的一切实数x.其中[x]表示不超过x 的最大整数. ③(1993年上海市高中数学竞赛试题)自然数x 使得[x]+[!x 3]+[!x 5]+[!x7]=1993.则x=_____. 3.①(2007年上海市TI 杯高二年级数学竞赛试题)求正整数n,使得[log 31]+[log 32]+[log 33]+[log 34]+…+[log 3n]=2007.其中[x]表示不超过x 的最大整数.②(2009年上海市TI 杯高二年级数学竞赛试题)对整数n>1,设x=1+21+…+n1,y=lg2+lg3+…+lgn.则满足[x]=[y]的所有整数n 构成的集合为 ([a]表示不超过实数a 的最大整数).6.方程应用:[例6]:(1989年全国高中数学联赛试题)一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为__________. [解析]:设该数为x,则(x-[x])x=[x]2⇒x=251+[x](x>0);由0<x-[x]<1⇒0<215-[x]<1⇒0<[x]<251+<2⇒[x]=1 第一讲:高斯函数 5⇒x=251+. [练习6]:1.(2009年全国高中数学联赛江苏预赛试题)设a 是整数,0≤b<1.若a 2=2b(a+b),则b= . 注:本题也可以这样说:求实数x,使[x]2=2{x}x.2.①(2011年全国高中数学联赛甘肃预赛试题)设[x]表示不超过实数x 的最大整数,则在平面上,由满足[x]2+[y]2=50的点所形成的图形的面积是 .②(2011年北京市中学生数学竞赛高一年级初试试题)若[x]表示不超过x 的最大整数.求在平面直角坐标系xOy 中满足[x][y]=2011的所有点(x,y)组成的图形的面积.③(2012年全国高中数学联赛新疆预赛试题)[x]表示不超过实数x 的最大整数,则在平面直角坐标系xOy 中,满足[x][y]=2013的所有点(x,y)组成的图形面积为 .3.①(2009年全国高中数学联赛新疆预赛试题)数(3+8)2n (n ∈N +),且n ≥2009,设[x]为x 的整数部分,则[(3+8)2n]除以8的余数是( )(A)1 (B)3 (C)4 (D)7②(2009年全国高中数学联赛吉林预赛试题)(2+3)2010的小数点后一位数字是 .7.等式问题:[例7]:(1987年第19届加拿大数学奥林匹克试题)对每一个正整数n,证明:[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[解析]:设正整数m 满足:m 2>4n+1;若m 为偶数,则m 2=4k>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+4>4n+3;若m 为奇数,则m 2=4k+1>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+5>4n+3;综上m 2>4n+3,即m>34+n ;特别地,取m=[14+n ]+1,满足:m 2>4n+1,则m>34+n⇒[14+n ]+1>34+n >14+n ≥[14+n ]⇒[34+n ]=[14+n ]⇒[14+n ]=[24+n ]=[34+n ];因(n +1+n )2=2n+1+2)1(+n n >2n+1+2n=4n+1⇒n +1+n >14+n ⇒[n +1+n ]≥[14+n ];且(n +1+n )2=2n+1+2)1(+n n <2n+1+2(n+1)=4n+3⇒n +1+n <34+n ⇒[n +1+n ]<[34+n ]⇒[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[练习7]:1.①(1981年第44届莫斯科数学奥林匹克试题)试问:对x>1,下面的等式[][x ]=[x ]一定能成立吗?②(1948年第8届普特南数学奥林匹克试题)如果n 为一正整数,试证:[n +1+n ]=[24+n ]. 2.①(1991年第9届美国数学邀请赛试题)设r 是实数,且满足条件[r+10019]+[r+10020]+…+[r+10091]=546.求[100r]. ②(1981年第13届加拿大数学奥林匹克试题)试证方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12354没有实数解. 3.(1989年国家理科试验班入学考试试题)通项为a n =b[c n +]+d 的数列{a n }:1,3,3,3,5,5,5,5,5,…,其中每一个正奇数m 恰好连续出现m 次.上述b 、c 、d 是侍定的整数,求b+c+d 的值.8.不等问题:[例8]:(1981年美国数学奥林匹克试题)对正整数n 和一切实数x.求证:[nx]≥1][x +2]2[x +…+nnx ][. [解析]:为方便,记a n =1][x +2]2[x +…+nnx ][.用数学归纳法证明:①当n=1时,a 1=[x],[nx]=[x]⇒原不等式成立;②假设当k<n 时,原不等式均成立,即a 1≤[x],a 2≤[2x],…,a n-1≤[(n-1)x];注意到:a k -a k-1=kkx ][⇒ka k -ka k-1=[kx]⇒na n =a 1+(2a 2-a 1) 6 第一讲:高斯函数+(3a 3-2a 2)+…+[na n -(n-1)a n-1]=a 1+(2a 2-2a 1)+(3a 3-3a 2)+…+(na n -na n-1)+(a 1+a 2+…+a n-1)=[x]+[2x]+[3x]+…+[nx]+(a 1+a 2+…+a n-1)≤n[nx]⇒a n ≤[nx].[练习8]:1.(第10届地中海地区数学奥林匹克试题)设x 为大于1的实数.证明:(][}{x x x +-}{][x x x +)+(}{][x x x +-][}{x x x +)>29.2.(2005年国家集训队训试试题)求所有正整数m 、n,使得不等式[(m+n)α]+[(m+n)β]≥[m α]+[m β]+[n(α+β)]对任意实数α、β都成立.3.(2005年国家集训队选拔考试试题)设n 是任意给定的正整数,x 是正实数.证明:∑++-=nk x kx x k x 1])1)[1(][(≤n.第一讲:高斯函数 1第一讲:高斯函数高斯函数是数论中的重要函数,从小学、初中、高中,直到大学的各级、各类数学竞赛均有涉及,是数学竞赛极独特的内容.定义:[x]表示不超过实数x 的最大整数.则y=[x]称为高斯函数,也叫取整函数.由任一实数都能写成整数部分与非负纯小数之和,即x=[x]+α(0≤α<1),这里,[x]称为x 的整数部分,而α,即x-[x]称为x 的小数部分,记{x}=x-[x].