初中数学人教版八年级上册第四单元第2-2课《完全平方公式》优质课公开课教案教师资格证面试试讲教案

合集下载

完全平方公式教案【优秀3篇】

完全平方公式教案【优秀3篇】

完全平方公式教案【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!完全平方公式教案【优秀3篇】作为一名教师,时常要开展教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

人教版本初中八年级上册的14.2.2完全平方公式学习教案设计

人教版本初中八年级上册的14.2.2完全平方公式学习教案设计

人教版八年级上册完整平方公式教课设计设计教课内容完整平方式知识与技术:1.完整平方公式的推导及其应用 .2.完整平方公式的几何解说.过程与方法:教课1.经历研究完整平方公式的过程,进一步发展符号感和推理能力.目标2.重视学生对算理的理解,存心识地培育学生的思想条理性和表达能力.感情、态度与价值观:在灵巧应用公式的过程中激发学生学习数学的兴趣,培育创新能力和研究精神.教课要点完整平方公式的推导过程、构造特色、几何解说、灵巧应用.教课难点理解完整平方公式的构造特色 ,并能灵巧应用公式进行计算.教课方法讲练联合.教课准备多媒体课件.教课过程设计设计企图一、新课引入填空:两个数的和与这两个数的差的积,等于这两个数的,即(a+b)(a-b)=,这个公式经过对照叫做公式.复习旧知识,2.用平方差公式计算.引出新知识,(1)(-m+5n)(-m-5n);起到了承上启(2)(3x-1)(3x+1);下的作用,为(3)(y+3x)(3x-y);下边的学习做(4)(-2+ab)(2+ab).了铺垫.2+b2与(a+b)2;a2-b2与(a-b)2有什么差别?222222指引学生比较a+b与(a+b);a-b与(a-b)的差别和教课过程联系,学生比较回答.如何计算两个数的和的平方或差的平方呢?二、新知研究我们知道a2=a·a,因此(a+b)2=(a+b)(a+b),这样就转变成多项式与多项式的乘积了.像研究平方差公式同样,我们研究一下(a-b)2的运算结果有什么规律.计算以下各式,你能发现什么规律?(1)(p+1)2=(p+1)(p+1)=;4道小题(2)(p-1)2=(p-1)(p-1)=;是对前边进行(3)(m+2)2=的运算的讨(4)(m-2)2=.论,目的是让1/4人教版八年级上册完整平方公式教课设计设计(a+b)2=a2+2ab+b2学生经过观察、概括,鼓(a-b)2=a2-2ab+b2.励他们发现这两数和(或差)的平方等于这两数的平方和再加(或减)个公式的一些它们的积的2倍.特色,如公式完整平方公式的构造特色:左右侧的特①左侧是两个同样二项式相乘,即一个二项式的平方征,便于进一——两个数和(或差)的平方;步应用公式计②右侧是一个三项式,此中两项是左侧的二项式两项算.的平方和,第三项是左侧两项的积的2倍.(首平方加尾平方,乘积二倍在中央)其实我们还能够从几何角度去解说完整平方公式.你能依据图(1)和图(2)中的面积说明完整平方公式吗?数学源于生活,又服务于生活,经过正方形的面积验证完整平方公式,能够进一步理解完整平方公式的构造特色.察看图形(1),能够看出大正方形的边长是a+b,得出222察看图形(2),能够看出大正方形的边长是a,小正方形的边长是a-b,得出(a-b)2=a2-2ab+b2.这正好切合完整平方公式.三、知识运用例1、运用完整平方公式计算 .22 (1)(4m+n);(2)1: ( 1 ) (4m+n)2=(4m)2+2·(4m)·n+n22 2=16m+8mn+n.可由学生口答达成,多媒体展现结果,提升讲堂效率.例2、运用完整平方公式计算.(1)1022; (2)992.解:(1)1022=(100+2)2=1002+2×100×2+22 =10000+400+4=10404.(2)992正确运用这一公式是关键,设计本环节,旨在经过将算式中的各项与公式里的a,b进行比较,进一步领会字母a,b的含义,加深对字母含义宽泛性的理解.2/4人教版八年级上册完整平方公式教课设计设计=(100-1) 222=100-2×100×1+1=10000-200+11.此处可先让学生独立思虑,而后自主讲话,口述解题思2.路,可先不给出题目中“运用完整平方公式计算”的要求,同意他们算法的多样化,但要求理解每种算法的限制性和优胜性.3.[运用完整平方公式进行数的简易运算的目的是进一4.步稳固完整平方公式.领会符号运算对解决问题的作用,教课时可让学生自己独立解决此问题]5.四、讲堂练习P1101、2题五、讲堂小结6.完整平方公式222(a+b) =a+2ab+b222(a-b) =a-2ab+b完整平方公式是进行整式乘法的重要工具,它的构造形式拥有对称性,两个公式都叫做完整平方公式,前方的一个叫做和的完整平方公式,后边的一个叫做差的完整平方公式.判断一个式子能不可以用完整平方公式睁开,主要看它的构造形式能否切合公式要求,习惯上把(a±b)2中的a叫做前项,b叫做后项,记忆时巧记为“首平方,末平方,首末两倍中间放”.运用完整平方公式还应注意以下几点:①切勿把完整平方公式与公式(ab)2=a2b2相混杂,或任意写成(a+b)2=a2+b2;②切勿把“乘积项”2ab中的2扔掉;③计算时,要先察看题目特色,看能否切合公式的条件,若不切合,应先变形为切合公式的形式,再利用公式进行计算,若不可以变成切合公式的形式,则应运用乘法法例进行计算.部署作业P1122题板书设计完整平方式一、新课引入三、知识运用五、讲堂小结二、新知研究四、讲堂练习六、作业3/44/4。

