高中数学解题方法之构造法(含答案)

合集下载

高中数学构造法求解题技巧

高中数学构造法求解题技巧

高中数学构造法求解题技巧高中数学构造法是一种解题思路和技巧,它通过构造适当的数学结构,使得问题的求解变得更加简单明了。

构造方法在高中数学中应用广泛,可以用于解决各类题型,包括代数题、几何题、概率题等等。

一、构造法的基本思想构造法是一种通过建立合适的数学结构,简化问题的解决方法和步骤的思想。

通过构造一些符合题意的数学对象,我们可以发现一些规律,从而提供问题的解答方式。

二、构造法的常见技巧1.构造等差数列或等比数列在解决一些代数问题时,我们可以尝试构造一个等差数列或者等比数列。

通过构造这样的数列,我们可以找到其中的规律,从而解决问题。

2.构造图形在解决几何问题时,我们可以尝试构造一个与原图形相似或者关联的图形。

通过构造这样的图形,我们可以将复杂的几何问题简化为一些基本的几何性质,从而解决问题。

3.构造排列组合在解决一些概率问题和组合问题时,我们可以尝试构造排列组合。

通过构造排列组合,我们可以得到一些计算公式或者规律,从而解决问题。

4.构造方程组在解决一些代数问题时,我们可以尝试构造一个方程组。

通过构造这样的方程组,我们可以得到一些方程之间的关系,从而解决问题。

5.构造递推公式在解决一些数列问题时,我们可以尝试构造一个递推公式。

通过构造递推公式,我们可以找到数列中的规律,从而解决问题。

三、构造法的实例分析1.构造等差数列例题:有一些连续的整数,它们的和是45,这些整数中最小的是多少?解析:我们可以假设这些连续的整数的首项是x,公差是1,那么这些整数的和可以表示为:x+(x+1)+(x+2)+...+(x+n)=45。