函数性质:①高斯函数y=[x]的定义域是R,值域是Z;函数y={x}的定义域是R,值域是[0,1);②函数y=[x]与y=x-[x]与y={x}的图像分别为:③函数y=[x]是一个分段表达的不减的无界函数,即当x 1≤x 2时,有[x 1]≤[x 2];y={x}是一有界、周期为1的非单调函数;等式性质:①[n+x]=n+[x],{x+n}={x},其中x ∈R,n ∈Z;②[-x]=⎩⎨⎧∉--∈-)(1][)]([Z x x Z x x ;③若n ∈N +,x ∈R,则[n nx ][]=[x],特别地,[n x ][]=[n x],[nm x][]=[mn x ](证明:由x-1<[x]≤x<[x]⇒n[x]≤nx<n([x]+1)⇒[x]≤[n nx ][]>[x]+1⇒[n nx ][]=[x])不等性质:①若x ∈R,则x-1<[x]≤x<[x]+1;②若x,y ∈R,则[x+y]≥[x]+[y],且{x}+{y}≥{x+y},一般地,若x i ∈R,则[∑=ni i x 1]≥∑=ni i x 1][,特别地,[nx]≥n[x],[b na ]≥n[b a ];③若x,y ∈R +,则[xy]≥[x][y],特别地,][][y x ≥[yx],一般地,若x i ∈R +,则[∏=ni i x 1]≥∏=ni i x 1][,特别地,[x n ]≥[x]n ,[x]≥[n x ]n;厄米特恒等式:若x ∈R,n ∈N 6,则[x]+[x+n1]+[x+n2]+…+[x+nn 1-]=[nx];证明:引入辅助函数f(x)=[nx]-([x]+[x+n 1]+[x+n 2]+…+[x+n n 1-])⇒f(x+n 1)=[nx+1]-([x+n 1]+[x+n2]+…+[x+ n n 1-]+[x+n 1+n n 1-])=[nx]+1-([x+n 1]+[x+n 2]+…+[x+n n 1-]+[x]+1)=f(x)⇒f(x)是一个以n1为周期的周期函数,而当x ∈[0,n1]时,直接计算知f(x)=0.故对任意x ∈R,厄米特等式成立. 1.函数性质:[例1]:(2010年全国高中数学联赛天津预赛试题)若关于x 的函数f(x)=|x-[x+a]|存在最大值M(a),则正实数a 的取值范是 (其中[x]表示不超过x 的最大整数).[解析]:设x+a=n+α,其中,n ∈Z,0≤α<1,则f(x)=|x-[x+a]|=|n+α-a-n|=|α-a|;①当0<a<21时,由-a ≤α-a<1-a,因|1-a|>|-a|⇒f(x)无最大值;②当a ≥21时,由-a ≤α-a<1-a,因|1-a|≤|-a|⇒f(x)有最大值.故a 的取值范是[21,+∞).[练习1]:2 第一讲:高斯函数1.(1994年全国高中数学联赛河北预赛试题)设f(x)=xa+11-21,且[m]表示不超过m 的最大整数,则[f(x)]+[f(-x)]的值域是 .解:因f(x)+f(-x)=(x a +11-21)+(x a -+11-21)=x a +11+xxa a +1-1=0⇒f(-x)=-f(x);设f(x)=k+α,其中,k ∈Z,0≤α<1,①若α=0,则f(x)=k ⇒-f(x)=-k ⇒[f(x)]=k,[f(-x)]=-k ⇒[f(x)]+[f(-x)]=0;②若α≠0,则f(x)=k+α⇒-f(x)=-k-α= -(k+1)+(1-α)⇒[f(x)]=k,[f(-x)]=-(k+1)⇒[f(x)]+[f(-x)]=-1⇒[f(x)]+[f(-x)]的值域是{-1,0}. 2.(2012年全国高中数学联赛甘肃预赛试题)设f(x)=⎩⎨⎧>-≤-)0)(1()0]([x x f x x x ,其中[x]表示不超过x 的最大整数,若f(x)=kx+k(k>0)有三个不同的实数根,则实数k 的取值范围是 . 解:令g(x)=kx+k,由图知g(2)≤1,g(3)>1⇒41<k ≤31. 3.(2008年全国高中数学联赛湖南预赛试题)某学校数学课外活动小组,在坐标纸上某沙漠设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,x k =x k-1+1-5[51-k ]+5[52-k ],y k =y k-1+[51-k ]-[52-k ].其中,[a]表示实数a 的整数部分,例如[206]=2,[0.6]=0.按此方案,第2008棵树种植点的坐标为 . 解:令f(k)=[51-k ]-[52-k ],则f(k+5)=[515-+k ]-[525-+k ]=[1+51-k ]-[1+52-k ]=[51-k ]-[52-k ]=f(k),故f(k)是周期为5的函数;计算可知:f(2)=0,f(3)=0,f(4)=0,f(5)=0,f(6)=1;由x k =x k-1+1-5f(k)⇒x k -x k-1=1-5f(k)⇒x 2008=x 1+(x 2- x 1)+(x 3-x 2)+…+(x 2008-x 2007)=x 1+2007-5[f(2)+f(3)+…+f(2008)]=x 1+2007-5[4001(f(2)+f(3)+…+f(6))+f(2)+f(3)]=3;同理可得y 2008=402.所以,2008棵树的种植点为(3,402).2.求值问题:[例2]:(1993年全国高中数学联赛试题)整数[310103193+]的末两位数是_______.[解析]:由[310103193+]=[3103)310(313393+-+]=[(1031)2-1031×3+32-3103313+]=(1031)2-1031×3+32-1=1031(1031-3)+8⇒末两位数是08.[练习2]:1.(2006年上海市TI 杯高二年级数学竞赛试题)有一个根据某年某月某日计算“星期几”的有趣公式:d+[2.6m-0.2]+y+ [4y ]+[4c]-2c 除以7的余数,其中,c 表示年的前两位数字(即世纪),y 表示年的后两位数字,d 表示日,m 表示月对应的数字 (见表). [x]表 示不于x 的最大整数.则2008年6月18日是星期 . 解:因c=20,y=8,d=18,m=4⇒d+[2.6m-0.2]+y+[4y ]+[4c]-2c=18+[10.2]+8+[2]+[5]-40=3≡3(mod7)⇒2008年6月18日是星期三.2.①(2008年北京市中学生数学竞赛高一年级初试试题)以[x]表示不超过x 的最大整数,试确定[sin1]+[sin2]+[sin3]+ [sin4]+[sin5]的值. 解:因为0<1<2π,2π<2、3<π,π<4<23π,23π<5、6<2π⇒sin1、sin2、sin3∈(0,1),sin4、sin5∈(-1,0)⇒[sin1]=第一讲:高斯函数 3[sin2]=[sin3]=0,[sin4]=[sin5]=-1⇒[sin1]+[sin2]+[sin3]+[sin4]+[sin5]=-2.②(2011年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[sin1]+[cos2]+[tan3]+[sin4]+[cos5] +[tan6]= . 解:因为0<1<2π,2π<2<π,43π<3<π,π<4<23π,23π<5<2π,47π<6<2π⇒sin1∈(0,1),cos2∈(−1,0),tan3∈(−1, 0),sin4∈(−1,0),cos5∈(0,1),tan6∈(−1,0)⇒[sin1]+[cos 2]+[tan 3]+[sin 4]+[cos5]+[tan 6] =0+(-1)+(-1)+(-1) +0+(-1)=-4.3.①(2005年上海市高中数学竞赛试题)设[x]表示不超过实数x 的最大整数,求集合{n|n=[20052k ],1≤k ≤2004,k ∈N}的元素个数. 