人教版初中数学八年级上册14.2.2完全平方公式教案

人教版初中数学八年级上册14.2.2完全平方公式教案

《完全平方公式》教案【教学目标】1.知识与技能(1)经历完全平方公式的探索及推导过程,掌握完全平方公式的结构特征并能熟练应用。

(2)学会将多项式进行添括号的变形。

2.过程与方法通过观察、操作、交流等活动发展空间观念和推理能力。

3.情感态度和价值观通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识,在独立思考的同时能够认同他人。

【教学重点】完全平方公式及其它的应用。

【教学难点】完全平方公式的应用。

【教学方法】引导发现,启发讨论相结合的教学方法【课前准备】教学课件。

【课时安排】1课时【教学过程】一、复习导入【过渡】上节课我们学习了平方差公式,大家能快速说出什么是平方差公式吗?(a+b)(a-b)=a2-b2【过渡】接着,我们来进行几道简单的计算,复习一下这个公式吧。

(1)(3+2a)(-3+2a)(2)(b2+2a3)(2a3-b2)(3)(-4a-1)(4a-1)【过渡】大家计算的都很快而且准确,看来大家已经掌握了平方差公式。

今天,我们就接着学习另一个公式——完全平方公式。

二、新课教学1.完全平方公式【过渡】首先,我们来看一下课本的探究内容。

你能正确计算这几个式子吗?课件展示探究内容,引导学生思考。

【过渡】从这几个式子中,如果我们分别换成a和b,又能得到什么样的结果呢?探究:计算: (a+b)2, (a- b)2解:(a+b)2= (a+b) (a+b)=a2+ab+ab+b2=a2+2ab+b2(a-b)2= (a-b) (a-b)=a2-ab-ab+b2=a2-2ab+b2【过渡】由此,我们就可以得到我们需要的完全平方公式:(a+b)2= a2 +2ab+b2(a-b)2= a2 - 2ab+b2文字叙述:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

【过渡】现在,老师想问大家一个问题,从这两个公式,你能总结出都有哪些特点吗?(1)积为二次三项式;(2)其中两项为两数的平方和;(3)另一项是两数积的2倍,且与左边乘式中间的符号相同。

人教版数学八年级上册14.2.2.1《完全平方公式》教学设计1

人教版数学八年级上册14.2.2.1《完全平方公式》教学设计1

人教版数学八年级上册14.2.2.1《完全平方公式》教学设计1一. 教材分析人教版数学八年级上册14.2.2.1《完全平方公式》是初中数学中的一项重要内容。

本节课的主要内容是完全平方公式的探究和应用。

完全平方公式是代数中一个重要的公式,它可以帮助学生简化二次方程的求解过程,对于学生理解和掌握二次函数、二次不等式等知识点有着重要的作用。

二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方、平方差公式等知识点,对于二次方程的求解有一定的了解。

但是,对于完全平方公式的推导和应用还需要进一步的学习。

此外,学生对于数学公式的记忆和理解能力不同,需要教师在教学中进行针对性的引导和帮助。

三. 教学目标1.知识与技能目标:学生能够理解完全平方公式的含义,并能够运用完全平方公式进行简单的计算。

2.过程与方法目标:学生通过自主探究、合作交流的方式,培养自己的观察能力、思考能力和解决问题的能力。

3.情感态度与价值观目标:学生能够感受到数学的趣味性和实用性,增强对数学的学习兴趣。

四. 教学重难点1.教学重点:完全平方公式的推导和应用。

2.教学难点:完全平方公式的记忆和灵活运用。

五. 教学方法1.引导发现法:教师通过提出问题,引导学生发现完全平方公式的规律。

2.合作交流法:学生在小组内进行讨论和交流,共同解决问题。

3.实践操作法:学生通过实际的计算练习,加深对完全平方公式的理解。

六. 教学准备1.教师准备:教师需要准备相关的教学材料,如PPT、黑板、粉笔等。

2.学生准备:学生需要准备好笔记本、笔等学习用品。

七. 教学过程1.导入(5分钟)教师通过提出问题,引导学生回忆平方差公式,从而引出完全平方公式。

2.呈现(10分钟)教师通过PPT或者黑板,呈现完全平方公式的定义和推导过程。

3.操练(10分钟)学生根据完全平方公式,进行一些简单的计算练习。

4.巩固(10分钟)学生在小组内进行讨论,共同解决一些关于完全平方公式的应用问题。

《完全平方公式》教案

《完全平方公式》教案

《完全平方公式》教案
一、教学目标
1. 知识与技能:掌握完全平方公式的推导过程和结构特点,能够运用完全平方公式进行整式的乘法运算。

2. 过程与方法:通过观察、分析、归纳等方法,提高学生的数学思维能力和运算能力。

3. 情感态度价值观:培养学生的数学兴趣,增强学生的自信心。

二、教学重难点
1. 教学重点:完全平方公式的推导过程和结构特点。

2. 教学难点:运用完全平方公式进行整式的乘法运算。

三、教学方法
讲授法、演示法、练习法
四、教学过程
1. 导入:复习平方差公式,通过计算(a+b)(a-b)=a^2-b^2,引出今天的课题《完全平方公式》。

2. 知识讲解:讲解完全平方公式的推导过程和结构特点。

(1) 推导过程:(a+b)^2=a^2+2ab+b^2
(2) 结构特点:左边是两个相同的二项式相乘,右边是一个三项式,其中两项是左边两项的平方和,第三项是左边两项的积的2 倍。

