六年级奥数专项用倒推法解题

合集下载

六年级上册奥数第12讲 倒推法解题

六年级上册奥数第12讲  倒推法解题

第12讲倒推法解题讲义专题简析倒推法解题是从最后的结果出发,运用加和减、乘和除之间的互逆关系,从后往前一步一步地推算,直到找到最初的数据,这种方法又常被称为“还原法”。

适合用倒推法解题的数学问题常满足以下条件:已知最后的结果和到达最后结果时的每一步具体的过程。

例1、筑路队修一段路,第一天修了全长的又100米,第二天修了余下的,还剩500米。

这段公路全长多少米?练习:1、一堆煤,上午运走,下午运的比余下的还多6吨,最后剩下14吨还没有运走。

这堆煤原有多少吨?2、用拖拉机耕一块地,第一天耕了这块地的又2公顷,第二天耕的比余下的多3公顷,还剩下35公顷没有耕。

这块地共有多少公顷?3、一批水泥,第一天用去多1吨,第二天用去余下的少2吨,还剩下16吨。

原来这批水泥有多少吨?例2、王大伯屋后有一棵桃树。

他孙子每天从树上摘下一些桃子和邻居的小伙伴分着吃,第一天摘下桃子总个数的合,以后8天分别摘下当天树上现有桃子的、、、…、,摘了9天,树上还留下10个桃子。

树上原来有多少个桃子?练习:1、把一根绳子对半剪开,再取其中一段对半剪开,这样剪了四次,剩下的正好是1米。

这根绳子原来长多少米?2、《九章算术》中有一道题:“今有人持米出三关,外关三而取一,中关五而取一,内关七而取一,余米五斗。

问持米几何?”题意是:有人背米过关卡,经过外关时,用全部米的纳税,过中关时用所余米的纳税,经过内关时用再余米的纳税,最后还剩下5斗米。

这个人原来背多少斗米出关?3、仓库里存粮若干吨,第一次运出总数的又4吨,第二次运出余下的又3吨,第三次运出余下的又5吨,最后还剩下12吨。

这个仓库原有粮食多少吨?例3、有甲、乙两桶油,从甲桶中倒出的油给乙桶后,又从乙桶中倒出的油给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有油多少千克?练习:1、小华拿出自己画片张数的给小强,小强再从自己现有的画片张数中拿出给小华,这时两人各有画片12张。

原来两人各有画片多少张?2、甲、乙两人各有人民币若干元,甲拿出自己所有钱的给乙后,乙又拿出现在自己所有钱的给甲,这时他们各有90元。

小学六年级上奥数教程:第十二讲 倒推法解题--学生版

小学六年级上奥数教程:第十二讲  倒推法解题--学生版

第12讲倒推法解题【解题秘钥】有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。

所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。

【经典例题】例题1:一本文艺书,小明第一天看了全书的1/3,第二天看了余下的3/5,还剩下48页,这本书共有多少页?练习1:1.某班少先队员参加劳动,其中3/7的人打扫礼堂,剩下队员中的5/8打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2.一辆汽车从甲地出发,第一天走了全程的3/8,第二天走了余下的2/3,第三天走了250千米到达乙地。

甲、乙两地间的路程是多少千米?例题2:筑路队修一段路,第一天修了全长的1/5又100米,第二天修了余下的2/7 ,还剩500米,这段公路全长多少米?练习2:1.一堆煤,上午运走2/7,下午运的比余下的1/3还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2.用拖拉机耕一块地,第一天耕了这块地的1/3又2公顷,第二天耕的比余下的1/2多3公顷,还剩下35公顷,这块地共有多少公顷?例题3:有甲、乙两桶油,从甲桶中倒出1/3给乙桶后,又从乙桶中倒出1/5给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?练习3:1.小华拿出自己的画片的1/5给小强,小强再从自己现有的画片中拿出1/4给小华,这时两人各有画片12张,原来两人各有画片多少张?2.甲、乙两人各有人民币若干元,甲拿出1/5给乙后,乙又拿出1/4给甲,这时他们各有90元,他们原来各有多少元?例题4:甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。

这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱?练习4:1.甲、乙、丙三个班共有学生144人,先从甲班调出与乙班相同的人数给乙班,再从乙班调出与丙班相同的人数到丙班。

小学六年级奥数第12讲 倒推法解题(含答案分析)

小学六年级奥数第12讲 倒推法解题(含答案分析)

第12讲 倒推法解题一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。

所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。

二、精讲精练【例题1】一本文艺书,小明第一天看了全书的31,第二天看了余下的53,还剩下48页,这本书共有多少页?练习1:1、某班少先队员参加劳动,其中73的人打扫礼堂,剩下队员中的85打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2、一辆汽车从甲地出发,第一天走了全程的83,第二天走了余下的32,第三天走了250千米到达乙地。

