人教版数学七年级上册课件-第一章

合集下载

人教版七年级数学上册第一章教学课件:1.5.1 第1课时 乘方(共15张PPT)

人教版七年级数学上册第一章教学课件:1.5.1 第1课时 乘方(共15张PPT)
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/72021/9/72021/9/72021/9/79/7/2021 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月7日星期二2021/9/72021/9/72021/9/7 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/72021/9/72021/9/79/7/2021 16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/72021/9/7September 7, 2021 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/72021/9/72021/9/72021/9/7
.
解:(1) (-4)3=(-4)×(-4)×(-4)=-64;
(2) (-2)4=(-2)×(-2)×(-2)×(-2)=16;
(3) 2 3 3= 2 3 2 3 2 3 =2 8 7.
思考:你发现负数的幂的正负有什么规律?
归纳总结
根据有理数的乘法法则可以得出: 负数的奇次幂是负数,负数的偶次幂是正数. 正数的任何正整数次幂都是正数,0的任何正 整数次幂都是0.
- 1 (当n为奇数时)
(9)(-1)n=
1
(当.n为偶数时).
1.求几个相同因数的积的运算,叫做乘方.
a 幂
n 指数
2.乘方的符号法则: 底数 (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数,负数的偶次幂是正数 (3)零的正整数次幂都是零
3.注意:
an与an 二者的区别及相互关系;

人教版七年级上册第一章《有理数》1.4.1 有理数的乘法教学课件(共17张PPT)

人教版七年级上册第一章《有理数》1.4.1 有理数的乘法教学课件(共17张PPT)
解:原式=0
1 2 3 4 5 (3) ( ) ( ) ( ) 2 3 4 5 6
9 … ( 10 )
2 1 5 (4)(-6) × ×(- ) ×(- 5 ) 4 6
1 4 (5)(-7) ×6×(- 7 ) × 4
(6)(1-2) ×(2-3) …(2005-2006) 解 : 原式 (1) (1)... (1) = -1
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
辽宁省铁岭市西丰县郜家店镇中学
谢林岐
计算:
(1)﹙-2﹚×3 ; (2)﹙-2﹚×﹙-3﹚; (3) 4×﹙-½ ﹚; (4)﹙-4﹚×﹙-½ ﹚.
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
2005个(-1)相乘
1.书后练习题 2.复习本节课所学知识
3.预习下一节
From:
几个不是0的数相乘,负因数的个 数是( 偶数 )时,积是正数;负 因数的个数是( 奇数 )时,积是 负数.
计算:
(1)(-3)×
(2)
×(-
)×()×
);
(-5)×6×(-
多个不是0的有理数相 乘,先做哪一步,再做 哪一步?
多个不是0的有理数相乘,先做哪一步,再做 哪一步? 第一步:确定符号(奇负偶正); 第二步:绝对值相乘。
2000
2 7 6 3 (2) ( ) ( ) ( ) 3 5 14 2 8 2 (3) ( ) ( 3.4) 0 7 3
-3/5
0
计算: 2 7 (3 ) (35) 0.0045 ( 3.5 ) 2008 3 2
11 解:原式 ( ) 35 0.0045 (3.5 3.5) 2008 3

七年级数学上册全册完整课件

七年级数学上册全册完整课件
2.实际问题中的数量关系
学习难点:1.理解正数、负数表示相反意义的量 。 2.实际问题中的数量关系
以前学过的数,实际上主要 有两大类,分别是整数和分数 (包括小数).
在生活中,仅 有整数和分数够用 了吗?
天气预报中-3℃、-1℃,它的确切含 义是什么?
本章我们将认识一 种新的数——负数,并 在有理数的范围内研究 数的表示、大小比较与 运算等,提高运用数学 解决问题的能力.
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%.
写出这些国家2001年商品进出口总额的增长率.
解:(1)这个月小明体重增长2kg, 小华体重增长-1kg,小强体重增长0kg.
(2)六个国家2001年商品进出口总额 的增长率: 美国-6.4%,德国1.3%, 法国-2.4%,英国-3.5%, 意大利0.2%,中国7.5%.
人教版
七年级
(上册)
[精品]
人教版七年级数学上册 第一章有理数全套课件
• 第一章 有理数 • 1.1 正数和负数 • 1.2 有理数 • 1.3 有理数的加减法 • 1.4 有理数的乘除法 • 1.5 有理数的乘方 • 本章复习与测试
第一章 有理数
1.1正数和负数
学习目标: 1.了解生活中正数、负数的实际意义。 2.理解正数、负数表示相反意义的量 。 学习重点:1.理解正、负数表示具有相反意义的量。
3. 0既不是正数也不是负数. 0一般情况下只是一个基准.
随堂练习
1.某年度某国家有外债10亿美元,有 内债10亿美元,应用数学知识来解释说明,下 列说法合理的是( A )
A.如果记外债为-10亿美元,则内债 为+10亿美元