解:当20052k <1,即k<44时,[20052k ]=0;当1≤20052k <2,即45≤k<63时,[20052k ]=1;当2≤20052k <3,即64≤k<77时,[20052k ]=2; 当3≤20052k <4,即78≤k<89时,[20052k ]=3;当4≤20052k <5,即90≤k<100时,[20052k ]=4;当5≤20052k <6,即100≤k<109时,月份 1 2 3 4 5 6 7 8 9 10 11 12 对应的m 值111212345678910[20052k ]=5;当6≤20052k <7,即110≤k<118时,[20052k ]=6;当7≤20052k <8,即119≤k<126时,[20052k ]=7;…,集合{n|n=[20052k ], 1≤k ≤2004,k ∈N}的元素个数=1503.②(2010年全国高中数学联赛山西预赛试题)设a n =21⋅+32⋅+…+)1(+n n ,则[na n2]= . 解:由k<)1(+k k <k+21⇒2)1(+n n <a n <2)1(+n n +21n ⇒n+1<n a n 2<n+2⇒[n a n 2]=n+1. ③(2011年全国高中数学联赛福建预赛试题)对正整数n,设x n 是关于x 的方程nx 3+2x-n=0的实数根,记a n =[(n+1)x n ](n= 2,3,…)([x]表示不超过x 的最大整数).则10051(a 2+a 3+…+a 2011)= . 解:设f(x)=nx 3+2x-n,易知,当n 为正整数时,f(x)为增函数;f(1)=2>0,且当n ≥2时,f(1+n n )=n(1+n n )3+21+n n -n=3)1(+n n (- n 2+n+1)<0⇒x n ∈(1+n n ,1)⇒n<(n+1)x n <n+1⇒a n =[(n+1)x n ]=n ⇒10051(a 2+a 3+…+a 2011)=2013. ④(2007年全国高中数学联赛四川预赛试题)[x]表示不超过实数x 的最大整数,比如[3.14]=3,[0]=0,[-3.14]=-4.数列满足{a n }:a n =3n-2,若b n =[5na ],则b 1+b 2+…+b 2007= . 解:由b n =[5n a ]=[523-n ]⇒b 5k+r =[52)5(3-+r k ]=[3k+523-r ]=3k+[523-r ](r=0,1,2,3,4)⇒b 5k =3k-1,b 5k+1=b 5k+2=3k,b 5k+3=3k+1,b 5k+4=3k+2⇒b 5k-4+b 5k-3+b 5k-2+b 5k-1+b 5k =15k-10⇒b 1+b 2+…+b 2007=(b 1+b 2+…+b 5)+…+(b 401×5-4+b 401×5-3+b 401×5-2+b 401×5-1+b 401×5)+(b 401×5+1+b 401×5+2)=152)4011(401+-10×401+(3×401+3×401)=(15×201-4)401=1207411.3.求和问题:[例3]:(2012年全国高中数学联赛河南预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+[log 22012]= .[解析]:我们来解决一般性问题:设a ∈N +,且a ≥2,求和[log a 1]+[log a 2]+[log a 3]+…+[log a n].当a t≤k<a t+1时,[log a k]=t,t=0,1,2,…,且在区间[a t,a t+1)中的正整数有(a-1)a t个.并设a m≤n<a m+1,n=a m+b(b ∈N +),则 [log a 1]+[log a 2]+[log a 3]+…+[log a n]=(a-1)[0×a 0+1×a+2×a 2+…+(m-1)×a m-1]+mb=(a-1){[1-a a (m-1)-2)1(-a a ]a m-1+ 4 第一讲:高斯函数2)1(-a a }+mb=[a(m-1)-1-a a ]a m-1+1-a a +m(b+1) 回到本题:a=2,由210<2012<211⇒m=10,由2012-210=2012-1024=988⇒b=988⇒和为(2×9-2)29+2+10×989=18084.[练习3]:1.①(2008年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+[log 2500]= .解:当2t ≤k<2t+1时,[log 2k]=t,t=0,1,2,…,且在区间[2t ,2t+1)中的正整数有2t 个.设f(x)=[log 2x],注意到29=512,所以, [log 21]+[log 22]+[log 23]+…+[log 2500]=∑=5001)(k k f =f(1)+∑-=1222)(k k f +∑-=12232)(k k f +∑-=12243)(k k f +∑-=12254)(k k f +∑-=12265)(k k f +∑-=12276)(k k f +∑-=12287)(k k f +∑=50028)(k k f =0+1×21+2×22+3×23+4×24+5×25+6×26+7×27+8(28-11)=3498.②(2010年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[lg1]+[lg2]+[lg3]+…+[lg2010]= . 解:因为1≤k ≤9⇒[lgk]=0;10≤k ≤99⇒[lgk]=1;100≤k ≤999⇒[lgk]=2;1000≤k ≤2010⇒[lgk]=3;所以,[lg1]+ [lg2]+[lg3]+…+[lg2010]=60×1+900×2+1011×3=4923.③(2009年北京市中学生数学竞赛高一年级初试试题)[x]表示不超过x 的最大整数,若[log 36]+[log 37]+[log 38]+…+ [log 3(n-1)]+[log 3n]=2009,试确定正整数n 的值.解:由[log 36]=[log 37]=[log 38]=1⇒[log 36]+[log 37]+[log 38]=3;[log 39]=[log 310]=…=[log 326]=2⇒[log 39]+[log 310]+ …+[log 326]=36;[log 327]=[log 328]=…=[log 380]=3⇒[log 327]+[log 328]+…+[log 380]=162;[log 381]=[log 382]=…= [log 3242]=4⇒[log 381]+[log 382]+…+[log 3242]=648;3+36+162+648=849;[log 3243]=[log 3244]=…=[log 3728]=5⇒ [log 3243]+[log 3244]+…+[log 3728]=2430⇒n=474.④(1991年第二届“希望杯”全国数学邀请赛试题){x}表示不小于实数x 的最小整数,则{log 21}+{log 22}+…+{log 21991} = .解:当log 2n 为整数时,{log 2n}=[log 2n](n=20,21,…,210);当log 2n 为整数时,{log 2n}=[log 2n]+1;所以,{log 21}+{log 22}+…+{log 21991}=[log 21]+[log 22]+…+[log 21991]+1991-11;由a=2,1024=210<1991<211⇒m=10,由1991-210=967⇒b=967⇒ [log 21]+[log 22]+…+[log 21991]+1991-11=[2×9-2]29+2+10×968+1991-11=19854.2.