3. 练习环节:学生进行练习,教师进行个别指导。

4. 课堂总结:老师对本节课的内容进行总结,强调重点和难点。

5. 布置作业:让学生在课后完成一些练习题,以巩固所学的知识。

五、教学反思
通过本次教学,学生对完全平方公式的推导过程和结构特点有了更深入的理解,能够运用完全平方公式进行整式的乘法运算。

在教学过程中,学生的积极性和参与度较高,通过练习和指导,让他们更加主动地去思考和表达自己的观点。

不足之处是,由于时间限制,有些学生在练习过程中还需要更多的指导和练习,需要在今后的教学中加以改进。

八年级数学上册14.2.2完全平方公式优秀教学案例

八年级数学上册14.2.2完全平方公式优秀教学案例
二、教学目标
(一)知识与技能
在本节课中,学生需要掌握完全平方公式的推导过程、公式及其应用。通过对完全平方公式的学习,使学生能够熟练运用公式解决实际问题,提高他们的数学应用能力。此外,学生还需要了解完全平方公式在数学中的重要性,以及它在实际生活中的应用价值。
为了达到这一目标,我设计了以下教学活动:
1.通过引入完全平方根的概念,引导学生探究完全平方公式的推导过程,使他们理解并掌握公式的由来。
(二)讲授新知
在导入新课后,我会开始讲解完全平方公式。首先,我会用通俗易懂的语言解释完全平方公式的含义,让学生理解并掌握公式。然后,我会通过一些具体的例子,展示如何运用完全平方公式来解决实际问题。在这个过程中,我会鼓励学生积极参与,提出问题和困惑,以便及时解答和澄清。
(三)学生小组讨论
在讲授新知之后,我会组织学生进行小组讨论。我会分配一些与生活实际相关的问题,让学生小组合作,运用完全平方公式来解决这些问题。这样,学生能够在实际应用中进一步巩固和加深对完全平方公式的理解和掌握。同时,学生之间的合作和交流也能够培养他们的团队合作能力和解决问题的能力。
5.作业小结与持续学习:在课后,我通过布置与生活实际相结合的作业,让学生在解决实际问题的过程中,进一步巩固和应用所学的完全平方公式。同时,我鼓励学生在完成作业的过程中进行自我反思和评价,找出自己的不足之处,并进行改进。这样,学生能够在课后继续学习和提高,达到更好的学习效果。
3.培养良好习惯:引导学生积极参与课堂活动,培养他们认真听讲、积极思考的良好学习习惯。
4.传递正能量:通过教学活动,让学生感受到数学的乐趣,培养他们积极向上、克服困难的品质。
三、教学策略
(一)情景创设
情景创设在教学过程中起到至关重要的作用。在本节课中,我以生活实例引入完全平方公式,让学生感受到数学与生活的紧密联系。通过以下教学活动,实现情景创设:

2020人教版八年级数学上册 14.2.2《完全平方公式》教案

2020人教版八年级数学上册 14.2.2《完全平方公式》教案

《完全平方公式》一、教材分析说课内容:《整式的乘除与因式分解》的《完全平方公式》。

教材的地位和作用:完全平方公式是初中数学中的重要公式,在整个中学数学中有着广泛的应用,重要的数学方法“配方法”的基础也是依据完全平方公式的。

而且它在整式乘法,因式分解,分式运算及其它代数式的变形中起作十分重要的作用。

本节内容共安排两个课时,这次说课是其中第一个课时。

完全平方公式这一教学内容是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,教材从具体到抽象,由直观图形引导学生观察、实验、猜测、进而论证,最后建立数学模型,逐步培养学生的逻辑推理能力和建模思想。

教学目标和要求:由课标要求以及学生的情况我将三维目标定义为以下三点:知识与技能目标:了解公式的几何背景,理解并掌握公式的结构特征,能利用公式进行计算。

过程与方法目标:在学习的过程中使学生体会数、形结合的优势,进一步发展符号感和推理能力,培养学生数学建模的思想。

情感与态度目标:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立自信心。

教学的重点与难点:根据对学生学习过程分析及课标要求我把重点定为:完全平方公式的结构特点及公式的直接运用。

而难点应为完全平方公式的应用以及对公式中字母a、b的广泛含义的理解与正确应用。

在教学过程中多处留有空白点以供学生独立研究思考。

二、教法与学法(1)多媒体辅助教学,将知识形象化、生动化,激发学生的兴趣。

(2)教学中逐步设置疑问,引导学生动手、动脑、动口,积极参与知识全过程。

(3)由易到难安排例题、练习,符合八年级学生的认知结构特点。

(4)课堂中,对学生激励为主,表扬为辅,树立其学习的自信心。

三、教学过程教师活动学生活动设计意图一、创设情景,推导公式计算103971、想一想(电脑演示)一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种,(如图所示)(要求学生从不同的角度表示图形的面积)观察动画,学生抢答:⑴、四块实验田的面积分别为:、、、;⑵、两种形式表示实验田的总面积:复习旧知,并以问题引入。