通过求和公式,我们可以得到(x+45)/(n+1)=45,进一步化简得到x=15-n。

我们可以发现,当n=30时,x=15-n=0,此时连续整数中的最小值为0。

2.构造图形例题:在平面直角坐标系中,有一条线l过点(0, 0)和(1, 2),线l与x轴、y轴以及x=y共同围成一个三角形,求这个三角形的面积。

例析构造法在高中数学解题中的应用

例析构造法在高中数学解题中的应用

㊀㊀解题技巧与方法㊀㊀116㊀例析构造法在高中数学解题中的应用例析构造法在高中数学解题中的应用Һ张文琴1㊀许零筝2㊀(1.台州市第一中学,浙江㊀台州㊀318000;2.三门第二高级中学,浙江㊀台州㊀317199)㊀㊀ʌ摘要ɔ构造法是指依据题设条件㊁结论特征和性质,构造辅助内容,使其成为全新的方程㊁函数㊁图像㊁代数式等.构造法在数学解题中的应用,彻底打破了定向思维的束缚,开辟了全新的解题视角,有效提升了学生的数学解题能力.基于此,文章分析了构造法在高中数学解题中的应用价值,并针对构造法在高中数学解题中的具体应用进行了详细探究.ʌ关键词ɔ高中数学;解题能力;构造法;核心素养常规的解题思路基本上都是从已知条件向所求结论展开定向思考.但针对部分题目来说,常规的解题思路已经无法满足解题要求.此时,学生可以借助创造性的思维,根据题目中所给出的已知条件㊁结论特征等,构造辅助内容,使其成为全新的方程㊁函数㊁图像㊁代数式等,进而将已知条件和结论联系起来,形成解题思路.从构造法的内涵上来说,其中也蕴含了大量的数学思想,如:类比㊁归纳㊁转化.学生在创造性解答问题的过程中,不仅促进了数学知识的内化㊁迁移,也实现了数学思维的发展,这与数学核心素养的要求不谋而合.鉴于此,强化学生利用构造法解题,已经成为当前高中数学教学的重中之重.一㊁构造法与高中数学解题教学(一)构造法的内涵构造法在高中数学解题中尤为常见,主要思路是运用所学数学知识,以题目中的已知条件㊁所求结论作为解题出发点,通过综合性分析,构造出能够满足题目已知条件和所求结论的新形式,进而促进原有数学问题转化,使原本繁杂的数学问题变得简单㊁清晰,以便于学生迅速形成新的解题思路.鉴于构造法的内涵,其在解题中呈现出五个显著的特点:其一,构造性,主要是借助创新思维构造模型,立足于数学问题的本质,促进数学问题的简单化;其二,直观性,主要是借助已有数学知识,结合数学题目构建新的模型,形成解题思路;其三,可行性,构造法在高中数学解题中应用范围比较广,具备极强的实用性;其四,灵活性,在运用构造法解答数学问题时,学生必须具备丰厚的知识储备量,并结合自身的解题习惯,自行选择构造数学模型的类型;其五,多样性,构造法在应用时没有定式,学生可结合具体的题目要求,构造不同的解题模型.(二)构造法的应用价值首先,提高了学生的数学解题能力.构造法作为一种创造性解决问题的方法,可以使得题目中的隐藏条件变得可视化.因此,构造法的应用有效地消除了学生在解题过程中的畏难情绪,有助于强化学生的数学解题思路,使其逐渐强化解题能力.其次,提高了学生的数学思维能力.数学学科对学生的思维能力要求比较高,而学生的思维能力和解题能力之间息息相关.构造法的应用不仅促进了学生归纳㊁类比㊁转化数学思想的发展,也促进了学生数学思维能力的发展,这为学生更好地解决数学问题奠定了坚实的基础.最后,提高了学生的知识转化能力.高中数学题目极具综合性,学生在解题时,只有将各个部分的数学知识点整合起来,通过数学知识的迁移和转化,才能完成数学题目的解答.构造法的应用将代数㊁几何㊁函数等知识点整合起来,促进了数学知识的转化,使学生能灵活运用数学知识,从不同的角度思考问题㊁解决问题.二㊁构造法在高中数学解题中的具体应用(一)构造方程,解答数学问题构造方程在高中数学解题中尤为常见,主要是立足于方程与函数之间的关系,结合题目已知条件,构造方程,解答相关的数学问题.