刚体作业答案

合集下载

中南-工程力学纸质作业与答案

中南-工程力学纸质作业与答案
由 解得:
由钢的强度条件
解得:
由木材强度条件
解得:
所以许可载荷FP为697kN
10.解:
铆钉的剪切强度:每个铆钉的受力图如图
铆钉与板的挤压强度:由于上下板厚度为中间板厚度的1/2,挤压力为中间板的1/2,故铆钉与中间板和盖板的挤压应力相同
钢板的拉伸强度:盖板和中间板的轴力图如图,经分析盖板1-1截面为危险截面
一、填空题
1. 力偶
2. ,0, ,0
3. 力系的主矢、主矩分别等于零
4.弹性阶段、屈服阶段、强化阶段、颈缩阶段
5.26.4%,65.19%,塑性材料
6. ,
7. , ,
8. ,
9.
10.突变,集中力的大小,突变,集中力偶的大小
11.二,二,三
12.
13.C,B,A
14.[σt]/[σc]
15.15MPa
3. 结构如图所示。作用在结构上的力P=10kN,力偶矩m=12kN·m,分布载荷的最大值q=0.4kN/m。求A、B、C处的约束力。
4. 图所示传动轴中,作用于齿轮上的齿合力F推动AB轴作匀速转动。已知皮带上皮带紧边的拉力T1=200N,松边的拉力T2=100N,皮带轮直径D1=160mm,圆柱齿轮的节圆直径D=240mm,压力角α=20o,其它尺寸如图。试确定力F的大小和轴承A、B处的约束力。
二、作图题
1. 分别画出下列各物体的受力及整个系统的受力图,各杆的自重不计。
2. 作下列各梁的剪力和弯矩图。
三、计算题
1.试求梁的支座约束力。
2.图示结构A处为固定端约束,C处为光滑接触,D处为铰链连接。已知F1=F2=400N,M=300N·m,AB=BC=400mm,CD=CE=300mm,α=45o,不计各构件自重,求固定端A处与铰链D处的约束力。

刚体习题和答案

刚体习题和答案

作业5 刚体力学♫刚体:在力的作用下不发生形变的物体⎰=-⇒=210t t dt dtd ωθθθω角速度⎰=-⇒=210t t dt dtd βωωωβ角加速度1、根底训练〔8〕绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad s ω=,t =20s 时角速度为00.8ωω=,那么飞轮的角加速度β= -0.05 rad/s 2 ,t =0到 t =100 s 时间飞轮所转过的角度θ= 250rad . 【解答】飞轮作匀变速转动,据0t ωωβ=+,可得出:200.05rad s tωωβ-==-据2012t t θωβ=+可得结果。

♫定轴转动的转动定律:定轴转动的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比.βJ M =质点运动与刚体定轴转动对照[C ]1、根底训练〔2〕一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如下图.绳与轮之间无相对滑动.假设某时刻滑轮沿逆时针方向转动,那么绳中的力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【解答】逆时针转动时角速度方向垂直于纸面向外, 由于(m 1<m 2),实际上滑轮在作减速转动,角加速m 2m 1 O度方向垂直纸面向,所以,由转动定律21()T T R J β-=可得:21T T >[C ] 2、自测提高〔2〕将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于. (B) 大于,小于2. (C) 大于2. (D) 等于2. 【解答】设飞轮的半径为R ,质量为m ,根据刚体定轴转动定律M J β=,当挂质量为m 的重物是:mg T maTR J a R ββ-=== 所以2mgRJ mRβ=+,当以2F mg =的拉力代替重物拉绳时,有: '2mgR J β=,2'mgRJβ=,比拟二者可得出结论。

第三次作业 牛顿运动定律和刚体力学

第三次作业 牛顿运动定律和刚体力学

J
d d M Fr FN 2[ Fr ( F mg )] M 可得圆盘的角速度变化率 。 2 1 2 dt J mr dt mr 2
(2)以横梁为研究对象,受力平衡: Fl Fr FN 。 对横梁左端和右端,力矩平衡分别为: FN 2aFr aFN 0 和 FN 2aFl aFN 0 。 联立以上各方程解得:
2
可得:
dz r 2 r 2 (r ) 2 ,即 dz tan dr 。两端积分得: z dr g g 2g
mR
2
2

解:以转盘中心为转动轴,转盘和夯锤系统角动量(动量矩)守恒,碰撞后瞬间转盘与夯锤绕转盘中心
5
的角速度相同,得 ( J mR 2 ) J 0 ,即
J J R0 0 。则夯锤速度为 v R 2 J mR 2 J mR
[3-19] 如 图 所 示 , 弹 簧 的 劲 度 系 数
[3-26] 在重力场中有一个以匀速度 旋转着的圆筒容器,该容器内盛有密度为 的不可压缩性流 体。试求:(1)液体表面的状态;(2)液体内的压力分布。
解:(1)以圆筒的转轴为 Z 轴,原点位于液面最低处。液面处于平衡状态时,在液面取一质量元 dm , 受到重力 gdm 和其它流体的合力 F 。由于质量元相对液面静止,所以合力 F 的方向沿液面法向, 设 F 与竖直方向的夹角为 ,旋转时 dm 以径向 r 为半径,以 o 为圆心作匀速率圆周运动,向心加 速度为 an r 2 。由牛顿运动定律,有 F sin r dm 和 F cos gdm 。
m1v0 (m1 m2 )v 1 1 1 2 m1v0 (m1 m2 )v 2 kx 2 2 2 2

面向新世纪课程教材大学物理大作业答案——刚体力学作业

面向新世纪课程教材大学物理大作业答案——刚体力学作业

L2

L1
=
J 2ω2

J1ω1
质点的动量定理
dpr
=
r F

dt
∫ r
I
=
tr F ⋅ dt =
t0
pr − pr0 = mvr − mvr0
三、刚体的角动量守恒定律
1. 角动量守恒定律
∫ 由角动量定理
r M

r M外
=
0
时,

d
t r
ΔL
= =
Δ 0
r L
r L
=
恒矢量
P.6
1
区分两类冲击摆
(1)
大作业题解
刚体力学
第3章 刚体力学基础
一、对转轴的力矩
r M
=
rr
×
r F
单位:N·m
r M
=
rr
×
r F⊥
r M
=
rr
×
r F
大小: 方向:
M = Frsinϕ
rr

r F
右旋前进方向
二、定轴转动定律
M z = Jβ
P.2
转动惯量(moment of inertia)
∑ 1. 定义 J = iri2mi 单位: kg ⋅ m 2
l/4 O
[ A]
mg l = 1 Jω 2 J = 7 ml 2
22
48
⇒ ω = 4 3g 7l
P.11
9.如图所示,一人造卫星到地球中心C的最大距离和
最小距离分别为RA和RB。设人造卫星对应的角动量分
别为LA和LB,动能分别为EkA和EkB,则有
(A) LB > LA,EkB > EkA