①(1990年第一届“希望杯”全国数学邀请赛试题)设[x]表示不超过x 的最大整数,则[1]+[2]+[3]+…+ [19901989⋅]+[-1]+[-2]+[-3]+…+[-19901989⋅]的值是 .解:当k 为整数时,[k ]+[-k ]=0(k=12,22,…,19892),当k 不是整数时,设k =n+α(0<α<1),则[k ]=n,[-k ]=[-n-α]=[-(n+1)+(1-α)]=-(n+1)⇒[k ]+[-k ]=-1⇒[1]+[2]+[3]+…+[19901989⋅]+[-1]+[-2]+[-3]+…+[-19901989⋅]=-1989×1990+1989=-19892.②(2012年北京市中学生数学竞赛高中一年级初赛试题)若[x]表示不超过x 的最大整数,求满足方程[nlg2]+[nlg5]=2012的自然数n 的值.解:因为nlg2和nlg5是无理数,那么可以表示nlg2=m+a 其中m=[nlg2],a={nlg2}≠0,而nlg5=n-nlg2=n-m-a=(n-m-1)+(1- a)⇒[nlg5]=n-m-1⇒[nlg2]+[nlg5]=n-1=2012⇒n=2013.3.①(2012年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则∑+=+201201]222012[k k k = . 解:由1222012++k k <1⇒2012+2k <2k+1⇒2k>2012⇒k>11⇒当k>11时,[1222012++k k ]=0;当k=0时,[1222012++k k ]=1006;当k=1时,[1222012++k k]=503;当k=2时,[1222012++k k ]=250;当k=3时,[1222012++k k ]=126;当k=4时,[1222012++k k ]=63;当k=5时,[1222012++k k ]=31;当k=6时,[1222012++k k ]=16;当k=7时,[1222012++k k ]=8;当k=8时,[1222012++k k ]=4;当k=9时,[1222012++k k ]=2;当k=10、第一讲:高斯函数 511时,[1222012++k k ]=1⇒∑+=+20121]222012[k k k =1006+503+250+126+63+31+16+8+4+2+1+1=2012.②(2012年全国高中数学联赛福建预赛试题)对正整数x,记m=[2x ]+[22x ]+[32x ]+…+[k x 2],其中k 为满足2k≥x 的最小整数,符号[x]表示不超过x 的最大整数.x 与m 的差,即x-m 称为正整数x 的“亏损数”.(如x=100时,m=[2100]+[22100]+…+ [72100]=97,x-m=3,因此,数100的“亏损数”为3).则“亏损数”为9的最小正整数x 为________.解:设下x=a n ×2n+a n-1×2n-1+…+a 2×22+a 1×21+a 0×20,其中a i ∈{0,1}(i=0,1,2,…,n),则x-2[2x ]=a 0;[2x ]-2[22x]=a 1; [22x ]-2[32x ]=a 2,…,[nx 2]-2[12+n x ]=a n ⇒a 0+a 1+a 2+…+a n =(x-2[2x ])+([2x ]-2[22x ])+([22x ]-2[32x ])+…+([n x2]- 2[12+n x])=x-([2x ]+[22x ]+[32x ]+…+[12+n x ])=x-m=x 的“亏损数”⇒亏损数”为9的最小正整数x=1+2+22+…+28=511. 4.方程问题:[例4]:(1995年全国高中数学联赛试题)用[x]表示不大于实数x 的最大整数,方程lg 2x-[lgx]-2=0的实根个数是_____.[解析]:由x ≥[x],lg 2x-[lgx]-2=0⇒lg 2x-2=[lgx]≤lgx ⇒-1≤lgx ≤2⇒[lgx]=-1,0,1,2;当[lgx]=-1时,lg 2x=1⇒lgx=-1;当[lgx]=0时,lg 2x=2⇒lgx=±2,无解;当[lgx]=1时,lg 2x=3⇒lgx=3;当[lgx]=2时,lg 2x=4⇒lgx=2⇒实根个数是3.[练习4]:1.①(2007年全国高中数学联赛湖北预赛试题)设[x]表示不大于x 的最大整数,集合A={x|x 2-2[x]=3},B={x|81<2x<8},则A ∩B= .解:由81<2x <8⇒-3<x<3⇒[x]=-3,-2,-1,0,1,2;①若[x]≤-2,则x 2=2[x]+3<0,没有实数解;②若[x]=-1,则x 2=1⇒x=-1; ③若[x]=0,则x 2=3,没有符合条件的解;④若[x]=1,则x 2=5,没有符合条件的解;⑤若[x]=2,则x 2=7⇒有一个符合条件的解x=7⇒ A ∩B={-1,7}.②(2008年全国高中数学联赛江苏预赛试题)设集合A={x|x 2-[x]=2}和B={x||x|<2},其中符号[x]表示不大于x 的最大整数,则A ∩B= .解:因|x|<2⇒[x]的值可取-2,-1,0,1;当[x]=-2,则x 2=0无解;当[x]=-1,则x 2=1⇒x=-1;当[x]=0,则x 2=2无解;当[x]=1,则x 2=3⇒x=3⇒A ∩B={-1,3}.③(1999年全国高中数学联赛广西预赛试题)[tanx]表示不超过tan 的最大整数,则方程[tanx]=2cos 2x 的解为 . 解:由0≤2cos 2x ≤2⇒0≤[tanx]≤2⇒[tanx]=0,1,2;当[tanx]=0时,cosx=0,tanx 无意义;当[tanx]=1时,cosx=±22, 注意:[tanx]=1⇒x=k π+4π(k ∈Z);当[tanx]=2时,cosx=1⇒sinx=0⇒tanx=0,矛盾. ④(2009年上海市高中数学竞赛试题)若[a]表示不超过实数a 的最大整数,则方程[tanx]=2sin 2x 的解是 . 解:由0≤2sin 2x ≤2⇒0≤[tanx]≤2⇒[tanx]=0,1,2;当[tanx]=0时,sinx=0,tanx=0⇒x=k π;当[tanx]=1时,sinx=±22,注意:[tanx]=1⇒x=2k π+4π(k ∈Z);当[tanx]=2时,sinx=1⇒cosx=0⇒tanx=0无意义.2.①(2006年全国高中数学联赛湖南预赛试题)对于实数x,当且仅当n ≤x<n+1(n ∈N +)时,规定[x]=n.则不等式4[x]2-36[x] +45<0的解集为 .6 第一讲:高斯函数解:由4[x]2-36[x]+45<0⇒23<[x]<215⇒2≤[x]≤7⇒2≤x<8. ②(2009年全国高中数学联赛山东预赛试题)对任意的x ∈R,[x]表示不大于x 的最大整数,则满足[|x 2-1|]=10的x 的集合是( )(A)(-23,-11) (B)[11,23] (C)(-23,-11]∪[11,23) (D)[-23,-11)∪(11,23]解:因[|x 2-1|]=10⇔10≤|x 2-1|<11⇔-11<x 2-1≤-10,或10≤x 2-1<11⇔x ∈(-23,-11]∪[11,23),选(C).③(2009年全国高中数学联赛福建预赛试题)方程x [x]=29的实数解是 (其中[x]表示不超过x 的最大整数). 解:显然x>0;①若x ≥3,则[x]≥3⇒x [x]≥27>29;②若0<x<2,则0≤[x]<2⇒x [x]<22=4<29;③若2≤x<3,则[x]=2⇒x 2=29 ⇒x223. 