相似三角形的性质提高题及答案.docx

合集下载

(1503)相似三角形性质专项练习30题(有答案)

(1503)相似三角形性质专项练习30题(有答案)

相似三角形性质专项练习30题(有答案)1.如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE∽△DEF,AB=6,AE=9,DE=2,求EF的长.2.如图,AD=2,AC=4,BC=6,∠B=36°,∠D=107°,△ABC∽△DAC(1)求AB的长;(2)求CD的长;(3)求∠BAD的大小.3.如图,△ABC与△A′B′C′相似,AD,BE是△ABC的高,A′D′,B′E′是△A′B′C′的高,求证:=.4.如图所示,已知∠ACB=∠CBD=90°,AC=b,CB=a,BD=k,若△ACB∽△CBD,写出a、b、k之间满足的关系式.5.如图,AD、BE是△ABC的两条高,A′D′、B′E′是△A′B′C′的两条高,△ABD∽△A′B′D′,∠C=∠C′,求证:=.6.已知,如图,△AOB∽△DOC,BD⊥AC,∠AOB是直角.求证:AD2+BC2=AB2+CD2.7.已知如图△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°,△ABD∽△DCE.当△ADE是等腰三角形时,求AE的长.8.如图,△ABC与△ADB相似,AD=4,CD=6,求这两个三角形的相似比.9.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,求BF的长度.10.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q 从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?11.如图,在平行四边形ABCD中,E为DC上的一点,AE交BD于O,△AOB∽△EOD,若DE=AB,AB=9,AO=6,求DE和AE的长.12.如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB.(1)求∠APB的大小.(2)说明线段AC、CD、BD之间的数量关系.13.如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE△∽△DEF,AB=6,AE=8,DE=2,求EF的长.14.如图,△ABC∽△DAB,AB=8,BC=12,求AD的长.15.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s的速度向点C移动,动点Q从C出发以1cm/s的速度向点A移动,如果动点P、Q同时出发,要使△CPQ与△CBA相似,所需要的时间是多少秒?16.如图,△ABC∽△FED,若∠A=50°,∠C=30°,求∠E的度数.17.如图,已知△ABC∽△AED,且∠B=∠AED,点D、E分别是边AB、AC上的点,如果AD=3,AE=6,CE=3.根据以上条件你能求出边AB的长吗?请说明理由.18.如图,在△ABC中,AB=8cm,AC=16cm,点P从点B开始沿BA边向点A以每秒2cm的速度移动,点Q从点A开始沿AC边向点C以每秒4cm的速度移动.如果P、Q分别从B、A同时出发,经过几秒钟△APQ与△ABC相似?试说明理由.19.如图,在平行四边形ABCD中,AB=4,AD=6,∠ABC=60°;点P是射线AD上的一个动点(与点A不重合),BP与AC相交于点E,设AP=x.(1)求AC的长;(2)如果△ABP和△BCE相似,请求出x的值;(3)当△ABE是等腰三角形时,求x的值.20.已知两个相似三角形的一对对应边长分别是35cm和14cm(1)已知他们的周长相差60cm,求这两个三角形的周长.(2)已知它们的面积相差588cm2,求这两个三角形的面积.21.如图,已知△ACE∽△BDE,∠A=117°,∠C=37°,AC=6,BD=3,AB=12,CD=18,(1)求∠B和∠D的度数;(2)求AE和DE的长.22.一个钢筋三角架三边长分别是20厘米、50厘米、60厘米,现在再做一个与其相似的钢筋三角架,而只有长为30厘米和50厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有多少种?写出你的设计方案,并说明理由.23.要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4、5、6,另一个三角形框架的一边长为2,它的另外两边长分别可以为多少?24.如图,已知等边△ABC的边长为8,点D、P、E分别在边AB、BC、AC上,BD=3,E为AC中点,当△BPD与△PCE相似时,求BP的值.25.如图,△ABC∽△A′B′C′,相似比为k,AD、A′D′分别是边BC、B′C′上的中线,求证:.26.已知△ABC∽△DEF,△ABC和△DEF的周长分别为20cm和25cm,且BC=5cm,DF=4cm,求EF 和AC的长.27.如图,在△ABC中,AB=6cm,AC=12cm,动点M从点A出发,以1cm∕秒的速度向点B运动,动点N从点C出发,以2cm∕秒的速度向点A运动,若两点同时运动,是否存在某一时刻t,使得以点A、M、N为顶点的三角形与△ABC相似,若存在,求出t的值;若不存在,请说明理由.28.Rt△ABC中,∠A=90°,AB=8cm,AC=6cm,P、Q分别为AC,AB上的两动点,P从点C开始以1cm/s的速度向点A运动,Q从点A开始以2cm/s的速度向点B运动,当一点到达终点时,P、Q两点就同时停止运动.设运动时间为ts.(1)用t的代数式分别表示AQ和AP的长;(2)设△APQ的面积为S,①求△APQ的面积S与t的关系式;②当t=2s时,△APQ的面积S是多少?(3)当t为多少秒时,以点A、P、Q为顶点的三角形与△ABC相似?29.如图所示,∠C=90°,BC=8cm,AC:AB=3:5,点P从点B出发,沿BC向点C以2cm/s的速度移动,点Q从点C出发沿CA向点A以1cm/s的速度移动,如果P、Q分别从B、C同时出发,过多少秒时,以C、P、Q为顶点的三角形恰与△ABC相似?30.如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.相似三角形专项练习30题参考答案:1.解:∵四边形ABCD是矩形,∴∠BAE=90°,∵AB=6,AE=9,∴BE===,∵△ABE∽△DEF,∴=,即=,解得EF=.2.解:(1)∵△ABC∽△DAC,∴,∴,解得:AB=3;(2)∵△ABC∽△DAC,∴,∴,解得:CD=;(3)∵△ABC∽△DAC,∴∠BAC=∠D=107°,∠CAD=∠B=36°,∵∠B=36°,∴∠BAD=∠BAC+∠CAD=107°+36°=143°3.证明:∵△ABC与∽A′B′C′,∴∠ABD=∠A′B′D′,∵AD和A′D′是高,∴∠ADB=∠A′D′B′,∴△ABD∽△A′B′D,∴=,同理可得=,∴=.4.解:∵△ACB∽△CBD,∴=,∵AC=b,CB=a,BD=k,∴=,即a2=bk.5.证明:∵△ABD∽△A′B′D′,∴∠ABC=∠A′B′C′,∠BAC=∠B′A′C′,∵AD是△ABC的高,A′D′是△A′B′C′的,∴∠ADB=∠A′D′B′=90°,∴△ABD∽△A′B′D′,∴=,同理可求△ABE∽△A′B′E′,∴=,∴=.6.解:∵BD⊥AC,∴∠AED=∠AEB=∠BEC=∠DEC=90°,∴在Rt△AED中,AD2=AE2+DE2,在Rt△AEB中,AB2=AE2+BE2,在Rt△BEC中,BC2=BE2+CE2,在Rt△CED中,CD2=CE2+DE2,∴AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2.7.解:分三种情况:①若AD=AE时,∠DAE=90°,此时D点与点B重合,不合题意;②若AD=DE时,△ABD与△DCE的相似比为1,此时△ABD≌△DCE,于是AB=AC=1,BC=,AE=AC﹣EC=1﹣BD=1﹣(﹣1)=2﹣;③若AE=DE,此时∠DAE=∠ADE=45°,如图所示,易知AD⊥BC,DE⊥AC,且AD=DC.由等腰三角形的三线合一可知:AE=CE=AC=.综上所述,当△ADE是等腰三角形时,AE的长为2﹣或.8.解:∵△ABC与△ADB相似,∴△ABC∽△ADB,∴=,∴AB2=AC•AD=10×4=40,∴△ABC与△ADB的相似比为==.9.解:设BF=x,则CF=4﹣x,由翻折的性质得B′F=BF=x,当△B′FC∽△ABC,∴=,即=,解得x=, 即BF=.当△FB ′C ∽△ABC , ∴AB FB /'=ACFC 即,解得:x=2.∴BF 的长度为:2或.10.解:设运动了ts ,根据题意得:AP=2tcm ,CQ=3tcm ,则AQ=AC ﹣CQ=16﹣3t (cm ),当△APQ ∽△ABC 时,, 即, 解得:t=;当△APQ ∽△ACB 时,, 即,解得:t=4; 故当以A 、P 、Q 为顶点的三角形与△ABC 相似时,运动时间是:s 或4s11.解:∵△AOB ∽△EOD , ∴DE :AB=OA :OE ,∵DE=AB ,AB=9,AO=6,∴DE=×9=6,OE=OA=4,∴AE=OA+OE=6+4=10.12.解:(1)∵△PCD 是等边三角形,∴∠PCD=60°,∴∠ACP=120°,∵△ACP ∽△PDB ,∴∠APC=∠B ,∵∠A=∠A ,∴∠ACP ∽∠APB ,∴∠APB=∠ACP=120°;(2)∵△ACP ∽△PDB ,∴AC :PD=PC :BD ,∴PD•PC=AC•BD,∵△PCD是等边三角形,∴PC=PD=CD,∴CD2=AC•BD.13.解:∵四边形ABCD是矩形,∴∠BAE=90°,∵AB=6,AE=8,∴BE===10,∵△ABE∽△DEF,∴=,即=,解得EF=.14.解:∵△ABC∽△DAB,∴,∵AB=8,BC=12,∴,∴AD=.15.解:设经过t秒后两三角形相似,则可分下列两种情况进行求解,①若Rt△ABC∽Rt△QPC则,即解之得t=1.2;②若Rt△ABC∽Rt△PQC则,解之得t=;由P点在BC边上的运动速度为2cm/s,Q点在AC边上的速度为1cm/s,可求出t的取值范围应该为0<t<2,验证可知①②两种情况下所求的t均满足条件.所以可知要使△CPQ与△CBA相似,所需要的时间为1.2或秒.16.解:∵△ABC中,∠A=50°,∠C=30°,∴∠B=180°﹣50°﹣30°=100°,∵△ABC∽△FED,∴∠E=∠B=100°.17.解:∵△ABC∽△AED,且∠B=∠AED,∴.又AD=3,AE=6,CE=3,∴AB==18.18.解:设经过t秒两三角形相似,则AP=AB﹣BP=8﹣2t,AQ=4t,①AP与AB是对应边时,∵△APQ与△ABC相似,∴=,即=,解得t=2,②AP与AC是对应边时,∵△APQ与△ABC相似,∴=,即=,解得t=,综上所述,经过或2秒钟,△APQ与△ABC相似19.解:(1)过点A作AF⊥BC于F(1分)在Rt△AFB中,∠AFB=90°,∠ABF=60°∴AF=ABsin∠ABF=4sin60°=4×=,BF=ABcos∠ABF=4cos60°=4×在Rt△AFC中,∠AFC=90°∴(1分)(2)过点P作PG⊥BC于G,在Rt△BPG中,∠PGB=90°,∴(1分)如果△ABP和△BCE相似,∵∠APB=∠EBC又∵∠BAP=∠BCD>∠ECB(1分)∴∠ABP=∠ECB∴即解得(不合题意,舍去)∴x=8(1分)(3)①当AE=AB=4时∵AP∥BC,∴即,解得,②当BE=AB=4时∵AP∥BC,∴,即,解得(不合题意,舍去)③在Rt△AFC中,∠AFC=90°∵,在线段FC上截取FH=AF,∴∠FAE>∠FAH=45°∴∠BAE>45°+30°>60°=∠ABC>∠ABE∴AE≠BE.综上所述,当△ABE是等腰三角形时,或20.解:(1)∵相似三角形的对应边长分别是35cm和14cm∴这两个三角形的相似比为:5:2∴这两个三角形的周长比为:5:2∵他们的周长相差60cm∴设较大的三角形的周长为5xcm,较小的三角形的周长为2xcm∴3x=60∴x=20cm∴5x=5×20=100cm,2x=2×20=40cm∴较大的三角形的周长为100cm,较小的三角形的周长为40cm(2)∵这两个三角形的相似比为:5:2∴这两个三角形的面积比为:25:4∵他们的面积相差588cm2∴设较大的三角形的面积为25xcm2,较小的三角形的面积为4xcm2∴(25﹣4)x=588,∴x=28cm2∴25x=25×28=700cm2,4x=4×28=112cm2∴较大的三角形的面积为700cm2,较小的三角形的面积为112cm221.解:(1)∵△ACE∽△BDE,∠A=117°,∠C=37°,∴∠B=∠A=117°,∠C=∠D=37°;(2)∵△ACE∽△BDE,AC=6,BD=3,AB=12,CD=18,∴设AE=x,DE=y,则BE=12﹣x,CE=18﹣y,∴==,即==,解得x=8,y=6,∴AE=8,DE=622.解:①当把30厘米的钢筋作为最长边,把50厘米的钢筋按10厘米与25厘米两部分截,则有;②当30厘米的钢筋作为中长边,把50厘米分截出12厘米和36厘米两部分,则有.③当30cm作为最短边:则另两边都会超过50cm,此时不合题意,∴一共有两种截法.23.解:题中没有指明边长为2的边与原三角形的哪条边对应,所以应分别讨论:(1)若边长为2的边与边长为4的边相对应,则另两边为和3;(2)若边长为2的边与边长为5的边相对应,则另两边为和;(3)若边长为2的边与边长为6的边相对应,则另两边为和.故三角形框架的两边长可以是:和3或和或和.24.解:设BP=x,∵等边△ABC的边长为8,∴CP=8﹣x,∵E为AC中点,∴CE=AC=×8=4,①BD和PC是对应边时,△BDP∽△CPE,∴=,即=,整理得,x2﹣8x+12=0,解得x1=2,x2=6,即BP的长为2或6,②BD和CE是对应边时,△BDP∽△CEP,∴=,即=,解得x=,即BP=,综上所述,BP的值是2或6或.25.证明:∵△ABC∽△A′B′C′,∴===K.又∵AD、A′D′分别是边BC、B′C′上的中线,∴==.∴,∵∠B=∠B′,∴△ABD∽△A′B′D′.∴.26.解:∵相似三角形周长的比等于相似比,∴,∴,同理,∴.答:EF的长是cm,AC的长是cm.27.解:存在t=3秒或4.8秒,使以点A、M、N为顶点的三角形与△ABC相似(无此过程不扣分)设经过t秒时,△AMN与△ABC相似,此时,AM=t,CN=2t,AN=12﹣2t(0≤t≤6),(1)当MN∥BC时,△AMN∽△ABC,(1分)则,即,(3分)解得t=3;(5分)(2)当∠AMN=∠C时,△ANM∽△ABC,(6分)则,即,(8分)解得t=4.8;(10分)故所求t的值为3秒或4.8秒.(11分)28.解:(1)用t的代数式分别表示AQ=2t,AP=6﹣t;(2分)(2)设△APQ的面积为S,①△APQ的面积S与t的关系式为:S=AQ•AP=×2t×(6﹣t)=6t﹣t2,即S=6t﹣t2,②当t=2s时,△APQ的面积S=×AQ•AP=×[2×2×(6﹣2)]=8(cm2);(6分)(3)当t为多少秒时,以点A、P、Q为顶点的三角形与△ABC相似,①当=时=,∴t=2.4(s);②当=时=,∴t=(s);综上所述,当t为2.4秒或时,以点A、P、Q为顶点的三角形与△ABC相似.29.解:∵∠C=90°,BC=8cm,AC:AB=3:5,∴设AC=3xcm,AB=5xcm,则BC==4x(cm),即4x=8,解得:x=2,∴AC=6cm,AB=10cm,∴BC=8cm,设过t秒时,以C、P、Q为顶点的三角形恰与△ABC相似,则BP=2tcm,CP=BC﹣BP=8﹣2t(cm),CQ=tcm,∵∠C是公共角,∴①当,即时,△CPQ∽△CBA,解得:t=2.4,②当,即时,△CPQ∽△CAB,解得:t=,∴过2.4或秒时,以C、P、Q为顶点的三角形恰与△ABC相似.30.(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴=k,a=ka1;又∵c=a1,∴a=kc;(2)解:取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2;此时=2,∴△ABC∽△A1B1C1且c=a1;(3)解:不存在这样的△ABC和△A1B1C1,理由如下:若k=2,则a=2a1,b=2b1,c=2c1;又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c;∴b=2c;∴b+c=2c+c<4c,4c=a,b+c<a,而应该是b+c>a;故不存在这样的△ABC和△A1B1C1,使得k=2.。