新人教版初中数学八年级上册14.2.2完全平方公式1公开课优质课教学设计

新人教版初中数学八年级上册14.2.2完全平方公式1公开课优质课教学设计

14.2.2 完全平方公式1.会推导完全平方公式,并能运用公式进行简单的运算.(重点)2.灵活运用完全平方公式进行计算.(难点)一、情境导入1.教师引导学生复习平方差公式.学生积极举手回答.平方差公式:(a+b)(a-b)=a2-b2.2.教师肯定学生的表现,并讲解:这节课我们学习另一种特殊形式的多项式与多项式相乘——完全平方公式.二、合作探究探究点一:完全平方公式【类型一】直接运用完全平方公式进行计算利用完全平方公式计算:(1)(5-a)2;(2)(-3m-4n)2;(3)(-3a+b)2.解析:直接运用完全平方公式进行计算即可.解:(1)(5-a)2=25-10a+a2;(2)(-3m-4n)2=9m2+24mn+16n2;(3)(-3a+b)2=9a2-6ab+b2.方法总结:完全平方公式:(a ±b )2=a 2±2ab +b 2.可巧记为“首平方,末平方,首末两倍中间放”.【类型二】 构造完全平方式如果36x 2+(m +1)xy +25y 2是一个完全平方式,求m 的值.解析:先根据两平方项确定出这两个数,再根据完全平方公式确定m 的值.解:∵36x 2+(m +1)xy +25y 2=(6x )2+(m +1)xy +(5y )2,∴(m +1)xy =±2·6x ·5y ,∴m +1=±60,∴m =59或-61.方法总结:两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.【类型三】 运用完全平方公式进行简便运算 利用乘法公式计算:(1)982-101×99;(2)20162-2016×4030+20152.解析:原式变形后,利用完全平方公式及平方差公式计算即可得到结果. 解:(1)原式=(100-2)2-(100+1)(100-1)=1002-400+4-1002+1=-395; (2)原式=20162-2×2016×2015+20152=(2016-2015)2=1.方法总结:运用完全平方公式进行简便运算,要熟记完全平方公式的特征,将原式转化为能利用完全平方公式的形式.【类型四】 灵活运用完全平方公式求代数式的值已知x -y =6,xy =-8. (1)求x 2+y 2的值;(2)求代数式12(x +y +z )2+12(x -y -z )(x -y +z )-z (x +y )的值.解析:(1)由(x -y )2=x 2+y 2-2xy ,可得x 2+y 2=(x -y )2+2xy ,将x -y =6,xy =-8代入即可求得x 2+y 2的值;(2)首先化简12(x +y +z )2+12(x -y -z )(x -y +z )-z (x +y )=x 2+y 2,由(1)即可求得答案.解:(1)∵x -y =6,xy =-8,∴(x -y )2=x 2+y 2-2xy ,∴x 2+y 2=(x -y )2+2xy =36-16=20;(2)∵12(x +y +z )2+12(x -y -z )(x -y +z )-z (x +y )=12(x 2+y 2+z 2+2xy +2xz +2yz )+12[(x -y )2-z 2]-xz -yz =12x 2+12y 2+12z 2+xy +xz +yz +12x 2+12y 2-xy -12z 2-xz -yz =x 2+y 2,又∵x 2+y 2=20,∴原式=20.方法总结:通过本题要熟练掌握完全平方公式的变式:(x -y )2=x 2+y 2-2xy ,x 2+y 2=(x -y )2+2xy .【类型五】 完全平方公式的几何背景我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积解释一些代数恒等式.例如图甲可以用解释(a +b )2-(a -b )2=4ab .那么通过图乙面积的计算,验证了一个恒等式,此等式是( )A .a 2-b 2=(a +b )(a -b ) B .(a -b )(a +2b )=a 2+ab -2b 2C .(a -b )2=a 2-2ab +b 2 D .(a +b )2=a 2+2ab +b 2解析:空白部分的面积为(a -b )2,还可以表示为a 2-2ab +b 2,所以,此等式是(a -b )2=a 2-2ab +b 2.故选C.方法总结:通过几何图形之间的数量关系对完全平方公式做出几何解释.探究点二:添括号后运用完全平方公式计算:(1)(a -b +c )2; (2)(1-2x +y )(1+2x -y ).解析:利用整体思想将三项式转化为二项式,再利用完全平方公式或平方差公式求解,并注意添括号的符号法则.解:(1)原式=[(a-b)+c]2=(a-b)2+c2+2(a-b)c=a2-2ab+b2+c2+2ac-2bc=a2+b2+c2-2ab+2ac-2bc;(2)原式=[1+(-2x+y)][1-(-2x+y)]=12-(-2x+y)2=1-4x2+4xy-y2.方法总结:利用完全平方公式进行计算时,应先将式子变成(a±b)2的形式.注意a,b可以是多项式,但应保持前后使用公式的一致性.三、板书设计完全平方公式1.探究公式:(a±b)2=a2±2ab+b2;2.完全平方公式的几何意义;3.利用完全平方公式计算.本节的探讨方式和上节类似,都是通过“做一做”和“试一试”让学生在代数和几何两方面理解完全平方公式.完全平方公式分为两数和的平方和两数差的平方两种形式,教学中可以将两个公式写作一个公式:(a±b)2=a2±2ab+b2,有助于学生的记忆.在探究两数差的平方公式时,因为学生通过前面的学习已经掌握了几何的说明方法,因此可以让学生自己画图证明.。

完全平方公式优秀说课稿

完全平方公式优秀说课稿

完全平方公式优秀说课稿一、教学内容本节课的教学内容选自人教版初中数学八年级上册第四章第二节《完全平方公式》。

本节课主要内容包括完全平方公式的推导、记忆以及公式的应用。

完全平方公式是初中数学中重要的公式之一,对于学生来说,掌握完全平方公式对于解决代数方程、不等式以及二次函数等问题具有重要意义。

二、教学目标1. 学生能够理解完全平方公式的推导过程,掌握完全平方公式的记忆方法。

2. 学生能够运用完全平方公式解决实际问题,提高解决问题的能力。

3. 培养学生的逻辑思维能力,提高学生的数学素养。

三、教学难点与重点重点:完全平方公式的推导和记忆。

难点:完全平方公式的灵活运用。

四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。

学具:笔记本、笔、练习题。

五、教学过程1. 实践情景引入:教师可以通过一个实际问题引入本节课的内容,例如:“小明参加了一次跑步比赛,他跑了60米,比规定的距离多跑了10米,请问小明实际跑的距离是多少米?”2. 例题讲解:教师可以通过一个简单的例题,引导学生发现完全平方公式的规律。