人教版七年级数学上册教学课件-1.1 正数和负数 优质课件PPT

人教版七年级数学上册教学课件-1.1 正数和负数 优质课件PPT
(2)六个国家这一年商品进出口总额的增长 率是:
美国 -6.4%, 德国1.35% 法国 -2.4%, 英国-3.5% 意大利 0.2%, 中国7.5%
课堂小结
1、正数和负数是如何定义的? 2、引入正负数后,怎样理解数0? 3、怎样用正负数表示具有相反意义的量?
布置作业
必做题:课、6题
下的执著,而这执著是很多人并不具备的……而许多奇迹往往是执著者造成的。许多人惊奇地发现,他们之所以达不到自己孜孜以求的目标,是因为他们的主要
己失去动力。如果你的主要目标不能激发你的想象力,目标的实现就会遥遥无期。因此,真正能激励你奋发向上的是确立一个既宏伟又具体的远大目标。实现目
现出一条波浪线,有起也有落,但你可以安排自己的休整点。事先看看你的时间表,框出你放松、调整、恢复元气的时间。即使你现在感觉不错,也要做好调整

我们很容易遭遇逆境,也很容易被一次次的失败打垮。但是人生不容许我们停留在失败的瞬间,如果不前进,不会自我激励的话,就注定只能被这个世界抛弃。
中重要的组成部分,主要表现在对于在压力或者困境中,个体自我安慰、自我积极暗示、自我调节的能力,在个体克服困难、顶住压力、勇对挑战等情况下,都
激励能力的人,富有弹性,经常表现出反败为胜、后来居上、东山再起的倾向,而缺乏这种能力的人,在逆境中的表现就大打折扣,表现为过分依赖外界的鼓励
3、如果水位升高3m时水位变化记作+3m,那 么水位下降3m时水位变化记作__-3___m,水位 不升不降时水位变化记作__0___m 。 4、月球表面的白天平均温度零上126℃,记 作_+_1_2_6_℃,夜间平均温度零下150℃,记作 __-1_5_0_℃__。
典例分析
例(1)一个月内,小明体重增加2kg,小华体

七年级数学上册第1章有理数1-4有理数的乘除法1-4-1有理数的乘法教学课件新版新人教版

七年级数学上册第1章有理数1-4有理数的乘除法1-4-1有理数的乘法教学课件新版新人教版

探究新知 知识点 1 有理数的乘法法则
探究:如图,一只蜗牛沿直线 l爬行,它现在的位置在l上的 点O.
O
l
1. 如果一只蜗牛向右爬行2cm记为+2cm,那么向左爬行2cm
应该记为 –2cm . 2.如果3分钟以后记为+3分钟,那么3分钟以前应该记
为 –3分钟 .
探究新知 【思考】
1.如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟后它在什么位置? 2.如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟后它在什么位置? 3.如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟前它在什么位置? 4.如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟前它在什么位置? 5.原地不动或运动了零次,结果是什么?
1. 2×3×4×(–5)

2. 2×3×(–4)×(–5)

3. 2×(–3)×(–4)×(–5)

4. (–2)×(–3)×(–4)×(–5)

5. 7.8×(–8.1)×0×(–19.6)

【思考】几个有理数相乘,因数都不为 0 时,积的符号怎样确定?
有一个因数为 0 时,积是多少?
探究新知
(
3 5
)
(
5 6
)
(2).
(2)
(
3 5
)
(
5 6
)
(2)
[( 3 5)] (2) 56
1 (2) = −1 . 2
解题后的反思:连续两次使用乘法法则,计算起来比较麻烦. 如果我们把乘法法则推广到三个以上有理数相乘,
只“一次性地”先定号,再绝对值相乘即可.
探究新知
知识点 3 倒数
【想一想】计算并观察结果有何特点?