建筑力学与结构力学作业答案(高职)讲解

建筑力学与结构力学作业答案(高职)讲解

建筑力学与结构、结构力学与建筑构造练习册(宁大专升本)姓名:学号:班级:任课教师:杭州科技职业技术学院作业一、静力学基本概念(一)判断题:1、使物体运动状态发生改变的效应称为力的内效应。

( ⨯ )2、在两个力作用下处于平衡的杆件称为二力杆。

( √ )3、力的可传性原理适用于任何物体。

( ⨯ )4、约束是使物体运动受到限制的周围物体。

( √ )5、画物体受力图时,只需画出该物体所受的全部约束反力即可。

( ⨯ )(二)选择题:1、对刚体来说,力的三要素不包括以下要素( B )。

(A )大小 (B )作用点 (C )方向 (D )作用线2、刚体受不平行的三个力作用而平衡时,此三力的作用线必( C )且汇交于一点。

(A )共点 (B )共线 (C )共面 (D )不能确定3、光滑圆柱铰链约束的约束反力通常有( B )个。

(A )一 (B )二 (C )三 (D )四4、如图所示杆ACB ,其正确的受力图为( A )。

(A )图A (B )图B (C )图C (D )图D成绩D(A )(D )(C )5、下图中刚架中CB 段正确的受力图应为( D )。

(A )图A (B )图B (C )图C (D )图D(三)分析题:1、画出下图所示各物体的受力图,所有接触面均为光滑接触面,未注明者,自重均不计。

解:(a)取球为研究对象,作受力图如下:∙C G(b)60︒(c)F CFB (C)F B∙ABC GAR(b)取刚架为研究对象,作受力图如下:(c)取梁为研究对象,作受力图如下:2、画出下图所示各物体的受力图,所有接触面均为光滑接触面,未注明者,自重均不计。

解:(a)先取AC 杆为研究对象,作受力图如下:(a) AC 杆、BC 杆、整体(b)AC 杆、BC 杆、整体q (c) AB 杆、BC 杆、整体 CAAx F B R F或:BB R60︒ Ay F BF CCx F再取BC 杆为研究对象,作受力图如下:最后取整体为研究对象,作受力图如下:(b) 先取AC 杆为研究对象,作受力图如下:再取BC 杆为研究对象,作受力图如下:最后取整体为研究对象,作受力图如图所示:BF BF CxFF 'T 'BB A F A Ax FAy FB Cx F F 'Bx F By FA Ax FAy FBBx FBy F(c) 先取AB 杆为研究对象,作受力图如下:再取BC 杆为研究对象,作受力图如上:最后取整体为研究对象,作受力图如下:二、平面汇交力系(一)判断题:1、求平面汇交力系合力的几何作图法称为力多边形法。

刚体的平面运动作业参考答案

刚体的平面运动作业参考答案

刚体的平面运动作业参考答案1.图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。

如曲柄OA 以等角加速度α 绕O 轴转动,当运动开始时,角速度ω0=0,转角ϕ0=0,求动齿轮以中心A 为基点的平面运动方程。

答案: 2A 22)(21, 2sin)( , 2cos )(t r R rt r R y t r R x A A αϕαα+=+=+=2. 图示平面机构中,曲柄OA =R ,以角速度ω 绕O 轴转动。

齿条AB 与半径为2Rr =的齿轮相啮合,并由曲柄销A 带动。

求当齿条与曲柄的交角θ =60º时,齿轮的角速度。

答案:顺时针 31ωω=提示:可先用速度投影法求出齿条上与齿轮重合点的速度。

3.图中曲柄OA 长150mm ,连杆AB 长200mm ,BD 长300mm 。

设OA ⊥OO 1时,AB ⊥OA ,θ =60º,曲柄OA 的角速度为4rad/s ;求此时机构中点B 和D 的速度以及杆AB 、O 1B 和BD 的角速度。

答案:逆时针顺时针顺时针 rad/s 34 , rad/s 4, rad/s 3 , mm/s 800 , mm/s 34001O =====BD B AB D B v v ωωω提示:在图示瞬时,杆AB 的速度瞬心为点C ,杆BD 的速度瞬心为点E 。