例如,已知一个正方形的边长为a,求这个正方形的对角线的长度。

3. 随堂练习:教师可以设计一些随堂练习题,让学生运用完全平方公式解决问题。

例如,已知一个长方形的长为a,宽为b,求这个长方形的周长和面积。

4. 完全平方公式的推导和记忆:教师可以通过讲解和演示的方式,引导学生推导出完全平方公式,并帮助学生记忆公式。

5. 公式应用:教师可以设计一些应用题,让学生运用完全平方公式解决问题。

例如,已知一个二次函数的顶点坐标为(h, k),求这个二次函数的解析式。

6. 课堂小结:六、板书设计板书设计可以包括完全平方公式的推导过程、公式及其应用。

七、作业设计(1)(x + 2)²(2)(3y 4)²答案:(1)x² + 4x + 4(2)9y² 24y + 162. 已知一个正方形的边长为a,求这个正方形的对角线的长度。

人教版八年级数学上册:14.2.2 完全平方公式 教案设计

人教版八年级数学上册:14.2.2 完全平方公式  教案设计

完全平方公式【教学目标】1.知识与技能:(1)完全平方公式的推导及其应用。

(2)完全平方公式的几何解释。

2.过程与方法:(1)经历探索完全平方公式的过程,进一步发展符号感和推理能力。

(2)重视学生对算理的理解,有意识地培养学生的思维条理性和表达能力。

3.情感、态度与价值观:在灵活应用公式的过程中激发学生学习数学的兴趣,培养创新能力和探索精神。

【教学重点】完全平方公式2)(b a ±= a 2±2ab+b 2的推导及应用。

【教学难点】理解完全平方公式的结构特征。

【教学准备】多媒体投影。

【教学过程】一、问题与情境。

问题:1.请你叙述平方差公式并用字母表示。

2.哪位同学能说一下平方差公式是怎样得到吗?探究:计算下列各式,你能发现什么规律?(1)(p+1)2 =(p+1)(p+1)=_______(2)(m+2)2 =__________(3)(p-1)2 = (p-1) (p-1)= __________(4)(m-2)2= ___________验证:(a+b)2 =(a-b)2 =师生行为:引导学生用语言叙述,学生补充,并指出公式的特征。

学生独立思考并回答老师关注学生的公式形式,并指出字母a. b 的意义。

学生独立完成,交流结果请学生概括自己发现的规律。

概括:完全平方公式:(a+b )2=a 2+2ab+b 2(a-b )2=a 2-2ab+b 2两数和(或差)的平方等于它们的平方和,加(或减)它们的积的2倍。

特征:左边:两个数和或差的平方,是两项式右边:二次三项式,首末是这两数的平方,中间是这两项积的2倍,符号与前面相同。

讨论:你能根据下图中的面积说明完全平方公式吗?应用:例题3:用完全平方公式计算:(1)(4m+n )2 (2) 2)21(-y 解:(1)(4m+n )2是 与 和的平方(4m+n )2=( )2+2( )( )+( )2(a +b )2= a 2 +2 a ∙ b + b 2(2)2)21(-y =( )2-2( )( )+( )2(a -b )2= a 2 -2 a ∙ b + b 2例题4 用完全平方公式计算:(1)1022 ; (2)992 。

人教版数学八年级上册14.2.2完全平方公式教案

人教版数学八年级上册14.2.2完全平方公式教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了完全平方公式的概念、推导过程、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对完全平方公式的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调完全平方公式的结构及其推导过程这两个重点。对于难点部分,如公式推导和应用,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与完全平方公式相关的实际问题,如计算正方形面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠纸张或使用模型,演示完全平方公式在几何图形中的应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10ห้องสมุดไป่ตู้钟)
1.讨论主题:学生将围绕“完全平方公式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
最后,通过这次教学,我认识到教学反思的重要性。在今后的工作中,我将不断总结经验,针对学生的实际情况,调整教学策略,以提高教学效果。同时,我也将关注学生的反馈,了解他们在学习过程中的困难和需求,努力让每位学生都能掌握完全平方公式这一知识点。
(2)完全平方公式的推导:通过多项式乘法展开,验证完全平方公式的正确性;

人教版八年级上数学完全平方公式公开课教学设计和反思

人教版八年级上数学完全平方公式公开课教学设计和反思

人教版八年级上数学完全平方公式公开课教学设计和反思教材分析1本节课的主题:通过一系列的探究活动,引导同学从计算结果中总结出完全平方公式的两种形式1、以教材作为出发点,依据《数学课程标准》,引导同学体会、参加科学探究过程。

首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。

通过同学自主、独立的发觉问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。

同学通过收集和处理信息、表达与沟通等活动,获得知识、技能、方法、立场特别是创新精神和实践技能等方面的进展。

2、用标准的数学语言得出结论,使同学感受科学的严谨,启迪学习立场和方法。

学情分析1、在学习本课之前应具备的基本知识和技能:①同类项的定义。

②合并同类项法那么③多项式乘以多项式法那么。

2、学习者对即将学习的内容已经具备的水平:在学习完全平方公式之前,同学已经能够整理出公式的右边形式。

这节课的目的就是让同学从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

教学目标〔一〕教学目标:1、经受探究完全平方公式的过程,进一步进展符号感和推力技能。

2、会推导完全平方公式,并能运用公式进行简约的计算。

〔二〕知识与技能:经受从详细情境中抽象出符号的过程,认识有理数、实数、代数式、、;掌控须要的运算,〔包括估算〕技能;探究详细问题中的数量关系和改变规律,并能运用代数式、、不等式、函数等进行描述。