甲、乙两地间的路程是多少千米?3、把一堆苹果分给四个人,甲拿走了其中的61,乙拿走了余下的52,丙拿走这时所剩的43,丁拿走最后剩下的15个,这堆苹果共有多少个?【例题2】筑路队修一段路,第一天修了全长的51又100米,第二天修了余下的72,还剩500米,这段公路全长多少米?练习2:1、一堆煤,上午运走72,下午运的比余下的31还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2、用拖拉机耕一块地,第一天耕了这块地的31又2公顷,第二天耕的比余下的21多3公顷,还剩下35公顷,这块地共有多少公顷?3、一批水泥,第一天用去了21多1吨,第二天用去了余下31少2吨,还剩下16吨,原来这批水泥有多少吨?【例题3】有甲、乙两桶油,从甲桶中倒出31给乙桶后,又从乙桶中倒出51给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?练习3:1、小华拿出自己的画片的51给小强,小强再从自己现有的画片中拿出41给小华,这时两人各有画片12张,原来两人各有画片多少张?2、甲、乙两人各有人民币若干元,甲拿出51给乙后,乙又拿出41给甲,这时他们各有90元,他们原来各有多少元?【例题4】甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。

六年级下册奥数讲义-奥数方法:推倒法

六年级下册奥数讲义-奥数方法:推倒法

有些数学问题,从条件出发顺向思考很难找到答案,倘若倒过来考 虑,则容易得多。

而这种采用与事情发生过程相反的顺序思考的解题方 法叫做倒推法。

用倒推法分析数学问题,关键是要掌握数量之间运算的关系。

能用 倒推法求解的数学问题常常满足下列三个条件: (1)已知最后的结果;(2)已知在到达最终结果时每一步的具体过程或具体做法; (3)未知的是最初的数量。

用倒推法解题的步骤也是从最后得出的结果出发,按照原题运算的 逆运算,步步逆推,从而推算出原数。

[例1】 已知甲、乙、丙三个容器各盛水若干千克。

第一次把甲容器 的一部分水倒入乙、丙两容器,使乙、丙两容器内的水分别增加到原来的2 倍,第二次从乙容器把水倒入丙、甲两容器,使丙、甲两容器水分别增加到 第二次倒之前容器内水的2倍;第三次从丙容器把水倒入甲、乙两容器。

使甲、乙两容器内的水分别增加到第三次倒之前容器内水的2倍,这时各 容器内的水都为16千克。

问甲、乙、丙三个容器内原来各有水多少千 克?思路剖析根据题中条件,画一个表格,用倒推法进行逆运算。

所以由表1可知,甲、乙、丙三个容器原来的水依次为26千克、14千[例2] 某仓库原有化肥若干吨。

第一次运出原化肥的一半,第二次 运进450吨,第三次又运出现有化肥的一半又50吨,结果剩余化肥的2倍 是1200吨。

问仓库原有化肥多少吨? 思路剖析这道题由于原有化肥的总吨数是未知的,所以要想求解是很不容易 的。

根据题意画出图1。

根据图1用倒推法可知,“剩余化肥的2倍是1200吨”,就可以求出剩 余化肥的吨数;根据“第三次运出现有化肥的一半又50吨”。

和剩余化肥 的吨数,就可以求出现有化肥的一半是多少吨?进而可求出现有化肥的 吨数;用现有化肥的吨数减去第二次运进的450吨,就可以求出原有化肥 的一半是多少,最后再求出原有化肥多少吨? 解答(1)剩余化肥的吨数是:1200÷2=600(吨) (2)现有化肥的一半是:600+50=650(吨) (3)现有化肥的吨数是:650×2=1300(吨) (4)原有化肥的一半是:1300-450=850(吨)(5)原有化肥的吨数是.850×2=1700(吨)综合列式计算:[(1200÷2+50)×2-450]×2=[(600+50)×2-450]×2=(650×2-450)×2=(1300-450)×2=850×2=1700(吨)答:原有化肥为1700吨。

六年级奥数-第3讲-倒推法

六年级奥数-第3讲-倒推法

倒推法在以前的学习中,我们已经认识了倒推法,即从后面的已知条件(结果)入 手,逐步向前一步一步地推算, 最后得出所需要的结论。

这种方法对于解答一些 分数应用题同样适用。

11例 1 : 有一条铁丝,第一次剪下它的 2 又 1 米;第二次剪下剩下的 3 又 1 米;此时还 剩下 15 米。

这条铁丝原来长 米。

1分析与解: 铁丝最后还剩 15 米,这是第二次剪去第一次剩下的 13 又 1米的结果, 那么第二31 次剪之前(即第一次剪后)应该是( 15+1)÷( 1-31) =24 米;而 24 米又是第一次剪去1这条铁丝的 2 又 1 米的结果, 那么第一次剪之前 (即原来),铁丝的长度应该是 (24+ 1)÷(11-2 )=50 米。