4.图示平面机构中,曲柄长OA =r ,以角速度ω0绕O 轴转动。

某瞬时,摇杆O 1N 在水平位置,而连杆NK 和曲柄OA 在铅垂位置。

连杆上有一点D ,其位置为DK =31NK ,求D 点的速度。

答案:←=320ωr v D 提示:在图示瞬时,杆AB 瞬时平动,杆KN 的速度瞬心为点N 。

5.杆AB 长0.4m ,其端点B 沿与水平成倾角θ =30º的斜面运动,而端点A 沿半径OA =0.6m 的圆弧运动,如图所示。

求当杆AB 水平时,端点B 的速度和加速度。

假设此时OA ⊥AB ,杆OA 的角速度为πrad/s ,角加速度为零。

刚体答案——精选推荐

刚体答案——精选推荐

刚体的定轴转动作业题答案1.{均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法正确的是()}A.角速度从小到大,角加速度从大到小B.角速度从小到大,角加速度从小到大C.角速度从大到小,角加速度从大到小D.角速度从大到小,角加速度从小到大答案:A题型:单选题2.一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J,绳下端挂一物体.物体所受重力为P,滑轮的角加速度为.若将物体去掉而以与P相等的力直接向下拉绳子,滑轮的角加速度将()A.不变B.变小C.变大D.如何变化无法判断答案:C题型:单选题3.一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统()A.动量守恒B.机械能守恒C.对转轴的角动量守恒D.动量、机械能和角动量都守恒E.动量、机械能和角动量都不守恒答案:C题型:单选题4.一刚体以每分钟60转绕z轴做匀速转动(沿z轴正方向)设某时刻刚体上一点P的位置矢量为,其单位为“10-2m”,若以“10-2m·s-1”为速度单位,则该时刻P点的速度为()A.B.C.D.试题编号:E17549 24678答案:B题型:单选题5.{一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端分别悬有质量为m1和m2的物体(m1<m2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力()}A.处处相等B.左边大于右边C.右边大于左边D.哪边大无法判断试题编号:E17549 24680答案:C题型:单选题6.{一圆盘绕过盘心且与盘面垂直的光滑固定轴O以角速度w按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F沿盘面同时作用到圆盘上,则圆盘的角速度将()}A.必然增大B.必然减少C.不会改变D.如何变化,不能确定试题编号:E17549 24681答案:A题型:单选题7.两个匀质圆盘A和B的密度分别为和,若>,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A和J B,则()A.J A>J BB.J B>J AC.J A=J BD.J A、J B哪个大,不能确定试题编号:E17549 24682答案:B题型:单选题8.将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m的重物,飞轮的角加速度为.如果以拉力2mg代替重物拉绳时,飞轮的角加速度将()A.小于B.大于,小于C.大于D.等于试题编号:E17549 24684答案:C题型:单选题9.{光滑的水平桌面上有长为、质量为m的匀质细杆,可绕通过其中点O且垂直于桌面的竖直固定轴自由转动,转动惯量为,起初杆静止.有一质量为m的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度是()}A.B.C.D.试题编号:E17549 24686答案:C题型:单选题10.质量为m的小孩站在半径为R的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J.平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为()A.,顺时针B.,逆时针C.,顺时针D.,逆时针试题编号:E17549 24687答案:A题型:单选题11.有一半径为R的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J,开始时转台以匀角速度转动,此时有一质量为m的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为()A.B.C.D.试题编号:E17549 24688答案:A题型:单选题12.一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是()A.动能B.绕木板转轴的角动量C.机械能D.动量试题编号:E17549 24690答案:B题型:单选题13一个作定轴转动的轮子,对轴的转动惯量J =2.0kg·m2,正以角速度作匀速转动.现对轮子加一恒定的力矩M = -12N·m,经过时间t=8.0s时轮子的角速度=-,则=___.试题编号:E17549 24694答案:24 rad/s题型:填空题14.{有一半径为R的匀质圆形水平转台,可绕通过盘心O且垂直于盘面的竖直固定轴OO'转动,转动惯量为J.台上有一人,质量为m.当他站在离转轴r处时(r<R),转台和人一起以的角速度转动,如图.若转轴处摩擦可以忽略,问当人走到转台边缘时,转台和人一起转动的角速度=___.}试题编号:E17549 24696答案:题型:填空题15.{长为l、质量为M的匀质杆可绕通过杆一端O的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示.有一质量为m的子弹以水平速度射入杆上A点,并嵌在杆中,OA=2l/ 3,则子弹射入后瞬间杆的角速度=___.}试题编号:E17549 24697答案:题型:填空题16.{质量为m、长为l的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O在水平面内自由转动(转动惯量J=m l2/ 12).开始时棒静止,现有一子弹,质量也是m,在水平面内以速度v0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度=___.}试题编号:E17549 24698答案:3v0/ (2l)题型:填空题17.一个圆柱体质量为M,半径为R,可绕固定的通过其中心轴线的光滑轴转动,原来处于静止.现有一质量为m、速度为v的子弹,沿圆周切线方向射入圆柱体边缘.子弹嵌入圆柱体后的瞬间,圆柱体与子弹一起转动的角速度=___.(已知圆柱体绕固定轴的转动惯量J=)试题编号:E17549 24700答案:题型:填空题18.一飞轮以角速度绕光滑固定轴旋转,飞轮对轴的转动惯量为J1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系统的角速度=___.试题编号:E17549 24703答案:题型:填空题19.可绕水平轴转动的飞轮,直径为1.0 m,一条绳子绕在飞轮的外周边缘上.如果飞轮从静止开始做匀角加速运动且在4 s内绳被展开10 m,则飞轮的角加速度为___.试题编号:E17549 24704答案:2.5 rad / s2题型:填空题20.一飞轮作匀减速转动,在5 s内角速度由40rad·s-1减到10rad·s-1,则飞轮在这5 s内总共转过了___圈,飞轮再经___的时间才能停止转动.