〔四〕解决问题:能结合详细情景发觉并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的阅历。

〔五〕情感与立场:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的胜利体验,有学好数学的自信心;并尊敬与理解他人的见解;能从沟通中获益。

教学重点和难点重点:能运用完全平方公式进行简约的计算。

难点:会推导完全平方公式教学过程教学过程设计如下:〈一〉、提出问题[引入]同学们,前面我们学习了多项式乘多项式法那么和合并同类项法那么,通过运算以下四个小题,你能总结出结果与多项式中两个单项式的关系吗?(2m+3n)2=_______________,(-2m-3n)2=______________,(2m-3n)2=_______________,(-2m+3n)2=_______________。

完全平方公式-人教版八年级数学上册教案

完全平方公式-人教版八年级数学上册教案

完全平方公式-人教版八年级数学上册教案一、教学目标1.能够掌握完全平方公式的概念和应用。

2.能够熟练应用完全平方公式解决与之相关的数学问题。

3.能够在实际问题中运用完全平方公式解决问题。

二、教学内容本节课主要内容为完全平方公式的学习和应用,包括以下三个方面:1.完全平方公式的概念介绍和微观分析。

2.完全平方公式的应用,涉及到列方程和解方程,解决实际问题中的运用等。

3.练习题的讲解和课堂练习。

三、教学步骤1. 直观感受完全平方公式首先,教师可以让学生通过观察和感性理解的方式,得到完全平方的概念,例如通过画图、手工制模型或展示一些课件,让学生直观地感受正方形边长和面积之间的关系。

2. 联系实际问题,帮助学生发现公式接下来,将一些实际问题投影到教材上,可以让学生自己列式子,再进行讨论,让学生体验到列式子的过程和如果遇到不会的,解决问题的思路方法,帮助学生逐步发现完全平方公式。

例如:李明的身高为x米,他距离一栋建筑物有4米,如果他向前走了2米,和建筑物的距离变成了(x - 2)米,请问他的身高是多少米?解:通过讨论列式子,让学生逐步感受到与之相关的数学公式,进而可以找到解决问题的关键点。

3. 学习完全平方公式的推导过程在感性理解过程之后,通过教材的讲解,学生需要掌握完全平方公式的理论和推导过程。

教师可以在教材上,给学生展现完全平方公式的推导过程,帮助学生自主学习并掌握。

4. 编写练习题和课堂练习最后,老师可以编写一些适合学生自主学习,或者课堂难度适中的题目,并进行后续的课堂演练。

可以采用小组讨论的方式,集思广益,更好地完成课堂练习。

四、教学评估本节课的学习侧重于学生的理解掌握程度,因此在教学评估方面应该围绕这一点展开。

格式可以采用个人小测试的方式,让学生通过笔试的方式,测试完全平方公式的掌握程度,并记录评估结果,以便下一步的评估或者调整教学计划。

五、教学反思本节课对学生的数学思维能力和逻辑思考能力的提升很有帮助。

人教版数学八年级上册14.2.2完全平方公式(第二课时)优秀教学案例

人教版数学八年级上册14.2.2完全平方公式(第二课时)优秀教学案例
(三)小组合作
小组合作教学策略是指在教学过程中,教师将学生分成若干小组,让学生在小组内进行合作、交流和分享。在本节课的教学中,我设计了多个小组合作活动,以促进学生对完全平方公式的理解和应用。
例如,在完全平方公式的推导过程中,我让学生分组进行讨论,分享各自的思考和发现。在解决实际问题的环节,我让学生分组进行练习,相互检查、相互帮助。通过小组合作,培养学生团队合作意识,提高学生的交流能力和合作能力。
在教学内容上,我突出了以下几个方面:
1.通过生活情境,让学生感受完全平方公式的实际应用,从而理解完全平方公式的内涵。
2.引导学生通过自主探究,发现完全平方公式的推导过程,培养学生的逻辑思维能力。
3.组织学生进行合作交流,分享学习心得,提高学生的团队协作能力。
4.通过对完全平方公式的总结提升,使学生能够灵活运用完全平方公式解决实际问题。
在知识方面,学生需要掌握完全平方公式的定义、推导过程和应用。能够运用完全平方公式解决简单的数学问题,如求解二次方程的根、计算平面几何图形的面积等。通过练习题目的设计,使学生能够在实际问题中运用完全平方公式,提高学生的知识应用能力。
在技能方面,学生需要培养观察、分析、归纳、推理等数学基本技能。能够通过自主探究、合作交流等途径,发现完全平方公式的规律,提高学生的逻辑思维能力。同时,学生需要学会运用完全平方公式解决实际问题,提高学生的实践能力。
(三)学生小组讨论
在学生小组讨论环节,我设计了一系列具有启发性的问题,引导学生进行思考和探究。例如,我提出了以下问题:
1.你认为完全平方公式的应用范围是什么?
2.你能举例说明完全平方公式在实际问题中的应用吗?
3.你认为完全平方公式与其他数学公式有何联系和区别?
学生分组讨论这些问题,分享自己的思考和发现。通过小组讨论,培养学生团队合作意识,提高学生的交流能力和合作能力。