3.①(2011年全国高中数学联赛内蒙古预赛试题)方程x 2-8[x]+7=0的所有解为 .解:由x ≥[x]=872+x ⇒1≤x ≤7⇒[x]=1,2,3,4,5,6,7⇒x=1,33,41,7.②(2007年第十八届“希望杯”全国数学邀请赛试题)若[x]表示不超过x 的最大整数,且x 2-2008[x]+2007=0,则[x]的值是 .解:1,2005,2006,2007.③(1992年第三届“希望杯”全国数学邀请赛试题)[x]表示不超过实数x 的最大整数,则方程[3x-465]-2x-1=0的解是 .解:设2x+1=k,则x=21-k ,3x-465=6389-k =k+6383-k ,于是原方程等价于[k+6383-k ]-k=0⇒[6383-k ]=0⇒0≤6383-k<1⇒338≤k<344⇒k=13,14⇒解是x=6,213. ④(2011年全国高中数学联赛四川预赛试题)设x 为实数,定义[x]为不小于x 的最小整数,例如[π]=4,[-π]=-3,关于实数x 的方程[3x+1]=2x-21的全部实根之和等于 . 解:设2x-21=k ∈Z,则x=412+k ,3x+1=k+1+432+k ,于是原方程等价于[432+k ]=-1,即-2<432+k ≤-1⇒-211<k ≤-27⇒k=-5,-4⇒x=-49,-47⇒所有实根之和为-4. 5.方程综合:[例5]:(1998年加拿大数学奥林匹克试题.2009年全国高中数学联赛安徽预赛试题)求方程[2x ]+[3x ]+[7x ]=x 的所有解([a]表示不超过实数a 的最大整数).[解析]:由方程知解x 是整数,设x=42p+q(p ∈Z,q ∈{0,1,…,41}),则(21p+[2q ])+(14p+[3q ])+(6p+[7q ])=42p+q ⇒[2q ]+[3q ]+[7q]=p+q ⇒q=0,p=0,x=0;q=1,p=-1,x=-41;q=2,p=-1,x=-40;q=3,p=-1,x=-39,…,因此,方程的解集为{0, -6,-l2,-14,-18,-20,-21,-24,-26,-27,-28,-30,-32,-33,-34,-35,-36,-38,-39,-40,-41,-44,-45,-46,-47,-49,-50,- 51,-52,-53,-55,-57,-58,-59,-61,-64,-65,-67,-71,-73,-79,-85}.第一讲:高斯函数 7 [练习5]:1.(2010年全国高中数学联赛福建预赛试题)将方程x 3-3[x]=4的实数解从小到大排列得x 1,x 2,…,x k ,则x 13+x 23+…+x k 3的值为 ([x]表示不超过x 的最大整数).解:由x-1<[x]≤x;①当x ≥3时,x 3-3[x]≥x 3-3x=x(x 2-3)≥3(32-3)=18;②当x ≤-3时,x 3-3[x]<x 3-3(x-1)=x(x 2-3)+3≤ -3[(-3)2-3]+3=-15;③当-3<x<3时,[x]=-3,-1,-1,0,1,2;若[x]=-3,则x 3=3[x]+4=-5,不合要求;若[x]=-2,则x 3=3[x]+4= -2⇒x=-32,合要求;若[x]=-1,则x 3=3[x]+4=-1,不合要求;若[x]=0,则x 3=3[x]+4=4,不合要求;若[x]=1,则x 3=3[x]+4= 7⇒x=37,合要求;若[x]=2,则x 3=3[x]+4=10⇒x=310,合要求⇒(-32)3+(37)3+(310)3=15.2.①(1989年上海市高中数学竞赛试题)设[x]表示x 的整数部分,{x}=x −[x],则方程[x 3]+[x 2]+[x]={x}−1的所有实数根是 .解:由[x 3]+[x 2]+[x]∈Z ⇒{x}−1∈Z ⇒{x}=0⇒x ∈Z ⇒x 3+x 2+x=-1⇒(x+1)(x 2+1)=0⇒x=-1.②(1991年上海市高中数学竞赛试题)求满足[x 2−2x]=[x]2−2[x]的一切实数x.其中[x]表示不超过x 的最大整数. 解:设[x]=n,x-[x]=α(0≤α<1),则x 2−2x=(n+α)2-2(n+α)=n 2-2n+α2+2(n-1)α,所以原方程等价于[n 2-2n+α2+2(n-1)α]=n 2-2n ⇔[α2+2(n-1)α]=0⇔0≤α2+2(n-1)α<1;当α=0时,不等式成立,此时,x=n;当α≠0时,由0≤α2+2(n-1)α<1⇔0<α<1)1(2+-n -(n-1)⇔0<x-n<1)1(2+-n -(n-1)⇔x ∈(n,1)1(2+-n +1)(n=1,2,…). ③(1993年上海市高中数学竞赛试题)自然数x 使得[x]+[!x 3]+[!x 5]+[!x7]=1993.则x=_____. 解:由[x]+[!x 3]+[!x 5]+[!x 7]=1993⇒[x]<1993⇒x<1994⇒[!x 7]=0⇒[x]+[!x 3]+[!x5]=1993⇒x>5!;设x=5!n+r(0≤r<5!=120)⇒(120n+r)+(20n+[6r ])+n=1993⇒141n+r+[6r ]=1993=14×141+19⇒n=14,r+[6r]=19⇒r=17⇒x=1697. 3.①(2007年上海市TI 杯高二年级数学竞赛试题)求正整数n,使得[log 31]+[log 32]+[log 33]+[log 34]+…+[log 3n]=2007.其中[x]表示不超过x 的最大整数.解:因为当3k≤n<3k+1时,[log 3n]=k(k=0,1,2,…),且区间[3k,3k+1)内的正整数个数=3k+1-3k=2×3k,所以,S k =[log 31]+[log 32]+ [log 33]+[log 34]+…+[log 3(3k+1-1)]=2(0×30+1×31+2×32+…+k ×3k)=(23k-43)3k +43;令(23k-43)3k+43≤2007⇒(2k- 1)3k≤2675⇒k ≤5;S 5=1391,2007-1391=6×101⇒n=36+100=829. ②(2009年上海市TI 杯高二年级数学竞赛试题)对整数n>1,设x=1+21+…+n1,y=lg2+lg3+…+lgn.则满足[x]=[y]的所有整数n 构成的集合为 ([a]表示不超过实数a 的最大整数). 解:{5,6}.6.方程应用:[例6]:(1989年全国高中数学联赛试题)一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为__________. [解析]:设该数为x,则(x-[x])x=[x]2⇒x=251+[x](x>0);由0<x-[x]<1⇒0<215-[x]<1⇒0<[x]<251+<2⇒[x]=1 ⇒x=251+. [练习6]:1.(2009年全国高中数学联赛江苏预赛试题)设a 是整数,0≤b<1.若a 2=2b(a+b),则b= .解:若a 为负整数,则a 2>0,2b(a+b)<0,不可能,故a ≥0;于是a 2=2b(a +b)<2(a+1)⇒a 2-2a-2<0⇒0≤a<1+3⇒a=0,1,8 第一讲:高斯函数2;a=0时,b=0;a=1时,2b 2+2b-1=0⇒b=213-;a=2时,b 2+2b-2=0⇒b=3-1. 注:本题也可以这样说:求实数x,使[x]2=2{x}x.2.