试题编号:E17549 24705答案:62.5 | 1.67s题型:填空题21.{如图所示,一质量为m、半径为R的薄圆盘,可绕通过其一直径的光滑固定轴转动,转动惯量J=mR2/ 4.该圆盘从静止开始在恒力矩M作用下转动,t秒后位于圆盘边缘上与轴的垂直距离为R的B点的切向加速度a t=___,法向加速度a n=___.}试题编号:E17549 24706答案:4M/ (mR) |题型:填空题22.一长为L的轻质细杆,两端分别固定质量为m和2m的小球,此系统在竖直平面内可绕过中点O且与杆垂直的水平光滑固定轴(O轴)转动.开始时杆与水平成60°角,处于静止状态.无初转速地释放以后,杆球这一刚体系统绕O轴转动.系统绕O轴的转动惯量J=___.释放后,当杆转到水平位置时,刚体受到的合外力矩M=___;角加速度___.试题编号:E17549 24707答案:3mL2/ 4 |mgL |题型:填空题23.{有两位滑冰运动员,质量均为50 kg,沿着距离为3.0 m的两条平行路径相互滑近.他们具有10 m/s的等值反向的速度.第一个运动员手握住一根3.0 m长的刚性轻杆的一端,当第二个运动员与他相距3m时,就抓住杆的另一端.(假设冰面无摩擦)(1)试定量地描述两人被杆连在一起以后的运动.(2)两人通过拉杆而将距离减小为1.0m,问这以后他们怎样运动?}A. (%)试题编号:E17549 24710答案:{解:(1)对两人系统,对于杆中点合外力矩为零,角动量守恒.故 1分1分=2v/=6.67 rad / s∴w0两人将绕轻杆中心O作角速度为6.67 rad/s的转动. 1分(2)在距离缩短的过程中,合外力矩为零,系统的角动量守恒,则J0w0= J1w11分1分即作九倍原有角速度的转动.}题型:计算题题型:计算题24.{一轴承光滑的定滑轮,质量为M=2.00 kg,半径为R=0.100 m,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m=5.00 kg的物体,如图所示.已知定滑轮的转动惯量为J=,其初角速度=10.0 rad/s,方向垂直纸面向里.求:(1)定滑轮的角加速度的大小和方向;(2)定滑轮的角速度变化到0时,物体上升的高度;(3)当物体回到原来位置时,定滑轮的角速度的大小和方向.}A. (%)试题编号:E17549 24712答案:{解:(1) ∵ mg-T=ma 1分TR=J2分a=R1分∴=81.7 rad/s21分方向垂直纸面向外. 1分(2) ∵当=0时,物体上升的高度h=R=6.12×10-2m 2分(3)10.0 rad/s方向垂直纸面向外.2分}题型:计算题25.{一质量均匀分布的圆盘,质量为M,半径为R,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为),圆盘可绕通过其中心O的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m的子弹以水平速度v0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求(1)子弹击中圆盘后,盘所获得的角速度.(2)经过多少时间后,圆盘停止转动.(圆盘绕通过O的竖直轴的转动惯量为,忽略子弹重力造成的摩擦阻力矩)}A. (%)试题编号:E17549 24715答案:{解:(1)以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴O的角动量守恒.1分mv0R=(MR2+mR2)2分1分(2)设s表示圆盘单位面积的质量,可求出圆盘所受水平面的摩擦力矩的大小为2分设经过时间圆盘停止转动,则按角动量定理有-M f=0-J=-(MR2+mR2-)=-mv0R 2分∴ 2分}题型:计算题26.{质量为M1=24 kg的圆轮,可绕水平光滑固定轴转动,一轻绳缠绕于轮上,另一端通过质量为M2=5 kg的圆盘形定滑轮悬有m=10 kg的物体.求当重物由静止开始下降了h=0.5 m时,(1)物体的速度;(2)绳中张力.(设绳与定滑轮间无相对滑动,圆轮、定滑轮绕通过轮心且垂直于横截面的水平光滑轴的转动惯量分别为,)}A. (%)试题编号:E17549 24717答案:{解:各物体的受力情况如图所示.图2分由转动定律、牛顿第二定律及运动学方程,可列出以下联立方程:T 1R =J 11=方程各1分共5分T 2r -T 1r =J 22=mg -T 2=ma , a =R 1=r2, v2=2ah求解联立方程,得m/s 2=2 m/s 1分T 2=m(g -a)=58 N 1分T 1==48 N 1分 }题型:计算题 27.{如图所示的阿特伍德机装置中,滑轮和绳子间没有滑动且绳子不可以伸长,轴与轮间有阻力矩,求滑轮两边绳子中的张力.已知m 1=20 kg ,m 2=10 kg .滑轮质量为m 3=5 kg .滑轮半径为r =0.2 m .滑轮可视为均匀圆盘,阻力矩M f =6.6N·m ,已知圆盘对过其中心且与盘面垂直的轴的转动惯量为.}A. (%)试题编号:E17549 24718 答案:{解:对两物体分别应用牛顿第二定律(见图),则有 m 1g -T 1=m 1a ①T 2– m 2g= m 2a ② 2分对滑轮应用转动定律,则有③ 2分对轮缘上任一点,有 a =r ④ 1分又:=T1,=T2⑤则联立上面五个式子可以解出=2 m/s22分T1=m1g-m1a=156 NT2=m2g-m2a=118N 3分}题型:计算题2844.{一匀质细棒长为2L,质量为m,以与棒长方向相垂直的速度v0在光滑水平面内平动时,与前方一固定的光滑支点O发生完全非弹性碰撞.碰撞点位于棒中心的一侧处,如图所示.求棒在碰撞后的瞬时绕O点转动的角速度.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为,式中的和分别为棒的质量和长度.)}A. (%)试题编号:E17549 24720答案:{解:碰撞前瞬时,杆对O点的角动量为3分式中r为杆的线密度.碰撞后瞬时,杆对O点的角动量为3分因碰撞前后角动量守恒,所以3分∴= 6v0/ (7L) 1分.{一匀质细棒长为2L,质量为m,以与棒长方向相垂直的速度v0在光滑水平面内平动时,与前方一固定的光滑支点O发生完全非弹性碰撞.碰撞点位于棒中心的一侧处,如图所示.求棒在碰撞后的瞬时绕O点转动的角速度.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为,式中的和分别为棒的质量和长度.)}A. (%)试题编号:E17549 24720答案:{解:碰撞前瞬时,杆对O点的角动量为3分式中r为杆的线密度.碰撞后瞬时,杆对O点的角动量为3分因碰撞前后角动量守恒,所以3分∴= 6v0/ (7L) 1分29.质量为75 kg的人站在半径为2 m的水平转台边缘.转台的固定转轴竖直通过台心且无摩擦.转台绕竖直轴的转动惯量为3000 kg·m2.开始时整个系统静止.现人以相对于地面为1 m·s-1的速率沿转台边缘行走,求:人沿转台边缘行走一周,回到他在转台上的初始位置所用的时间.A. (%)试题编号:E17549 24709答案:解:由人和转台系统的角动量守恒 J11+ J22= 0 2分其中 J1=300 kg·m2,1=v/r=0.5rad / s, J2=3000kg·m2∴2=-J11/J2=-0.05 rad/s 1分人相对于转台的角速度=1-2=0.55 rad/s 1分∴ t=2/=11.4 s 1分。