例 2: 李老师在黑板上写了若干个从 1 开始的连续自然数 1、2、 3、⋯⋯。

后来擦掉其 中一个,剩下的数的平均数是 10.8。

那么,被擦掉的那个自然数是多少? 分析与解: 题中最后的结果是: 擦去后剩下数的平均数为 10.8。

我们就以此入手来思考:平10、 15、20、⋯⋯;剩下的数的和是: 54、 108、 162、 216、⋯⋯。

根据题意可知:擦去前 数的个数可能是: 6、 11、16、21、⋯⋯,而擦去前的数是从 1 开始的连续自然数,那么擦去前各数之和与擦去后各数之和的差应该是 1至 6(或 1至 11、1至 16、1至 21、⋯⋯)中的一个。

我们以此来试算:六年级奥数方法均数=总数÷个数 =10.8=554 =11008 162 216 15 =20 =⋯⋯,不难想到: 剩下的数的个数可能是: 5、 原来若是 6 个,则: 1+ 6)× 6÷2=21, 21-54=?; 原来若是 11 个,则: 1+11) × 11÷2=66,66- 108=?; 原来若是 16 个,则: 1+16) × 16÷2=136 , 136- 162=?;原来若是 21 个,则: 1+21) ×21÷2=231,231-216=15;而 15正是 1至21 中的一个,符合题意。

六年级奥数培优 应用题之倒退法解题

六年级奥数培优  应用题之倒退法解题

六年级奥数培优 应用题倒推法解题1、理解三类基本倒推法应用题的分析思考方法;2、会根据题目的特征画出合适的图示进行分析解答。

例题1、一个数乘以7后,再加上7,结果再除以7,最后再减7,此时结果为7.原来这个数是多少?举一反三1、一个数减去5,再乘以5,加上5,最后再除以5,结果得2.这个数原来是多少?2、王老师今年年龄除以4,再加上4,再乘以4,最后减去4,结果得44.王老师明年多少岁考点归纳学习思考例题2、一堆西瓜,第一次卖出总数的41又4个,第二次卖出余下的21又2个,第三次又卖出余下的21又2个,还剩2个。

这堆西瓜共有多少个?举一反三 1、一批水泥,第一天用去了21多1吨,第二天用去了余下的31少2吨,还剩下16吨。

原来水泥有多少吨?2、仓库存量若干吨,第一天运了总数的101,以后8天分别运了现有存量的,71,81,91……,21,31,运了9天后,仓库还剩2015吨。

仓库原存量多少吨?例题3、甲、乙各存款若干元,甲拿了存款的51给乙后,乙再拿出现有存款的41给甲,这时他们各有180元。

两人原存款多少元?举一反三1、有甲、乙两桶油,从甲桶中倒出31油给乙桶后,又从乙桶中倒出51给甲桶,这时两桶油各有36千克。

原来甲、乙两个桶中各有油多少千克?2、甲、乙两瓶酒精共有200千克,甲倒出20%给乙后,乙又倒出这时酒精的25%给甲,结果两瓶酒精的重量相等。

原来甲、乙两瓶酒精各有多少千克?1、一个数除以8后,再加上8,最后再减去8得6.这个数原来是多少?2、一堆煤,第一天运了总数的40%后,第二天运了余下的40%少12吨,结果还剩42吨。