例1㊀已知(m-n)x2-4(n-x)(x-m)=0,求证:参数m,x,n所构成的数列为等差数列.解析㊀这一数学题目与数列相关.如果按照传统的解题思路,那么学生所面临的求解难度比较大,甚㊀㊀㊀解题技巧与方法117㊀㊀至还需要大量的运算,极易出现错解的现象.鉴于此,可通过构造方程,从题目中所求结论出发,将其与题目中的已知条件结合起来,进而形成明确的证明思路:构造二次方程(n-x)t2-(m-n)t+(x-m)=0.观察其各项系数特点,可发现各项系数之和为零,故方程必有一根为1.又恰好该二次方程的根的判别式Δ=0,故该二次方程有两个等根,即由根与系数的关系,得t1t2=x-mn-x=1,即2x=m+n,所以得证.由此可见,借助构造方程的思想,从新的角度思考和分析问题,使得原本复杂的数学问题简单化,真正提升了学生的数学解题效率.(二)构造数列,解答数学问题在高中数学教学中,数列知识尤为重要.解答这一类型数学问题时,可灵活运用构造数列的方式,结合题目中相关信息和条件要求,通过替换等方式,构建新的数列,旨在简化数学问题,提升解题效率.例2㊀已知n为正整数,求证:1n+1+1n+2+1n+3+ +13n+1>1.解析㊀在这一题目中,已知条件非常简单,只有n为正整数.鉴于此,可运用构建数列的方式寻求证明思路:令1n+1+1n+2+1n+3+ +13n+1=an,则:an+1-an=13n+4+13n+3+13n+2-1n+1=13n+4+13n+2-23n+3=2(3n+2)(3n+3)(3n+4).因为n为正整数,所以an+1-an>0,因此数列{an}为递增数列,根据a1>1可得出该不等式成立.由此可见,按照常规思路很难求解此题,甚至还会在解题的过程中,由于步骤多㊁计算复杂等,导致出现错误.鉴于此,可通过构造数列,使复杂问题简单化,帮助学生顺利解题.(三)构建函数,求解数学问题在高中数学解题中,构造函数也尤为常见,其与构造方程本质相同.在解题中,可结合具体题目,构造函数,以此分析并解决数学问题.例3㊀已知a<b,a,b,c均为正实数,求证:ab<a+cb+c.解析㊀对于这一题目,如果按照传统思路和方法进行证明,则极易陷入解题误区.鉴于此,可融入构造法,通过分析题目中已知条件,构建函数模型,形成证明思路:假设c=x,将a+cb+c构造成函数,即f(x)=a+xb+x,将f(x)=a+xb+x进行转化,即f(x)=a+xb+x=a-bb+x+1.该函数为增函数,递增区间为(0,+ɕ).又因为a,b,c均为正实数,因此ab<a+cb+c.例4㊀已知关于x的方程x2-(2a+1)sin(cosx)+1-4a2=0存在唯一的实数解,求实数a的值.解析㊀该题目为二次方程问题.因为题目中含有参数,所以学生在解题时常常毫无头绪.鉴于此,可结合已知条件和未知参数,通过构造函数的方式,形成解题思路:构造函数f(x)=x2-(2a+1)sin(cosx)+1-4a2.因为f(-x)=f(x),所以该函数为偶函数.假设x0为f(x)=0的解,则-x0也为函数f(x)=0的解,即-x0=x0,因此,x0=0.所以f(0)=02-(2a+1)sin(cos0)+1-4a2,即(2a+1)(1-2a-sin1)=0,解得a=-12或a=1+sin12.由此可见,在遇到这一类型的问题时,学生可通过对已知条件㊁所求结论的分析,构造一个新的函数关系,将所求的问题转化为函数问题,进而运用函数的相关性质进行解答.(四)构造几何图形,解答数学问题在解答数学问题时,由于部分题目难度非常大,并且已知条件复杂,因此学生在分析题目时,常常难以理清思路,导致解题陷入困境.鉴于此,可运用构造法,结合题目中已知条件,构造出直观的几何图形,进而打开解题思路.例5㊀求函数f(x)=x2-4x+13+x2-10x+26的最小值.㊀㊀解题技巧与方法㊀㊀118㊀解析㊀这一题目已知条件简单,但如果按照常规思路进行解题,学生则难以形成清晰的解题思路.