相似三角形性质与判定专项练习题有答案

相似三角形性质与判定专项练习题有答案

相似三角形性质和判定专项练习30题(有答案)1.已知:如图,在△ABC中,点D在边BC上,且∠BAC=∠DAG,∠CDG=∠BAD.(1)求证:=;(2)当GC⊥BC时,求证:∠BAC=90°.2.如图,已知在△ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足.(1)求证:AC2=AF•AD;(2)联结EF,求证:AE•DB=AD•EF.3.如图,△ABC中,PC平分∠ACB,PB=PC.(1)求证:△APC∽△ACB;(2)若AP=2,PC=6,求AC的长.4.如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长.5.已知:如图,△ABC中,∠ABC=2∠C,BD平分∠ABC.求证:AB•BC=AC•CD.6.已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S,说明AF•BE=2S 的理由.7.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.8.如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:=.9.已知:如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG•DF=DB•EF.10.如图,△ABC、△DEF都是等边三角形,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H 两点,BC=2,问E在何处时CH的长度最大?11.如图,AB和CD交于点O,当∠A=∠C时,求证:OA•OB=OC•OD.12.如图,已知等边三角形△AEC,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外).连接EB,过E作EF⊥AB,交AB的延长线为F.(1)猜测直线BE和直线AC的位置关系,并证明你的猜想.(2)证明:△BEF∽△ABC,并求出相似比.13.已知:如图,△ABC中,点D、E是边AB上的点,CD平分∠ECB,且BC2=BD•BA.(1)求证:△CED∽△ACD;(2)求证:.14.如图,△ABC中,点D、E分别在BC和AC边上,点G是BE边上一点,且∠BAD=∠BGD=∠C,联结AG.(1)求证:BD•BC=BG•BE;(2)求证:∠BGA=∠BAC.15.已知:如图,在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,BE,AD相交于点G,过点B作BF∥AC交AD的延长线于点F,DF=6.(1)求AE的长;(2)求的值.16.如图,△ABC中,∠ACB=90°,D是AB上一点,M是CD中点,且∠AMD=∠BMD,AP∥CD交BC延长线于P点,延长BM交PA于N点,且PN=AN.(1)求证:MN=MA;(2)求证:∠CDA=2∠ACD.17.已知:如图,在△ABC中,已知点D在BC上,联结AD,使得∠CAD=∠B,DC=3且S△ACD:S△ADB﹦1﹕2.(1)求AC的值;(2)若将△ADC沿着直线AD翻折,使点C落点E处,AE交边BC于点F,且AB∥DE,求的值.18.在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.19.如图,△ABC为等边三角形,D为BC边上一点,以AD为边作∠ADE=60°,DE与△ABC的外角平分线CE 交于点E.(1)求证:∠BAD=∠FDE;(2)设DE与AC相交于点G,连接AE,若AB=6,AE=5时,求线段AG的长.20.如图所示,△ABC中,∠B=90°,点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,经几秒,使△PBQ的面积等于8cm2?(2)如果P,Q分别从A,B同时出发,并且P到B后又继续在BC边上前进,Q到C后又继续在CA边上前进,经过几秒,使△PCQ的面积等于12.6cm2?21.已知:如图,△ABC是等边三角形,D是AB边上的点,将DB绕点D顺时针旋转60°得到线段DE,延长ED 交AC于点F,连接DC、AE.(1)求证:△ADE≌△DFC;(2)过点E作EH∥DC交DB于点G,交BC于点H,连接AH.求∠AHE的度数;(3)若BG=,CH=2,求BC的长.22.如图,在△ABC中,CD平分∠ACB,BE∥BC交AC于点E.(1)求证:AE•BC=AC•CE;(2)若S△ADE:S△CDE=4:3.5,BC=15,求CE的长.23.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.24.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.25.如图,M、N、P分别为△ABC三边AB、BC、CA的中点,BP与MN、AN分别交于E、F.(1)求证:BF=2FP;(2)设△ABC的面积为S,求△NEF的面积.26.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E、F分别是AC,BC边上一点,且CE=AC,BF=BC,(1)求证:;(2)求∠EDF的度数.27.如图,△ABC是等边三角形,且AB∥CE.(1)求证:△ABD∽△CED;(2)若AB=6,AD=2CD,①求E到BC的距离EH的长.②求BE的长.28.如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F.(1)若AC=3,AB=4,求;(2)证明:△ACE∽△FBE;(3)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.29.如图,△ABC是等边三角形,∠DAE=120°,求证:(1)△ABD∽△ECA;(2)BC2=DB•CE.30.如图,在Rt△ABC中,∠C=90°,且AC=CD=,又E,D为CB的三等分点.(1)证明:△ADE∽△BDA;(2)证明:∠ADC=∠AEC+∠B;(3)若点P为线段AB上一动点,连接PE,则使得线段PE的长度为整数的点P的个数有几个?请说明理由.相似三角形性质和判定专项练习30题参考答案:1.解:(1)∵∠ADC=∠B+∠BAD,且∠CDG=∠BAD,∴∠ADG=∠B;∵∠BAC=∠DAG,∴△ABC∽△ADG,∴=.(2)∵∠BAC=∠DAG,∴∠BAD=∠CAG;又∵∠CDG=∠BAD,∴∠CDG=∠CAG,∴A、D、C、G四点共圆,∴∠DAG+∠DCG=180°;∵GC⊥BC,∴∠DCG=90°,∴∠DAG=90°,∠BAC=∠DAG=90°.2.解:(1)如图,∵∠ACB=90°,CF⊥AD,∴∠ACD=∠AFC,而∠CAD=∠FAC,∴△ACD∽△AFC,∴,∴AC2=AF•AD.(2)如图,∵CE⊥AB,CF⊥AD,∴∠AEC=∠AFC=90°,∴A、E、F、C四点共圆,∴∠AFE=∠ACE;而∠ACE+∠CAE=∠CAE+∠B,∴∠ACE=∠B,∠AFE=∠B;∵∠FAE=∠BAD,∴△AEF∽△ADB,∴AE:AD=BD:EF,∴AE•DB=AD•EF.3.解:(1)∵PB=PC,∴∠B=∠PCB;∵PC平分∠ACB,∴∠ACP=∠PCB,∠B=∠ACP,(2)∵△APC∽△ACB,∴,∵AP=2,PC=6,AB=8,∴AC=4.∵AP+AC=PC=6,这与三角形的任意两边之和大于第三边相矛盾,∴该题无解.4.(1)证明:∵AD∥BC,∴∠C+∠ADE=180°,∵∠BFE=∠C,∴∠AFB=∠EDA,∵AB∥DC,∴∠BAE=∠AED,∴△ABF∽△EAD;(2)解:∵AB∥CD,BE⊥CD,∴∠ABE=90°,∵AB=4,∠BAE=30°,∴AE=2BE,由勾股定理可求得AE=5.证明:∵∠ABC=2∠C,BD平分∠ABC,∴∠ABD=∠DBC=∠C,∴BD=CD,在△ABD和△ACB中,,∴△ABD∽△ACB,∴=,即AB•BC=AC•BD,∴AB•BC=AC•CD.6.证明:∵AC=BC,∴∠A=∠B,∵∠ACB=90°,∴∠A=∠B=45°,∵∠ECF=45°,∴∠ECF=∠B=45°,∴∠ECF+∠1=∠B+∠1,∵∠BCE=∠ECF+∠1,∠2=∠B+∠1;∴∠BCE=∠2,∴,∴AC•BC=BE•AF,∴S△ABC=AC•BC=BE•AF,∴AF•BE=2S.7.(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°﹣∠APE=120°.②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴,即,所以AP•AF=12(2)若AF=BE,有AE=BF或AE=CF两种情况.①当AE=CF时,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.②当AE=BF时,点P的路径就是过点C向AB作的垂线段的长度;因为等边三角形ABC的边长为6,所以点P 的路径为:.所以,点P经过的路径长为或3.8.证明:∵AD,BE是钝角△ABC的边BC,AC上的高,∴∠D=∠E=90°,∵∠ACD=∠BCE,∴△ACD∽△BCE,∴=.9.证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE∥BC,∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°.∴∠BDE=∠CED,∵∠EDF=∠ABE,∴△DEF∽△BDE;(2)由△DEF∽△BDE,得.∴DE2=DB•EF,由△DEF∽△BDE,得∠BED=∠DFE.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴,∴DE2=DG•DF,∴DG•DF=DB•EF.10.解:设EC=x,CH=y,则BE=2﹣x,∵△ABC、△DEF都是等边三角形,∴∠B=∠DEF=60°,∵∠B+∠BDE=∠DEF+∠HEC,∴∠BDE=∠HEC,∴△BED∽△CHE,∴,∵AB=BC=2,点D为AB的中点,∴BD=1,∴,即:y=﹣x2+2x=﹣(x﹣1)2+1.∴当x=1时,y最大.此时,E在BC中点11.解:∵∠A=∠C,∠AOD=∠BOC,∴=,∴OA•OB=OC•OD.12.解:(1)猜测BE和直线AC垂直.证明:∵△AEC是等边三角形,∴AE=CE,∵四边形ABCD是正方形,∴AB=CB,∵BE=BE,∴△AEB≌△CEB(SSS).∴∠AEB=∠CEB,∵AE=CE,∴BE⊥AC;(2)∵△AEC是等边三角形,∴∠EAC=∠AEC=60°,∵BE⊥AC,∴∠BEA=∠AEC=30°,∵四边形ABCD是正方形,∴∠BAC=45°,∴∠BAE=15°,∴∠EBF=45°,∵EF⊥BF,∴∠F=90°,∴∠EBF=∠BAC,∠F=∠ABC,∴△BEF∽△ACB,延长EB交AC于G,设AC为2a,则BG=a,EB=a﹣a,∴相似比是:===13.证明:(1)∵BC2=BD•BA,∴BD:BC=BC:BA,∵∠B是公共角,∴△BCD∽△BAC,∴∠BCD=∠A,∵CD平分∠ECB,∴∠ECD=∠BCD,∴∠ECD=∠A,∵∠EDC=∠CDA,(2)∵△BCD∽△BAC,△CED∽△ACD,∴=,=,∴.14.证明:(1)∵∠DBG=∠EBC,∠BGD=∠C,∴△BDG∽△BEC,∴=,则BD•BC=BG•BE;(2)∵∠DBA=∠ABC,∠BAD=∠C,∴△DBA∽△ABC,∴=,即AB2=BD•BC,∵BD•BC=BG•BE,∴AB2=BG•BE,即=,∵∠GBA=∠ABE,∴△GBA∽△ABE,∴∠BGA=∠BAC.15.解:(1)∵在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,∴AC=AB=BC,∴△ABC是等边三角形,∴∠C=60°,∵BF∥AC,∴∠CBF=∠C=60°,∵AD⊥BC,∴∠FDB=90°,∴∠F=30°,∵DF=6,∴BD=2,∵AE=EC=BD=DC,∴AE=2;(2)∵∠BDF=90°,∠F=30°,BD=2,∴BF=2DB=4,∵AC∥BF,∴△AEG∽△FBG,∴=()2=.16.证明:(1)∵AP∥CD,∴∠AMD=∠MAN,∠BMD=∠MNA,∵∠AMD=∠BMD,∴∠MAN=∠MNA,∴MN=MA.(2)如图,连接NC,∵AP∥CD,且PN=AN.∴==,∴MC=MD,∴CN为直角△ACP斜边AP的中线,∴CN=NA,∠NCA=∠NAC,∵AP∥CD,∴∠NAC=∠ACD,∴∠NCM=2∠ACD,∵∠CMN=∠DMB,∠DMA=∠BMD,∴∠CMD=∠DMA,在△CMN和△DMA中,,∴△CMN≌△DMA(SAS),∠ADM=∠NCM=2∠ACD.即:∠CDA=2∠ACD.17.解:(1)∵S△ACD:S△ADB﹦1:2,∴BD=2CD,∵DC=3,∴BD=2×3=6,∴BC=BD+DC=6+3=9,∵∠CAD=∠B,∠C=∠C,∴△ABC∽△DAC,∴=,即=,解得AC=3;(2)由翻折的性质得,∠E=∠C,DE=CD=3,∵AB∥DE,∴∠B=∠EDF,∵∠CAD=∠B,∴∠EDF=∠CAD,∴△EFD∽△ADC,∴=()2=()2=18.(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∵AD=AC,∴DG=CG,∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=,∵△ABC∽△FCD,BC=2CD,∴=()2=.∵S△ABC=×BC×AG=×8×=18,∴S△FCD=S△ABC=.19.(1)证明:∵△ABC为等边三角形,∴∠B=60°,由三角形的外角性质得,∠ADE+∠FDE=∠BAD+∠B,∵∠ADE=60°,∴∠BAD=∠FDE;(2)解:如图,过点D作DH∥AC交AB于H,∵△ABC为等边三角形,∴△BDH是等边三角形,∴∠BHD=60°,BD=BH,∴∠AHD=180°﹣60°=120°,∵CE是△ABC的外角平分线,∴∠ACE=(180°﹣60°)=60°,∴∠DCE=60°+60°=120°,∴∠AHD=∠DCE=120°,又∵AH=AB﹣BH,CD=BC﹣BD,∴AH=CD,在△AHD和△DCE中,,∴△AHD≌△DCE(ASA),∴AD=DE,∵∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=∠DEA=60°,AE=AD=5,∵∠BAD=∠BAC﹣∠CAD=60°﹣∠CAD,∠EAG=∠DAE﹣∠CAD=60°﹣∠CAD,∴∠BAD=∠EAG,∴△ABD∽△AEG,∴=,即=,解得AG=.20.解:(1)设x秒时,点P在AB上,点Q在BC上,且使△PBQ面积为8cm2,由题意得(6﹣x)•2x=8,解之,得x1=2,x2=4,经过2秒时,点P到距离B点4cm处,点Q到距离B点4cm处;或经4秒,点P到距离B点2cm处,点Q到距离B点8cm处,△PBQ的面积为8cm2,综上所述,经过2秒或4秒,△PBQ的面积为8cm2;(2)当P在AB上时,经x秒,△PCQ的面积为:×PB×CQ=×(6﹣x)(8﹣2x)=12.6,解得:x1=(不合题意舍去),x2=,经x秒,点P移动到BC上,且有CP=(14﹣x)cm,点Q移动到CA上,且使CQ=(2x﹣8)cm,过Q作QD⊥CB,垂足为D,由△CQD∽△CAB得,即QD=,由题意得(14﹣x)•=12.6,解之得x1=7,x2=11.经7秒,点P在BC上距离C点7cm处,点Q在CA上距离C点6cm处,使△PCQ的面积等于12.6cm2.经11秒,点P在BC上距离C点3cm处,点Q在CA上距离C点14cm处,14>10,点Q已超出CA的范围,此解不存在.综上所述,经过7秒和秒时△PCQ的面积等于12.6cm221.(1)证明:如图,∵线段DB顺时针旋转60°得线段DE,∴∠EDB=60°,DE=DB.∵△ABC是等边三角形,∴∠B=∠ACB=60°.∴∠EDB=∠B.∴EF∥BC.∴DB=FC,∠ADF=∠AFD=60°.∴DE=DB=FC,∠ADE=∠DFC=120°,△ADF是等边三角形.∴AD=DF.∴△ADE≌△DFC.(2)解:由△ADE≌△DFC,得AE=DC,∠1=∠2.∵ED∥BC,EH∥DC,∴四边形EHCD是平行四边形.∴EH=DC,∠3=∠4.∴AE=EH.∴∠AEH=∠1+∠3=∠2+∠4=∠ACB=60°.∴△AEH是等边三角形.∴∠AHE=60°.(3)解:设BH=x,则AC=BC=BH+HC=x+2,由(2)四边形EHCD是平行四边形,∴ED=HC.∴DE=DB=HC=FC=2.∵EH∥DC,∴△BGH∽△BDC.∴.即.解得x=1.∴BC=3.22.(1)证明:∵DE∥BC,∴∠ADE=∠B,∠AEC=∠ACB,∴△ADE∽△ABC,∴=,∵DE∥BC,∴∠EDC=∠BCD,∵CD平分∠ACB,∴∠BCD=∠DCE,∴∠DCE=∠EDC,∴DE=CE,∴=,即AE•BC=AC•CE;(2)∵S△ADE:S△CDE=4:3.5,∴AE:CE=4:3.5,∴=,∵由(1)知=,∴=,解得DE=6,∵DE=CE,∴CE=8.23.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.24.(1)证明:如图1,在△ABC中,∵∠CAB=90°,AD⊥BC于点D,∴∠CAD=∠B=90°﹣∠ACB.∵AC:AB=1:2,∴AB=2AC,∵点E为AB的中点,∴AB=2BE,∴AC=BE.在△ACD与△BEF中,,∴△ACD≌△BEF,∴CD=EF,即EF=CD;(2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q,∵EH⊥AD,EQ⊥BC,AD⊥BC,∴四边形EQDH是矩形,∴∠QEH=90°,∴∠FEQ=∠GEH=90°﹣∠QEG,又∵∠EQF=∠EHG=90°,∴△EFQ∽△EGH,∴EF:EG=EQ:EH.∵AC:AB=1:,∠CAB=90°,∴∠B=30°.在△BEQ中,∵∠BQE=90°,∴sinB==,∴EQ=BE.在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH==,∴EH=AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=BE:AE=1:=:3.25.(1)证明:如图1,连接PN,∵N、P分别为△ABC边BC、CA的中点,∴PN∥AB,且.∴△ABF∽△NPF,∴.∴BF=2FP.(2)解:如图2,取AF的中点G,连接MG,∴MG∥EF,AG=GF=FN.∴△NEF∽△NMG,∴S△NEF=S△MNG=×S△AMN=××S△ABC=S.26.(1)证明:∵CD⊥AB,∴∠CDB=∠ADC=90°,∴∠ACD+∠BCD=90°,∵∠ACB=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∴△ADC∽△CDB,∴=;(2)解:∵CE=AC,BF=BC,∴===,又∵∠A=∠BCD,∴∠ACD=∠B,∴△CED∽△BFD,∴∠CDE=∠BDF,∴∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°.27.解;(1)∵AB∥CE,∴∠A=∠DCE,又∵∠ADB=∠EDC,∴△ABD∽△CED;(2)①过点E作EH⊥BF于点H,∵△ABC是等边三角形,△ABD∽△CED,AB=6,AD=2CD,∴==,∠A=∠ACB=60°,∴CE=3,∵AB∥CE,∴∠A=∠DCE=60°,∴∠ECH=180°﹣∠ACB﹣∠DCE=180°﹣60°﹣60°=60°,∴EH=CE•sin60°=3×=;②在Rt△ECH中,∵∠ECH=60°,CE=3,∴CH=CE•cos60°=3×=,∴BH=BC+CH=6+=,∴BE===3.28.(1)解:∵AC=AC′,AB=AB′,∴由旋转可知:∠CAB=∠C′AB′,∴∠CAB+∠EAC′=∠C′AB′+∠EAC′,即∠CAC′=∠BAB′,又∵∠ACB=∠AC′B′=90°,∴△ACC′∽△ABB′,∵AC=3,AB=4,∴==;(2)证明:∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,(1分)∴∠CAC′=∠BAB′,∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,∴∠ACC′=∠ABB′,(3分)又∵∠AEC=∠FEB,∴△ACE∽△FBE.(4分)(3)解:当β=2α时,△ACE≌△FBE.理由:在△ACC′中,∵AC=AC′,∴∠ACC′=∠AC′C====90°﹣α,(6分)在Rt△ABC中,∠ACC′+∠BCE=90°,即90°﹣α+∠BCE=90°,∴∠BCE=90°﹣90°+α=α,∵∠ABC=α,∴∠ABC=∠BCE,(8分)∴CE=BE,由(2)知:△ACE∽△FBE,∴△ACE≌△FBE.(9分)29.证明:(1)∵△ABC是等边三角形,∠DAE=120°,∴∠DAB+∠CAE=60°,∵∠ABC是△ABD的外角,∴∠DAB+∠D=∠ABC=60°,∴∠CAE=∠D,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACE=120°,∴△ABD∽△ECA;(2)∵△ABD∽△ECA,∴=,即AB•AC=BD•CE,∵AB=AC=BC,∴BC2=BD•CE30.(1)证明:∵AC=CD=DE=EB=,又∠C=90°,∴AD=2,∴=,==,∴=,又∵∠ADE=∠BDA,∴△ADE∽△BDA;(2)证明:∵△ADE∽△BDA,∴∠DAE=∠B,又∵∠ADC=∠AEC+∠DAE,∴∠ADC=∠AEC+∠B;(3)解:∵点P为线段AB上一动点,根据勾股定理得:AE==,BE=,∴PE的最大值为.作EF⊥AB,则EF=,则PE的最小值为∴≤EP≤,∵EP为整数,即EP=1,2,3,结合图形可知PE=1时有两个点,所以PE长为整数的点P个数为4个.。