新人教版数学七年级上册第一章全部课件

新人教版数学七年级上册第一章全部课件

新人教版数学七年级上册第一章全部
课件
第一章有理数
(一)正负数
1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数
1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)
2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴
1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。


2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是
它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

人教版数学七年级上册第一章1.2.3相反数课件

人教版数学七年级上册第一章1.2.3相反数课件

拓展提升
5
2.当+5前面有2021个正号时,化简的结果为_________;
-5
当+5前面有2021个负号时,化简的结果为_________;
当+5前面有2022个负号时,化简的结果为_________。
5
多重复号的化简只需要考虑负号的个数,而不必考虑
正号的个数,当负号个数为偶数时,最后符号为正,
绝对值等于它的相反数的数是0或负数;
绝对值最小的数是0 .
下节课
课堂小结
定义
相反数
求法
在原数前面加负号
多重符号的化简
拓展提升
1.若-[-(-x)]=8,则x的相反数是
8
.
解析:因为-[-(-x)]=8,
所以x=-8,
所以x的相反数是8.
当“-”号的个数是偶数时,化简的结果为正数;
当“-”号的个数是奇数时,化简的结果为负数.
-5
-a
-1
0
1
a
5
相反数的几何意义
在数轴上位于原点两侧且到原点的距离相等的两个点
所表示的数互为相反数.
注意:(1)数轴上表示互为相反数的两个点
到原点的距离相等;
(2)数轴上与原点的距离是a(a为正数)的点
有两个,分别在原点的左右两侧,它们表
示的数互为相反数.
设a是一个正数,数轴上与原点的距离等于a(a为正数)
1)上述各对数之间有什么特点?
2)请写出一组具有上述特点的数。
3)你能得出相反数的概念吗?
4)表示各对数的点在数轴上有什么位置关系?
新知:只有符号不同的两个数互为相反数. 特别地,
0的相反数是0.
除了符号不同之外,其他部分完

人教版数学七年级上册1.有理数的乘方课件

人教版数学七年级上册1.有理数的乘方课件

结论二:
1、1的任何次幂都为1
1n=1 (-1)n=?
2、-1的幂很有规律, -1的奇次幂是-1 , -1的偶次幂是1
1)在 11中10 ,11是 数底,10是
指数,读作 11的1;0次方
2 7
2
2)
3的底数是
,指3 数是

2 3
的;7次方
,读7
3)在 2中16,-2是 数底,16是 数指,读
32 32 ;
你有什么发现?
(1)负数的乘方,在书写时一定要把整个负数(连同 符号),用小括号括起来,这样便于辨认底数;
(2)分数的乘方,在书写时一定要把整个分数用小 括号括起来。
探究3
不计算下列各式,你能确定其结果的符号吗?从计 算结果中,你能得到什么规律?
⑴(-2)51; ⑵(-2)50; ⑶250; ⑷251; ⑸(-1)2012;⑹(-1)2013;⑺02012;⑻12013.
2.填空: 310的意义是 10个3,相3乘10 =
.59049
3.判断正误:(对的画“√”,错的画“×”) (1)32 =3×2=6. ( ×) 32=3×3=9.
(2)(-2)3=(-3)2. ( ×) (-2)3=-8,(-3)2=9.
(3)-32=(-3)2. ( )× -32=-9,(-3)2=9.

-2的;16次方
4)在 a中17,底数是 ;指a 数是 ;读17
作 a 的1;7次方
1.回答下列问题:
(1)23中底数是 2,指数是 3,幂是 . 8
(2)
34中2 底数是
,指数是
,2幂是
(3)(-5)4中底数是 -,5 指数是 ,幂4 是
.
. 625