鉴于此,可通过构造图形的方式,将题目中的已知条件直观地呈现出来.㊀f(x)=x2-4x+13+x2-10x+26=(x-2)2+(0-3)2+(x-5)2+[0-(-1)]2.㊀图1构造平面几何图形(如图1所示),假设平面上有一点P(x,0),定点M(2,3),N(5,-1).如此,所求问题转化为求P到M,N距离的最小值.结合所学知识可知,当三点共线时,f(x)存在最小值,即f(x)min=MN=(2-5)2+(3+1)2=5.由此可见,借助构造平面图形的方式,可将原本繁杂的数学问题简单化.学生通过观察,构建已知条件和所求结论之间的关系,并运用所学知识灵活解答问题.(五)构造向量,解答数学问题在高中阶段,构造向量是一种非常重要的解题方式.在具体的高中数学解题中,可运用构造法,将不等式问题㊁函数问题等构造成向量问题,进而运用向量的相关知识进行解答.例6㊀假设函数y=2x+1+4-x,求该函数的最大值.解析㊀这是一道经典的函数问题,如果按照传统的解题思路解答问题,则会产生大量的计算步骤,极易出现计算错误.鉴于此,可借助构造法,运用向量的相关知识㊁性质进行解答.假设向量m=(2,1),向量n=(x+1,4-x).由于m㊃nɤm㊃n,因此y=m㊃nɤ5.故当x=3时,函数y=2x+1+4-x存在最大值,为5.例7㊀在әABC中,øBCA=θ,CB=a,CA=b,AB=c,试对әABC的余弦定理进行证明.解析㊀可结合题目中的已知条件,构造向量:向量CBң=a,向量CAң=b,向量ABң=c.已知c=a-b,则c2=c㊃c=(a-b)㊃(a-b)=a㊃a+b㊃b-2a㊃b=a2+b2-2|a||b|cosθ.即c2=a2+b2-2abcosθ.由此可见,借助构造向量的方法,可将原本繁杂的数学问题简单化.学生从新的视角出发,根据新的思维模式,运用所学的知识思考问题㊁分析问题㊁解答问题.三㊁基于构造法解答数学问题的教学启示课堂教学实践证明,通过构造法在高中数学解题中的应用,真正实现了 化繁为简㊁由难到易 的目的.学生结合题目中的已知条件和所求问题,构造新的关系,促进所求问题的转化.可以这样说,构造法在解题中的应用不仅提升了学生的数学解题能力,也发展了学生的思维能力,更加强了学生的数学综合素养.鉴于此,教师在日常教学中,应有意识地渗透构造法,加深学生对构造法的理解,使其能掌握构造法.一方面,学生的构造意识并不是在短时间内形成的,唯有通过潜移默化地渗透,才能达到预期的目标;另一方面,虽然构造法在解题中占据一定的优势,但并不意味着构造法适用于每一道题目,因此教师在日常解题中要带领学生积极开展一题多解训练,帮助学生掌握多种解题方法,便于学生在对比中了解构造法的解题优势和具体应用,使其在日后解题中能够合理利用这一方法.结㊀语构造法在高中数学解题中尤为常见,通过构造函数㊁构造方程㊁构造数列㊁构造平面图形等手段,可将原本复杂的数学问题简单化,便于学生形成新的解题思路,从新的视角分析问题㊁解答问题.鉴于此,教师在日常教学中,应结合实际情况,有意识地渗透构造法,不断提升学生的解题能力.ʌ参考文献ɔ[1]庄素慧.基于 构造法 的高中数学解题思路探索[J].数理化解题研究,2022(31):55-57.[2]张宏敏.应用构造法在高中数学中的解题策略[J].数理天地(高中版),2022(18):49-51.[3]刘海杰.构造法在高中数学解题中的运用措施分析[J].数理化解题研究,2022(12):14-16.[4]丁爱年.高中数学解题教学中构造法运用分析[J].数学之友,2022(04):25-27.[5]张焕生.解析构造法在高中数学解题中的运用[J].数理天地(高中版),2022(02):14-15.[6]刘晓妮.高中数学解题中应用构造法的总结[J].数理化解题研究,2021(31):65-66.。