相似三角形性质专题(附答案

相似三角形性质专题(附答案

相似三角形的性质专题练习(附答案)1.如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB边的中点,P是BC边上一动点(点P不与B、C重合),若以D、C、P为顶点的三角形与△ABC相似,则线段PC= .2.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是3.已知在△ABC中,AB=20,AC=12,BC=16,点D是射线BC上的一点(不与端点B重合),连接AD,如果△ACD与△ABC相似,那么BD= .4.如图,长方形ABCD中,AB=4,AD=3,E是边AB上一点(不与A、B重合),F是边BC上一点(不与B、C重合).若△DEF和△BEF是相似三角形,则CF= .5.如图,正方形ABCD的边长是2,E为BC的中点,点M、N分别在CD和AD上,且MN=1,当DM= 时,△ABE与以D、M、N为顶点的三角形相似.如图,D是等边△ABC的边BC上一动点,ED∥AC交AB于点E.DF⊥AC交AC于点F,DF=3,若△DCF与E、F、D三点组成的三角形相似,则BD的长等于1.解:∵Rt △ABC 中,∠ACB=90°,AC=6,BC=8,∴AB=10,∵D 是AB 边的中点,∴CD=BD=AB 21=5 ∵以D 、C 、P 为顶点的三角形与△ABC 相似, ∴∠DPC=90°或∠CDP=90°, (1)若∠DPC=90°,则DP ∥AC ,∴21==BC BP AB BD ∴BP=421=BC ,则PC=4; (2)若∠CDP=90°,则△CDP ∽△BCA ,∴1085,PC AB PC BC CD ==即,∴PC=425. ∴PC=4或425 2.解:根据△B′FC 与△ABC 相似时的对应情况,有两种情况:①△B′FC ∽△ABC 时,BC CF AB F B =', 又因为AB=AC=6,BC=8,B'F=BF ,所以886'BF F B -=, 解得BF=724; ②△B′CF ∽△BCA 时,CACF BA F B =', 又因为AB=AC=6,BC=8,B'F=CF ,BF=B′F ,又BF+FC=8,即2BF=8,解得BF=4.故BF 的长度是4724或. 3.解:解:①若点D 在线段BC 上,∵△ACD ∽△BCA ,∴AC CD BC AC =,即121612CD =, 解得:CD=9,则BD=BC-CD=16-9=7;②若点D 在线段BC 的延长线上当△D AC ∽△ABC 时,则AC CD BC AC =,即121612CD =, 解得:CD=9,则BD=BC+CD=16+9=25; 当△ACD ∽△ACB 时,则BC CD AC AC =, 即BCCD =1212,∴CD=16, 则BD=BC+CD=16+16=32.故答案为:7或25或32.4.解::①如图1,∠DEF=90°时,设AE=x ,则BE=4-x ,易求△ADE ∽△BEF ,∴EF DE BE AD =,即EFDE x =-43, ∵△DEF 和△BEF 是相似三角形, ∴△DEF 和△ADE 是相似三角形,∴ADAE EF DE AE AD EF DE ==或 ∴343343x x x x =-=-或, 整理得,6x=12或x 2-4x+9=0(无解),解得x=2,∴BE=4-2=2,BF 223=,解得BF=34,CF=3-34=35;②如图2,∠DFE=90°时,设CF=x ,则BF=3-x ,易求△BEF ∽△CFD ,∴EF DF BF DC =,即EF DF x =-34,∵△DEF 和△BEF 是相似三角形,∴△DEF 和△DCF 是相似三角形,∴DCCF EF DF CF DC EF DF ==或,即434434x x x x =-=-或, 整理得,8x=12或x 2-3x+16=0(无解),综上所述,CF 的值为5/3或3/25.答案自己给出6.解:∵ED ∥AC 交AB 于点E ,△ABC 是等边三角形, ∴△BDE 是等边三角形,∠FDC=30°,当△DCF ∽△EFD , ∴∠FED=∠FDC=30° ∴DE=3333tan ==∠FED DF ,∴BD=DE=3;当△DCF ∽△FED ,∴∠EFD=∠FDC=30°,∴BD=DE =DF•tan ∠A=1.故答案为:1或3.7.在Rt △ABC 中,∠A=90°,AB=3cm ,AC=4cm ,以斜边BC 上距离B 点3cm 的点P 为中心,把这个三角形按逆时针方向旋转90°到Rt △DEF ,则旋转前后两个直角三角形重叠部分的面积为 1.44 cm 2.解:根据旋转的性质可知,△PSC ∽△RSF ∽△RQC ∽△ABC ,△PSC ∽△PQF ,∵∠A=90°,AB=3cm ,AC=4cm ,∴BC=5,PC=2,S △ABC =6,∵S △PSC :S △ABC =1:4,即S △PSC =23, ∴PS=PQ=23, ∴QC=27, ∴S △RQC :S △ABC =QC 2:BC 2,∴S △RQC =50147, ∴S RQPS =S △RQC -S △PSC =1.44cm 2.。

(05)相似三角形性质专项练习30题(有答案)

(05)相似三角形性质专项练习30题(有答案)

相似三角形性质专项练习30题(有答案)1.如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE∽△DEF,AB=6,AE=9,DE=2,求EF的长.2.如图,AD=2,AC=4,BC=6,∠B=36°,∠D=107°,△ABC∽△DAC(1)求AB的长;(2)求CD的长;(3)求∠BAD的大小.3.如图,△ABC与△A′B′C′相似,AD,BE是△ABC的高,A′D′,B′E′是△A′B′C′的高,求证:=.4.如图所示,已知∠ACB=∠CBD=90°,AC=b,CB=a,BD=k,若△ACB∽△CBD,写出a、b、k之间满足的关系式.5.如图,AD、BE是△ABC的两条高,A′D′、B′E′是△A′B′C′的两条高,△ABD∽△A′B′D′,∠C=∠C′,求证:=.6.已知,如图,△AOB∽△DOC,BD⊥AC,∠AOB是直角.求证:AD2+BC2=AB2+CD2.7.已知如图△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°,△ABD∽△DCE.当△ADE是等腰三角形时,求AE的长.8.如图,△ABC与△ADB相似,AD=4,CD=6,求这两个三角形的相似比.9.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,求BF的长度.10.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?11.如图,在平行四边形ABCD中,E为DC上的一点,AE交BD于O,△AOB∽△EOD,若DE=AB,AB=9,AO=6,求DE和AE的长.12.如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB.(1)求∠APB的大小.(2)说明线段AC、CD、BD之间的数量关系.13.如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE△∽△DEF,AB=6,AE=8,DE=2,求EF的长.14.如图,△ABC∽△DAB,AB=8,BC=12,求AD的长.15.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s的速度向点C移动,动点Q从C出发以1cm/s的速度向点A移动,如果动点P、Q同时出发,要使△CPQ与△CBA相似,所需要的时间是多少秒?16.如图,△ABC∽△FED,若∠A=50°,∠C=30°,求∠E的度数.17.如图,已知△ABC∽△AED,且∠B=∠AED,点D、E分别是边AB、AC上的点,如果AD=3,AE=6,CE=3.根据以上条件你能求出边AB的长吗?请说明理由.18.如图,在△ABC中,AB=8cm,AC=16cm,点P从点B开始沿BA边向点A以每秒2cm的速度移动,点Q从点A开始沿AC边向点C以每秒4cm的速度移动.如果P、Q分别从B、A同时出发,经过几秒钟△APQ与△ABC 相似?试说明理由.19.如图,在平行四边形ABCD中,AB=4,AD=6,∠ABC=60°;点P是射线AD上的一个动点(与点A不重合),BP与AC相交于点E,设AP=x.(1)求AC的长;(2)如果△ABP和△BCE相似,请求出x的值;(3)当△ABE是等腰三角形时,求x的值.20.已知两个相似三角形的一对对应边长分别是35cm和14cm(1)已知他们的周长相差60cm,求这两个三角形的周长.(2)已知它们的面积相差588cm2,求这两个三角形的面积.21.如图,已知△ACE∽△BDE,∠A=117°,∠C=37°,AC=6,BD=3,AB=12,CD=18,(1)求∠B和∠D的度数;(2)求AE和DE的长.22.一个钢筋三角架三边长分别是20厘米、50厘米、60厘米,现在再做一个与其相似的钢筋三角架,而只有长为30厘米和50厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有多少种?写出你的设计方案,并说明理由.23.要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4、5、6,另一个三角形框架的一边长为2,它的另外两边长分别可以为多少?24.如图,已知等边△ABC的边长为8,点D、P、E分别在边AB、BC、AC上,BD=3,E为AC中点,当△BPD 与△PCE相似时,求BP的值.25.如图,△ABC∽△A′B′C′,相似比为k,AD、A′D′分别是边BC、B′C′上的中线,求证:.26.已知△ABC∽△DEF,△ABC和△DEF的周长分别为20cm和25cm,且BC=5cm,DF=4cm,求EF和AC的长.27.如图,在△ABC中,AB=6cm,AC=12cm,动点M从点A出发,以1cm∕秒的速度向点B运动,动点N从点C 出发,以2cm∕秒的速度向点A运动,若两点同时运动,是否存在某一时刻t,使得以点A、M、N为顶点的三角形与△ABC相似,若存在,求出t的值;若不存在,请说明理由.28.Rt△ABC中,∠A=90°,AB=8cm,AC=6cm,P、Q分别为AC,AB上的两动点,P从点C开始以1cm/s的速度向点A运动,Q从点A开始以2cm/s的速度向点B运动,当一点到达终点时,P、Q两点就同时停止运动.设运动时间为ts.(1)用t的代数式分别表示AQ和AP的长;(2)设△APQ的面积为S,①求△APQ的面积S与t的关系式;②当t=2s时,△APQ的面积S是多少?(3)当t为多少秒时,以点A、P、Q为顶点的三角形与△ABC相似?29.如图所示,∠C=90°,BC=8cm,AC:AB=3:5,点P从点B出发,沿BC向点C以2cm/s的速度移动,点Q 从点C出发沿CA向点A以1cm/s的速度移动,如果P、Q分别从B、C同时出发,过多少秒时,以C、P、Q为顶点的三角形恰与△ABC相似?30.如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.相似三角形专项练习30题参考答案: 1.解:∵四边形ABCD是矩形,∴∠BAE=90°,∵AB=6,AE=9,∴BE===,∵△ABE∽△DEF,∴=,即=,解得EF=.2.解:(1)∵△ABC∽△DAC,∴,∴,解得:AB=3;(2)∵△ABC∽△DAC,∴,∴,解得:CD=;(3)∵△ABC∽△DAC,∴∠BAC=∠D=107°,∠CAD=∠B=36°,∵∠B=36°,∴∠BAD=∠BAC+∠CAD=107°+36°=143°3.证明:∵△ABC与∽A′B′C′,∴∠ABD=∠A′B′D′,∵AD和A′D′是高,∴∠ADB=∠A′D′B′,∴△ABD∽△A′B′D,∴=,同理可得=,∴=.4.解:∵△ACB∽△CBD,∴=,∵AC=b,CB=a,BD=k,∴=,即a2=bk.5.证明:∵△ABD∽△A′B′D′,∴∠ABC=∠A′B′C′,∠BAC=∠B′A′C′,∵AD是△ABC的高,A′D′是△A′B′C′的,∴∠ADB=∠A′D′B′=90°,∴△ABD∽△A′B′D′,∴=,同理可求△ABE∽△A′B′E′,∴=,∴=.6.解:∵BD⊥AC,∴∠AED=∠AEB=∠BEC=∠DEC=90°,∴在Rt△AED中,AD2=AE2+DE2,在Rt△AEB中,AB2=AE2+BE2,在Rt△BEC中,BC2=BE2+CE2,在Rt△CED中,CD2=CE2+DE2,∴AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2.7.解:分三种情况:①若AD=AE时,∠DAE=90°,此时D点与点B重合,不合题意;②若AD=DE时,△ABD与△DCE的相似比为1,此时△ABD≌△DCE,于是AB=AC=1,BC=,AE=AC﹣EC=1﹣BD=1﹣(﹣1)=2﹣;③若AE=DE,此时∠DAE=∠ADE=45°,如图所示,易知AD⊥BC,DE⊥AC,且AD=DC.由等腰三角形的三线合一可知:AE=CE=AC=.综上所述,当△ADE是等腰三角形时,AE的长为2﹣或.8.解:∵△ABC与△ADB相似,∴△ABC∽△ADB,∴=,∴AB2=AC•AD=10×4=40,∴△ABC与△ADB的相似比为==.9.解:设BF=x,则CF=4﹣x,由翻折的性质得B′F=BF=x,当△B′FC∽△ABC,∴=, 即=,解得x=,即BF=.当△FB ′C ∽△ABC , ∴AB FB /'=AC FC即,解得:x=2.∴BF 的长度为:2或.10.解:设运动了ts ,根据题意得:AP=2tcm ,CQ=3tcm ,则AQ=AC ﹣CQ=16﹣3t (cm ),当△APQ ∽△ABC 时,,即,解得:t=;当△APQ ∽△ACB 时,,即,解得:t=4; 故当以A 、P 、Q 为顶点的三角形与△ABC 相似时,运动时间是:s 或4s11.解:∵△AOB ∽△EOD , ∴DE :AB=OA :OE ,∵DE=AB ,AB=9,AO=6,∴DE=×9=6,OE=OA=4,∴AE=OA+OE=6+4=10.12.解:(1)∵△PCD 是等边三角形,∴∠PCD=60°,∴∠ACP=120°,∵△ACP ∽△PDB ,∴∠APC=∠B ,∵∠A=∠A ,∴∠ACP∽∠APB,∴∠APB=∠ACP=120°;(2)∵△ACP∽△PDB,∴AC:PD=PC:BD,∴PD•PC=AC•BD,∵△PCD是等边三角形,∴PC=PD=CD,∴CD2=AC•BD.13.解:∵四边形ABCD是矩形,∴∠BAE=90°,∵AB=6,AE=8,∴BE===10,∵△ABE∽△DEF,∴=,即=,解得EF=.14.解:∵△ABC∽△DAB,∴,∵AB=8,BC=12,∴,∴AD=.15.解:设经过t秒后两三角形相似,则可分下列两种情况进行求解,①若Rt△ABC∽Rt△QPC则,即解之得t=1.2;②若Rt△ABC∽Rt△PQC则,解之得t=;由P点在BC边上的运动速度为2cm/s,Q点在AC边上的速度为1cm/s,可求出t的取值范围应该为0<t<2,验证可知①②两种情况下所求的t均满足条件.所以可知要使△CPQ与△CBA相似,所需要的时间为1.2或秒.16.解:∵△ABC中,∠A=50°,∠C=30°,∴∠B=180°﹣50°﹣30°=100°,∵△ABC∽△FED,∴∠E=∠B=100°.17.解:∵△ABC∽△AED,且∠B=∠AED,∴.又AD=3,AE=6,CE=3,∴AB==18.18.解:设经过t秒两三角形相似,则AP=AB﹣BP=8﹣2t,AQ=4t,①AP与AB是对应边时,∵△APQ与△ABC相似,∴=,即=,解得t=2,②AP与AC是对应边时,∵△APQ与△ABC相似,∴=,即=,解得t=,综上所述,经过或2秒钟,△APQ与△ABC相似19.解:(1)过点A作AF⊥BC于F(1分)在Rt△AFB中,∠AFB=90°,∠ABF=60°∴AF=ABsin∠ABF=4sin60°=4×=,BF=ABcos∠ABF=4cos60°=4×在Rt△AFC中,∠AFC=90°∴(1分)(2)过点P作PG⊥BC于G,在Rt△BPG中,∠PGB=90°,∴(1分)如果△ABP和△BCE相似,∵∠APB=∠EBC又∵∠BAP=∠BCD>∠ECB(1分)∴∠ABP=∠ECB∴即解得(不合题意,舍去)∴x=8(1分)(3)①当AE=AB=4时∵AP∥BC,∴即,解得,②当BE=AB=4时∵AP∥BC,∴,即,解得(不合题意,舍去)③在Rt△AFC中,∠AFC=90°∵,在线段FC上截取FH=AF,∴∠FAE>∠FAH=45°∴∠BAE>45°+30°>60°=∠ABC>∠ABE∴AE≠BE.综上所述,当△ABE是等腰三角形时,或20.解:(1)∵相似三角形的对应边长分别是35cm和14cm∴这两个三角形的相似比为:5:2∴这两个三角形的周长比为:5:2∵他们的周长相差60cm∴设较大的三角形的周长为5xcm,较小的三角形的周长为2xcm ∴3x=60∴x=20cm∴5x=5×20=100cm,2x=2×20=40cm∴较大的三角形的周长为100cm,较小的三角形的周长为40cm(2)∵这两个三角形的相似比为:5:2∴这两个三角形的面积比为:25:4∵他们的面积相差588cm2∴设较大的三角形的面积为25xcm2,较小的三角形的面积为4xcm2∴(25﹣4)x=588,∴x=28cm2∴25x=25×28=700cm2,4x=4×28=112cm2∴较大的三角形的面积为700cm2,较小的三角形的面积为112cm2 21.解:(1)∵△ACE∽△BDE,∠A=117°,∠C=37°,∴∠B=∠A=117°,∠C=∠D=37°;(2)∵△ACE∽△BDE,AC=6,BD=3,AB=12,CD=18,∴设AE=x,DE=y,则BE=12﹣x,CE=18﹣y,∴==,即==,解得x=8,y=6,∴AE=8,DE=622.解:①当把30厘米的钢筋作为最长边,把50厘米的钢筋按10厘米与25厘米两部分截,则有;②当30厘米的钢筋作为中长边,把50厘米分截出12厘米和36厘米两部分,则有.③当30cm作为最短边:则另两边都会超过50cm,此时不合题意,∴一共有两种截法.23.解:题中没有指明边长为2的边与原三角形的哪条边对应,所以应分别讨论:(1)若边长为2的边与边长为4的边相对应,则另两边为和3;(2)若边长为2的边与边长为5的边相对应,则另两边为和;(3)若边长为2的边与边长为6的边相对应,则另两边为和.故三角形框架的两边长可以是:和3或和或和.24.解:设BP=x,∵等边△ABC的边长为8,∴CP=8﹣x,∵E为AC中点,∴CE=AC=×8=4,①BD和PC是对应边时,△BDP∽△CPE,∴=,即=,整理得,x2﹣8x+12=0,解得x1=2,x2=6,即BP的长为2或6,②BD和CE是对应边时,△BDP∽△CEP,∴=,即=,解得x=,即BP=,综上所述,BP的值是2或6或.25.证明:∵△ABC∽△A′B′C′,∴===K.又∵AD、A′D′分别是边BC、B′C′上的中线,∴==.∴,∵∠B=∠B′,∴△ABD∽△A′B′D′.∴.26.解:∵相似三角形周长的比等于相似比,∴,∴,同理,∴.答:EF的长是cm,AC的长是cm.27.解:存在t=3秒或4.8秒,使以点A、M、N为顶点的三角形与△ABC相似(无此过程不扣分)设经过t秒时,△AMN与△ABC相似,此时,AM=t,CN=2t,AN=12﹣2t(0≤t≤6),(1)当MN∥BC时,△AMN∽△ABC,(1分)则,即,(3分)解得t=3;(5分)(2)当∠AMN=∠C时,△ANM∽△ABC,(6分)则,即,(8分)解得t=4.8;(10分)故所求t的值为3秒或4.8秒.(11分)28.解:(1)用t的代数式分别表示AQ=2t,AP=6﹣t;(2分)(2)设△APQ的面积为S,①△APQ的面积S与t的关系式为:S=AQ•AP=×2t×(6﹣t)=6t﹣t2,即S=6t﹣t2,②当t=2s时,△APQ的面积S=×AQ•AP=×[2×2×(6﹣2)]=8(cm2);(6分)(3)当t为多少秒时,以点A、P、Q为顶点的三角形与△ABC相似,①当=时=,∴t=2.4(s);②当=时=,∴t=(s);综上所述,当t为2.4秒或时,以点A、P、Q为顶点的三角形与△ABC相似.29.解:∵∠C=90°,BC=8cm,AC:AB=3:5,∴设AC=3xcm,AB=5xcm,则BC==4x(cm),即4x=8,解得:x=2,∴AC=6cm,AB=10cm,∴BC=8cm,设过t秒时,以C、P、Q为顶点的三角形恰与△ABC相似,则BP=2tcm,CP=BC﹣BP=8﹣2t(cm),CQ=tcm,∵∠C是公共角,∴①当,即时,△CPQ∽△CBA,解得:t=2.4,②当,即时,△CPQ∽△CAB,解得:t=,∴过2.4或秒时,以C、P、Q为顶点的三角形恰与△ABC相似.30.(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴=k,a=ka1;又∵c=a1,∴a=kc;(2)解:取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2;此时=2,∴△ABC∽△A1B1C1且c=a1;(3)解:不存在这样的△ABC和△A1B1C1,理由如下:若k=2,则a=2a1,b=2b1,c=2c1;又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c;∴b=2c;∴b+c=2c+c<4c,4c=a,b+c<a,而应该是b+c>a;故不存在这样的△ABC和△A1B1C1,使得k=2.。