原来这批煤共有多少吨?3、甲、乙两筐梨共有240千克,第一次甲拿20%给乙,第二次乙又拿了这时的31给甲,此时两筐梨的重量比为3:2。

原来两筐梨的重量各是多少千克?自我检测。

小学六年级奥数 第12讲 倒推法解题~例2

小学六年级奥数  第12讲 倒推法解题~例2

2 7
,还剩500米,这段公路全长多
少米?
经典例题
【例题2】
筑路队修一段路,第一天修了全长的
1 5
又100米,
第二天修了余下的
2 7
,还剩500米,这段公路全长多
少米?
思路导航
从“还剩500米”入手倒着往前推,它占余下的1-2/7= 57,第一天修后还剩500÷5/7=700米,如果第一天正好修 全长的1/5,还余下700+100=800米,这800米占全长的1 -1/5=4/5,这段路全长800÷4/5=1000米。
经典例题
【例题2】
筑路队修一段路,第一天修了全长的
1 5
又100米,
第二天修了余下的
2 7
,还剩500米,这段公路全长多
少米?
第二天没修之前(第一天修后剩下):
500÷(1-
2 7
)=
700(米)
第一天没修之前(原来):
(700+100)÷(1-
1 5
)=
1000(米)
经典例题
【例题2】
筑路队修一段路,第一天修了全长的
知识要点
有些应用题如果按照一般方法,顺着题目的条件一步 一步地列出算式求解,过程比较繁琐。所以,解题时,我 们可以从最后的结果出发,运用加与减、乘与除之间的互 逆关系,从后到前一步一步地推算,这种思考问题的方法 叫倒推法。
经典例题
【例题2】
筑路队修一段路,第一天修了全长的
1 5
又100米,
第二天修了余下的
3、一批水泥,第一天用去了
1 2
多1吨,第二天用去了
余下
1 3
少2吨,还剩下16吨,原来这批水泥有多少吨?

小学六年级奥数第12讲 倒推法解题(含答案分析)

小学六年级奥数第12讲 倒推法解题(含答案分析)

第12讲 倒推法解题一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。

所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。

二、精讲精练【例题1】一本文艺书,小明第一天看了全书的31,第二天看了余下的53,还剩下48页,这本书共有多少页?练习1:1、某班少先队员参加劳动,其中73的人打扫礼堂,剩下队员中的85打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2、一辆汽车从甲地出发,第一天走了全程的83,第二天走了余下的32,第三天走了250千米到达乙地。

甲、乙两地间的路程是多少千米?3、把一堆苹果分给四个人,甲拿走了其中的61,乙拿走了余下的52,丙拿走这时所剩的43,丁拿走最后剩下的15个,这堆苹果共有多少个?【例题2】筑路队修一段路,第一天修了全长的51又100米,第二天修了余下的72,还剩500米,这段公路全长多少米?练习2:1、一堆煤,上午运走72,下午运的比余下的31还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2、用拖拉机耕一块地,第一天耕了这块地的31又2公顷,第二天耕的比余下的21多3公顷,还剩下35公顷,这块地共有多少公顷?3、一批水泥,第一天用去了21多1吨,第二天用去了余下31少2吨,还剩下16吨,原来这批水泥有多少吨?【例题3】有甲、乙两桶油,从甲桶中倒出31给乙桶后,又从乙桶中倒出51给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?练习3:1、小华拿出自己的画片的51给小强,小强再从自己现有的画片中拿出41给小华,这时两人各有画片12张,原来两人各有画片多少张?2、甲、乙两人各有人民币若干元,甲拿出51给乙后,乙又拿出41给甲,这时他们各有90元,他们原来各有多少元?【例题4】甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。

六年级上册奥数基础+提高练习-第12讲 倒推法解题 通用版(含答案)

六年级上册奥数基础+提高练习-第12讲 倒推法解题 通用版(含答案)

奥数重点常考题第十二讲倒推法解题基础卷1、修一条路,第一天修了全长的25又16米,第二天修了余下的34还剩41米,这条路全长多少米?2、把一根木头对半锯开,再取其中一段对半锯开,这样锯了4次,剩下的木头长度正好是2米,这根木头原长度是多少米?3、有甲、乙两桶油、从甲桶中倒出14给乙桶后,又从乙桶中倒出14给甲桶,这时两桶各有90千克油,原来甲、乙两个桶中各有多少千克油?4、甲、乙、丙三个袋子里各有若干个小球,从甲袋中拿出3个小球放人乙袋,再从乙袋中拿出5 个小球放人丙袋后,三个袋子里的小球个数相等。

原来乙袋比丙袋多几个球?5、甲、乙两校各有图书若干本,从甲校借15给乙校后,又从乙校27借给甲校,这时甲、乙两校的图书本数相等,原来甲校的图书本数是乙校的几分之几?6、有一筐橘子,小明和弟弟第一天吃了13,第二天吃了余下的13,第三天又吃了余下的13,筐里还有8个,原来筐里有多少个橘子?提高卷1、一批大米,第一天用去了15多16千克,第二天用去了余下的13少4千克,还剩下260千克,原来这批大米有多少千克?2、一堆煤,第一次运用总数14又15吨,第二次运出余下的25又20吨,第三次运出余下的34又25吨,最后还剩下15吨。

这堆煤原有多少吨?3、一杯盐水,第一次倒出13,然后倒回杯中20克,第二次再倒出杯中盐水的25,第三次倒出60克,杯中还剩下48克,原来杯中有多少克盐水?4、甲、乙、丙三桶油的质量比是2:3:4,如果从乙桶倒出8千克油平均分给甲、丙两桶,则甲、乙两桶油的质量相等。