高中数学解题方法系列⑦——构造法在导数中的应用

高中数学解题方法系列⑦——构造法在导数中的应用

解题方法系列⑦——构造法在导数中的应用素养解读:此类涉及到已知f (x )与f ′(x )的一些关系式,比较有关函数式大小的问题,可通过构造新的函数,创造条件,从而利用单调性求解. 类型一:f ′(x )g (x )±f (x )g ′(x )型 常用构造形式为F (x )=f (x )·g (x )或F (x )=f (x )g (x ),这类形式是对u ·v ,uv 型函数导数计算的推广及应用,u ·v 型导函数中体现的是“+”法,uv 型导函数中体现的是“-”法.因此当导函数形式中出现“+”法形式时,优先考虑构造u ·v 型,出现“-”法形式时,优先考虑构造uv 型.【典例1】 (1)定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<12,则不等式f (lg x )>lg x +12的解集为________.(2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为________.[切入点] (1)由f ′(x )-12<0,构造函数g (x )=f (x )-12x ;(2)由f ′(x )g (x )+f (x )g ′(x )构造函数F (x )=f (x )g (x ). [解析] (1)设g (x )=f (x )-12x , ∵f ′(x )<12,∴g ′(x )=f ′(x )-12<0, ∴g (x )为R 上的减函数,又f (1)=1, ∴f (lg x )>lg x +12=12lg x +12,即g (lg x )=f (lg x )-12lg x >12=g (1)=f (1)-12=g (lg10), ∴lg x <lg10,又y =lg x 为增函数, ∴0<x <10,则不等式的解集为(0,10). (2)设F (x )=f (x )g (x ),∵f ′(x )g (x )+f (x )g ′(x )>0,即F ′(x )>0.∴F(x)在(-∞,0)上递增,又∵f(x),g(x)分别是定义R上的奇函数和偶函数,∴F(x)为奇函数,关于原点对称,∴F(x)在(0,+∞)上也是增函数,∵f(-3)g(-3)=0,∴f(3)g(3)=0,∴F(x)=f(x)g(x)<0的解集为{x|x<-3或0<x<3}.[答案](1)(0,10)(2){x|x<-3或0<x<3}(1)对于不等式f′(x)+g′(x)>0(或<0),构造函数F(x)=f(x)+g(x).(2)对于不等式f′(x)-g′(x)>0(或<0),构造函数F(x)=f(x)-g(x).特别地,对于不等式f′(x)>k(或<k)(k≠0),构造函数F(x)=f(x)-kx. (3)对于不等式f′(x)g(x)+f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x).(4)对于不等式f′(x)g(x)-f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x)(g(x)≠0).类型二:xf′(x)±nf(x)型(n为常数)在类型一中若g(x)=x或g(x)=x n,则F′(x)即为此种类型,我们可以思考形如此类函数的一般形式.F(x)=x n f(x),F′(x)=nx n-1f(x)+x n f′(x)=x n-1[nf(x)+xf′(x)];F(x)=f(x) x n,F′(x)=f′(x)·x n-nx n-1f(x)x2n=xf′(x)-nf(x)x n+1;结论:(1)出现nf(x)+xf′(x)形式,构造函数f(x)=x n f(x);(2)出现xf′(x)-nf(x)形式,构造函数F(x)=f(x) x n.我们根据得出的结论去解决典例2.【典例2】(1)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞) C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)(2)已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>-2f(x),若g(x)=x2f(x),则不等式g(x)<g(1)的解集是()A.(-∞,1) B.(-1,1)C.(-∞,0)∪(0,1) D.(-1,0)∪(0,1)[切入点](1)由xf′(x)-f(x)<0构造函数F(x)=f(x)x;(2)由xf′(x)+2f(x)>0想到g(x)=x2f(x)的导数及单调性.[解析](1)令F(x)=f(x)x,因为f(x)为奇函数,所以F(x)为偶函数,由于F′(x)=xf′(x)-f(x)x2,当x>0时,xf′(x)-f(x)<0,所以F(x)=f(x)x在(0,+∞)上单调递减,根据对称性,F(x)=f(x)x在(-∞,0)上单调递增,又f(-1)=0,f(1)=0,数形结合可知,使得f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1).故选A.(2)∵f(x)是定义域为{x|x≠0}的偶函数,∴f(-x)=f(x),对任意正实数x满足xf′(x)>-2f(x),即xf′(x)+2f(x)>0.∵g(x)=x2f(x),∴g′(x)=2xf(x)+x2f′(x)>0,∴函数g(x)在(0,+∞)上单调递增,在(-∞,0)单调递减;由不等式g(x)<g(1),∴|x|<1且x≠0,得-1<x<0或0<x<1,故选D.[答案](1)A(2)D(1)对于xf′(x)+nf(x)>0型,构造F(x)=x n f(x),则F′(x)=x n-1[xf′(x)+nf(x)](注意对x n-1的符号进行讨论),特别地,当n=1时,xf′(x)+f(x)>0,构造F(x)=xf(x),则F′(x)=xf′(x)+f(x)>0.(2)对于xf′(x)-nf(x)>0(x≠0)型,构造F(x)=f(x)x n,则F′(x)=xf′(x)-nf(x)x n+1(注意对x n+1的符号进行讨论),特别地,当n=1时,xf′(x)-f(x)>0,构造F(x)=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2>0.