人教版七年级数学上册全套PPT课件

人教版七年级数学上册全套PPT课件
=0 所以小李又回到了原点 . (2) 解: 〔(+10)+(+3)+(+8)+(+11)+(+10)+(+12)+(+4)+(+15)+(+16〕)+×(+0.155)
=104× 0.5 =52
所以这天下午汽车共耗油 52L.
4
有理数分类
有理数定义: 有限小数和无限循环小数统称有理数.
无理数定义: 无限不循环小数统称有理数. 如π
第一章 有理数 1.1 正数和负数
精品PPT
1
正数与负数:
对于具有相反意义的两个量, 我们规定其中一个量为正, 则与其相反意义 的 量则为负. 小学所学的数统称为正数,在其前面加上负号 - 的数为负数.
例1. 找出下列各题相反意义的量:
在日常生活中,常会遇到这样一些量(事情) :
(1) 汽车向东行驶3千米和向西行驶2千米. 相反意义的量:( 向东)
所有整数组成的集合叫 整数集合 ; 所有分数组成的集合叫 负数集合 ;
所有有理数组成的集合叫 有理数集合; 所有正整数和零组成的集合叫做自然数集合。
例4. 把下列各数分别填入相应的大括号内:
非负整数集合
? 7 ,3 . 5 , ? 3 . 1415 , ? , 0 , 13 ,0 .03 , ? 3 1 ,10 , ? 0 . 2? 3? , ? 4
? ? ? 有理数按定义分类:??? ? ? ? ??
整数 分数
? 正整数
??
?0
?Байду номын сангаас??
负整数
?? 正分数
? ??

人教版数学七年级上册第一章有理数的混合运算课件(共17张)

人教版数学七年级上册第一章有理数的混合运算课件(共17张)

解:原式=
1.计算:
解:原式= =-10-80 =-90
解:原式=
2.计算:
有理数的加减乘除混合运算三步走: 1.看清运算,定运算顺序; 2.根据特点,巧用运算律; 3.选对法则,耐心计算.
(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).
解:(1)原式=2×(-27)-(-12)+15 =-54+12+15 =-27
(2)原式=-8+(-3)×(16+2)-9÷(-2)
=-8+(-3)×18-(-4.5) =-8-54+4.5 =-57.5
计算:
(1)(1)10 2 (2)3 4
(3)取每行数的第10个数,计算这三个数的和. 解:(3)每行数中的第10个数的和是
视察下列各式:
1 21 1
1 2 22 1
1 2 22 23 1
猜想:1 2 22 23 263
若n是正整数,那么 1 2 22 2n
1.计算:
解:原式= -2×9-36 =-18-36 =-54
例2
计算:(3)2
2 3
(
5 9
)
点拨:在运算过程中,巧 用运算律,可简化计算
解法一:
解法二:
解:原式=
9 (
11 9
)
= -11
解:
原式=
9
(
2 3
)
9
(
5 9
)
=-6+(-5)
=-11
讨论交流:你认为哪 种方法更好呢?
例3 视察下面三行数: -2, 4, -8, 16, -32, 64,…;① 0, 6, -6, 18, -30, 66,…;② -1, 2, -4, 8, -16, 32,…. ③

人教版七年级数学上册课件:1.1.1正数和负数(共20张PPT)

人教版七年级数学上册课件:1.1.1正数和负数(共20张PPT)

在潜水艇下方 20 m 处,则鲨鱼所在的海拔高度为( A ). 2 %,
中国 7.
例1 一个月内,小明体重增加 2 kg,小华体重减少 1 kg,小强体重无变化,写出他们这个月的体重增长值.
因此“-3”的含义是这天的最低温度为零下 3 ℃,这一天北京的温差是 6 ℃.
A.-70 m 写出这些国家这一年商品进出口总额的增长率.
A. 0 个 B. 1 个 C. 2 个 D. 3 个
8.一艘潜水艇所在的海拔高度为 -50 m ,若一条鲨鱼在潜水艇下方 20 m 处,则鲨鱼所在的海拔高度为( ).
8%,油菜籽产量比上一年增长-2.
A.0
B.-2
C.1
8.D. 一艘潜水艇所在的海拔高度为 -50 m ,若一条鲨鱼
2,8,-1 , ,30 %.
④ 0 ℃表示没有温度,其中正确的有(
). A.0
B.-2
C.1
1 D.
举出身边具有相反意义的量的例子
2.下列各数Biblioteka 是负数的为( ).2 %,
中国 7.
2 3.在 -1,0,1,2 这四个数中,既不是正数也不是负
2,8,-1 , ,30 %.
数的是 ___0_____. 7%”表示油菜籽产量比上一年减少 2.
思考:你知道下面图片中数字的含义吗? 2这样在正数前面加上符号“-”(负)的数叫做负数.
B.-50 m C.20 m
D.-20 m
五、作业
1.教科书习题 1.1 第 1,2,3 题. 2.查阅资料,了解数的发展历史.
那么应该怎么表示呢?
一、新知导入
例题: (1)天气预报北京冬季里某天的气温为-3 ℃~ 3 ℃, -3 的确切含义是什么?这一天北京的温差是多少? 解:这天的最高温度是零上 3 ℃,最低温度是零下 3 ℃. 温差是最高温度与最低温度的差. 因此“-3”的含义是这天 的最低温度为零下 3 ℃,这一天北京的温差是 6 ℃. (2)某年,我国花生产量比上一年增长 1.8%,油菜籽 产量比上一年增长-2.7%. “增长-2.7%”表示什么意思? 解:“增长-2.7%”表示油菜籽产量比上一年减少 2.7%.