①(2011年全国高中数学联赛甘肃预赛试题)设[x]表示不超过实数x 的最大整数,则在平面上,由满足[x]2+[y]2=50的点所形成的图形的面积是 .解:由[x]2+[y]2=50⇒[x]=±1,[y]=±7;[x]=±5,[y]=±5;[x]=±7,[y]=±1.每组解有4种情况,每种情况下的面积为1⇒图形的面积是12.②(2011年北京市中学生数学竞赛高一年级初试试题)若[x]表示不超过x 的最大整数.求在平面直角坐标系xOy 中满足[x][y]=2011的所有点(x,y)组成的图形的面积.解:设[x]=a,[y]=b,即所有这样的点(x,y)组成的图形就是a ≤x<a+1,b ≤y<b+1界定的区域,它的面积为1,又2011是质数,所以满足[x][y]=2011的点(x,y)组成的图形是4个面积为1的区域,即[x]=1,[y]=2011;[x]=2011,[y]=1;[x]=−1,[y] =−2011;[x]=−2011,[y]=−1.这些图形的总面积是4.③(2012年全国高中数学联赛新疆预赛试题)[x]表示不超过实数x 的最大整数,则在平面直角坐标系xOy 中,满足[x][y]=2013的所有点(x,y)组成的图形面积为 .解:由[x][y]=2013=1×2013=3×671=11×183=33×61,共有16种情况,每种情形下的面积为1,所以,所有点(x,y)组成的图形面积为16.3.①(2009年全国高中数学联赛新疆预赛试题)数(3+8)2n (n ∈N +),且n ≥2009,设[x]为x 的整数部分,则[(3+8)2n]除以8的余数是( )(A)1 (B)3 (C)4 (D)7解:设a n =(3+8)2n +(3-8)2n =(17+122)n +(17-122)n ,则a 1=34,a 2=342-2=1154,a n+2=34a n+1-a n ⇒a 1≡2(m0d8),a 2≡2(m0d8),a 3≡34×2-2≡2(m0d8)⇒a n ≡2(m0d8);又因0<(3-8)2n <1⇒[(3+8)2n ]=a n -1⇒[(3+8)2n]≡1(m0d8).选(A).②(2009年全国高中数学联赛吉林预赛试题)(2+3)2010的小数点后一位数字是 .解:因(2+3)2010+(2-3)2010为整数,则(2+3)2010的小数部分为1-(2-3)2010,又因0<(2-3)2010<0.21005<(0.008)300,所以0.9<1-(2-3)2010<1,可知(2+3)2010的小数点后一位数字是9.7.等式问题:[例7]:(1987年第19届加拿大数学奥林匹克试题)对每一个正整数n,证明:[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[解析]:设正整数m 满足:m 2>4n+1;若m 为偶数,则m 2=4k>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+4>4n+3;若m 为奇数,则m 2=4k+1>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+5>4n+3;综上m 2>4n+3,即m>34+n ;特别地,取m=[14+n ]+1,满足:m 2>4n+1,则m>34+n⇒[14+n ]+1>34+n >14+n ≥[14+n ]⇒[34+n ]=[14+n ]⇒[14+n ]=[24+n ]=[34+n ];因(n +1+n )2=2n+1+2)1(+n n >2n+1+2n=4n+1⇒n +1+n >14+n ⇒[n +1+n ]≥[14+n ];且(n +1+n )2=2n+1+2)1(+n n <2n+1+2(n+1)=4n+3⇒n +1+n <34+n ⇒[n +1+n ]<[34+n ]⇒[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[练习7]:1.①(1981年第44届莫斯科数学奥林匹克试题)试问:对x>1,下面的等式[][x ]=[x ]一定能成立吗?解:设[x ]=n,由[x ]≤x <[x ]+1⇒n ≤x <n+1⇒n 2≤x <(n+1)2⇒n 2≤[x ]<(n+1)2⇒n ≤][x <n+1⇒n ≤[][x ]<n+1⇒[][x ]=n ⇒[][x ]=[x ]成立.②(1948年第8届普特南数学奥林匹克试题)如果n 为一正整数,试证:[n +1+n ]=[24+n ].第一讲:高斯函数 9解:因(n +1+n )2=2n+1+2)1(+n n <2n+1+[n+(n+1)]=4n+2⇒n +1+n <24+n ⇒[n +1+n ]≤[24+n ];若存在某个正整数n,使得[n +1+n ]≠[24+n ],则[n +1+n ]<[24+n ];设[24+n ]=k,则n +1+n <k ≤24+n⇒2n+1+2)1(+n n <k 2≤4n+2⇒2)1(+n n <k 2-(2n+1)≤2n+1⇒4n(n+1)<[k 2-(2n+1)]2≤4n(n+1)+1(因4n(n+1)与4n(n+1)+1是连续整数)⇒[k 2-(2n+1)]2=4n(n+1)+1⇒k 2=4n+2,但任意整数的平方被4除不余2,矛盾. 2.①(1991年第9届美国数学邀请赛试题)设r 是实数,且满足条件[r+10019]+[r+10020]+…+[r+10091]=546.求[100r]. 解:设[r]=n,r=n+α(0≤α<1),则[r+100i ]=[n+α+100i ]=n(当0<α+100i <1时),或n+1(当1≤α+100i<2时),设其中有 73-k 个n,k 个n+1,则(73-k)n+k(n+1)=546⇒n=7+7335k -⇒k=35,n=7⇒α+10056<1,α+10057≥1⇒10043≤α<10044⇒7+10043≤r<7+10044⇒743≤100r<744⇒[100r]=743. ②(1981年第13届加拿大数学奥林匹克试题)试证方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12354没有实数解. 解:设f(x)=[x]+[2x]+[4x]+[8x]+[16x]+[32x],则f(x)单调不减;由f(x)≤[(1+2+4+8+16+32)x]=[63x]≤63x ⇒x ≥6312345>195;f(196)=63×196=12348⇒x<196⇒x ∈(195,196);令t=x-195,则t ∈(0,1),且f(x)=[195+t]+[2(195+t)]+ [4(195+t)]+[8(195+t)]+[16(195+t)]+[32(195+t)]=63×195+[t]+[2t]+[4t]+[8t]+[16t]+[32t]<12285+0+1+3+7+15+31 =12342⇒方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12354没有实数解.3.(1989年国家理科试验班入学考试试题)通项为a n =b[c n +]+d 的数列{a n }:1,3,3,3,5,5,5,5,5,…,其中每一个正奇数m 恰好连续出现m 次.上述b 、c 、d 是侍定的整数,求b+c+d 的值.解:由a n+1-a n =b([c n ++1]-[c n +]),由题知,a n+1-a n =0,或2⇒b([c n ++1]-[c n +])=0,或2;由c n ++1-c n +=cn c n ++++11≤1⇒c n +<c n ++1≤c n ++1⇒[c n +]<[c n ++1]≤[c n +]+1⇒[c n ++1]-[c n +]=0,或1;显然b ≠0,当b([c n ++1]-[c n +])=2时,b=2,[c n ++1]-[c n +]=1;由a 1=2[c +1]+d=1⇒c ≥-1,d=1-2[c +1];注意到2k a =2k-1⇒2[c k +2]+d=2k-1⇒2[c k +2]+1-2[c +1]=2k-1⇒[c k +2]-[c +1]=k-1对任意的k ∈N +恒。