【大题】工科物理大作业04-刚体定轴转动

【大题】工科物理大作业04-刚体定轴转动

【大题】工科物理大作业04-刚体定轴转动 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN0404 刚体定轴转动班号 学号 姓名 成绩一、选择题(在下列各题中,均给出了4个~5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内)1.某刚体绕定轴作匀变速转动,对刚体上距转轴为r 处的任一质元来说,在下列关于其法向加速度n a 和切向加速度τa 的表述中,正确的是:A .n a 、τa 的大小均随时间变化;B .n a 、τa 的大小均保持不变;C .n a 的大小变化,τa 的大小保持恒定;D .n a 的大小保持恒定,τa 大小变化。

(C )[知识点]刚体匀变速定轴转动特征,角量与线量的关系。

[分析与题解] 刚体中任一质元的法向、切向加速度分别为 r a n 2ω=,r a τβ=当β = 恒量时,t βωω+=0 ,显然r t r a n 202)(βωω+==,其大小随时间而变,ra τβ=的大小恒定不变。

2. 两个均质圆盘A 和B ,密度分别为ρA 和ρB ,且B ρρ>A ,但两圆盘的质量和厚度相同。

若两盘对通过盘心且与盘面垂直的轴的转动惯量分别为A I 和B I ,则 A .B I I >A; B. B I I <A ;C .B I I =A ; D. 不能确定A I 和B I 的相对大小。

(B )[知识点]转动惯量的计算。

[分析与题解] 设A 、B 两盘厚度为d ,半径分别为R A 和R B ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>, 所以22B A R R < 且转动惯量221mR I =,则B A I I <3.在下列关于刚体的表述中,不正确的是:A .刚体作定轴转动时,其上各点的角速度相同,线速度不同;B .刚体定轴转动的转动定律为βI M =,式中β,,I M 均对同一条固定轴而言的,否则该式不成立;C .对给定的刚体而言,它的质量和形状是一定的,则其转动惯量也是唯一确定的;D .刚体的转动动能等于刚体上各质元的动能之和。

刚体作业

刚体作业

一、选择题【 B 】1. 两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若A ρ>B ρ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面的轴的转动惯量各为J A 和J B ,则(A) J A >J B (B) J B >J A (C) J A =J B (D) 不能确定 【 C 】2. 有一根水平杆子,一半是铁,一半是木头,长度、截面均相同,可分别绕a ,b ,c 三根竖直轴转动,如图所示。

试问对哪根轴的转动惯量最大(A) a 轴 (B) b 轴 (C) c 轴 (D) 都一样【 A 】3. 如图所示,一摆由质量均为m 的杆与圆盘构成,杆长等于圆盘直径D 的2倍,则摆对通过O 点并与圆盘平面垂直轴的转动惯量为(A) 224177mD (B) 2417mD(C) 224175mD(D) 2617mD【 C 】4. 刚体绕定轴作匀变速转动时,刚体上距转轴为r 的任一点的(A) 切向、法向加速度的大小均随时间变化 (B) 切向、法向加速度的大小均保持恒定(C) 切向加速度的大小恒定,法向加速度的大小变化 (D) 切向加速度的大小变化,法向加速度的大小恒定 【 B 】5. 在下列说法中错误的是(A) 刚体定轴转动时,各质点均绕该轴作圆周运动(B) 刚体绕定轴匀速转动时,其线速度不变(C) 力对轴的力矩M的方向与轴平行(D) 处理定轴转动问题时,总要取一个转动平面S ,只有S 面上的分力对轴产生的力矩才对定轴转动有贡献【 C 】6. 下列说法中正确的是(A) 作用在定轴转动刚体上的力越大,刚体转动的角加速度越大 (B) 作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大 (C) 作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大 (D) 作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零【 B 】7. 均质细杆可绕过其一端且与杆垂直的水平光滑轴在竖直平面内转动。

今使细杆静止在竖直位置,并给杆一个初速度,使杆在竖直面内绕轴向上转动,在这个过程中(A) 杆的角速度减小,角加速度减小 (B) 杆的角速度减小,角加速度增大 (C) 杆的角速度增大,角加速度增大 (D) 杆的角速度增大,角加速度减小 【 C 】8. 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB (B) βA >βB (C) βA <βB(D) 开始时βA =βB ,以后βA <βB【 B 】9. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为0ω。

刚体力学作业解答

刚体力学作业解答

5.1、一长为l 的棒AB ,靠在半径为r 的半圆形柱面上,如图所示。

今A 点以恒定速度0v 沿水平线运动。

试求:(i)B 点的速度B v ;(ii)画出棒的瞬时转动中心的位置。

解:如图,建立动直角系A xyz -,取A 点为原点。

B A AB v v r ω=+⨯,关键是求ω 法1(基点法):取A 点为基点,sin C A AC A CO A A v v r v v v v ωθ=+⨯=+=+ 即sin AC A r v ωθ⨯=,AC r ω⊥,化成标量为ω在直角三角形OCA ∆中,AC r rctg θ=所以200sin sin sin cos A AC v v v r rctg r θθθωθθ===即20sin cos v k r θωθ=取A 点为基点,那么B 点的速度为:2002300sin [(cos )sin ]cos sin sin (1)cos B A AB v v v r v i k l i l j r v l l v i jr rθωθθθθθθ=+⨯=+⨯-+=-- 法2(瞬心法):如图,因棒上C 点靠在半圆上,所以C 点的速度沿切线方向,故延长OC ,使其和垂直于A 点速度线交于P 点,那么P 点为瞬心。

在直角三角形OCA ∆中,sin OA r r θ=在直角三角形OPA ∆中,2cos sin AP OA r r r ctg θθθ==02cos ()sin A PA PA PA r v r k r j r i i v i θωωωωθ=⨯=⨯-===,即20sin cos v r θωθ= 取A 点为基点,那么B 点的速度为:2002300sin [(cos )sin ]cos sin sin (1)cos B A AB v v v r v i k l i l j r v l l v i jr rθωθθθθθθ=+⨯=+⨯-+=-- 5.2、一轮的半径为r ,竖直放置于水平面上作无滑动地滚动,轮心以恒定速度0v 前进。