人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)

人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)
1用科学计数法表示数只是改变数的形式并没有改变数的大小2负数用科学计数法表示时和正数一样区别就是前面多一个号3当把一个用科学计数法表示的数还原为原数时只需将小数点向右移动n位不足的数位用0补齐并把10的n次幂去掉551确定n时要根据科学计数法的规定使它为只含有一位整数的数2确定n的方法有两种1利用整数的位数来求nn等于原数的整数位数1ex
有理数的混合运算
知识拓展:
1、将带分数化为假分数,小数化为分数,再 进行乘方、乘除等运算;另外,有些运算可以
同时进行,以简化运算
2、分为三级:(1)第一级:加和减 (2)第二级:乘和除 (3)第三级:乘方
近似数
科学计数法:
1、用科学计数法表示数只是改变数的形式, 并没有改变数的大小
2、负数用科学计数法表示时和正数一样,区 别就是前面多一个“-”号 3、当把一个用科学计数法表示的数还原为原 数时,只需将小数点向右移动n位(不足的数 位用0补齐),并把10的n次幂去掉
乘方
有理数乘方运算的符号法则: (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数
偶次幂是正数 (3)0的任何正整数次幂都是0
乘方
有理数乘方的运算方法: (1)一是根据底数与指数确定幂的符号
二是把绝对值乘方 (2)根据乘方的意义,先把乘方转化为乘法, 再利用乘法的运算法则进行计算
乘方
知识拓展:
加号的几个正数或负数的和的形式 ex:(-9)-(+12)+(-3)-(-7)=-9-12-3+7
减法法则
提示: (1)只有把加减法统一成加法之后,才能写
成省略加号和括号的和的形式 (2)省略加号和括号的和的形式有两种读法:
a、按加法的结果来读:应读作“负9、负12、 负3、正7的和

人教版数学七年级上册第一章有理数的加减乘除混合运算24张PPT课件

人教版数学七年级上册第一章有理数的加减乘除混合运算24张PPT课件

新知演练
新知应用
例4 某公司去年1~3月平均每月亏损1.5万元,4~6月平均 盈利2万元,7~10月平均盈利1.7万元,11~12月平均 亏损2.3万元,这个公司去年总盈亏情况如何?
新知应用
解:记盈利额为正数,亏损额为负数,公司去年
全年总的盈亏(单位:万元)为 除3万以元一,个这不个等公于司0去的年数总,盈等亏于情乘况以如这何个?数的___.
例D.3 -请4×你(2仔÷细8)阅和读-下4×列2÷材8料:计算 综解上:所 (述1),(1原0式-的4)×值3为-3(-或6-)=12.4; 解当:a>原0式,=b-<80+时(-,3原)×式(1=6(+-21)-)+(1-+(4-. 1)=3;
(-1.5)×3+2×3+1.7×4+(-2.3)×2 问(题2)1:4-小(-学6的)÷四3则×1混0=合2运4;算的顺序是怎样的?
答:这个公司去年全年盈利3.7万元.
新知演练
【变式】一架直升飞机从高度为450m的位置开始,先以20m/s 的速度上升60s,后以12m/s的速度下降120s,这时直 升机所在的高度是多少? 解:450+20×60-12×120 =450+1200-1440 =210 答:这时直升机所在的高度是210m.
问题2:我们目前都学习了有理数的哪些运算? 有理数的加法、减法、乘法、除法.
新知讲解
问题1:下列式子含有哪几种运算?先算什么,后算什么? 第二级运算 乘除运算
3 50 2 5 1 ?
加减运算 第一级运算
新知讲解
问题2:观察式子-3×(2+1)÷(5-12),应该按照什么 顺序来计算?
有理数的加减乘除混合运算的顺序: 先算乘除,再算加减,同级运算从左往右依