这三桶油的总质量是多少千克?5、甲、乙两瓶各有些酒精,从甲瓶倒出13到乙瓶,又从乙瓶倒出35到甲瓶,这时乙瓶中的酒精是甲瓶的25,原来甲瓶的酒精是乙瓶的几分之几?6、小明妈妈买来一篮鸡蛋,第一天吃了17,第二条吃了余下的14,第三、四天都吃了第二天余下的13,第五天吃了余下的12,还剩下3个鸡蛋。

妈妈共买了多少个鸡蛋?答案基础卷。

六年级奥数第06讲 - 倒推法解应用题

六年级奥数第06讲 - 倒推法解应用题

10
1、把一堆苹果分给四个人,甲拿走了其中的1
6
,乙拿走了余下的
2
5
,丙拿走这时所剩的
3
4
,丁拿走最后剩下的
15个,这堆苹果共有个。

2、一批水泥,第一天用去了1
2
多1吨,第二天用去了余下
1
3
少2吨,还剩下16吨,原来这批水泥有吨。

3、一瓶酒精,第一次倒出1
3
,然后倒回瓶中40克,第二次再倒出瓶中酒精的
5
9
,第三次倒出180克,瓶中好剩
下60克,原来瓶中有克酒精。

4、甲、乙、丙三个仓库面粉袋数的比是6:9:5,如果从乙仓库拿出400袋平均分给甲、丙两仓库,则甲、乙两
个仓库的数量相等。

这三个仓库共存面粉袋。

5、甲、乙两个仓库各有粮食若干吨,从甲仓库运出1
3
到乙仓库后,又从乙仓库运出
1
3
到甲仓库,这时甲、乙两
仓库的粮食储量相等。

原来甲仓库的粮食是乙仓库的。

六年级奥数举一反三第12讲 倒推法解题含答案

六年级奥数举一反三第12讲 倒推法解题含答案

第12讲 倒推法解题一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。

所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。

二、精讲精练【例题1】一本文艺书,小明第一天看了全书的31,第二天看了余下的53,还剩下48页,这本书共有多少页?练习1:1、某班少先队员参加劳动,其中73的人打扫礼堂,剩下队员中的85打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2、一辆汽车从甲地出发,第一天走了全程的83,第二天走了余下的32,第三天走了250千米到达乙地。

甲、乙两地间的路程是多少千米?3、把一堆苹果分给四个人,甲拿走了其中的61,乙拿走了余下的52,丙拿走这时所剩的43,丁拿走最后剩下的15个,这堆苹果共有多少个?【例题2】筑路队修一段路,第一天修了全长的51又100米,第二天修了余下的72,还剩500米,这段公路全长多少米?练习2:1、一堆煤,上午运走72,下午运的比余下的31还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2、用拖拉机耕一块地,第一天耕了这块地的31又2公顷,第二天耕的比余下的21多3公顷,还剩下35公顷,这块地共有多少公顷?3、一批水泥,第一天用去了21多1吨,第二天用去了余下31少2吨,还剩下16吨,原来这批水泥有多少吨?【例题3】有甲、乙两桶油,从甲桶中倒出31给乙桶后,又从乙桶中倒出51给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?练习3:1、小华拿出自己的画片的51给小强,小强再从自己现有的画片中拿出41给小华,这时两人各有画片12张,原来两人各有画片多少张?2、甲、乙两人各有人民币若干元,甲拿出51给乙后,乙又拿出41给甲,这时他们各有90元,他们原来各有多少元?【例题4】甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。

六年级奥数专题-倒推法解题

六年级奥数专题-倒推法解题

六年级奥数专题-倒推法解题专题简析:有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。

所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。

例题1 一本文艺书,小明第一天看了全书的13 ,第二天看了余下的35,还剩下48页,这本书共有多少页?【思路导航】从“剩下48页”入手倒着往前推,它占余下的1-35 =25。

第一天看后还剩下48÷25 =120页,这120页占全书的1-13 =23 ,这本书共有120÷23 =180页。

即48÷(1-35 )÷(1-13 )=180(页)答:这本书共有180页。

练习11、 某班少先队员参加劳动,其中37 的人打扫礼堂,剩下队员中的58 打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2、 一辆汽车从甲地出发,第一天走了全程的38 ,第二天走了余下的23 ,第三天走了250千米到达乙地。

甲、乙两地间的路程是多少千米?3、 把一堆苹果分给四个人,甲拿走了其中的16 ,乙拿走了余下的25 ,丙拿走这时所剩的34 ,丁拿走最后剩下的15个,这堆苹果共有多少个?例题2 筑路队修一段路,第一天修了全长的15 又100米,第二天修了余下的27,还剩500米,这段公路全长多少米?【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-27 =57 ,第一天修后还剩500÷57 =700米,如果第一天正好修全长的15 ,还余下700+100=800米,这800米占全长的1-15 =45 ,这段路全长800÷45 =1000米。