相似三角形性质完整的题型+答案

相似三角形性质完整的题型+答案

相似三角形性质知识精要一、相似三角形的性质1、(定义):相似三角形的对应角相等,对应边成比例。

2、性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比。

3、性质定理2:相似三角形的周长比等于相似比。

4、性质定理3:相似三角形的面积比等于相似比的平方。

二、相似三角形的应用例题讲解:例题:地图比例尺为1:2000,一块多边形地区在地图上周长为50cm,面积为100cm2,实际周长为1000 m,实际面积为40000m2。

变式:东海大桥全长32.5千米,如果东海大桥在某张地图上的长为6.5厘米,那么该地图上距离与实际距离的比为( )。

A.1:5000000B.1:500000C.1:50000D.1:5000答案:B例题:(1)两个相似三角形的面积之比为9:16,它们的对应高之比为3:4 。

(2)两个相似三角形的相似比为1:3,则它们的周长比为1:3 ,面积比为1:9 。

变式:(1)两个相似三角形面积之比是1:3,则他们对应边上的高之比为( )。

(A).1:3 (B) 3:1 (C) 1:3(D) 1:9(2)两个相似三角形的相似比是2:3,面积相差30厘米2,则它们的面积之和是( )。

(A)150厘米2(B) 65厘米2(C) 45厘米2(D) 78厘米2答案:(1) C (2)D。

例题:如图,已知DE//BC ,AD:DB=2:3,那么S △ADE :S △ECB = 4:15 。

变式:如图,在ABCD 中,AC 与DE 交于点F ,AE:EB=1:2,S △AEF =6cm 2,则S △CDF 的值为( )。

A.12cm 2B.15cm 2C.24cm 2D.54cm 2答案:D 。

例题:如图,已知梯形ABCD 中,AD//BC ,AD:BC=3:5, 求: (1)S △AOD :S △BOC 的值;(2)S △AOB :S △AOD 的值. 答案:(1)9:25 (2)5:3。

相似三角形的性质---达标训练(附答案)--2021-2022学年青岛版九年级数学上册--

相似三角形的性质---达标训练(附答案)--2021-2022学年青岛版九年级数学上册--

2021-2022学年青岛版九年级数学上册《1.3相似三角形的性质》能力达标专题提升训练(附答案)1.已知△ABC∽△DEF,若周长比为4:9,则AC:DF等于()A.4:9B.16:81C.3:5D.2:32.已知△ABC∽△DEF,AB=3,DE=5,则△ABC与△DEF的面积之比为()A.B.C.D.3.若△ABC∽△DEF,且S△ABC:S△DEF=5:4,则△ABC与△DEF的周长比为()A.5:4B.4:5C.2:D.:24.两个相似三角形对应中线的长分别为6cm和12cm,若较大三角形的面积是12cm2,则较小的三角形的面积为()cm2.A.1B.3C.4D.65.已知两个相似三角形的对应边之比为9:4,则这两个相似三角形的周长之比是()A.81:16B.9:4C.4:9D.3:26.若△ABC∽△AB'C,且面积比为4:9,则其对应边上的高的比为()A.B.C.D.7.两个三角形相似,下列结论错误的是()A.对应边上的高的比等于相似比B.对应角的平分线的比等于相似比C.周长比等于相似比D.面积比等于相似比8.已知三角形ABC与三角形EFM的相似比为2,且这两个三角形面积的和为25,则三角形ABC的面积为()A.5B.21C.15D.209.两个相似三角形面积比是4:9,其中一个三角形的周长为18,则另一个三角形的周长是()A.12B.12或24C.27D.12或2710.已知△ABC的各边长分别为2、5、6,与其相似的另一个△A′B′C′的最大边为18,则△ABC与△A′B′C′的面积比等于()A.1:3B.1:6C.1:9D.4:911.已知△ABC∽△A'B'C',若AB=8,A'B'=6,则△ABC与△A'B'C′的面积比等于.12.如果两个相似三角形的周长比为2:3,那么它们的对应角平分线的比为.13.已知△ABC∽△A′B′C′,AD和A′D′是对应高,且AD:A′D′=2,则△ABC 与△A′B′C′的周长比是.14.若△ABC∽△DEF,且AB:DE=2:3,△DEF的面积为9;则△ABC的面积为.15.若△ABC∽△DEF,相似比为1:3,则△ABC与△DEF的面积比为.16.已知△ABC∽△DEF,且面积比为1:9,若△ABC的周长为8cm,则△DEF的周长是cm.17.如图,在正方形网格中,△ABC∽△DEF,则∠BAC的度数为.18.如图,△ABC∽△ADE,且BC=2DE,则的值为.19.已知如图,在矩形ABCD中,AB=20,AD=8,P是边AB上一点,若△APD与△BPC 相似,AP为.20.如图,△ABC中,CD⊥AB于D,AD=9,CD=6,如果△ADC与△CDB相似,则BD 的长度为.21.已知:如图,△ABC∽△ACD,CD平分∠ACB,AD=2,BD=3,求AC、DC的长.22.已知:如图,Rt△ABC∽Rt△ACD,若AC=3,BC=4,求AD.23.如图,矩形ABDE中,AB=3cm,BD=7cm,点C在边ED上,且EC=1cm,点P在边BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,求PD的长.24.如图,已知△ABC∽△ACD,AC=6,AD=4,CD=2AD,求BD和BC的长.25.如图,已知△ABC∽△ADE,AE=6cm,EC=3cm,BC=6cm,∠BAC=∠C=40°.(1)求∠AED和∠ADE的大小;(2)求DE的长.参考答案1.解:∵△ABC∽△DEF,∴==.故选:A.2.解:∵△ABC∽△DEF,AB=3,DE=5,∴相似比为AB:DE=3:5,∴其面积之比为9:25.故选:A.3.解:∵△ABC∽△DEF,S△ABC:S△DEF=5:4,∴△ABC与△DEF的相似比为:2,∴△ABC与△DEF的周长比为:2,故选:D.4.解:根据题意两三角形的相似比是:6:12=1:2,则面积比为1:4,已知大三角形面积为12cm2,则小三角形的面积为3cm2.故选:B.5.解:两个相似三角形的对应边之比为9:4,则这两个相似三角形的周长之比9:4.故选:B.6.解:∵两个相似三角形的面积之比为4:9,∴相似比是2:3,又∵相似三角形对应高的比等于相似比,∴对应边上高的比为2:3.故选:C.7.解:A、对应边上的高的比等于相似比,不符合题意;B、对应角的平分线的比等于相似比,不符合题意;C、周长比等于相似比,不符合题意;D、面积比等于相似比的平方,符合题意;故选:D.8.解:设三角形ABC的面积为x,则三角形EFM的面积为25﹣x,∵三角形ABC与三角形EFM的相似比为2,∴=22,解得:x=20,∴三角形ABC的面积为20,故选:D.9.解:∵两个相似三角形面积比是4:9,∴两个相似三角形相似比是2:3,∴两个相似三角形周长比是2:3,∵一个三角形的周长为18,设另一三角形周长为x,∴18:x=2:3或x:18=2:3,解得:x=12或27,∴另一个三角形的周长是12或27,故选:D.10.解:∵△ABC的各边长分别为2、5、6,与其相似的另一个△A′B′C′的最大边为18,∴两三角形的相似比为6:18=1:3,∴△ABC与△A′B′C′的面积比=(1:3)2=1:9,故选:C.11.解:∵△ABC∽△A'B'C',∴△ABC与△A'B'C′的面积比=()2,∵AB=8,A'B'=6,∴△ABC与△A'B'C′的面积比为16:9,故答案为:16:9.12.解:∵两个相似三角形的周长比为2:3,∴两个相似三角形的相似比为2:3,∴它们的对应角平分线之比为2:3,故答案为:2:3.13.解:∵△ABC∽△A′B′C′,AD和A′D′是对应高,AD:A′D′=2,∴△ABC与△A′B′C′的相似比为2:1,∴△ABC与△A′B′C′的周长比为2:1,故答案为:2:1.14.解:∵△ABC∽△DEF,AB:DE=2:3,∴S△ABC:S△DEF=4:9.∵△DEF的面积为9,∴△ABC的面积=4.故答案为:4.15.解:∵△ABC∽△DEF,相似比为1:3,∴△ABC与△DEF的面积比为1:9,故答案为:1:916.解:∵△ABC∽△DEF,且面积比为1:9,∴△ABC与△DEF的相似比1:3,∴△ABC与△DEF的周长比1:3,∵△ABC的周长为8cm,∴△DEF的周长是3×8=24(cm),故答案为:24.17.解:∵∠EDH=45°,∴∠EDF=135°,∵△ABC∽△DEF,∴∠BAC=∠EDF=135°,故答案为:135°.18.解:∵△ABC∽△ADE,且BC=2DE,∴=()2=,∴==,故答案为:.19.解:设AP为x,∵AB=10,∴PB=10﹣x,①AD和PB是对应边时,∵△APD∽△BCP,∴,即=,解得x1=4,x2=16,②AD和BC是对应边时,∵△APD∽△BPC,∴,即=,解得x=10∴当AP=4或10或16时,△APD与△BPC相似,故答案为:4或10或16.20.解:∵CD⊥AB,∴∠ADC=∠CDB=90°,∵△ADC与△CDB相似,∴=或,∵AD=9,CD=6,∴=或=,∴BD=4或9.故答案为:4或9.21.解:∵△ABC∽△ACD,AD=2,BD=3,∴∠ACD=∠B,=,即=,解得,AC=,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠BCD=∠B,∴DC=BD=3.22.解:∵AC=3,BC=4,∠ACB=90°,由勾股定理得:AB=5,∵Rt△ABC∽Rt△ACD,∴,即:,解得:AD=,∴AD的长为.23.解:∵四边形ABDE为矩形,AB=3cm,BD=7cm,EC=1,∴DC=DE﹣CE=BA﹣CE=2cm,BD=AE=7cm.设DP=xcm,则BP=(7﹣x)cm.∵∠B=∠D=90°,∴存在两种情况.①当△CDP∽△ABP时,=,即=,∴x=;②当△PDC∽△ABP时,=,即=,整理,得:x2﹣7x+6=0,解得:x1=1,x2=6.∴当以P,C,D为顶点的三角形与△ABP相似时,PD的长为cm或1cm或6cm.24.解:∵AD=4,CD=2AD,∴CD=8,∵△ABC∽△ACD,∴==,即==,解得,AB=9,BC=12,∴BD=AB﹣AD=5.25.解:(1)∵△ABC∽△ADE,∴∠AED=∠C,∴∠ADE=∠B,∵∠C=40°=∠BAC,∴∠B=180°﹣(∠C+∠A)=100°,∴∠AED=40°,∠ADE=100°;(2)由△ABC∽△ADE得,∴。

相似三角形的性质与判定练习题含答案

相似三角形的性质与判定练习题含答案

相似三角形的性质与判定副标题题号一二总分得分一、选择题〔本大题共7小题,共分〕1.如图,在中,点P在边AB上,那么在以下四个条件中::;;;,能满足与相似的条件是A. B. C. D.【答案】D【解析】【分析】此题考察了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似根据有两组角对应相等的两个三角形相似可对进展判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对进展判断.【解答】解:当,,所以∽;当,,所以∽;当,即AC::AC,所以∽;当,即PC::AB,而,所以不能判断与相似.应选D.2.如图,在矩形ABCD中,,,将其折叠使AB落在对角线AC上,得到折痕AE,那么BE的长度为A. B. C. D.【答案】C【解析】【分析】根据对称性可知:,,又,所以∽,根据相似的性质可得出:,,在中,由勾股定理可求得AC的值,,,将这些值代入该式求出BE的值.【解答】解:设BE的长为x,那么、在中,,∽两对对应角相等的两三角形相似,,,应选:C.3.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是,但当她马上测量树高时,发现树的影子不全落在地面上,有一局部影子落在教学楼的墙壁上如图,他先测得留在墙壁上的影高为,又测得地面的影长为,请你帮她算一下,树高是A. B. C. D.【答案】C【解析】解:如图,设BD是BC在地面的影子,树高为x,根据竹竿的高与其影子的比值与树高与其影子的比值一样得而,,树在地面的实际影子长是,再竹竿的高与其影子的比值与树高与其影子的比值一样得,,树高是.应选C.此题首先要知道在同一时刻任何物体的高与其影子的比值是一样的,所以竹竿的高与其影子的比值与树高与其影子的比值一样,利用这个结论可以求出树高.解题的关键要知道竹竿的高与其影子的比值与树高与其影子的比值一样.4.如图,是在以点O为位似中心经过位似变换得到的,假设的面积与的面积比是16:9,那么OA:为( )A. 4:3B. 3:4C. 9:16D. 16:9【答案】A【解析】【分析】此题考察了位似变换、位似图形与相似三角形的性质的知识点,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心先求出位似比,根据位似比等于相似比,再由相似三角形的面积比等于相似比的平方即可【解答】解:由位似变换的性质可知,,,∽,的面积与的面积比是16:9,与的相似比为4:3,.应选A.5.如图,在平面直角坐标系xOy中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形与矩形OABC关于点O位似,且矩形的面积等于矩形OABC面积的,那么点的坐标是A. B.C. 或D. 或【答案】D【解析】【分析】此题考察了位似图形的性质有关知识,由矩形与矩形OABC关于点O位似,且矩形的面积等于矩形OABC面积的,利用相似三角形的面积比等于相似比的平方,即可求得矩形与矩形OABC的位似比为1:2,又由点B的坐标为,即可求得答案.【解答】解:矩形与矩形OABC关于点O位似,矩形∽矩形OABC,矩形的面积等于矩形OABC面积的,位似比为:1:2,点B的坐标为,点的坐标是:或应选D.6.如图,四边形ABCD与是以点O为位似中心的位似图形,假设OA::3,那么四边形ABCD与四边形的面积比为A. 4:9B. 2:5C. 2:3D. :【答案】A【解析】解:四边形ABCD与是以点O为位似中心的位似图形,OA::3,:::3,四边形ABCD与四边形的面积比为:,应选:A.根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.此题考察的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.7.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,假设正方形BEFG的边长为6,那么C点坐标为A. B. C. D.【答案】A【解析】解:正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,,,,,∽,,,解得:,,点坐标为:,应选:A.直接利用位似图形的性质结合相似比得出AD的长,进而得出∽,进而得出AO的长,即可得出答案.此题主要考察了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.二、填空题〔本大题共3小题,共分〕8.如图,,,,,,点p在BD上移动,当______ 时,与相似.【答案】或12cm或2cm【解析】解:由,,,设,那么,假设∽,那么,即,变形得:,即,因式分解得:,解得:,,所以或12cm时,∽;假设∽,那么,即,解得:,,综上,或12cm或时,∽.故答案为:或12cm或2cm.设出,由表示出PD的长,假设∽,根据相似三角形的对应边成比例可得比例式,把各边的长代入即可列出关于x的方程,求出方程的解即可得到x的值,即为PB的长.此题考察了相似三角形的判定与性质,相似三角形的性质有相似三角形的对应边成比例,对应角相等;相似三角形的判定方法有:1、两对对应角相等的两三角形相似;2、两对对应边成比例且夹角相等的两三角形相似;3、三边对应成比例的两三角形相似,此题属于条件开放型探究题,其解法:类似于分析法,假设结论成立,逐步探索其成立的条件.9.如图,在中,,,,点P从点B出发,以秒的速度向点C移动,同时点Q从点C出发,以秒的速度向点A移动,设运动时间为t秒,当______秒时,与相似.【答案】或【解析】【分析】此题考察了相似三角形的判定,主要利用了相似三角形对应边成比例,难点在于分情况讨论分CP与CB是对应边,CP与CA是对应边两种情况,利用相似三角形对应边成比例列式计算即可得解.【解答】解:CP与CB是对应边时,∽,所以,,即,解得;CP与CA是对应边时,∽,所以,,即,解得.综上所述,当或时,与相似.故答案为或.10.如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,假设,,那么等于_____.【答案】11【解析】【分析】此题主要考察了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形的相似条件,然后利用其性质即可求解由于四边形ABCD 是平行四边形,所以得到、,而,由此即可得到∽,它们的相似比为3:2,最后利用相似三角形的性质即可求解.【解答】解:四边形ABCD是平行四边形,、,而,∽,且它们的相似比为3:2,:,而,,,,.故答案为11.第11 页。