第一单元第一节正数和负数课件人教版数学七年级上册(25张PPT)

第一单元第一节正数和负数课件人教版数学七年级上册(25张PPT)

练习.填空: (1)如果把顺时针转30°记为+30°, 那么逆时针转45 °记为 - 45 °。
(2)设向东走为正,向东走30米,记 作 +30米;向西走20米,记作-20米 ; 原地不动记作 0米 ;记作-25米表示 向 西 走25米;记作+16米表示向__东___ 走16米。
在这个问题中,0表示没有变化
(D)+15米表示向南走15米
相反意义的量包含两个要素: 一是它们的意义要相反;二是它们都具有数量
举一反三:
请同学们再举一些用正负数表示数量 的实际例子吗?
注意
(1)对于两个具有相反意义的量,把哪一种 意义规定为正,带有任意性。一般情况下,把 向北(东)、上升、增加、收入等规定为正。
(2)与一个量成相反意义的量不止一个,如 与上升2m成相反意义的量就很多,下降1m,下 降0.2m,……
课堂小结 通过这节课的学习,你掌握了哪些知识?
练习:里约奥运会勇夺冠军的中国女 排的平均身高为187公分,如果以平均 身高为标准, 超过部分记为正数,不 足部分记为负数,有5名队员分别记为 +10,-5,0,+7,-2,则她们的实 际身高应是______________________.
方法总结:“0”可以表示一种基准,高于
初 数与代数 中 数 学 图形与几何 内 容 统计与概率
小学数学中我们学过哪些数? 你能按照某一标准将它们分类?
自然数:0、1、2、3…… 分数(小数):1/2、0.36、5%……
数的产生和发展离不开生活和生产的需要
产生
产生
数1,2,3,… 数0
产生分数1 ,1 23
想一想: 这些数足够表示我们生活中常见的量吗? 有比0小的数吗?请举出生活中的实例.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 、 减 少 60 千 克 计 为 - 60 千 克 , 则 +80 千 克 表 示 __增_加__8_0千克 。
4 、 把 公 元 2012 年 记 作 +2012 年 , 那 么 -221 年 表 示 __公_元__前_2_2。1年
二、读下列各数,并指出其中哪些是正数, 哪些是负数。
-1, 2.5,+ 4, 0 ,-3.14,
长丰县城东中学 冯东
概念引入
我们把以前学过的数大于零叫做 正数。有时在正数前面也加上“+”(正)号。 如
+0.5、+3、+1/2……“+”号可以省略。
我们把在以前学过的数(0除外)前 面加上负号“-”的数叫做负数。如-3、-
0.5、-2/3……
一个数前面的“+”、“-”号叫做它的符号。 “-”号读着 “负”,如:“-5”读着“负5”;“+”号读着“正”, 如:“+3”读着“正3”。“+”号可以省略。
例如:|3|=3,|+7|=7 ………… 一个正数的绝对值是它本身
例如:|-3|=3,|-2.3|=2.3 ………… 一个负数的绝对值是它的相反数 而 原点到原点的距离是0 0的绝对值是0。即 |0|=0
因为正数可用a>0表示,负数可用 a<0表示,所以上述三条可表述成:
(1)如果a>0,那么|a|=a
(2)如果a<0,那么|a|=-a
(3)如果a=0,那么|a|=0
而且a 0
判断:
(1)一个数的绝对值是 2 ,则这数是2 。 (2)|5|=|-5|。 (3)|-0.3|=|0.3|。 (4)|3|>0。 (5)|-1.4|>0。 (6)有理数的绝对值一定是正数。 (7)若a=b,则|a|=|b|。 (8)若|a|=|b|,则a=b。 (9)若|a|=-a,则a必为负数。 (10)互为相反数的两个数的绝对值相等。
人教版数学七年级上册单元课件
第一章 有理数
第一章 有理数
• 1.1 正数和负数 • 1.2 有理数(数轴/相反数/绝对值) • 1.3 有理数的加减法 • 1.4 有理数的乘除法 • 1.5 有理数的乘方(乘方/科学记数法/近似
数) • (单击上面课题进入对应幻灯片)
正数和负数(一)
合作学习:课本P2 观察1和2
你能举出生活中具有相反意义的例子吗? 例子里要有正数和负数。
说一说存折上的数各表示什么?
在下列横线上填上适当的词,使前后构成 意义相反的量: (1)收入1300元, 800元; (2) 80米,下降64米; (3)向北前进30米, 50米.
智慧果实
ห้องสมุดไป่ตู้
符 号
具有相反意义的量
+收 入
盈 利
上 升
零 上
课堂总结
1、这节课你学会了什么? 2、你还有什么不懂的吗?
课堂作业
• 课本 习题1.1 第1,3题
寻找回忆
什么叫做相反数?
你能找出互为相反数的两个数在 数轴上表示的点的共同特点吗?
一般地,数轴上表示数a的点与原点的 距离叫做数a的绝对值,(absolute value)。
想一想 这里的数a可以表示什么样的数? 这里的数a可以是正数,负数和0
想一想
1) 绝对值是7的数有几个?各是什么?有 没有绝对值是-2的数?
答:绝对值是7的数有两个,各是7与-7。 没有绝对值是-2的数。
2) 绝对值是0的数有几个?各是什么? 答:绝对值是0的数有一个,就是0。
3)绝对值小于3的整数一共有多少个? 答:绝对值小于3的整数一共有5个,
它们分别是-2,-1,0,1,2。
1、计算:+0.75 -3 3=_____ 8
2、已知有理数a在数轴上对应的点如图所示:
想一想 互为相反数的两个数的绝对值有 什么关系? 提示:一对相反数虽然分别在原点两边, 但它们到原点的距离是相等的。
一个数a的绝对值就是数轴上表示数a的点与原点的距离。
一个数的绝对值就是在这个数的两旁各画一条 竖线,如+2的绝对值等于2,记作|+2|=2。 数a的绝对值记作|a|。
如图,在数轴上表示-5的点与原点的距离是5, 即-5的绝对值是5,记作|-5|=5。
它们以什么 为基准?
10℃表示白天温度为零上10℃,-5℃表示晚上温度为零下5℃。
拓展练习
1、东、西为两个相反方向,如果- 4 米表示一物体向西运动4米,那么+2 米表示什么?物体原地不动记为什么?
2、若将28计为0,则可将27
计为-1,试猜想若将 27计为
0,28应计为