列式为:【500÷(1-27 )+100】÷(1-15)=1000米 答:这段公路全长1000米。

练习2① 一堆煤,上午运走27 ,下午运的比余下的13 还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?② 用拖拉机耕一块地,第一天耕了这块地的13 又2公顷,第二天耕的比余下的12 多3公顷,还剩下35公顷,这块地共有多少公顷?③ 一批水泥,第一天用去了12 多1吨,第二天用去了余下13 少2吨,还剩下16吨,原来这批水泥有多少吨?例题3 有甲、乙两桶油,从甲桶中倒出13给乙桶后,又从乙桶中倒出15给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?【思路导航】从最后的结果出发倒推,甲、乙两桶共有(24×2)=48千克,当乙桶没有倒出15给甲桶时,乙桶内有油24÷(1-15)=30千克,这时甲桶内只有48-30=18千克,而甲桶已倒出13给了乙桶,可见甲桶原有的油为18÷(1-13)=27千克,乙桶原有的油为48-27=21千克。

小学六年级奥数 第12讲 倒推法解题~例5

小学六年级奥数  第12讲 倒推法解题~例5

-
1 4

=
2 3
甲仓库占两仓库和的:
1-
2 3
=
1 3
②甲仓库原来占两仓库和的:
1 3
÷(1
-
1 4

=
4 9
乙仓库原来占两仓库和的: 1 -
4 9
=
5 9
③原来甲仓库的粮食是乙仓库的:
4 9
÷
5 9
=
4 5
举一反三练习
库后1、,甲又、从乙乙两仓个库仓运库出各13有粮到食甲若仓干库吨,,这从时甲甲仓、库乙运两出仓库13的到粮乙食仓 储量相等。原来甲仓库的粮食是乙仓库的几分之几?
1 4
到甲仓库,这时甲、乙
两仓库的粮食储量相等。原来甲仓库的粮食是乙仓库的几
分之几?
经典例题
【例题5】
,又甲从、乙乙仓两库个运仓出库14各到有甲粮仓食库若,干这吨时,甲从、甲乙仓两库仓运库出的14粮到食乙储仓量库相后 等。原来甲仓库的粮食是乙仓库的几分之几?
思路导航
解题关键是把两个仓库粮食的和看作“1”,由题意
4÷(1 -
1 3

=
6(吨)
乙仓库原来有: 19 - 6 = 13(吨)
③原来甲仓库的粮食是乙仓库的:6÷13
=
6 13
2020年3月1日星期日5时31分38秒
知识要点
有些应用题如果按照一般方法,顺着题目的条件一步 一步地列出算式求解,过程比较繁琐。所以,解题时,我 们可以从最后的结果出发,运用加与减、乘与除之间的互 逆关系,从后到前一步一步地推算,这种思考问题的方法 叫倒推法。
经典例题
【例题5】
甲、乙两个仓库各有粮食若干吨,从甲仓库运出

六年级奥数专项(用倒推法解题)演示教学

六年级奥数专项(用倒推法解题)演示教学

用 倒 推 法 解 题【知识与方法】:倒推法,即从后面的已知条件(结果)入手,逐步向前一步一步地推算,最后得出所需要的结论。

这种方法对于解答一些分数应用题同样适用。

【例题精讲】例题1:有一条铁丝,第一次剪下它的12 又1米;第二次剪下剩下的13又1米;此时还剩下15米。

这条铁丝原来长多少米?模仿练习1:一堆水泥,第一次用去它的12 又3吨,第二次用剩下水泥的13 又3吨,第三次又用去第二次余下的14 又3吨,这时这堆水泥正好剩下3吨。

这堆水泥原来有多少吨?例2:甲、乙两仓库各存粮若干,先将乙仓库中存粮的15 运到甲仓库,再将甲仓库此时存粮的14 运到乙仓库,这时甲仓库有粮食600吨,乙仓库有粮食720吨。

那么,原来甲仓库和乙仓库中各存粮多少吨?模仿练习2:三只猴子分一筐桃,第一只猴子分得全部桃子的27 多12个,第二只分到余下的23 少4个,第三只分到20个。

这筐桃子共有多少个?(竞赛决赛试题)例3:李老师在黑板上写了若干个从1开始的连续自然数1、2、3、……。

后来擦掉其中一个,剩下的数的平均数是10.8。

那么,被擦掉的那个自然数是多少?模仿练习3:☆黑板上写着从1开始的若干个连续自然数,擦去其中的一个后。

其余各数的平均数是35517 。

擦去的数是多少?(奥赛初赛A 卷试题)例4:有一种细胞,每秒钟分裂成2个,两秒钟可分裂成4个,3秒钟可分裂成8个…在瓶中开始放进1个这样的细胞,刚好1分钟后就充满整个瓶。