人教版数学八年级上册14.2.2.1《完全平方公式》教学设计

人教版数学八年级上册14.2.2.1《完全平方公式》教学设计

人教版数学八年级上册14.2.2.1《完全平方公式》教学设计一. 教材分析《完全平方公式》是中学数学中的一个重要概念,也是八年级上册的教学内容。

本节内容主要介绍完全平方公式的定义、推导过程以及应用。

完全平方公式是数学中的一种基本公式,能够帮助学生更好地理解和掌握二次方程的解法,为学生进一步学习函数、几何等数学知识打下基础。

二. 学情分析学生在学习本节内容前,已经掌握了有理数的乘方、平方差公式等基础知识。

但部分学生对完全平方公式的理解可能存在困难,需要通过具体例题和练习来加深对公式的理解。

同时,学生对于公式的应用能力和解题策略也需要进一步培养和提高。

三. 教学目标1.知识与技能目标:使学生理解和掌握完全平方公式的定义和推导过程,能够灵活运用完全平方公式解题。

2.过程与方法目标:通过自主学习、合作交流等方法,培养学生的数学思维能力和问题解决能力。

3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的自主学习意识和团队合作精神。

四. 教学重难点1.重点:完全平方公式的定义和推导过程。

2.难点:完全平方公式的灵活运用和解题策略。

五. 教学方法1.自主学习法:鼓励学生自主探究完全平方公式的推导过程,培养学生的自主学习能力。

2.合作交流法:引导学生通过小组合作交流,共同解决问题,提高学生的团队合作能力。

3.案例分析法:通过具体例题和练习,让学生学会运用完全平方公式解题,提高学生的解题能力。

六. 教学准备1.教学PPT:制作教学PPT,内容包括完全平方公式的定义、推导过程、例题和练习等。

2.练习题:准备一些有关完全平方公式的练习题,用于巩固和拓展学生的知识。

3.教学素材:收集一些与完全平方公式相关的教学素材,如数学故事、数学历史等,用于激发学生的学习兴趣。

七. 教学过程1.导入(5分钟)利用数学故事或数学历史素材,引出完全平方公式的概念,激发学生的学习兴趣。

2.呈现(10分钟)通过PPT展示完全平方公式的定义和推导过程,引导学生理解并掌握公式的含义。

人教版数学八年级上册14.2.2.1《完全平方公式》教案1

人教版数学八年级上册14.2.2.1《完全平方公式》教案1

人教版数学八年级上册14.2.2.1《完全平方公式》教案1一. 教材分析完全平方公式是八年级数学的重要内容,它对于学生理解代数式的构成和解决实际问题具有重要意义。

本节课通过讲解完全平方公式的概念、推导过程以及应用,使学生掌握完全平方公式的运用,为后续学习平方差公式、立方公式等打下基础。

二. 学情分析学生在七年级时已经学习了有理数的乘方,对代数式有一定的了解。

但完全平方公式的推导和应用还需要学生具备一定的逻辑思维能力和转化能力。

因此,在教学过程中,要关注学生的知识基础,引导学生逐步理解和掌握完全平方公式。

三. 教学目标1.知识与技能:使学生理解完全平方公式的概念,掌握完全平方公式的推导过程和应用。

2.过程与方法:通过观察、分析、归纳、推理等方法,培养学生解决代数问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和探究精神。

四. 教学重难点1.完全平方公式的推导过程。

2.完全平方公式的应用。

五. 教学方法采用问题驱动法、合作探究法、讲解法等,引导学生主动参与,发挥学生的积极性、主动性和创造性。

六. 教学准备1.PPT课件。

2.练习题。

七. 教学过程1.导入(5分钟)利用PPT展示生活中的完全平方现象,如足球场、篮球场的尺寸,让学生感受完全平方公式的实际应用。

引导学生思考:这些尺寸是如何得出的?激发学生对完全平方公式的兴趣。

2.呈现(10分钟)讲解完全平方公式的定义和推导过程,如:(a + b)² = a² + 2ab + b²通过举例说明完全平方公式的应用,如:(3 + 4)² = 3² + 2×3×4 + 4²25 + 24 + 16 = 813.操练(10分钟)让学生在课堂上完成练习题,巩固对完全平方公式的理解和运用。

练习题包括:(1)计算下列完全平方:(2)如果一个正方形的边长是6cm,那么它的面积是多少?4.巩固(10分钟)让学生分组讨论,互相讲解练习题的解题过程,巩固对完全平方公式的掌握。