3、观察下列排列的每一列数, 研究它的排列有什么规律?并 填出空格上的数. (1)1,-2,1,-2,1,-2, , , ,… (2)-2,4,-6,8,-10, , , ,… (3)1,0,-1,1,0,-1, , , ,…

增 加
---
-支 出
亏 损
下 降
零 下
西
减 少
---
随堂练习
一、正负数可以用现实生活中具有相反意义的量来解释。
1 、 如 果 将 +8 元 计 为 收 入 8 元 , 则 -6 元 表 示 ___支__出__6元 。
2、高出海平面789米计为+789米,则-789米表示__ __低_于__海平。面789米
1 1的绝对值是1 1 记作
3
3
11 11
3
3
A
B
做一做
写出下列各数的绝对值:
6,8,3.9, 5 , 2 ,100,0 2 11
解:
6 6, 8 8, 3.9 3.9, 5 5 22
2 2 , 100 100, 0 0 11 11
议一议 一个数的绝对值与这个数有什 么关系?
3
120, - 2, -1.732
7
问题思考
一个数不是正数就是负 数,对吗?
0既不是正数也不是负数。0是正负 数的分界。
0只表示没有吗?
• 1.空罐中的金币数量; • 2.温度中的0℃; • 3.海平面的高度; • 4.标准水位; • 5.身高比较的基准; • 6.正数和负数的界点;
……引入正负数后,0不再简简单单的只表 示没有. 它具有丰富的意义,是正负数的基准。
自我介绍:姓名、年龄、身高等
问题一:上述介绍中有小学学过哪些数? 你能按照某一标准将它们分类?
整数:0、1、2、3…… 分数(小数):1/2、0.36、5%……
随着社会的发展,小学学过的自然数、 分数和小数已不能满足实际的需要 。
数的产生和发展离不开生活和生产的需要
1.1正数和负数(一)
合作学习:课本P2 观察1和2
相关文档
最新文档