如果一开始就放进8个这样的细胞,要充满整个瓶的41,需要多少秒?模仿练习4:一种微生物,每小时可增加一倍,现在有一批这样的微生物,10小时可增加到100万个。

那么增加到25万个需要多少小时?【巩固与提高】1、小明今年的岁数加上10后,再扩大5倍,然后减去5,再缩小5倍,刚好是20岁。

小明今年多少岁?2、甲、乙、丙三个数,从甲数中取出17加到乙数,从乙数中取出19加到丙数,从丙数中取出15加到甲数,这时三个数都是153,甲数原来是多少?3、一只猴子摘了一堆桃子,第一天它吃了这堆桃子的17 ,第二天它吃了余下桃子的16 ,第三天它吃了余下桃子的15 ,第四天它吃了余下桃子的14 ,第五天它吃了余下桃子的13 ,第六天它吃了余下桃子的12 ,这时还剩12只桃子,那么第一天和第二天猴子所吃桃子的总数是多少?(奥赛初赛试题)4、学校将一批糖果发给甲、乙、丙、丁四个班。

六年级奥数倒推法解题

六年级奥数倒推法解题

六、倒推法解题班级 姓名例1、张大爷提篮去卖蛋,第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个。

这时,鸡蛋都卖完了。

张大爷篮中原有鸡蛋多少个?例2、一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米。

这捆电线原有多少米?例3、李白买酒:“无事街上走,提壶去买酒,遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒。

”试问壶里原有多少酒?例4、甲、乙、丙三人各有画片若干张,要求互相赠送,先由甲送给乙、丙,所送张数等于乙、丙原来的张数。

再由乙送给甲、丙现在的张数,最后由丙送给甲、乙现在的张数,互送后每人各有32张,问原来各有画片多少张?例5、3只猴子吃篮里的桃子,第一只猴子吃了13 ,第二只猴子吃了剩下的13,第三只猴子吃了第二只剩下的14,最后篮里还剩下6只桃子。

问篮里原有桃子多少只?例6、修一段路,第一天修全路的12 还多2千米,第二天修余下的13少1千米,第三天修余下的14还多1千米,这样还剩下20千米没有修完,求公路的全长。

练习六1、货场原有煤若干吨。

第一次运出存煤的一半,第二次运进450吨,第三次又运出现有煤的一半又50吨,结果还剩600吨。

货场原存煤多少吨?2、小芳从家带来鸡蛋,第一天吃了全部的一半又半个,第二天吃了余下的一半又半个,第三天再吃余下的一半又半个,恰恰吃完。

小芳从家带了几个鸡蛋?3、仓库里的水泥要全部运走。

第一次运走了全部的12 又12吨,第二次运走了剩余的13 又13 吨,第三次运走了第二次余下的14 又14吨,第四次运走了第三次余下的15 又15吨,第五次运走了最后剩下的19吨。

这个仓库原来共有水泥多少吨?4、把180个苹果按每个人一个分给甲、乙、丙、丁四个幼儿班小朋友。

如果甲班人数加2,乙班人数减2,丙班人数乘以2,丁班人数除以2,四个班人数则相等。

这四个班各应分多少个?5、甲、乙、丙三个小朋友按下列方法分配苹果:甲取了全部的13又8个,乙取所剩的13 又8个,丙取了最后余下的13和所剩下的8个。

六年级奥数-第3讲-倒推法

六年级奥数-第3讲-倒推法

六年级奥数方法倒 推 法在以前的学习中,我们已经认识了倒推法,即从后面的已知条件(结果)入手,逐步向前一步一步地推算,最后得出所需要的结论。

这种方法对于解答一些分数应用题同样适用。

例1: 有一条铁丝,第一次剪下它的12 又1米;第二次剪下剩下的13 又1米;此时还剩下15米。

这条铁丝原来长 米。

分析与解:铁丝最后还剩15米,这是第二次剪去第一次剩下的 13 又1米的结果,那么第二次剪之前(即第一次剪后)应该是(15+1)÷(1-13 )=24米;而24米又是第一次剪去这条铁丝的12 又1米的结果,那么第一次剪之前(即原来),铁丝的长度应该是(24+1)÷(1-12)=50米。

例2: 李老师在黑板上写了若干个从1开始的连续自然数1、2、3、……。

后来擦掉其中一个,剩下的数的平均数是10.8。

那么,被擦掉的那个自然数是多少?分析与解:题中最后的结果是:擦去后剩下数的平均数为10.8。

我们就以此入手来思考:平均数=总数÷个数=10.8=545 =10810 =16215 =21620 =……,不难想到:剩下的数的个数可能是:5、10、15、20、……;剩下的数的和是:54、108、162、216、……。