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质和判定专项练习30题(有答案)1.已知:如图,在△ABC中,点D在边BC上,且∠BAC=∠DAG,∠CDG=∠BAD.(1)求证:=;(2)当GC⊥BC时,求证:∠BAC=90°.2.如图,已知在△ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足.(1)求证:AC2=AF•AD;(2)联结EF,求证:AE•DB=AD•EF.3.如图,△ABC中,PC平分∠ACB,PB=PC.(1)求证:△APC∽△ACB;(2)若AP=2,PC=6,求AC的长.4.如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长.5.已知:如图,△ABC中,∠ABC=2∠C,BD平分∠ABC.求证:AB•BC=AC•CD.6.已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S,说明AF•BE=2S的理由.7.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.8.如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:=.9.已知:如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG•DF=DB•EF.10.如图,△ABC、△DEF都是等边三角形,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H两点,BC=2,问E在处时CH的长度最大?11.如图,AB和CD交于点O,当∠A=∠C时,求证:OA•OB=OC•OD.12.如图,已知等边三角形△AEC,以AC为对角线做正形ABCD(点B在△AEC,点D在△AEC外).连接EB,过E作EF⊥AB,交AB的延长线为F.(1)猜测直线BE和直线AC的位置关系,并证明你的猜想.(2)证明:△BEF∽△ABC,并求出相似比.13.已知:如图,△ABC中,点D、E是边AB上的点,CD平分∠ECB,且BC2=BD•BA.(1)求证:△CED∽△ACD;(2)求证:.14.如图,△ABC中,点D、E分别在BC和AC边上,点G是BE边上一点,且∠BAD=∠BGD=∠C,联结AG.(1)求证:BD•BC=BG•BE;(2)求证:∠BGA=∠BAC.15.已知:如图,在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,BE,AD相交于点G,过点B作BF∥AC交AD的延长线于点F,DF=6.(1)求AE的长;(2)求的值.16.如图,△ABC中,∠ACB=90°,D是AB上一点,M是CD中点,且∠AMD=∠BMD,AP∥CD交BC延长线于P点,延长BM交PA于N点,且PN=AN.(1)求证:MN=MA;(2)求证:∠CDA=2∠ACD.17.已知:如图,在△ABC中,已知点D在BC上,联结AD,使得∠CAD=∠B,DC=3且S△ACD:S△ADB﹦1﹕2.(1)求AC的值;(2)若将△ADC沿着直线AD翻折,使点C落点E处,AE交边BC于点F,且AB∥DE,求的值.18.在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.19.如图,△ABC为等边三角形,D为BC边上一点,以AD为边作∠ADE=60°,DE与△ABC的外角平分线CE交于点E.(1)求证:∠BAD=∠FDE;(2)设DE与AC相交于点G,连接AE,若AB=6,AE=5时,求线段AG的长.20.如图所示,△ABC中,∠B=90°,点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,经几秒,使△PBQ的面积等于8cm2?(2)如果P,Q分别从A,B同时出发,并且P到B后又继续在BC边上前进,Q到C后又继续在CA边上前进,经过几秒,使△PCQ的面积等于12.6cm2?21.已知:如图,△ABC是等边三角形,D是AB边上的点,将DB绕点D顺时针旋转60°得到线段DE,延长ED 交AC于点F,连接DC、AE.(1)求证:△ADE≌△DFC;(2)过点E作EH∥DC交DB于点G,交BC于点H,连接AH.求∠AHE的度数;(3)若BG=,CH=2,求BC的长.22.如图,在△ABC中,CD平分∠ACB,BE∥BC交AC于点E.(1)求证:AE•BC=AC•CE;(2)若S△ADE:S△CDE=4:3.5,BC=15,求CE的长.23.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.24.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.25.如图,M、N、P分别为△ABC三边AB、BC、CA的中点,BP与MN、AN分别交于E、F.(1)求证:BF=2FP;(2)设△ABC的面积为S,求△NEF的面积.26.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E、F分别是AC,BC边上一点,且CE=AC,BF=BC,(1)求证:;(2)求∠EDF的度数.27.如图,△ABC是等边三角形,且AB∥CE.(1)求证:△ABD∽△CED;(2)若AB=6,AD=2CD,①求E到BC的距离EH的长.②求BE的长.28.如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F.(1)若AC=3,AB=4,求;(2)证明:△ACE∽△FBE;(3)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.29.如图,△ABC是等边三角形,∠DAE=120°,求证:(1)△ABD∽△ECA;(2)BC2=DB•CE.30.如图,在Rt△ABC中,∠C=90°,且AC=CD=,又E,D为CB的三等分点.(1)证明:△ADE∽△BDA;(2)证明:∠ADC=∠AEC+∠B;(3)若点P为线段AB上一动点,连接PE,则使得线段PE的长度为整数的点P的个数有几个?请说明理由.相似三角形性质和判定专项练习30题参考答案:1.解:(1)∵∠ADC=∠B+∠BAD,且∠CDG=∠BAD,∴∠ADG=∠B;∵∠BAC=∠DAG,∴△ABC∽△ADG,∴=.(2)∵∠BAC=∠DAG,∴∠BAD=∠CAG;又∵∠CDG=∠BAD,∴∠CDG=∠CAG,∴A、D、C、G四点共圆,∴∠DAG+∠DCG=°;∵GC⊥BC,∴∠DCG=90°,∴∠DAG=90°,∠BAC=∠DAG=90°.2.解:(1)如图,∵∠ACB=90°,CF⊥AD,∴∠ACD=∠AFC,而∠CAD=∠FAC,∴△ACD∽△AFC,∴,∴AC2=AF•AD.(2)如图,∵CE⊥AB,CF⊥AD,∴∠AEC=∠AFC=90°,∴A、E、F、C四点共圆,∴∠AFE=∠ACE;而∠ACE+∠CAE=∠CAE+∠B,∴∠ACE=∠B,∠AFE=∠B;∵∠FAE=∠BAD,∴△AEF∽△ADB,∴AE:AD=BD:EF,∴AE•DB=AD•EF.3.解:(1)∵PB=PC,∴∠B=∠PCB;∵PC平分∠ACB,∴∠ACP=∠PCB,∠B=∠ACP,∵∠A=∠A,∴△APC∽△ACB.(2)∵△APC∽△ACB,∴,∵AP=2,PC=6,AB=8,∴AC=4.∵AP+AC=PC=6,这与三角形的任意两边之和大于第三边相矛盾,∴该题无解.4.(1)证明:∵AD∥BC,∴∠C+∠ADE=°,∵∠BFE=∠C,∴∠AFB=∠EDA,∵AB∥DC,∴∠BAE=∠AED,∴△ABF∽△EAD;(2)解:∵AB∥CD,BE⊥CD,∴∠ABE=90°,∵AB=4,∠BAE=30°,∴AE=2BE,由勾股定理可求得AE=5.证明:∵∠ABC=2∠C,BD平分∠ABC,∴∠ABD=∠DBC=∠C,∴BD=CD,在△ABD和△ACB中,,∴△ABD∽△ACB,∴=,即AB•BC=AC•BD,∴AB•BC=AC•CD.6.证明:∵AC=BC,∴∠A=∠B,∵∠ACB=90°,∴∠A=∠B=45°,∵∠ECF=45°,∴∠ECF=∠B=45°,∴∠ECF+∠1=∠B+∠1,∵∠BCE=∠ECF+∠1,∠2=∠B+∠1;∴∠BCE=∠2,∵∠A=∠B,∴△ACF∽△BEC.∴,∴AC•BC=BE•AF,∴S△ABC=AC•BC=BE•AF,∴AF•BE=2S.7.(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=°﹣∠APE=120°.②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴,即,所以AP•AF=12(2)若AF=BE,有AE=BF或AE=CF两种情况.①当AE=CF时,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP 为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.②当AE=BF时,点P的路径就是过点C向AB作的垂线段的长度;因为等边三角形ABC的边长为6,所以点P的路径为:.所以,点P经过的路径长为或3.8.证明:∵AD,BE是钝角△ABC的边BC,AC上的高,∴∠D=∠E=90°,∵∠ACD=∠BCE,∴△ACD∽△BCE,∴=.9.证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE∥BC,∴∠ABC+∠BDE=°,∠ACB+∠CED=°.∴∠BDE=∠CED,∵∠EDF=∠ABE,∴△DEF∽△BDE;(2)由△DEF∽△BDE,得.∴DE2=DB•EF,由△DEF∽△BDE,得∠BED=∠DFE.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴,∴DE2=DG•DF,∴DG•DF=DB•EF.10.解:设EC=x,CH=y,则BE=2﹣x,∵△ABC、△DEF都是等边三角形,∴∠B=∠DEF=60°,∵∠B+∠BDE=∠DEF+∠HEC,∴∠BDE=∠HEC,∴△BED∽△CHE,∴,∵AB=BC=2,点D为AB的中点,∴BD=1,∴,即:y=﹣x2+2x=﹣(x﹣1)2+1.∴当x=1时,y最大.此时,E在BC中点11.解:∵∠A=∠C,∠AOD=∠BOC,∴△OAD∽△OCB,∴=,∴OA•OB=OC•OD.12.解:(1)猜测BE和直线AC垂直.证明:∵△AEC是等边三角形,∴AE=CE,∵四边形ABCD是正形,∴AB=CB,∵BE=BE,∴△AEB≌△CEB(SSS).∴∠AEB=∠CEB,∵AE=CE,∴BE⊥AC;(2)∵△AEC是等边三角形,∴∠EAC=∠AEC=60°,∵BE⊥AC,∴∠BEA=∠AEC=30°,∵四边形ABCD是正形,∴∠BAC=45°,∴∠BAE=15°,∴∠EBF=45°,∵EF⊥BF,∴∠F=90°,∴∠EBF=∠BAC,∠F=∠ABC,∴△BEF∽△ACB,延长EB交AC于G,设AC为2a,则BG=a,EB=a﹣a,∴相似比是:===13.证明:(1)∵BC2=BD•BA,∴BD:BC=BC:BA,∵∠B是公共角,∴△BCD∽△BAC,∴∠BCD=∠A,∵CD平分∠ECB,∴∠ECD=∠BCD,∴∠ECD=∠A,∵∠EDC=∠CDA,∴△CED∽△ACD;(2)∵△BCD∽△BAC,△CED∽△ACD,∴=,=,∴.14.证明:(1)∵∠DBG=∠EBC,∠BGD=∠C,∴△BDG∽△BEC,∴=,则BD•BC=BG•BE;(2)∵∠DBA=∠ABC,∠BAD=∠C,∴△DBA∽△ABC,∴=,即AB2=BD•BC,∵BD•BC=BG•BE,∴AB2=BG•BE,即=,∵∠GBA=∠ABE,∴△GBA∽△ABE,∴∠BGA=∠BAC.15.解:(1)∵在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,∴AC=AB=BC,∴△ABC是等边三角形,∴∠C=60°,∵BF∥AC,∴∠CBF=∠C=60°,∵AD⊥BC,∴∠FDB=90°,∴∠F=30°,∵DF=6,∴BD=2,∵AE=EC=BD=DC,∴AE=2;(2)∵∠BDF=90°,∠F=30°,BD=2,∴BF=2DB=4,∵AC∥BF,∴△AEG∽△FBG,∴=()2=.16.证明:(1)∵AP∥CD,∴∠AMD=∠MAN,∠BMD=∠MNA,∵∠AMD=∠BMD,∴∠MAN=∠MNA,∴MN=MA.(2)如图,连接NC,∵AP∥CD,且PN=AN.∴==,∴MC=MD,∴CN为直角△ACP斜边AP的中线,∴CN=NA,∠NCA=∠NAC,∵AP∥CD,∴∠NAC=∠ACD,∴∠NCM=2∠ACD,∵∠CMN=∠DMB,∠DMA=∠BMD,∴∠CMD=∠DMA,在△CMN和△DMA中,,∴△CMN≌△DMA(SAS),∠ADM=∠NCM=2∠ACD.即:∠CDA=2∠ACD.17.解:(1)∵S△ACD:S△ADB﹦1:2,∴BD=2CD,∵DC=3,∴BD=2×3=6,∴BC=BD+DC=6+3=9,∵∠CAD=∠B,∠C=∠C,∴△ABC∽△DAC,∴=,即=,解得AC=3;(2)由翻折的性质得,∠E=∠C,DE=CD=3,∵AB∥DE,∴∠B=∠EDF,∵∠CAD=∠B,∴∠EDF=∠CAD,∴△EFD∽△ADC,∴=()2=()2=18.(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∵AD=AC,∴DG=CG,∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=,∵△ABC∽△FCD,BC=2CD,∴=()2=.∵S△ABC=×BC×AG=×8×=18,∴S△FCD=S△ABC=.19.(1)证明:∵△ABC为等边三角形,∴∠B=60°,由三角形的外角性质得,∠ADE+∠FDE=∠BAD+∠B,∵∠ADE=60°,∴∠BAD=∠FDE;(2)解:如图,过点D作DH∥AC交AB于H,∵△ABC为等边三角形,∴△BDH是等边三角形,∴∠BHD=60°,BD=BH,∴∠AHD=°﹣60°=120°,∵CE是△ABC的外角平分线,∴∠ACE=(°﹣60°)=60°,∴∠DCE=60°+60°=120°,∴∠AHD=∠DCE=120°,又∵AH=AB﹣BH,CD=BC﹣BD,∴AH=CD,在△AHD和△DCE中,,∴△AHD≌△DCE(ASA),∴AD=DE,∵∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=∠DEA=60°,AE=AD=5,∵∠BAD=∠BAC﹣∠CAD=60°﹣∠CAD,∠EAG=∠DAE﹣∠CAD=60°﹣∠CAD,∴∠BAD=∠EAG,∴△ABD∽△AEG,∴=,即=,解得AG=.20.解:(1)设x秒时,点P在AB上,点Q在BC上,且使△PBQ面积为8cm2,由题意得(6﹣x)•2x=8,解之,得x1=2,x2=4,经过2秒时,点P到距离B点4cm处,点Q到距离B点4cm处;或经4秒,点P到距离B点2cm处,点Q到距离B点8cm处,△PBQ的面积为8cm2,综上所述,经过2秒或4秒,△PBQ的面积为8cm2;(2)当P在AB上时,经x秒,△PCQ的面积为:×PB×CQ=×(6﹣x)(8﹣2x)=12.6,解得:x1=(不合题意舍去),x2=,经x秒,点P移动到BC上,且有CP=(14﹣x)cm,点Q移动到CA上,且使CQ=(2x﹣8)cm,过Q作QD⊥CB,垂足为D,由△CQD∽△CAB得,即QD=,由题意得(14﹣x)•=12.6,解之得x1=7,x2=11.经7秒,点P在BC上距离C点7cm处,点Q在CA上距离C点6cm处,使△PCQ的面积等于12.6cm2.经11秒,点P在BC上距离C点3cm处,点Q在CA上距离C点14cm处,14>10,点Q已超出CA的围,此解不存在.综上所述,经过7秒和秒时△PCQ的面积等于12.6cm221.(1)证明:如图,∵线段DB顺时针旋转60°得线段DE,∴∠EDB=60°,DE=DB.∵△ABC是等边三角形,∴∠B=∠ACB=60°.∴∠EDB=∠B.∴EF∥BC.∴DB=FC,∠ADF=∠AFD=60°.∴DE=DB=FC,∠ADE=∠DFC=120°,△ADF是等边三角形.∴AD=DF.∴△ADE≌△DFC.(2)解:由△ADE≌△DFC,得AE=DC,∠1=∠2.∵ED∥BC,EH∥DC,∴四边形EHCD是平行四边形.∴EH=DC,∠3=∠4.∴AE=EH.∴∠AEH=∠1+∠3=∠2+∠4=∠ACB=60°.∴△AEH是等边三角形.∴∠AHE=60°.(3)解:设BH=x,则AC=BC=BH+HC=x+2,由(2)四边形EHCD是平行四边形,∴ED=HC.∴DE=DB=HC=FC=2.∵EH∥DC,∴△BGH∽△BDC.∴.即.解得x=1.∴BC=3.22.(1)证明:∵DE∥BC,∴∠ADE=∠B,∠AEC=∠ACB,∴△ADE∽△ABC,∴=,∵DE∥BC,∴∠EDC=∠BCD,∵CD平分∠ACB,∴∠BCD=∠DCE,∴∠DCE=∠EDC,∴DE=CE,∴=,即AE•BC=AC•CE;(2)∵S△ADE:S△CDE=4:3.5,∴AE:CE=4:3.5,∴=,∵由(1)知=,∴=,解得DE=6,∵DE=CE,∴CE=8.23.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.24.(1)证明:如图1,在△ABC中,∵∠CAB=90°,AD⊥BC于点D,∴∠CAD=∠B=90°﹣∠ACB.∵AC:AB=1:2,∴AB=2AC,∵点E为AB的中点,∴AB=2BE,∴AC=BE.在△ACD与△BEF中,,∴△ACD≌△BEF,∴CD=EF,即EF=CD;(2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q,∵EH⊥AD,EQ⊥BC,AD⊥BC,∴四边形EQDH是矩形,∴∠QEH=90°,∴∠FEQ=∠GEH=90°﹣∠QEG,又∵∠EQF=∠EHG=90°,∴△EFQ∽△EGH,∴EF:EG=EQ:EH.∵AC:AB=1:,∠CAB=90°,∴∠B=30°.在△BEQ中,∵∠BQE=90°,∴sinB==,∴EQ=BE.在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH==,∴EH=AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=BE:AE=1:=:3.25.(1)证明:如图1,连接PN,∵N、P分别为△ABC边BC、CA的中点,∴PN∥AB,且.∴△ABF∽△NPF,∴.∴BF=2FP.(2)解:如图2,取AF的中点G,连接MG,∴MG∥EF,AG=GF=FN.∴△NEF∽△NMG,∴S△NEF=S△MNG=×S△AMN=××S△ABC=S.26.(1)证明:∵CD⊥AB,∴∠CDB=∠ADC=90°,∴∠ACD+∠BCD=90°,∵∠ACB=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∴△ADC∽△CDB,∴=;(2)解:∵CE=AC,BF=BC,∴===,又∵∠A=∠BCD,∴∠ACD=∠B,∴△CED∽△BFD,∴∠CDE=∠BDF,∴∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°.27.解;(1)∵AB∥CE,∴∠A=∠DCE,又∵∠ADB=∠EDC,∴△ABD∽△CED;(2)①过点E作EH⊥BF于点H,∵△ABC是等边三角形,△ABD∽△CED,AB=6,AD=2CD,∴==,∠A=∠ACB=60°,∴CE=3,∵AB∥CE,∴∠A=∠DCE=60°,∴∠ECH=°﹣∠ACB﹣∠DCE=°﹣60°﹣60°=60°,∴EH=CE•sin60°=3×=;②在Rt△ECH中,∵∠ECH=60°,CE=3,∴CH=CE•cos60°=3×=,∴BH=BC+CH=6+=,∴BE===3.28.(1)解:∵AC=AC′,AB=AB′,∴由旋转可知:∠CAB=∠C′AB′,∴∠CAB+∠EAC′=∠C′AB′+∠EAC′,即∠CAC′=∠BAB′,又∵∠ACB=∠AC′B′=90°,∴△ACC′∽△ABB′,∵AC=3,AB=4,∴==;(2)证明:∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,(1分)∴∠CAC′=∠BAB′,∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,∴∠ACC′=∠ABB′,(3分)又∵∠AEC=∠FEB,∴△ACE∽△FBE.(4分)(3)解:当β=2α时,△ACE≌△FBE.理由:在△ACC′中,∵AC=AC′,∴∠ACC′=∠AC′C====90°﹣α,(6分)在Rt△ABC中,∠ACC′+∠BCE=90°,即90°﹣α+∠BCE=90°,∴∠BCE=90°﹣90°+α=α,∵∠ABC=α,∴∠ABC=∠BCE,(8分)∴CE=BE,由(2)知:△ACE∽△FBE,∴△ACE≌△FBE.(9分)29.证明:(1)∵△ABC是等边三角形,∠DAE=120°,∴∠DAB+∠CAE=60°,∵∠ABC是△ABD的外角,∴∠DAB+∠D=∠ABC=60°,∴∠CAE=∠D,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACE=120°,∴△ABD∽△ECA;(2)∵△ABD∽△ECA,∴=,即AB•AC=BD•CE,∵AB=AC=BC,∴BC2=BD•CE30.(1)证明:∵AC=CD=DE=EB=,又∠C=90°,∴AD=2,∴=,==,∴=,又∵∠ADE=∠BDA,∴△ADE∽△BDA;(2)证明:∵△ADE∽△BDA,∴∠DAE=∠B,又∵∠ADC=∠AEC+∠DAE,∴∠ADC=∠AEC+∠B;(3)解:∵点P为线段AB上一动点,根据勾股定理得:AE==,BE=,∴PE的最大值为.作EF⊥AB,则EF=,则PE的最小值为∴≤EP≤,∵EP为整数,即EP=1,2,3,结合图形可知PE=1时有两个点,所以PE长为整数的点P个数为4个.。