刚体系统静力学作业

刚体系统静力学作业

1刚体系统静力学作业一、是非题判断任意两个力都可以简化为一个合力。

力偶可以从刚体的作用平面移到另一平行平面,而不改变它对刚体的作用效应。

平面一般力系的合力对作用面内任一点的矩,等于力系各力对同一点的矩的代数和。

如果作用在刚体上的力系的主矢等于零,即力多边形自行封闭,则此力系平衡。

作用与反作用力是一对等值、反向、共线的平衡力。

力对一点的力矩矢在通过该点的任一轴上的投影等于这个力对该轴的力矩。

若作用在刚体上的三个力的作用线汇交于同一个点,则该刚体必处于平衡状态。

力是滑移矢量,力沿其作用线滑移不改变对物体的作用效果。

力沿坐标轴分解就是力向坐标轴投影。

力偶系的主矢为零。

若一平面力系对某点之主矩为零,且主矢亦为零,则该力系为一平衡力系。

力系向一点简化的理论依据是力的平移定理。

平行力系中心只与力系各力的大小和作用点有关,而与各力的方向无关。

二、填空题1、平面汇交力系平衡的几何条件是( )。

2、力偶的三要素是( )、( )和( )。

3、平面力系二矩式平衡方程的附加条件是( )。

4、静力学四大公理中只适用于刚体的公理是( )。

5、作用在刚体上的两个力偶的等效条件是( )。

6、作用在刚体上的三个力使刚体处于平衡状态,则这三个力必然( )。

三、已知:q=20KN/m, P=100KN, m=50KN.m ,图中1、2、3杆及杆AB的自重均不计,求1、2、3杆受力。

四、铰链支架有两杆AD、CE和滑轮组成,B处为铰链,尺寸如图示。

滑轮上吊有Q=10KN 的重物,求固定铰链支座A和E的约束反力。

已知R=0.50m,r=0.25m。

五、求图示梁A、B处反力。

东北大学理论力学第八章 刚体的平面运动(作业解析)

东北大学理论力学第八章 刚体的平面运动(作业解析)
B
⑶ 由速度合成定理求解
va ve vr
? √ √ √
aBA
n aBA v r
C D
大小 方向
? √
aB
va
ve
E
AB
AB
A
va vr ve
3 3 15求解 n aB aA aBA aBA
ω1 ve O1D 6.19 rad/s
Northeastern University
8-23
已知OA=50mm,ω=10 rad/s,θ=β=60°,O1D=70mm,求摇杆 O1C的角速度和角加速度。 y A vA n aBA a A 60 aBA B ⑶ 取A点为基点, 60 O1 O 由基点法求B vr vB aB 点加速度 D aA v v a D 1 n ve aB aA aBA aBA
绝对运动:直线运动 相对运动:直线运动 牵连运动:平面运动
vA 1 rad/s CA
B
vr
C D
AB
ve
E
A
va
vA
AB杆瞬心为C AB
ve CD AB 0.2 m/s
Northeastern University
8-27
已知AB = 0.4m,vA=0.2m/s。图示位置,θ= 30°,AD=DB,求此 瞬时DE杆的速度和加速度。
大小 方向 ? √ √ √ ? √ √ √
a A OA 2
C
n 2 aBA BA AD 0
将此方程沿y方向投影得 0 aA a BA cos30
τ 2a A aBA ω2 aBA AD BA 3 3

第三章 刚体力学基础 课后作业

第三章 刚体力学基础 课后作业

第三章 刚体力学基础 课后作业班级 姓名 学号一、选择题1、一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为2A , 且向x 轴正方向移动,代表此简谐振动的旋转矢量为( )1、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.对上述说法下述判断正确的是( )(A ) 只有(1)是正确的 (B )(1)、(2)正确,(3)、(4)错误(C ) (1)、(2)、(3)都正确,(4)错误 (D )(1)、(2)、(3)、(4)都正确2、关于力矩有以下几种说法:(1) 对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;(2) 一对作用力和反作用力对同一轴的力矩之和必为零;(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同.对上述说法下述判断正确的是( )(A ) 只有(2)是正确的 (B ) (1)、(2)是正确的(C )(2)、(3)是正确的 (D ) (1)、(2)、(3)都是正确的3、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( )(A ) 角速度从小到大,角加速度不变(B ) 角速度从小到大,角加速度从小到大(C ) 角速度从小到大,角加速度从大到小(D ) 角速度不变,角加速度为零4、 一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L以及圆盘的角速度ω的变化情况为( ) (A) L 不变,ω增大 (B) 两者均不变(C) L不变,ω减小 (D) 两者均不确定5、假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( )(A) 角动量守恒,动能守恒 (B) 角动量守恒,机械能守恒(C) 角动量不守恒,机械能守恒 (D) 角动量不守恒,动量也不守恒(E) 角动量守恒,动量也守恒二、填空题1、有甲、乙两个飞轮,甲是木制的,周围镶上铁制的轮缘。

自-西北工业大学大学物理作业答案3刚体力学10

自-西北工业大学大学物理作业答案3刚体力学10

第三次作业 刚体力学基础一、选择题1.AEG ; 2.AE ;3.C; 4.CD ;5.C ; 6.E;7.C ;8.C 。

二、填空题1. -2s 0.8rad ⋅; -1s 0.8rad ⋅; 1s m 51.0 -⋅。

2. 4104⨯; 6108⨯。

3.bFRlμ。

4.912ml ;l g 2cos 3θ。

5. s rad 81.251-⋅。

6.lg θsin 23; θsin 23mgl ; θsin 23mgl 。

7. 22sin 2R J m kx mgx +-θ或265.212.3x x -; 0.59m 。

8. 02ωmRJ J+; 4.49 三、回答题1. 答:质点:合力为零;刚体:合外力、合外力矩均为零。

2. 答:转动惯量J 是描述刚体在转动中转动惯性大小量度的物理量。

影响刚体转动惯量的因素有三个:(1)刚体的转轴位置;(2)刚体的总质量;(3)在总质量一定的情况下,质量相对转轴的分布。

四、计算与证明题1.解:① 设此题中定滑轮顺时针转动为正,根据牛顿定律和转动定律列出方程组:ma mg-T =1 ①J βR -T T =)(21 ② (注意:这里有个力矩与角加速度正负的设定问题,若设顺时针为正,则如本题解;但若学生按逆时针为正也可,只是题解中力矩符号相反,答案中a 和β则为负,只意味着顺时针转动,后续计算中要取掉负号)。

02=-kx T ③βR a = ④联立求解得:2RJ m mg-kxa +=而 2d d d d d d d d R Jm mg-kxx t x x t a +==⋅==υυυυ ⎰⎰-+=h x kx mg RJ m d 002d )(1υυυ 解上式得: 22-2RJ m kh mgh +=υ 或 J mR h kR mghR +=2222-2υ ② 系统机械能守恒,取初始位置的势能为零点,则0212121222=-++mgh kh J ωm υ 且 Rωυ= 解上式得:22-2RJ m kh mgh +=υ 或 J mR h kR mghR +=2222-2υ,结果同上。