类型三:f ′(x )±λf (x )(λ为常数)型在类型一中若g (x )=e x ,那么在F ′(x )中会出现e x 量,这时可以考虑构造F (x )=f (x )·e x 或F (x )=f (x )e x 型,一般地F (x )=e nxf (x ), F ′(x )=n ·e nx f (x )+e nx f ′(x )=e nx [f ′(x )+nf (x )]; F (x )=f (x )e nx ,F ′(x )=f ′(x )e nx -n e nx f (x )e 2nx =f ′(x )-nf (x )e nx ;结论:(1)出现f ′(x )+nf (x )形式,构造函数F (x )=e nx f (x ); (2)出现f ′(x )-nf (x )形式,构造函数F (x )=f (x )e nx . 我们根据得出的结论去解决典例3.【典例3】 (1)f (x )为定义在R 上的可导函数,且f ′(x )>f (x ),对任意正实数a ,则下列式子成立的是( ) A .f (a )<e a f (0) B .f (a )>e a f (0) C .f (a )<f (0)e aD .f (a )>f (0)e a(2)已知函数f (x )在R 上可导,其导函数为f ′(x ),若f (x )满足:(x -1)[f ′(x )-f (x )]>0,f (2-x )=f (x )·e 2-2x ,则下列判断一定正确的是( ) A .f (1)<f (0) B .f (2)>e 2f (0) C .f (3)>e 3f (0)D .f (4)<e 4f (0)[切入点] (1)由f ′(x )-f (x )>0构造函数g (x )=f (x )e x ;(2)由(x -1)[f ′(x )-f (x )]>0构造函数g (x )=f (x )e x . [解析] (1)令g (x )=f (x )e x ,∴g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x >0.∴g (x )在R 上为增函数.又∵a >0,∴g (a )>g (0),即f (a )e a >f (0)e 0,即f (a )>e a f (0).故选B. (2)令g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )e x ,∵(x -1)[f ′(x )-f (x )]>0,∴当x <1时,f ′(x )-f (x )<0,∴g ′(x )<0, ∴g (x )在(-∞,1)上为减函数, ∴g (-1)>g (0),即f (-1)e -1>f (0)e 0=f (0), ∵f (2-x )=f (x )e 2-2x ,∴f (3)=f (-1)e 4>e -1f (0)·e 4=e 3f (0),故选C. [答案] (1)B (2)C(1)对于f ′(x )+nf (x )型构造F (x )=e nx f (x ),F ′(x )=e nx [f ′(x )+nf (x )]. 特别地n =1时,F (x )=e x f (x ),F ′(x )=e x [f ′(x )+f (x )]. (2)对于f ′(x )-nf (x )型构造F (x )=f (x )e nx ,F ′(x )=f ′(x )-nf (x )e nx .特别地n =1时,F (x )=f (x )e x ,F ′(x )=f ′(x )-f (x )e x .类型四:f ′(x )与sin x 、cos x 组合型类型一中当g (x )=sin x 或g (x )=cos x 时,F ′(x )会出现f ′(x )与sin x 、cos x 的结合形式,我们一起看看常考的几种形式. F (x )=f (x )sin x ,F ′(x )=f ′(x )sin x +f (x )cos x ; F (x )=f (x )sin x ,F ′(x )=f ′(x )sin x -f (x )cos x sin 2x ;F (x )=f (x )cos x ,F ′(x )=f ′(x )cos x -f (x )sin x ; F (x )=f (x )cos x ,F ′(x )=f ′(x )cos x +f (x )sin x cos 2x我们根据得出的结论去解决典例4.【典例4】 (2019·湖南益阳调研)定义在⎝ ⎛⎭⎪⎫0,π2上的函数f (x ),f ′(x )是它的导函数,恒有f ′(x )>f (x )·tan x 成立,则有( ) A.3f ⎝ ⎛⎭⎪⎫π6<f ⎝ ⎛⎭⎪⎫π3B.3f ⎝ ⎛⎭⎪⎫π6>2cos1·f (1)C .2f ⎝ ⎛⎭⎪⎫π4<6f ⎝ ⎛⎭⎪⎫π6D.2f ⎝ ⎛⎭⎪⎫π4>f ⎝ ⎛⎭⎪⎫π3[切入点] 由f ′(x )>f (x )tan x ,构造函数g (x )=f (x )·cos x .[解析] 由于f ′(x )>f (x )tan x 且x ∈⎝ ⎛⎭⎪⎫0,π2,则f ′(x )cos x -f (x )sin x >0.设g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )sin x >0,所以g (x )在⎝ ⎛⎭⎪⎫0,π2上是增函数,所以g ⎝ ⎛⎭⎪⎫π3>g ⎝ ⎛⎭⎪⎫π6,即f ⎝ ⎛⎭⎪⎫π3cos π3>f ⎝ ⎛⎭⎪⎫π6cos π6,即f ⎝ ⎛⎭⎪⎫π3>3f ⎝ ⎛⎭⎪⎫π6.故A 正确.同理可得B ,C ,D 错误.故选A. [答案] A若导函数中出现了sin x 、cos x 、tan x 与f ′(x )的组合形式,根据F ′(x )的结构特点可考虑构造F (x )=f (x )sin x ,F (x )=f (x )cos x 等形式.1.(2020·太原十二中月考)设a >0,b >0,e 是自然对数的底数,则( ) A .若e a +2a =e b +3b ,则a >b B .若e a +2a =e b +3b ,则a <b C .若e a -2a =e b -3b ,则a >b D .若e a -2a =e b -3b ,则a <b[解析] 因为a >0,b >0,所以e a +2a =e b +3b =e b +2b +b >e b +2b .对于函数y =e x +2x (x >0),因为y ′=e x +2>0,所以y =e x +2x 在(0,+∞)上单调递增,因而a >b 成立.故选A. [答案] A2.若函数f (x )的定义域为R ,且满足f (2)=2,f ′(x )>1,则不等式f (x )-x >0的解集为________.[解析] 令g (x )=f (x )-x , ∴g ′(x )=f ′(x )-1.由题意知g ′(x )>0,∴g (x )为增函数. ∵g (2)=f (2)-2=0, ∴g (x )>0的解集为(2,+∞). [答案] (2,+∞)。