相似三角形性质完整的题型+答案

相似三角形性质完整的题型+答案

相似三角形性质知识精要一、相似三角形的性质1、(定义):相似三角形的对应角相等,对应边成比例。

2、性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比。

3、性质定理2:相似三角形的周长比等于相似比。

4、性质定理3:相似三角形的面积比等于相似比的平方。

二、相似三角形的应用例题讲解:例题:地图比例尺为1:2000,一块多边形地区在地图上周长为50cm,面积为100cm2,实际周长为1000 m,实际面积为40000__m2。

变式:东海大桥全长32.5千米,如果东海大桥在某张地图上的长为6.5厘米,那么该地图上距离与实际距离的比为( )。

A.1:5000000B.1:500000C.1:50000D.1:5000答案:B例题:(1)两个相似三角形的面积之比为9:16,它们的对应高之比为3:4 。

(2)两个相似三角形的相似比为1:3,则它们的周长比为1:3 ,面积比为1:9 。

变式:(1)两个相似三角形面积之比是1:3,则他们对应边上的高之比为( )。

(A).1:3 (B) 3:1 (C) 1:3(D) 1:9(2)两个相似三角形的相似比是2:3,面积相差30厘米2,则它们的面积之和是( )。

(A)150厘米2(B) 65厘米2(C) 45厘米2(D) 78厘米2答案:(1) C (2)D。

例题:如图,已知DE//BC,AD:DB=2:3,那么S△ADE:S△ECB= 4:15。

变式:如图,在ABCD 中,AC 与DE 交于点F ,AE:EB=1:2,S △AEF =6cm 2,则S △CDF 的值为( )。

A.12cm 2B.15cm 2C.24cm 2D.54cm 2 答案:D 。

例题:如图,已知梯形ABCD 中,AD//BC ,AD:BC=3:5, 求:(1)S △AOD :S △BOC 的值; (2)S △AOB :S △AOD 的值。

答案:(1)9:25 (2)5:3。

九年级数学上1.3相似三角形的性质练习题含答案

九年级数学上1.3相似三角形的性质练习题含答案

九年级数学上册第1章图形的相似1.3相似三角形的性质练习题(含答案)一.选择题(共10小题)1.已知△ABC∽△A′B′C′且,则S△ABC:S△A'B'C′为()A.1:2 B.2:1 C.1:4 D.4:12.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:273.如果两个相似三角形的面积比是1:6,则它们的相似比()A.1:36 B.1:6 C.1:3 D.1:4.两个相似三角形对应中线的比2:3,周长的和是20,则两个三角形的周长分别为()A.8和12 B.9和11 C.7和13 D.6和145.△ABC中,AB=12,BC=18,CA=24,另一个和它相似的三角形最长的一边是36,则最短的一边是()A.27 B.12 C.18 D.206.两个相似三角形的相似比为2:3,它们的面积之差为25cm2,则较大三角形的面积是()A.75cm2B.65cm2C.50cm2D.45cm27.已知△ABC与△DEF相似,相似比为2:3,△ABC的周长是10cm,△DEF的周长是()A.10cm B.15cm C.20cm D.30c m8.如图,△ABC中,点D在线段AB上,且△ABC∽△ACD,则下列结论一定正确的是()A.AC2=AB•AD B.A C2=BC•AD C.A C•CD=AB•AD D.A C•CD=CD•BD(8题图)(9题图)(10题图)(11题图)9.如图,△ACD∽△ABC,则下列式子:①CD2=AD•DB;②AC2=AD•AB;③=.其中一定成立的有()A.3个B.1个C.2个D.0个10.如图,在正方形网格上有相似三角形△A1B1C1和△A2B2C2,则△A1B1C1和△A2B2C2的面积比为()A.2 B.C.4D.二.填空题(共6小题)11.(2015•曲靖)若△ADE∽△ACB,且=,DE=10,则BC=.12.若两个相似三角形的周长比为2:3,则它们的面积比是.13.两个相似三角形的面积比1:4,则它们的周长之比为.14.若△ABC∽△DEF,且相似比,当S△ABC=6cm2时,则S△DEF=cm2.15.要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4、5、6,另一个三角形框架的一条短边长为2,则另外一个三角形的周长为.16.若△ABC∽△DEF,S△ABC:S△DEF=3:4,则△ABC与△DEF的相似比为.三.解答题(共4小题)17.如图所示,在矩形ABCD中,AB=10cm,AD=20cm,两只小虫P和Q同时分别从A,B出发沿AB,BC向终点B,C方向前进,小虫P每秒走1cm,小虫Q每秒走2cm,请问它们同时出发多少秒时,以P、B、Q为顶点的三角形与以A、C、D为顶点的三角形相似?18.如图,在平行四边形ABCD中,E为DC上的一点,AE交BD于O,△AOB∽△EOD,若DE=AB,AB=9,AO=6,求DE和AE的长.19.如图,△ABC与△ADB中,∠ABC=∠ADB=90°,AC=5cm,AB=4cm,如果图中的两个直角三角形相似,求AD的长.20.如图所示,已知:△ABC∽△DAC,AD=2,AC=4,BC=6,∠B=36°,∠D=117°(1)求AB的长;(2)求CD的长;(3)求∠BAD的大小.青岛版九年级数学上册第1章图形的相似1.3相似三角形的性质练习题参考答案一.选择题(共10小题)1.C.2.C.3.D.4.A.5.C.6.D.7.B.8.A.9.B.10.C.二.填空题(共6小题)11.15.12.4:9.13.1:2.14.24.15.7.5.16.:2.三.解答题(共4小题)17.解:①设经x秒后,△PBQ∽△CDA,由于∠PBQ=∠ADC=90°,当=时,即=,解得x=5;②设经x秒后,△QBP∽△CDA,由于∠PBQ=∠ADC=90°,当=时,即=,解得x=2.故经过5秒或2秒时,以P、B、Q为顶点的三角形与以A、C、D为顶点的三角形相似.18.解:∵△AOB∽△EOD,∴DE:AB=OA:OE,∵DE=AB,AB=9,AO=6,∴DE=×9=6,OE=OA=4,∴AE=OA+OE=6+4=10.19.解:∵∠ABC=∠ADB=90°,AC=5cm,AB=4cm,∴BC==3cm,若△ABC∽△ADB,则,即,解得:AD=cm;若△ABC∽△BDA,则,即,解得:AD=cm;AD的长为:cm或cm.20.解:(1)∵△ABC∽△DAC,∴,∵AD=2,AC=4,BC=6,∴解得:AB=3;(2)∵△ABC∽△DAC,∴,即,解得:DC=;(3)∵△ABC∽△DAC,∠B=36°,∠D=117°,∴∠BAC=∠D=117°,∠DAC=∠B=36°,∴∠BAD=∠BAC+∠DAC=117°+36°=153°.。

相似三角形的性质(有答案)

相似三角形的性质(有答案)

27.2.2 相似三角形的性质学习目标:1. 理解并掌握相似三角形中对应线段的比等于相似比,并运用其解决问题. (重点、难点)2.理解相似三角形面积的比等于相似比的平方,并运用其解决问题. (重点)【自主学习】一、知识链接1. 相似三角形的判定方法有哪几种?2. 三角形除了三个角,三条边外,还有哪些要素?【合作探究】一、要点探究探究点1:相似三角形对应线段的比思考如图,△ABC ∽△A′B′C′,相似比为k,它们对应高、对应中线、对应角平分线的比各是多少?证明如图,△ABC ∽△A′B′C′,相似比为k,求它们对应高的比.试一试仿照求高的比的过程,当△ABC ∽△A′B′C′,相似比为k 时,求它们对应中线的比、对应角平分线的比.【要点归纳】相似三角形对应高的比等于相似比.类似地,可以证明相似三角形对应中线、角平分线的比也等于相似比.一般地,我们有:相似三角形对应线段的比等于相似比.【典例精析】例1已知△ABC∽△DEF,BG、EH 分别是△ABC和△DEF 的角平分线,BC = 6 cm,EF = 4 cm,BG= 4.8 cm. 求EH 的长.【针对训练】1. 如果两个相似三角形的对应高的比为 2 : 3,那么对应角平分线的比是,对应边上的中线的比是.2. 已知△ABC ∽△A'B'C' ,相似比为3 : 4,若BC 边上的高AD=12 cm,则B'C' 边上的高A'D' =.思考如果△ABC ∽△A'B'C',相似比为k,它们的周长比也等于相似比吗?为什么?【要点归纳】相似三角形周长的比等于相似比.探究点2:相似三角形面积的比思考 如图,△ABC ∽△A ′B ′C ′,相似比为 k ,它们的面积比是多少?证明 画出它们的高,由前面的结论,我们有k C B BC ='',k D A AD='',22121k k k D A AD C B BC D A C B AD BC S S C B A ABC=⋅=''⋅''=''⋅''⋅='''△△【要点归纳】由此得出:相似三角形面积的比等于相似比的平方.【针对训练】1. 已知两个三角形相似,请完成下列表格:2. 把一个三角形变成和它相似的三角形,(1) 如果边长扩大为原来的 5 倍,那么面积扩大为原来的_____倍;相似比 2k ……周长比13……面积比10000……(2) 如果面积扩大为原来的 100 倍,那么边长扩大为原来的_____倍.3. 两个相似三角形的一对对应边分别是 35 cm 、14 cm ,(1) 它们的周长差 为60 cm ,这两个三角形的周长分别是___ ___; (2) 它们的面积之和是 58 cm 2,这两个三角形的面积分别是 .例2 如图,在 △ABC 和 △DEF 中,AB = 2 DE ,AC = 2 DF ,∠A = ∠D. 若 △ABC 的边 BC 上的高为 6,面积为512,求 △DEF 的边 EF 上的高和面积.【针对训练】如果两个相似三角形的面积之比为 2 : 7,较大三角形一边上的高为 7,则较小三角形对应边上的高为______.例3 如图,D ,E 分别是 AC ,AB 上的点,已知△ABC 的面积为100 cm 2,且53==AB AD AC AE ,求四边形 BCDE 的面积.【针对训练】如图,△ABC 中,点 D、E、F 分别在 AB、AC、BC 上,且 DE∥BC,EF∥AB. 当D 点为 AB 中点时,求 S四边形BFED : S△ABC的值.二、课堂小结当堂检测1. 判断:(1) 一个三角形的各边长扩大为原来的5 倍,这个三角形的周长也扩大为原来的5 倍( )(2) 一个四边形的各边长扩大为原来的9 倍,这个四边形的面积也扩大为原来的9 倍( )2. 在△ABC 和△DEF 中,AB=2 DE,AC=2 DF,∠A=∠D,AP,DQ 是中线,若AP =2,则DQ的值为( )1A.2 B.4 C.1 D.23. 连接三角形两边中点的线段把三角形截成的一个小三角形与原三角形的周长比等于______,面积比等于___________.4. 两个相似三角形对应的中线长分别是6 cm 和18 cm,若较大三角形的周长是42 cm,面积是12 cm2,则较小三角形的周长是__________cm,面积为__________cm2.5. △ABC 中,DE∥BC,EF∥AB,已知△ADE 和△EFC 的面积分别为4 和9,求△ABC 的面积.6. 如图,△ABC 中,DE∥BC,DE 分别交AB、AC 于点D、E,S△ADE=2 S△DCE,求S△ADE∶S△ABC.【分析】从题干分析可以得到△ADE∽△ABC,要证明它们面积的比,直接的就是先求出相似比,观察得到△ADE与△DCE是同高,得到AE与CE的比,进而求解.参考答案自主学习一、知识链接解:(1)定义:对应边成比例,对应角相等的两个三角形相似(2)平行于三角形一边,与另外两边相交所构成的三角形与原三角形相似 (3)三边成比例的两个三角形相似(4)两边成比例且夹角相等的两个三角形相似 (5)两角分别相等的两个三角形相似(6)一组直角边和斜边成比例的两个直角三角形相似 解:还有高,中线,平分线等等合作探究一、要点探究探究点1:相似三角形对应线段的比证明 解:如图,分别作出 △ABC 和 △A' B' C' 的高 AD 和 A' D' . 则∠ADB =∠A' D' B'=90°.∵△ABC ∽△A ′B ′C ′,∴∠B =∠B' . ∴△ABD ∽△A' B' D' .∴k B A ABD A AD =''=''. 【典例精析】解:∵ △ABC ∽△DEF ,∴EFBCEH BG =(相似三角形对应角平分线的比等于相似比), ∴468.4=EH ,解得 EH = 3.2.∴ EH 的长为 3.2 cm. 【针对训练】1. 2 : 3 2 : 3 2. 16cm思考 解:等于,如果 △ABC ∽△A'B'C',相似比为 k ,那么k AC CAC B BC B A AB =''=''='',因此AB =k A'B',BC =kB'C',CA =kC'A',从而k A C C B B A A C k C B k B A k A C C B B A CA BC AB =''+''+''''+''+''=''+''+''++. 探究点2:相似三角形面积的比 【针对训练】1.2. (1) 5 (2) 103. (1) 100cm ,40cm (2) 50cm 2,8cm 2解:在 △ABC 和 △DEF 中,∵ AB=2DE ,AC=2DF ,∴21==AC DF AB DE . 又 ∵∠D=∠A ,∴ △DEF ∽ △ABC ,相似比为21. ∵△ABC 的边 BC 上的高为 6,面积为512,∴△DEF 的边 EF 上的高为21×6 = 3, 面积为53512212=⨯⎪⎭⎫⎝⎛.【针对训练】14解:∵ ∠BAC = ∠DAE ,且53==AB AD AC AE ,∴ △ADE ∽△ABC. ∵ 它们的相似比为 3 : 5,∴ 面积比为 9 : 25.又∵ △ABC 的面积为 100 cm 2,∴ △ADE 的面积为 36 cm 2. ∴ 四边形 BCDE 的面积为100-36 = 64 (cm 2).【针对训练】解:∵ DE ∥BC ,D 为 AB 中点,∴ △ADE ∽ △ABC ,∴21==AB AD AC AE ,即相似比为 1 : 2,面积比为 1 : 4. 又∵ EF ∥AB ,∴ △EFC ∽ △ABC ,相似比为21=AC CE , ∴面积比为 1 : 4.设 S △ABC = 4,则 S △ADE = 1,S △EFC = 1, S 四边形BFED = S △ABC -S △ADE -S △EFC = 4-1-1 = 2, ∴ S 四边形BFED : S △ABC = 2 : 4 =21. 当堂检测1. (1) √ (2) ×2. C3. 1:1 1:44. 14 345. 解:∵ DE ∥BC ,EF ∥AB ,∴ △ADE ∽△ABC ,∠ADE =∠EFC ,∠A =∠CEF , ∴△ADE ∽△EFC.又∵S △ADE : S △EFC = 4 : 9,∴ AE : EC=2:3,则 AE : AC =2 : 5, ∴ S △ADE : S △ABC = 4 : 25,∴ S △ABC = 25.6. 解:过点 D 作 AC 的垂线,垂足为 F ,则22121==⋅⋅=EC AE DF EC DF AE S S DCEADE △△, ∴32=AC AE . 又∵ DE ∥BC ,∴ △ADE ∽△ABC. ∴943222=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=AC AE S S ABC ADE △△,即 S △ADE : S △ABC =4 : 9.。