NOIP辅导-贪心法——修改
我们来看一个找硬币的例子。假设有四种硬币,它们的面值分别为 二角五分、一角、五分和一分。现在要找给某顾客六角三分钱。这时, 我们会不假思索地拿出2个二角五分的硬币,1个一角的硬币和3个一分 的硬币交给顾客。这种找硬币方法与其他的找法相比,所拿出的硬币个 数是最少的。这里,我们下意识地使用了这样的找硬币算法:首先选出 一个面值不超过六角三分的最大硬币,即二角五分;然后从六角三分中 减去二角五分,剩下三角八分;再选出一个面值不超过三角八分的最大 硬币,即又一个二角五分,如此一直做下去。这个找硬币的方法实际上 就是贪心算法。
思路: 消耗最少体力的方法就是每次合并的总是果子最少的两堆。 (类比:哈夫曼树)
纪念品分组【NOIP2007普及组】 Description
元旦快到了,校学生会让乐乐负责新年晚会的纪念 品发放工作。为使得参加 晚会的同学所获得的纪念品价值相对均衡,他要把购来 的纪念品根据价格进行分组,但每组最多只能包括两件 纪念品,并且每组纪念品的价格之和不能超过一个给定 的整数。为了保证在尽量短的时间内发完所有纪念品, 乐乐希望分组的数目最少。
NOIP复赛辅导-贪心法
2012-09
贪心法
贪心算法通过一系列的选择来得到一个问题的解。它所 作的每一个选择都是当前状态下某种意义的最好选择,即 贪心选择。贪心算法以尽可能快地求得满意解的方法, 省去 了为查找最优解而去穷尽所有可能而耗费的大量时间。
希望通过每次所作的贪心选择导致最终结果是问题的一 个最优解。这种贪心选择的策略并不总能奏效,然而在许 多情况下确能达到预期的目的。
s个数字后剩下的数字按原左右次序将组成一个正整数编程对给定 的n和s,寻找一种方案,使得剩下的数字组成的新数最8543 4 样例输出: 13
5x5高斯卷积核的计算
高斯卷积核是一种用于图像处理的卷积核,它可以模糊图像、降低噪声等。
5x5的高斯卷积核通常用于比较大的模糊或平滑效果。
下面是一个详细解答如何计算一个5x5的高斯卷积核:
高斯函数:
高斯卷积核的权重是由高斯函数确定的。
高斯函数的一维形式为:
G(x)=
1
√2πσ
−
x2
2σ2
其中,x是距离中心的偏移量,σ是高斯分布的标准差。
生成5x5的高斯卷积核:
为了生成5x5的高斯卷积核,我们可以使用上述一维高斯函数的值,同时在水平和垂直方向上进行卷积。
对于一个二维卷积核,权重w i,j可以由下面的公式计算:
w i,j=G(i,σx)⋅G(j,σy)
其中,i,j是相对于中心的偏移量,σx,σy是在水平和垂直方向上的标准差。
标准差选择:
选择适当的标准差取决于希望实现的平滑效果。
较大的标准差将导致更大范围的权重,从而实现更强烈的平滑效果。
规范化:
为了确保卷积核的权重之和为1,通常需要对卷积核进行规范化。
规范化后的权重可通过将每个权重除以所有权重之和来得到。
以上就是计算5x5高斯卷积核的一般步骤。
在实际应用中,可以通过数学软件或编程语言来实现这些计算。
pythonOpenCV实现高斯滤波详解
pythonOpenCV实现⾼斯滤波详解⽬录⼀、⾼斯滤波⼆、C++代码三、python代码四、结果展⽰1、原始图像2、5x5卷积3、9x9卷积⼀、⾼斯滤波 ⾼斯滤波是⼀种线性平滑滤波,适⽤于消除⾼斯噪声,⼴泛应⽤于图像处理的减噪过程。
[1] 通俗的讲,⾼斯滤波就是对整幅图像进⾏加权平均的过程,每⼀个像素点的值,都由其本⾝和邻域内的其他像素值经过加权平均后得到。
⾼斯滤波的具体操作是:⽤⼀个模板(或称卷积、掩模)扫描图像中的每⼀个像素,⽤模板确定的邻域内像素的加权平均灰度值去替代模板中⼼像素点的值。
⼆、C++代码#include <opencv2\opencv.hpp>#include <iostream>using namespace cv;using namespace std;int main(){Mat img = imread("gauss_noise.png");if (img.empty()){cout << "请确认图像⽂件名称是否正确" << endl;return -1;}Mat result_5, result_9; //存放含噪声滤波的结果,后⾯数字代表滤波器尺⼨//调⽤均值滤波函数blur()进⾏滤波GaussianBlur(img, result_5, Size(5, 5), 0, 0);GaussianBlur(img, result_9, Size(9, 9), 0, 0);//显⽰含有⾼斯噪声图像imshow("img_gauss", img);//显⽰去噪结果imshow("result_5gauss", result_5);imshow("result_9gauss", result_9);waitKey(0);return 0;}三、python代码import cv2# ----------------------读取图⽚-----------------------------img = cv2.imread('gauss_noise.png')# ----------------------⾼斯滤波-----------------------------result_5 = cv2.GaussianBlur(img, (5, 5), 0) # 5x5result_9 = cv2.GaussianBlur(img, (9, 9), 0) # 9x9# ----------------------显⽰结果-----------------------------cv2.imshow('origion_pic', img)cv2.imshow('5x5_filtered_pic', result_5)cv2.imshow('9x9_filtered_pic', result_9)cv2.waitKey(0)四、结果展⽰1、原始图像2、5x5卷积3、9x9卷积到此这篇关于python OpenCV 实现⾼斯滤波详解的⽂章就介绍到这了,更多相关Python OpenCV ⾼斯滤波内容请搜索以前的⽂章或继续浏览下⾯的相关⽂章希望⼤家以后多多⽀持!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竭诚为您提供优质文档/双击可除
5x5,高斯,整数模板
篇一:高斯整数
自然数整数二进分数有限小数循环小数有理数
代数数
实数复数
高斯整数负数
分数单位分数无限小数
规矩数无理数
超越数二次无理数虚数艾森斯坦整数双复数四元数
共四元数
八元数
超数上超实数超复数十六元数复四元数tessarine大实数超实数对偶数双曲复数序数质数
同余
可计算数
阿列夫数公称值超限数基数p进数规矩数整数序列数学
常数
=3.141592653...