新人教版初中数学八年级上册14.2.2完全平方公式2公开课优质课教学设计

新人教版初中数学八年级上册14.2.2完全平方公式2公开课优质课教学设计

14.2.2 完全平方公式教学目标:完全平方公式的推导及其应用;完全平方公式的几何解释;视学生对算理的理解,有意识地培养学生的思维条理性和表达能力.教学重点与难点:完全平方公式的推导过程、结构特点、几何解释,灵活应用.教学过程:一、提出问题,学生自学问题:根据乘方的定义,我们知道:a2=a•a,那么(a+b)2应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?(1)(p+1)2 = (p+1)(p+1) = _______; (m+2)2 = _______;(2)(p−1)2 = (p−1)(p−1) = _______; (m−2)2 = _______;学生讨论,教师归纳,得出结果:(1) (p+1)2 = (p+1)(p+1) = p2+2p+1(m+2)2 = (m+2)(m+2) = m2+ 4m+4(2) (p−1)2 = (p−1)(p−1) = p2−2p+1(m−2)2 = (m−2)(m−2) = m2− 4m+4分析推广:结果中有两个数的平方和,而2p=2•p•1,4m=2•m•2,恰好是两个数乘积的二倍(1)(2)之间只差一个符号.推广:计算(a+b)2 = __________;(a−b)2 = __________.得到公式,分析公式结论:(a+b)2=a2+2ab+b2 (a−b)2=a2−2ab+b2即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.二、几何分析:你能根据图(1)和图(2)的面积说明完全平方公式吗?图(1)大正方形的边长为(a+b),面积就是(a+b)2,同时,大正方形可以分成图中①②③④四个部分,它们分别的面积为a 2、ab 、ab 、b 2,因此,整个面积为a 2+ab+ab+b 2 = a 2+2ab+b 2,即说明(a+b)2 = a 2+2ab+b 2.类似地可由图(2)说明(a −b)2 = a 2−2ab+b 2.三、例题:例1.应用完全平方公式计算:(1)( 4m+n)2 (2)(y −21)2 (3)(−a −b)2 (4)(b −a)2解答:(1)( 4m+n)2 = 16m 2+8mn+n 2(2) (y −21)2 = y 2−y+41 (3) (−a −b)2 = a 2+2ab+b 2(4) (b −a)2 = b 2−2ba+a 2例2.运用完全平方公式计算:(1)1022 (2)992解答:(1)1022 = (100+2)2 = 10000+400+4 = 10404(2)992 = (100−1)2 = 10000−200+1 = 9801四、添括号法则在公式里的运用问题:在运用公式的时候,有些时候我们需要把一个多项式看作一个整体,把另外一个多项式看作另外一个整体,例如:(a+b+c)(a −b+c)和(a+b+c)2,这就需要在式子里添加括号;那么如何加括号呢?它有什么法则呢?它与去括号有何关系呢?学生回顾去括号法则,在去括号时:a+(b+c) = a+b+c ,a −(b+c) = a −b −c反过,就得到了添括号法则:a+b+c = a+(b+c),a −b −c = a −(b+c)理解法则:如果括号前面是正号,括到括号里的各项都不变符号;•如果括号前面是负号,括到括号里的各项都改变符号.也是:遇“加”不变,遇“减”都变.总结:添括号法则是去括号法则反过得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,•所以我们可以用去括号法则验证所添括号后的代数式是否正确.五、小结:1.完全平方公式的结构特征:公式的左边是一个二项式的完全平方;右边是三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍.2.添括号法则:如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.利用添括号法则可以将整式变形,从而灵活利用乘法公式进行计算,灵活运用公式进行运算.。

人教初中数学八上《完全平方公式》教案 (公开课获奖)

人教初中数学八上《完全平方公式》教案 (公开课获奖)

完全平方公式教学目标:一、知识与技能1、通过对完全平方公式的探索和推导,进一步发展符号(字母)的识别运用能力和推理能力。

2、培养学生进一步地掌握、灵活运用公式的能力。

二、过程与方法1、通过实际生活背景(实验田面积计算),运用多项式乘法法则,推导出公式(a+b)2=a2+2ab+b22、关于公式(a-b) 2=a2-2ab+b2的获得,既可照(a+b)2的公式推导方法,但利用(a-b)2=[a+(-b)]2更能体现公式使用条件的广泛性和“代数”的意义。

三、情感与态度对公式的推导及理解,培养学生思维严密的习惯。

来源于生活实际的数学问题,是用以培养学生热爱数学并用运用数学的好习惯。

对公式结构的分析和认识,使学生有条理的思考和语言表达能力。

教学重难点:重点对公式(a±b)2=a2±2ab+b2的理解难点:完全平方公式的运用课前准备:投影仪、幻灯片教学设计:教师活动学生活动说明引导学生用多项式乘法计算(a+b) 2指导学生对公式(a-b)2=a2-2ab+b2的推导总结二公式,由学生叙述公式内容。

例1的讲解,板书给出组织学生巩固新课,完成随堂练习。

学生由面积相等得出(a+b) 2=a2+2ab+b2学生分小组计算,统一结论。

分组进行,各抒己见,然后小组统一。

表述公式,指出二公式的特点、同异。

学生听讲。

学生独立完成,相互评价,可组织学生上讲台演算。

由现实情景中数学结论,激发学生学习热情此活动在于验证引例的正确,应要求学生把展开式按a的降幂排列。

显然学生有两种截然不同的推导办法,不强求,可由学生自我评价。

板书公式,强调公式内容、结构。

讲解例题应注重“套”的过程,注意符号、系数、指数等。

补充一些简单例题,主要目的是巩固公式(a+b+c) 2可视学生情况而定。

教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .D CA BD CABDC A B于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?DCAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .D CAB求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得E DC A B P2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算:(1))1)(1(yx x y x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学人教版八年级上册第四单元第2-2课《完全平方公式》优质课公开课教案教师资格证面试试讲教案
1教学目标
1. 经历完全平方公式的推导过程、几何解释,进一步发展符号感和推理能力.
2. 理解完全平方公式的结构特征并能灵活应用公式进行计算.
2学情分析
1.完全平方公式的结构特征及公式直接运用。

2.对公式中字母a、b的广泛含义的理解与正确应用。

3重点难点
4教学过程
4.1第一学时
教学活动
1【导入】新课导入
计算下列各式
(p+1)² =(p+1)(p+1) = _________;
(m+2)²= _________;
(p-1)² = (p-1)(p-1)=________;
(m-2)² = __________.
[设计意图]通过对特殊多项式相乘的计算,既复习了旧知识,又为接下来学习完全平方公式做了铺垫。

2【导入】猜测
(a+b)²=__________
(a-b)²=__________
[设计意图]让学生通过找规律对结果有一定的预见性,激发学生的积极性。

3【讲授】观察归纳。

相关文档
最新文档