根据题意可知:擦去前数的个数可能是:6、11、16、21、……,而擦去前的数是从1开始的连续自然数,那么擦去前各数之和与擦去后各数之和的差应该是1至6(或1至11、1至16、1至21、……)中的一个。

我们以此来试算:① 原来若是6个,则:(1+6)×6÷2=21,21-54=?; ② 原来若是11个,则:(1+11)×11÷2=66,66-108=?; ③ 原来若是16个,则:(1+16)×16÷2=136,136-162=?;④ 原来若是21个,则:(1+21)×21÷2=231,231-216=15;而15正是1至21中的一个,符合题意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数专项用倒推
法解题
Company number:【0089WT-8898YT-W8CCB-BUUT-202108】
用倒推法解题
【知识与方法】:
倒推法,即从后面的已知条件(结果)入手,逐步向前一步一步地推算,最后得出所需要的结论。

这种方法对于解答一些分数应用题同样适用。

【例题精讲】
例题1:有一条铁丝,第一次剪下它的1
2
又1米;第二次剪下剩下的
1
3
又1米;此时还
剩下15米。

这条铁丝原来长多少米
模仿练习1:一堆水泥,第一次用去它的1
2又3吨,第二次用剩下水泥的
1
3又3吨,第三
次又用去第二次余下的1
4又3吨,这时这堆水泥正好剩下3吨。

这堆水泥原来有多少吨
例2:甲、乙两仓库各存粮若干,先将乙仓库中存粮的1
5运到甲仓库,再将甲仓库此时
存粮的1
4运到乙仓库,这时甲仓库有粮食600吨,乙仓库有粮食720吨。

那么,原来甲
仓库和乙仓库中各存粮多少吨
模仿练习2:三只猴子分一筐桃,第一只猴子分得全部桃子的2
7多12个,第二只分到余
下的2
3少4个,第三只分到20个。

这筐桃子共有多少个(竞赛决赛试题)
例3:李老师在黑板上写了若干个从1开始的连续自然数1、2、3、……。

后来擦掉其中一个,剩下的数的平均数是。

那么,被擦掉的那个自然数是多少
模仿练习3:☆黑板上写着从1开始的若干个连续自然数,擦去其中的一个后。

其余各
数的平均数是355
17。

擦去的数是多少(奥赛初赛A卷试题)
例4:有一种细胞,每秒钟分裂成2个,两秒钟可分裂成4个,3秒钟可分裂成8个…在瓶中开始放进1个这样的细胞,刚好1分钟后就充满整个瓶。

如果一开始就放进8个这样的细胞,要充满整个瓶的4
1,需要多少秒 模仿练习4:一种微生物,每小时可增加一倍,现在有一批这样的微生物,10小时可增加到100万个。

那么增加到25万个需要多少小时
【巩固与提高】
1、小明今年的岁数加上10后,再扩大5倍,然后减去5,再缩小5倍,刚好是20岁。

小明今年多少岁
2、甲、乙、丙三个数,从甲数中取出17加到乙数,从乙数中取出19加到丙数,从丙数中取出15加到甲数,这时三个数都是153,甲数原来是多少
3、一只猴子摘了一堆桃子,第一天它吃了这堆桃子的17 ,第二天它吃了余下桃子的16
,第三天它吃了余下桃子的15 ,第四天它吃了余下桃子的14 ,第五天它吃了余下桃子的13 ,
第六天它吃了余下桃子的12 ,这时还剩12只桃子,那么第一天和第二天猴子所吃桃子的
总数是多少(奥赛初赛试题)
4、学校将一批糖果发给甲、乙、丙、丁四个班。

先将全部糖果的13 减去23 千克给甲班,
再把余下的14 加上12 千克给乙班,又把余下的一半给丙班,最后把剩余的一半加上12 千克
给丁班,这时学校还剩5千克。

这批糖果有多少千克(邀请赛试题)
5、☆小明每分钟吹一次肥皂泡,每次恰好吹出100个。

肥皂泡吹出之后,经过一分钟有一半破了,经过二分钟还有二十分之一没有破,经过两分半钟全部肥皂泡破了。

小明
在第20次吹出100个新的肥皂泡的时候,没有破的肥皂泡共有多少个(奥赛决赛试题)
6、☆王老师在黑板上写了若干个连续自然数1、2、3、……,然后擦去其中的一个合数
与两个质数,剩下的数的平均数是95
6。

那么,王老师在黑板上共写了多少个数擦去
的合数最大是多少。

相关文档
最新文档