初中苏科版九年级数学下册 6-5 相似三角形的性质 同步课时提优训练【含答案】

初中苏科版九年级数学下册 6-5 相似三角形的性质 同步课时提优训练【含答案】

初中苏科版九年级数学下册6-5 相似三角形的性质同步课时提优训练一、单选题(本大题共10题,每题3分,共30分)1.若△ABC∽△A'B'C',∠A=30°,∠C=110°,则∠B'的度数为()A. 30°B. 50°C. 40°D. 70°2.已知△ABC∽△DEF,△ABC与△DEF面积之比为1 4.若BC=1,则EF的长是()A. 2B. 2C. 4D. 163.已知与相似,且,那么下列结论中,一定成立的是()A. B.C. 相似比为D. 相似比为4.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为4厘米,6厘米和9厘米,另一个三角形的最长边是18厘米,则它的最短边是()A. 2厘米B. 4厘米C. 8厘米D. 12厘米5.已知两个相似三角形一组对应高分别是15和5,面积之差为80,则较大三角形的面积为()A. 90B. 180C. 270D. 36006.平面直角坐标系中,已知点O(0,0)、A(0,2)、B(1,0),点P是反比例函数y= 象上的一个动点,过点P作PQ⊥x轴,垂足为点Q若以点O、P、Q为顶点的三角形与△OAB相似,则相应的点P共有( )A. 1个B. 2个C. 3个D. 4个7.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则S△CDF:S四边等于()形ABFEA. 1:3B. 2:5C. 3:5D. 4:98.如图所示,△ABC是等边三角形,若被一边平行于BC的矩形所截,AB被截成三等份,则图中阴影部分的面积是△ABC面积的( )A. B. C. D.9.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB,若AB=3BD。

则S△ADE:S△EFC的值为( )A. 4:1B. 3:2C. 2:1D. 3:110.如图,矩形ABCD中,AB=2, AD=2 ,动点P从点A出发向终点D运动,连BP,并过点C作CH⊥BP,垂足为H.①△ABP∽△HCB;②AH的最小值为- ; ③在运动过程中,BP扫过的面积始终等于CH扫过的面积:④在运动过程中,点H的运动路径的长为, 其中正确的有()A. ①②③B. ①②④C. ②③④D. ①③④二、填空题(本大题共8题,每题2分,共16分)11.已知△ABC∽△DEF,且S△ABC=6,S△DEF=3,则对应边=________.12.已知△ABC的三边分别是4,5,6,则与它相似△A′B′C′的最长边为12,则△A′B′C′的周长是________.13.已知点G是的重心,,那么点G与边中点之间的距离是________.14.如图,在△ABC中,AB=9,AC=6,D为AB边上一点,且△ABC∽△ACD,则AD=________.15.如图是小孔成像原理的示意图,根据图中标注的尺寸,如果物体AB的高度为36cm,那么它在暗盒中所成的像CD的高度应为________cm.16.如图,正方形ABCD中,AB=4,E为BC中点,两个动点M和N分别在边CD和AD上运动且MN=1,若△ABE与以D、M、N为顶点的三角形相似,则DM为________.17.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间为________18.如图,在△ABC中,AM:MD=4,BD:DC=2:3,则AE:EC=________.三、解答题(本大题共10题,共84分)19.如图,已知在ABC中,AB= ,AC=2 ,BC=3,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长.20.如图,已知,,,求的度数.21.如图,在△ABC中,点D是AB的中点,DE∥BC交AC于点E,DF∥BE交AC于点F,若EF=3,求AC的长.22.如图,,且△ABC与△ADE周长差为4,求△ABC与△ADE的周长.23.如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB,求∠APB的度数.24.如图,在□ABCD中,AE:EB=3:2,DE交AC于点F.(1)求证:△AEF∽△CDF.(2)求△CDF与△AEF周长之比.(3)如果△CDF的面积为50cm2,直接写出四边形BCFE的面积.25.如图,在中点D,E,F分别在,,边上,,.(1)求证:;(2)若,的面积是20,求的面积.26.如图,在Rt△ABC中,∠A=90°,AB=20cm,AC=15cm,在这个直角三角形内有一个内接正方形,正方形的一边FG在BC上,另两个顶点E、H分别在边AB、AC上.(1)求BC边上的高;(2)求正方形EFGH的边长.27.如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB 向点B运动,动点F以每秒2个单位长度的速度从点B开始沿边BC向点C运动,动点E比动点F 先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动设点F的运动时间为t秒.(1)如图1,连接DE,AF.若DE⊥AF,求t的值;(2)如图2,连结EF,DF.当t为何值时,△EBF∽△DCF?28.如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q 从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t >0)秒.(1)当点Q从B点向A点运动时(未到达A点),若△APQ ∽△ABC,求t的值;(2)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.①当直线l经过点A时,射线QP交AD边于点E,求AE的长;②是否存在t的值,使得直线l经过点B?若存在,请求出所有t的值;若不存在,请说明理由.答案解析部分一、单选题1. C【考点】三角形内角和定理,相似三角形的性质解:∵∠A=30°,∠C=110°,∴∠B=40°,∵△ABC∽△A′B′C′,∴∠B′=∠B=40°,故C.分析:根据三角形内角和定理求出∠B=40°,根据相似三角形的对应角相等解答即可.2. B【考点】相似三角形的性质解:∵△ABC∽△DEF,△ABC与△DEF的面积之比为1:4,∴(BC:EF)2=1:4,解得BC:EF=1:2,∵BC=1,∴EF=2.故B.分析:根据相似三角形面积的比等于相似比的平方列出比例式,代入数值计算即可得解.3. D【考点】相似三角形的性质解:∵B可以与E对应,也可以与F对应,∴∠B=∠E或∠B=∠F,A不一定成立;同上,AB可以与DE对应,也可以与DF对应,∴或,B不一定成立;同上,AB可以与DE对应,也可以与DF对应,∴相似比可能是,也可能是,C不一定成立;∵∠A=∠D ,即∠A与∠D是对应角,∴它们的对边一定是对应比,即BC与EF是对应比,∴相似比为,∴D一定成立,故D .分析:根据相似三角形的性质找到对应边及对应角,再逐项判定即可。

相似三角形判定与性质-练习题(带答案)

相似三角形判定与性质-练习题(带答案)

【答案】 D
【解析】 ∵






∵Hale Waihona Puke ,∴,即甲与乙与丙均相似.
【标注】【知识点】相似三角形的判定-两角对应相等
D. 甲与乙与丙
3
6. 给定条件能判断
A.
B.

C.

D.
和 ,
, , ,
相似的是( ). ,









【答案】 D
【解析】 .不相似:∵


∴不相似;
.不相似:∵
, ,


∴ 不是边 , ∴不相似;
, 交 于 ,则

A.
B.
C.
D.
【答案】 A
【解析】 ∵



又∵平行四边形
中,







【标注】【知识点】相似三角形的性质与判定综合
14. 要测量一棵树的高度,发现同一时刻一根 米长的竹竿在地面上的影长为 米,此刻树的影子不全 落在地上,有一部分落在了教学楼第一级的台阶水平面上,测得台阶水平面上的影长为 米,一级 台阶的垂直高度为 米,若,此时落在地面上的影长为 米,则树高( ).




【标注】【知识点】相似反A字型
1
3. 已知:如图,
,求证:

【答案】 证明见解析.
【解析】 ∵ ∴ 又∵ ∴
, ,
, .
【标注】【知识点】相似反8字型
4. 如图,在
中,点 、 分别在边 、 上,如果

九年级数学相似三角形提高题(含答案)

九年级数学相似三角形提高题(含答案)

相似三角形题之青柳念文创作一、选择填空题1、如图1,已知AD 与BC 相交于点O,AB//CD,如果∠B=40°,∠D=30°,则∠AOC 的大小为( ) °°°°2、如图,在矩形ABCD的中点,AE BD ⊥,垂足为点O 3.如图,在ABC △中,P 是AC 上一点,保持BP ,要使ABP ACB △∽△,则必须有ABP ∠=或APB ∠=或ABAP =.4、如图,正方形ABCD 的边长为2,AE =EB ,MN =1,线段MN 的两头分别在CB 、CD 上滑动,那末当CM =________时,△ADE 与△MN C 相似. 5.已知菱形ABCD 的边长是8,点E 在直线AD 上,若DE =3,毗连BE 与对角线AC 相交于点M ,则MCAM的值是________.6.如图,等边△ABC 的边长为3,点P 为BC 边上一点,且BP =1,点D 为AC 上一点;若∠APD =60°,则CD长是A.43B.23C.21D.327、如图,正方形ABCD 中,E 是AD 的中点, BM ⊥CE,AB=6,则BM=______.图4 图6 图78、如下图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( )9.如图,四边形ABCD 是矩形,DH ⊥AC ,如果AH=9cm ,CH=4cm ,那末ABCD S 四边形=( ) A .752cm B .762cm C .772cmD .782cmA BC D O图1APBPQCA图9 图10 图11 10、如图,DE 是ABC △的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则:DMN CEM S S △△等于() A.1:2B.1:3C.1:4D.1:511.如图,△ABC 中,PQ ∥BC ,若3=∆APQ S ,6=∆PQ B S ,则=∆cQ B S ( )A .10B .16C .9D .1812、如图,已知D 、E 分别是ABC ∆的AB 、 AC 边上的点,,DE BC //且1ADEDBCES S :=:8,四边形 那末:AE AC 等于( ) A .1 : 9 B .1 : 3 C .1 : 8 D .1 : 213、已知ABC DEF △∽△,相似比为3,且ABC △的周长为18,则DEF △的周长为( )A .2B .3C .6D .5414、如图,线段AB 、CD 相交于E ,AD EF BC ∥∥,若12AE EB =∶∶,1ADES=,则AEFS等于 ( )A.4 B.23C.2D.4315、如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是 △ABC 的面积的 ( ) A.91B.92C.31D.94图12 图1416、在同一时刻,身高 1.6H DC BA AND BC E MBACDE((第15题图)B C米的小强在阳光下的影长为0.8米,一棵大树的影长为米,则树的高度为( ) A 、4.8米 B 、6.4米 C 、9.6米D 、10米641 OA ,则71A A 的长为________.二.解答题 1.如图,已知菱形AMNP 内接于△ABC ,M 、N 、P 分别在AB 、BC 、AC 上,如果AB =21 cm ,CA =15 cm ,求菱形AMNP 的周长.2、如图,在ABCD 中,过点B 作BE ⊥CD,垂足为E,保持AE,F 为AE 上一点,且∠BFE=∠C.(1)求证:△ABF ∽△EAD ;(2)若AB=4,∠BAE=30°,求AE 的长;(3)在(1)(2)的条件下,若AD=3,求BF 的长.3、把两个含有30°角的直角三角板如图放置,点D 在BC 上,保持BE ,AD ,AD 的延长线交BE 于点F .问AF 与BE 是否垂直?并说明来由.4、如图,等腰三角形ABC 中,AB=AC,D 为长线上点,且知足AB 2=DB ·CE.(1)求证:BAC=40°,求∠DAE 的度数.5.如图,四边形ABCD 是正方形,△ABE BD (不含B 点)上任意一点,将BM 绕点B 毗连EN 、AM 、CM.⑴ 求证:△AMB ≌△ENB ;⑵①当M 点在何处时,AM +CM 的值最小;ACEFD第2题图BA 13A 12A 11A 10A 9A 8A 7A 6A 5A 4A 3A 2A 1变式1图 P N MCB A②当M 点在何处时,AM +BM +CM 的值最小,并说明来由; ⑶ 当AM +BM +CM 的最小值为13 时,求正方形的边长.参考答案1、B2、23、ABAC 4、552或55 5、58或1186、D7、55128、A 9、D10、C 11、D 12、B 13、C 14、B 15、C 16、C17、91 解答题 1、352、AE=338 BF=3233、略4、垂直.DCA 相似于ECB5、110°。