e=2.718281828...虚数单位i2=1无穷∞。
目录
[隐藏]
oo1.2作为欧几里德环
[编辑]作为唯一分解整环
高斯整数形成了一个唯一分解整环,其可逆元为1、-1、i,以及-i。
z[i]的素元素又称为高斯素数。
高斯素数的分布
高斯整数a+(5x5,高斯,整数模板)bi是素数当且仅当:
a、b中有一个是零,另一个是形为4n+3或其相反数(4n+3)
的素数;
或a、b均不为零,而a2+b2为素数。
以下给出这些条件的证明。
必要条件的证明为:仅当高斯整数的范数是素数,或素数的平方时,它才是高斯素数。
这是因为对于任何高斯整数g,
在,n(g)是整数,因此根据算术基本定理,它可以分解为素数
的乘积。
根据素数的定义,如果g是素数,则它可以整除。
现
pi,对于某个i。
另外,可以整除,因此。
于是现在只有两种选择:要么g的范数是素数,要么是素数的平方。
如果实际上对于某个素数p,有n(g)=p2,那么g和都能整除p2。
它们都不能是可逆元,因此g=pu,以及,其中u是可逆元。
这就是说,要么a=0,要么b=0,其中g=a+bi。
然而,不是每一个素数p都是高斯素数。
2就不是高斯素数,因为2=(1+i)(1i)。
高斯素数不能是4n+1的形式,因为根据费马平方和定理,它们可以写成a2+b2的形式,其中a和b是整数,且a2+b2=(a+bi)(abi)。
剩下的就只有形为4n+3的素数了。
形为4n+3的素数也是高斯素数。
假设g=p+0i,其中
p=4n+3是素数,且可以分解为g=hk。
那么p2=n(g)=n(h)n(k)。
如果这个分解是非平凡的,那么n(h)=n(k)=p。
但是,任何两个平方
篇二:数字图像处理实验五
数字图像处理
实验
实验五:图像增强-空域滤波
学院:信息工程学院
姓名:
学号:
专业及班级:
指导教师:
一、实验目的
进一步了解matlab软件/语言,学会使用matlab对图
像作滤波处理,使学生有机会掌握滤波算法,体会滤波效果。
了解几种不同滤波方式的使用和使用的场合,培养处理实际图像的能力,并为课堂教学提供配套的实践机会。
二、实验内容
(1)学生应当完成对于给定图像+噪声,使用平均滤波器、中值滤波器对不同强度的高斯噪声和椒盐噪声,进行滤波处理;能够正确地评价处理的结果;能够从理论上作出合理的解释。
(2)利用matlab软件实现空域滤波的程序:
i=imread(electric.tif);
j=imnoise(i,gauss,0.02);%添加高斯噪声
j=imnoise(i,salt,0.02);%添加椒盐噪声
ave1=fspecial(average,3);%产生3×3的均值模版
ave2=fspecial(average,5);%产生5×5的均值模版
k=filter2(ave1,j)/255;%均值滤波3×3
l=filter2(ave2,j)/255;%均值滤波5×5
m=medfilt2(j,[33]);%中值滤波3×3模板
n=medfilt2(j,[44]);%中值滤波4×4模板
imshow(i);
figure,imshow(j);
figure,imshow(k);
figure,imshow(l);
figure,imshow(m);
figure,imshow(n);
三、实验具体实现
a)调入并显示原始图像sample2-1.jpg。
b)利用imnoise命令在图像sample2-1.jpg上加入高斯(gaussian)噪声
c)利用预定义函数fspecial命令产生平均(average)滤波器
111191111
d)分别采用3x3和5x5的模板,分别用平均滤波器以及中值滤波器,对加入噪声的图像进行处理并观察不同噪声水平下,上述滤波器处理的结果;
e)选择不同大小的模板,对加入某一固定噪声水平噪声的图像进行处理,观察上述滤波器处理的结果。
f)利用imnoise命令在图像sample2-1.jpg上加入椒
盐噪声(salt1.jpg);
j=imnoise(i,gauss,0.02);
p=imnoise(i,salt,0.02);
ave1=fspecial(average,3);
ave2=fspecial(average,5);
k=filter2(ave1,j)/255;
l=filter2(ave2,j)/255;
m=medfilt2(j,[33]);
n=medfilt2(j,[44]);
imshow(i);
subplot(2,3,1);imshow(j);
subplot(2,3,2);imshow(p);
subplot(2,3,3);imshow(k);
subplot(2,3,4);imshow(l);
subplot(2,3,5);imshow(m);
subplot(2,3,6);imshow(n);
截图:
四、思考题
(1)简述高斯噪声和椒盐噪声的特点。
高斯噪声:高斯噪声是n维分布都服从高斯分布的噪声。
高斯分布,也称正态分布,又称常态分布。
对于随机变量x,其概率密度函数如图所示。
称其分布为高斯分布或正态分布,
记为n(μ,σ2),其中为分布的参数,分别为高斯分布的期望和方差。
当有确定值时,p(x)也就确定了,特别当μ=0,σ2=1时,x的分布为标准正态分布。
椒盐噪声:椒盐噪声又称脉冲噪声,它随机改变一些像素值,是由图像传感器,传输信道,解码处理等产生的黑白相间的亮暗点噪声。
椒盐噪声往往由图像切割引起。
(2)结合实验内容,定性评价平均滤波器/中值滤波器对高斯噪声和椒盐噪声的去噪效果?
均值滤波器不适合去除椒盐噪声,经均值滤波器滤波后仍然存在较多的噪声;中值滤波器对椒盐噪声的滤除有着与生俱来的优势,这点可以从椒盐噪声特点和中值滤波定义很容易推得,观察滤波前后的图像,中值滤波器对椒盐噪声滤除的比较干净,对于强度不很大的椒盐噪声,滤波后基本看不出噪声点,但是图像也变得很模糊了,细节信息丢失比较严重,其会引起图像中诸如细线、角点等包含重要细节结构的丢失和破坏;加入椒盐噪声的图像经butterworth低通滤波器滤波后,虽然滤除了一些噪声点,但图像显得模糊不清.
(3)结合实验内容,定性评价滤波窗口对去噪效果的影响?
1)自适应中值滤波后,它的去噪效果和常规中值滤波算法的去噪效果相比好了许多。
不仅滤除了椒盐噪声,而且很好的保留了图细节。
在对具有空间密度较大的椒盐噪声图进
行滤波时,自适应中值滤波器较传统中值滤波器具有很大的优越性,在很大程度上降低了滤除噪声和图细节丢失之间的矛盾,对于工程实现有较好的理论参考价值。
但对滤除图中的高斯噪声则没有滤除椒盐噪声的效果好,滤波后图显得有模糊不清。
2)加权均值自适应中值滤波器去除图中加入的椒盐噪声后,图和原图的效果很接近,去噪性能非常好。
但是,在去除高斯噪声时,效果就没有去除椒盐噪声那么好,滤波后图有点模糊。
3)基于均值操作的快速自适应滤波器在保存边缘细节的基础上,对椒盐噪声和高斯噪声都有较好的抑制作用。
滤波后图的效果和原图非常接近。
五、实验小结
篇三:高斯平滑滤波器(含matlab代码)
gaussiansmoothingFilter
高斯平滑滤波器
一、图像滤波的基本概念
图像常常被强度随机信号(也称为噪声)所污染.一些常见的噪声有椒盐(salt357;492],旋转180度后就成了[294;753;618]
三、高斯(核)函数
所谓径向基函数(RadialbasisFunction简称RbF),就是。