《理论力学》第八章-刚体平面运动试题及答案

《理论力学》第八章-刚体平面运动试题及答案

理论力学8章作业题解8-2 半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。

如曲柄OA 以匀角加速度a 绕O 轴转动,且当运动开始时,角速度00=w ,转角0=j 。

求动齿轮以中心A为基点的平面运动方程。

解:图示,A 轮平面运动的转角为=A j ∠C 3AC 2=j +∠CAC 2由于弧长CC 1=CC 2,故有 ∠CAC 2=r R /j ,所以22/t rr R r r R r R A a j j j j +=+=+=A 轮平面运动方程为ïïîïïíì+=+=+=+=+=22212212)sin()()sin()()cos()(cos )(tr r R t r R r R y t r R r R x A A A a j a j a j8-6两刚体M ,N 用铰C 连结,作平面平行运动。

已知AC=BC=600mm ,在题附图所示位置s mm v s mm v B A /100,/200==,方向如图所示。

试求C 点的速度。

解:由速度投影定理得()()0==BC C BC B v v 。

则v C 必垂直于BC 连线,v C 与AC 连线的夹角为30°。

由()()AC A AC C v v = 即得:s mm v v A C /200== ,方向如题4-6附图示。

解毕。

8-9 图所示为一曲柄机构,曲柄OA 可绕O 轴转动,带动杆AC 在套管B 内滑动,套管B 及与其刚连的BD 杆又可绕通过B 铰而与图示平面垂直的水平轴运动。

已知:OA =BD =300mm ,OB =400mm ,当OA 转至铅直位置时,其角速度ωo =2rad/s ,试求D 点的速度。

C 12Aj C解 (1)平面运动方法: 由题可知:BD AC w w =确定AC 杆平面运动的速度瞬心。

套筒中AC 杆上一点速度沿套筒(为什么?)s rad IAOA IA v A AC /72.00=´==w w , s mm BD BD v AC BD D /216=´=´=w w D 点加速度如何分析?关键求AC 杆角加速度(=BD 杆角速度) 基点法,分析AC 杆上在套筒内的点(B’):(1) tA B n A B A B a a a a ¢¢¢++=r r r r大小:× ∠ ∠ × 方位:× ∠ ∠ ∠ 再利用合成运动方法:动点:套筒内AC 杆上的点B’,动系:套筒。

2019级大学物理1作业一刚体的定轴转动

2019级大学物理1作业一刚体的定轴转动

第二次作业:刚体的定轴转动一、选择题(答案填入下表)1. 一质点作匀速率圆周运动时,[答案填入上表](A) 它的动量不变,对圆心的角动量也不变;(B) 它的动量不变,对圆心的角动量不断改变;(C) 它的动量不断改变,对圆心的角动量不变;(D) 它的动量不断改变,对圆心的角动量也不断改变。

2. 人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A和B。

用L 和E k分别表示卫星对地心的角动量及其动能的瞬时值,则应有[答案填入上表] (A) L A> L B,E kA> E kB;(B) L A =L B , E kA < E kB ; (C) L A =L B , E kA > E kB ; (D) L A < L B , E kA < E k B 。

3. 一质量为m ,半径为R 的匀质圆盘对其中心垂直轴的转动惯量为J ,若在保持其质量不变的情况下,使之变成半径为2R 的匀质圆盘,则其对中心垂直轴的转动惯量的大小为 [答案填入上表] (A) 因圆盘的质量不变,所以转动惯量仍为J ; (B) 因半径变为2R ,所以转动惯量为2J ; (C) 转动惯量为3J ; (D) 转动惯量为4J 。

4. 如图所示,一静止的均匀细棒,长为L ,质量为M 。

可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML 。

一质量为m 、速率为 的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为υ21,则此时棒的角速度应为 [答案填入上表] (A) ML m υ ; (B) ML m 23υ; (C) ML m 35υ ; (D) MLm 47υ。

5. 三个完全相同的轮子绕一公共轴转动,角速度的大小都相同,但其中一个轮子的转动方向与另外两轮的转动方向相反。

如果使三个轮子靠近并啮合在一起,系统的角速度大小是原来角速度大小的[答案填入上表](A) 1/9; (B) 1/3; (C) 3 ; (D) 9。

运动学部分作业参考答案

运动学部分作业参考答案

刚体的基本运动8-2 搅拌机构如图所示,已知O 1A =O 2B =R ,O 1O 2=AB ,杆O 1A 以不变转速n rpm 转动。

试分析构件BAM 上M 点的轨迹及其速度和加速度。

解:搅拌机构BAM 作平动,故:22226030900M A B M A B nR Rn v v v R Rn a a a R ππωπω=========速度和加速度方向如图所示。

刚体的平面运动10-3 两齿条以速度v 1和v 2同向直线平动,两齿条间夹一半径为 r 的齿轮;求齿轮的角速度及其中心O 的速度。

解:(1) 齿轮作平面运动,取中心O 为基点,假设齿轮转动的角速度为ω;(2) 齿轮A 点和B 点的速度是12 o o v v r v v r ωω=+=-解方程得:1212 22o v v v vv rω+-== 10-4图示曲柄连杆机构中,曲柄OA = 40 cm ,连杆AB = 100 cm ,曲柄以转速n = 180 rpm绕O 轴匀速转动。

求当φ = 45o 时连杆AB 的角速度及其中点M 的速度。

解:(1) 连杆AB 作平面运动,选A 点为基点,B 点的速度为B A AB v v v =+已知2.4 /30sin sin 40sin sin sin 45=0.2828 16.43100A o nv OA OA m sOA OA AB ABπωπθϕθϕθ=⨯=⨯====⨯=应用正弦定理()()0000AB sin 45 2.4 5.56 /sin 45sin 90sin 9016.435.56 /AB A AB oABv v v m s v rad s ABπθω⨯===--==(2) M 点的速度M A AM v v v =+12.78 /2AM AB v v m s ==应用余弦定理v6.67 /M v m s ==注:本题也可以用速度瞬心法求连杆AB 的角速度和M 点的速度。