相似三角形的性质提高题及答案

相似三角形的性质提高题及答案

相似三角形的本量之阳早格格创做知识粗要相似三角形对于应边的比称为那二个三角形的相似比,形似比用字母k表示.如△ABC∽△A'B'C',则注意:相似比具备目标性,若写做△A'B'C'∽△ABC根据合比简单得到“相似三角形的周少比等于相似比”,记△ABC战△A'B'C'典型一相似比取周少比正在有闭相似三角形的估计问题中,通过对于应边的比率式修坐圆程式时常使用的要领.例题粗解例1如图,已知等边三角形ABC的边少为6,过沉心G做DE//BC,分别接AB,AC于面D,E.面P正在BC上,若△BDP 取△CEP相似,供BP的少.面评:那是一类罕睹的有闭三角形相似的分类计划的问题.图中只可决定一组相等的角(∠B=∠C)为对于应角,但是“那个角的二组夹边对于应成比率”的比率式排列程序还不克不迭真足决定,果此要分为二种情况举止计划.【闻一知十】1、如图,△ABC中,CD是角仄分线,E正在AC上,CD2=CB·CE.(1)供证:△ADE∽△ACD;(2)如果AD=6,AE=4,DE=5,供BC的少.面评:先根据判决定理2得到△BCD∽△DCE,再根据判决定理1得到△ADE∽△ACD,那种类似于“二次齐等”的“二次相似”是道明相似三角形时常使用的要领.2、如图,△ABC中,DE//BE,分别接AB于D,接AC于E.已知AB=7,BC=8,AC=5,且△ADE取四边形BCED的周少相等,供DE的少.面评:无论是以相似比k动做已知量,仍旧以DE=x动做已知量,脚段皆是为了把其余的量用k或者x去表示,根据题设的等量闭系列圆程.那一解题思路可称为“圆程思维”,那是用代数要领办理几许问题的基原思维.3、如图,正三角形ABC的边少为1,面E,F分别正在边AB,AC上,沿EF将△AEF翻合,使面A恰佳降正在BC上的面D.已知AE:AF=5:4,供BD的少.面评BED战△CDF 的相似比战周少比.典型二相似比取对于应线段之比如图△ABC∽△A'B'C',相似比为k,若AH,AM,AE战A'H',A'M',A'E'分别是△ABC战△A'B'C'的下、中线战角仄分广义天道,所谓“对于应线段”应当包罗二个相似三角形对于应位子上的所有对于应线段,如上图2中BE战B'E',ME战M'E'等;而相似三角形对于对于应位子上的所有三角形也皆是相似三角形,如图2中的△ABE∽△A'B'E',△AME∽△A'M'E'等.例2如图,△ABC中,D正在BC上,∠DAC=∠B,角仄分线CE接AD于F.已知BD=1,DC=3.供CF:EF的值.面评:原题考查了相似三角形中对于应角仄分线的相似比问题.【闻一知十】1、如图,∠BAE=90°,AB=AC=CD=DE,F是BC的中面,联结BE,BD,DF.(1)找出图中的相似三角形并道明缘由;(2)供DF:DB的值.面评:第(2CFD∽△CDB的对于应边之比.2、如图,Rt△ABC中,CD是斜边AB上的下,DE⊥AC,DF⊥BC,垂脚分别为E,F.供证:DE2:DF2=AD:DB.面评:解题思路从相似三角形的里积比进脚.一圆里,相似三角形的里积比等于相似比的仄圆;另一圆里,登下的三角形里积之比等于相映的边少之比,进而修坐起取线段仄圆比有闭的比率式.3、一齐曲角三角形木板的二条曲角边AB少为 1.5米,BC 少为2米,工人师傅要把它加工成一个里积最大的的正圆形桌里,请甲乙二位共教举止安排加工规划,甲安排规划如图1-4-9,乙安排规划如图1-4-10.您认为哪位共教安排的规划中正圆形里积较大?试道明缘由.(加工耗费忽略不计,估计截止中可生存分数)面评:利用“相似三角形的对于应下之比等于相似比”,是解三角形的内接矩形问题的时常使用要领.典型三相似比取里积比相似三角形的里积之比等于相似比的仄圆.比圆,如图1-4-12,△ABC中,D,E战F,G分别是AB战AC的三仄分面,则△ADF,△AEG,△ABC的周少比是1:2:3,里积比是1:4:9,而DF,EG将△ABC分成的三部分里积之比1:3:5.其余,二个有大众下的三角形的里积之比等于对于应的底边之比.比圆,如图1-4-13,△ABC中,∠C=90°,CD是下,则△ADC∽其余,CD是它们的大众下,那样咱们便很简单得到一个比率式:那种道明要领称为“里积法”例3如图,△ABC中,过沉心G做DE//BC分别接AB,AC于面D,E,做DF//AC接BC于面F.面评:那个截止道明,三角形ADE取四边形DECF里积相等,那种等积变更很易通过绘仄止线的要领考证,惟有利用相似三角形的本量通过估计去考证.【闻一知十】4、如图,△ABC中,面D正在BC上,∠DAC=∠B.供证:AB2:AD2=BC:DC.5、如图,梯形ABCD中,AD//BC,AC接BD于O.4、5、m,n为正数),试用m,n表示梯形ABCD的里积S.面评:正在梯形中,二条对于角线将梯形分为4个小三角形,其中分别以二底为边的二个小三角形是相似闭系,它们不可能齐等(果为二底是对于应边,不可能相等);另二个以腰为边的小三角形是等积闭系(里积相等),它们大概齐等(当等腰梯形时),但是不可能利害齐等的相似闭系.(3)如图,仄止四边形ABCD中,AE⊥BC于E,AF⊥CD于F,联结EF,AC.(1)供证:△ABC∽△EAF.(2)若AB=3BE,AD=9,仄止四边形ABCD供EF的少.真量提取1、相似三角形的本量包罗三个圆里:(1)由定义决定的本量----相似三角形的对于应角相等,对于应边成比率,对于应边的比值称为相似比,用k表示;注意相似比的“目标性”,必须是排正在前里的三角形边少除以排正在后里的三角形边少.若△ABC∽△DEF,则当k>1时,道明由△ABC到△DEF是缩小的;当k<1时,道明由△ABC到△DEF是搁大的;当k=1时,△ABC≌△DEF,果此,齐等是相似的特殊情况.(2)本量1:相似三角形对于应线段的比等于相似比,“对于应线段”包罗对于应角的角仄分线,对于应边上的中线战对于应边上的下.本量上“对于应线段”还不妨推广到二个相似三角形的对于应位子上的所有一种对于应线段,比圆:二个相似三角形中接圆半径的比、内切圆半径的比皆等于相似比.(3)本量2:相似三角形里积的比等于相似比的仄圆,本量上还不妨推广到二个相似三角形对于应位子上的所有图形的里积比皆等于相似比的仄圆,比圆:二个相似三角形中接圆里积的比、内切圆里积的比皆等于相似比的仄圆.2、教习原节真量时要克服一些罕睹的过失.比圆:(3)正在利用相似三角形的本量时,正在书籍写历程中记记接代“相似”那一条件,或者是不注意对于应闭系.(4)误认为通过“二个三角形的周少比等于某一对于应边的比”或者“二个三角形的里积的比等于对于应边的仄圆比”便不妨推断那二个三角形相似.(5)正在使用本量2时记记加仄圆,认为里积比等于相似比.坚韧普及(必干题,央供步调完备,逻辑浑晰)1、如图,DF//EG//BC,AD:DE:EB=1:2:3ADF里DEGF EBCG里积,那么()(A)1:4:9; (B)1:9:36; (C)1:8:27; (D)1:7:192、已知一个三角形的三边之比为3:4:5,取此三角形相似的另一个三角形最短边的边少为6cm,则另一个三角形的周少为()(A)12cm; (B)24cm; (C)36cm; (D)48cm3、若一个三角形的一条边少为6cm,仄止于那条边的曲线将该三角形分成里积相等的二部分,则该曲线被那个三角形二边所截得的线段少为()(A)4、若二个相似三角形里积之比为3:4,则它们的周少之比为5、如果二个相似三角形对于应中线之比为2:3,其中较大的一个三角形的里积是36cm2,那么另一个三角形的里积是cm2.6、如图,AB//DC,AC接BD于O,过O做曲线分别接AB,DC于M,N.若2OM=3ON,则△AOB取△COD的周少之比为7、如图,AB//DC,AC接BD于O,过O做曲线分别接AB=3,AC=2,若将△ABC绕面A转动到△AB'C',则△ABB'取△ACC'的里积之比为8、梯形ABCD中,AD//BC,且AD:BC=3:4,BA取CD的延少线相接于面P,若梯形ABCD的下是3cm,则面P到BC 的距离为cm.9、如图,△ABC中,D正在AC上,若AD=2DC,AB2=AC·AD,则BD:BC的值等于10、如图,△ABC中,AB=6,AC=9,DE//BC分别接AB,AC于D,E,且DE=8,四边形DBCE的周少是25,供BC的少.11、如图,将△ABC绕面A转动后得△AB'C',当AB'⊥BC 时AC'//BC,且面C恰佳正在B'C'上.供△ABB'取△ACC'的里积之比.12、如图,△ABC中,∠C=2∠B,D正在BC上,AC2=BC·DC,且∠BAD=90°,面E是BD的中面.试推断△AEC的形状并道明缘由.商量题(1)如图①,四边形ABCD中,对于角线AC,BD相接于E,若AE·EC=BE·ED,四边形ABCD被AC,BD分成的4个小三角形之间有不相似闭系?请道明缘由.(2)正在第(1)小题中,若延少对于边DA,CD接于面F,则图②中另有不其余的三角形相似闭系?道明缘由?(3)如果第(1)小题的条件“AE·EC=BE·ED”改为AE·BE=DE·CE,那么四边形ABCD被AC,BD分成的4个小三角形之间有什么闭系?请道明缘由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形的性质知识精要相似三角形对应边的比称为这两个三角形的相似比,形似比用字母k表示。

AR RC CA如厶ABa△ A'R'C',贝U =C=C =k,注意:相似比具有方向性,若写A' B' B'C' C'A'1作厶ABC' ABC则相似比为丄。

k根据合比容易得到“相似三角形的周长比等于相似比”,记厶ABC^n△ A'B'C'的周长分别为C ABC 和 C A'B'C',则C ABC : CA B C ' ^k.类型一相似比与周长比在有关相似三角形的计算问题中,通过对应边的比例式建立方程式常用的方法。

例题精解例1如图,已知等边三角形ABC的边长为6,过重心G作DE//BC,分别交AB,AC 于点D,E.点P在BC上,若△ BDP与厶CEP相似,求BP的长。

解T f;的丑心,BE // ↑∖t∖Λ n M LAn rT . AH - 61Λ HD2.同理CE= 2#T ZB = ZC.A翌便ZXBDP 似,杠曲种情况主(i) 设BP =工,则?= 9Jr i一6工+ 4 =广;*BP CE X 2工=:3 ±岳*— = V BD K CE.A BP = PC = 3. IiP PCΛBp = 3 +√5或3—岳或3时,△月DF与ACEP相亂点评:这是一类常见的有关三角形相似的分类讨论的问题。

图中只能确定一组相等的角(∠ B=∠ C)为对应角,但“这个角的两组夹边对应成比例”的比例式排列顺序还不能完全确定,因此要分为两种情况进行讨论。

【举一反三】1、如图,△ ABC中,CD是角平分线,E在AC上,CD=CB- CE.(1)求证:△ ADE^△ ACD(2)如果AD=6 AE=4 DE=5 求BC的长。

点评:先根据判定定理2得到△ BCD^△ DCE再根据判定定理1得到△ ADE^△ ACD这种类似于“二次全等”的“二次相似”是证明相似三角形常用的方法。

2、如图,△ ABC中,DE//BE,分别交AB于D,交AC于E O 已知AB=7 BC=8 AC=5 且厶ADE与四边形BCED勺周长相等,求DE的长。

CE・Ci) …Cl)△MD S ^DC E.-BI)C = ZDECr J dADC= ZAED.T = ZA, Λ ZXADEsZVtCDA ∏∆ F':ΔΛ∕JEG□ΔACD tΛ —=—AC AD/A I)= 6*AE K 44DE= 5tΛ(' == 9, CE = 9 - 4 = 5, DC = M : DEΛE ADDEDC15~CD Z=---------- - ≡⅛7 CDJ-Cβ∙cEtABC-⅛-≡(τ) 1 45x I = TIi:fl NHrlll Z ⅛ kUlh∣列力F"/ O∖I' \b: DH + ⅛C+CE.BP 7i÷5⅛ = (7-7*)+ 8+(5-.5*)点评:无论是以相似比k作为未知量,还是以DE=X作为未知量,目的都是为了把其他的量用k或X来表示,根据题设的等量关系列方程。

这一解题思路可称为“方程思想”,这是用代数方法解决几何问题的基本思想。

3、如图,正三角形ABC的边长为1,点E,F分别在边AB,AC上,沿EF将厶AEF 翻折,使点A恰好落在BC上的点D.已知AE:AF=5:4,求BD的长。

证明T ΔΛBC是等边三角形,器ZA = Z乱T I AEF 翻折得到ΔDEFτΛ ZEDF = ZA. Λ ZB = ZKnF t、: ZEDC = ZB+ ZBED= ZKD F + Z r CDF f '-÷ERED ZcDF i VZB = ZG 代Λ∏ED S ΔCDF iUE=S AE l DF —ΛF ./- t∖∏>rp 1t?ArDF= DEl DF NAE MF =5^4,i⅛ HD =小则HE + ED = BE + FA ≡ I. Λ C AHKt)- 1 4 乳M 理「—= 2 —氐JAE=5转化为△ BED^n△ CDF的相似比和周长点评:本题的难点是将比值比。

类型二相似比与对应线段之比如图△ ABC^△ A'B'C',相似比为k ,若AH,AM,AE和A'H',A'M',A'E' 分别是△ ABCfy A'B'C'的高、中线和角平分线,贝U A H A M A E = k。

AF 4A'H 'M A'M' A'E'i广义地说,所谓“对应线段”应当包括两个相似三角形对应位置上的所有对应线段,如上图2中BE和B'E',ME和M'E'等;而相似三角形对对应位置上的所有三角形也都是相似三角形,如图 2 中的△ ABE^△ ABE', △ AM^△ A'M'E'等。

例2如图,△ ABC中,D在BC上,∠ DAC∠ B,角平分线CE交AD于F.已知BD=I, DC=3.求CF:EF 的值。

饵■/ . D.∖(' -Z/L 7ΛC1) ="BD 二].DC? = 3tΛ ΛC2= BC* DC= 12,AC= 2√3. '-'「八CE分别J⅛ ADAC和ZV∖B C的角平分线* *化2√3√3. CF √3L"δE-BC = ~ = T^ "E? =^ = 2^÷3÷点评:本题考查了相似三角形中对应角平分线的相似比问题。

【举一反三】1、如图,∠ BAE=90 , AB=AC=CD=DE是BC的中点,联结BE,BD,DF.(1)找出图中的相似三角形并说明理由;(2)求DF:DB的值。

K Ul Δ(4BE S B S ΔCK∕λb-; V <7)= DE. CF =FB. A FD // BE* Z- ΛCFD ∞ΛCBE.V _ IiAE■ 90∖AB =AC =LQ = DE,,∖ Ch ~ ΛI√ +AC j- SAC f M AC ∙ 2AC = CD ÷CE,X ■/ ZBCD = ZECB.Λ ΔCDB S ΔCB E ÷( IiE S ΔCDB S ACFD,DF CD÷Z(TJfiS ΛCBE. Df∖ DB 是对应中Λ^B=BC点评:第(2)小题也可以将D F看作是△ CFD^△ CDB勺对应边之比。

DB2、如图,Rt△ ABC中, CD是斜边AB上的高,DEIAC,DF⊥ BC,垂足分别为E,FIi∖1 f H∕Γ∖Γh,H,AC求证:D E :DF 2=AD :DB .证明 V F ΛCH 亠"CIui -= Λ「1 -■一 B(J) - 90*7ILH T ∖l)C - ZcDIi - 9Q ∖ Λ ΔΛDC S MDIi. V nt :, DF 分别址ΔΛDC 和ACDB 的对应髙, .5 出DE I» *■ ■■=…B F =#$ 旳 BC 2 DF-X T S UK = ^AD ・ CD t = ^ DB ・ CD t点评:解题思路从相似三角形的面积比入手。

一方面,相似三角形的面积比等于 相似比的平方;另一方面,登高的三角形面积之比等于相应的边长之比, 从而建 立起与线段平方比有关的比例式。

3、一块直角三角形木板的两条直角边 AB 长为1.5米,BC 长为2米,工人师傅 要把它加工成一个面积最大的的正方形桌面,请甲乙两位同学进行设计加工方 案,甲设计方案如图1-4-9 ,乙设计方案如图1-4-10.你认为哪位同学设计的方 案中正方形面积较大?试说明理由。

(加工损耗忽略不计,计算结果中可保留分 数)SS Il 阳1 I 氣若甲设i ∣的IE 方形桌面边比为』来.nr Cl) r JrH /'F I 几得 RI △「” ESRlA(YM …—=丄.即一-Λ B BC L 52,I 「少36M 5 7* ≤ΔΛPC AD . DE' ΛD ⅜ « -IP ⅞ -A- ■S ictlfl DB DF i DBffi 1 -4 -8Rl Λ Ii ( ■ f ∣j⅛ Λ L ' I.的 /-I fill *6c hκ t!i *x A ( f tl r t Iir 2d 符—> 7 為 37二屮同学设计的方案正方形面机较丸+点评:利用“相似三角形的对应高之比等于相似比”,是解三角形的内接矩形问 题的常用方法。

类型三 相似比与面积比相似三角形的面积之比等于相似比的平方。

例如,如图1-4-12,△ ABC 中,⅛∣∣∣⅛f I ( 11 +过I 厂、/∕f -ΓA(v M √i. 5' ÷ 2; = 2, 5<Ilr M ・ Ji(∖f ∣∫∏ IiH Γ3rB= L 1i×2 L AL2.5∣^i⅛ 计的止方 Jt5⅛tΛ∣⅛l⅛ 为 y 米* 管 DE //AC. A RtDE 力 RτΔB∕H ∖ V BP 1DE T /JH 丄AC ÷ Λ —=吧即二比=丄,HiI AC L 22530 •八 T-Jr > y +D,E和F,G分别是AB和AC的三等分点,则厶ADF A AEG^ ABCI勺周长比是1:2:3,面积比是1:4:9 ,而DF,EG⅜A ABC分成的三部分面积之比1:3:5.另外,两个有公共高的三角形的面积之比等于对应的底边之比。

1-4-13,△ ABe中,∠ C=90°,CD是高,则△ ADSCDB,S ADCS 'CDB例如,如图A C2'另外,CD是它们的公共高,故,这样我们就很容易得到一个比例式:S©DB DB2BhDB.这种证明方法称为“面积法”例3如图,△ ABC中,过重心G作DE//BC分别交AB,AC于点D,E,作DF//AC交BC于点F.求证:S ADE = S四边形DECF。

证明JR 结AG 解于点Mr∙° G 为4ABC 的畫心点评:这个结果说明,三角形 ADE 与四边形DECF 面积相等,这种等积变换很难 通过画平行线的方法验证,只有利用相似三角形的性质通过计算来验证。

【举一反三】1、如图,△ ABC 中,点 D 在 Be 上,∠ DAC ∠ B.求证:AW:AD 2=BC:DC.证Rfl 方iif 如閨I 「mλ⅛Λ作AH 丄5 J UB 阿=-AH ・ tie. S AJrJl < = -ΛH ・ DC. S )Λ, : 5λf Mf = M i DC._OAC =ZB.且 ZACB = ZACD • ΔΛBCcoΔOAC. Λ SW i Ss r -AB z T AD i .: AD I =. BC : DC.AB l : AD l = BC * DGTDF id > UV I)FH 「■二△八”E ^ΔΛB(λ Λ E m: J S -则 S A J … = £乳 T DE // BC l Λ — 9A Ii必胪'■ *心ΛG 2 HD≡≡j.._I ______'ΛM y , A B∆≡.∏fr FΔDBF∞ΔABC. S Λ(JBF I S A ^t=I 1 9 JI l j S Iw⅛⅛tħf{ f -AB BC ABAC 俩式相乘即得方也二:由 ∆ΛBC∞ΛDAC t ⅛-^―,葩=龙AlyE2、如图,梯形ABCD中,AD∕∕BC,AC交BD于O.(1)右S AQD=8, S BQC=18 ,求S AQB ;(2)若S AQ D= m2, S B Q C= n2(m,n为正数),试用m,n表示梯形ABCD的面积埔Ln V ΛJ) /. HC,A ∖O!) C/J ACOli. S AlhrP1 纺M AfJ1: θC∖..K-K TF IH.ΛD J⅛i tΛD 218 9 3,OD AD 2OB BC 3*■ ΔΛOD ΔΛOB ⅛ 相同的⅛, Λ= Λ S^e= ⅜SΛ^D 12.<2)由(H中的证明,可得3M"J⅛ADL 空OjD _ AD _ m CIl严抑一S A~ =BC* ~ Ob BC 7f SeIMe B SAPDC = m S&*Ott N mn :、S = W J+『+ 2mn = <m +rt},,点评:在梯形中,两条对角线将梯形分为4个小三角形,其中分别以两底为边的两个小三角形是相似关系,它们不可能全等(因为两底是对应边,不可能相等);另两个以腰为边的小三角形是等积关系(面积相等),它们可能全等(当等腰梯形时),但不可能是非全等的相似关系。

相关文档
最新文档