根据v A 和v B 得到AB 杆的速度瞬心C ;124.2 124.240135.6 120.0 OB cm AC OB OA cmMC cm===-=-===AB 杆的角速度:2.4 5.56 /1.356A AB v rad s ACπω=== M 点的速度:5.56 120.0667 /M AB v MC cm s ω=⨯=⨯=10-5图示四连杆机构中,OA = O 1B = 1/2AB ,曲柄以角速度ω=3 rad/s 绕O 轴转动;求在图示位置时杆AB 和杆O 1B 的角速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 选择题
[ C ]1、【基础训练2】一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力
[ D ]2、【基础训练3】如图5-8所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大 (A) 为
41mg cos θ. (B)为2
1
mg tg θ. (C) 为 mg sin θ. (D) 不能唯一确定
图5-8
个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (B) 不变. (C) 减小. (D) 不能确定.
【提示】:
把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。

m m
图5-11
设L 为每一子弹相对与O 点的角动量大小,ω0为子弹射入前圆盘的角速度,ω为子弹射入后的瞬间与圆盘共同的角速度,J 为圆盘的转动惯量,J 子弹为子弹转动惯量,据角动量守恒定律有:
00
()J L L J J J J J ωω
ωωω+-=+=
<+子弹
子弹
[ C ]4、【自测提高4】光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为
3
1mL 2
,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图5-19所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A)
L 32v . (B) L 54v . (C) L 76v . (D) L 98v . (E) L
712v .
图5-19
【提示】:
视两小球与细杆为一系统,碰撞过程中系统所受合外力矩为零,满足角动量守恒条件,所以
2221
[(2)]12
lmv lmv ml ml m l ω+=++
可得答案(C )
[ A ] 5、【自测提高7】质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为
(A) ⎪⎭⎫
⎝⎛=
R J
mR v 2
ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭

⎝⎛+=R mR J mR v 22ω,逆时针.
【提示】:
二、填空题
1、【基础训练8】绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad ω=,t =20s 时角速度为00.8ωω=,则飞轮的角加速度β= -0.05 rad/s 2 ,t =0到 t =100 s 时间内飞轮所转过的角度θ=
250rad

O v 俯视图
2、【基础训练10】如图5-13所示,P 、Q 、R 和S 是附于刚性轻质细杆上的质量分别为4m 、3m 、2m 和m 的四个质点,PQ =QR =RS =l ,则系统对O O '轴的转动惯量为 50ml 2 。

3、【基础训练12】 如图5-14所示,滑块A 、重物B 和滑轮C 的质量分别为m A 、m B 和m C ,滑轮的半径为R ,滑轮对轴的转动惯量J =
2
1
m C R 2.滑块A 与桌面间、滑轮与轴承之间均无摩擦,绳的质量可不计,绳与滑轮之间无相对滑动.滑块A 的加速度
C
B A B m m m g
m a ++=
)(22
4、【自测提高9】一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m 和m 的小球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动.开始杆与水平方向成某一角度θ,处于静止状态,如图5-21所示.释放后,杆绕O 轴转动.则当杆转到水平位置时,该系统所受到的合外力矩的大小M =/2mgl ,此时该系统角加速度的大小β =
23g l
. 【提示】:
图5-21
5、【自测提高12】一根质量为m 、长为l 的均匀细杆,可在水平桌面上绕通过其一端的竖直固定轴转动.已知细杆与桌面的滑动摩擦系数为μ,则杆转动时受的摩擦力矩的大小为=μmgl /2
三、计算题
1、【基础训练16】一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为0ω,设它所受阻力矩与转动角速度成正比,即M k ω=- (k 为正的常数),求圆盘的角速度从0ω变为0
2
1
ω时所需时间.
2、【基础训练18】如图5-17所示、质量分别为m 和2m 、半径分别为r 和2r 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr 2/2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m 的重物,求盘的角加速杆可绕水平光滑固定轴O 在竖直面内转动,转轴O 距两端分别为3l 和3
l .轻杆原来静止在竖直位置.今有一质量为m 的小球,以水平速度0v 与杆下端小球m 作对心碰撞,碰后以0
2
1v
的速度返回,试求碰撞后轻杆所获得的角速度.
解:系统所受的合外力矩为零,角动量守恒:
碰前的角动量为:
l mv 3202m
m
2
1
v l
3
2l 3
1
碰后的角动量为:
所以:

4、【自测提高17】如图5-25所示,一质量均匀分布的圆盘,质量为0m ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为μ),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v 0垂直于圆盘半径打入圆盘边缘并嵌在盘边上。

求:(1) 子弹击中圆盘后,盘所获得的角速度.(2) 经过多少时间后,圆盘停止转动.(圆盘绕通过O 的竖直轴的转动惯量为201
2
m R ,
忽略子弹重力造成的摩擦阻力矩)
量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R.)
解: 选小球和环为系统.运动过程中所受合外力矩为零,故角动量守恒.
即系统起初的角动量J 0ω0与小球滑到B 点时系统角动量相同,
J 0ω0=(J 0+mR 2)ω
所以 00
2
0J J mR ωω=
+ 图5-26
图5-25
ω])3
1
(2)32([3221220l m l m l v m
++-ω])31
(2)32([322132
2200
l m l m l v m l mv ++-=l
v
230

又因环的内壁和小球都是光滑,只有保守力做功,系统机械能守恒.取过环心的水平面为势能零点,则有
22222000111()222
B J mgR J m R v ωωω+=++
式中v B 表示小球在B 点时相对地面的竖直分速度,也等于它相对于环的速度.代入ω得:
222002J mR R
J gR B ++=ωv
当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律可知,小球在C 的动能完全由在A 点的重力势能转换而来.所以:
()R mg m C 22
12=v , gR C 4=v
四、附加题
1、【基础训练17】在半径为R 的具有光滑竖直固定中心轴的水平圆盘上,有一人静止站立在距转轴为
R 2
1
处,人的质量是圆盘质量的1/10.
开始时盘载人对地以角速度0ω匀速转动,现在此人垂直圆盘半径相对于盘以速率v 沿与盘转动相反方向作圆周运动,如图5-16所示. 已知圆盘对中心轴的转动惯量为
22
1
MR . 图5-16
求:(1) 圆盘对地的角速度.
ω
2、【(自测提高19】一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R,质量为m/4,均匀分布在其边缘上.绳子的A端有一质量为m的人抓住了绳端,而在绳的另一端B系了一质量为m/2的重物,如图5-27所示。

设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J=mR2/4)
图5-27。

相关文档
最新文档