数学-导数压轴题之构造函数和同构异构详述(解析版)

数学-导数压轴题之构造函数和同构异构详述(解析版)

导数章节知识全归纳导数压轴题之构造函数和同构异构(详述版)一.考试趋势分析:由于该内容在高考内容中考试频率相对比较低,然而它却在我们平时考试或是诊断型考试中出现又较高,并且该内容属于高中数学里面导数的基本考试题型之一,基本上尖子生里面的基础题,又是一般学生里面的压轴题,所以老师你觉得讲还是不讲呢?针对这个情况,作者进行了多年研究和分析,这个内容一定要详细讲述,并且结合技巧性让学生能够熟练掌握,优生几秒钟,一般学生几分钟就可以完成该题解答,是设计这个专题的核心目的! 二.所用知识内容: 1.导数八大基本求导公式:①0;C '=(C 为常数) ②()1;nn xnx-'=③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x xe e '= ⑥()ln x xa a a '=;⑦()1ln x x '=; ⑧()1l g log a a o x e x'= 2.常见构造:和与积联系:()()f x xf x '+,构造()xf x ;22()()xf x x f x '+,构造2()x f x ;3()()f x xf x '+,构造3()x f x ;…………………()()nf x xf x '+,构造()n x f x ;()()f x f x '+,构造e ()x f x .等等.减法与商联系:如()()0xf x f x ->',构造()()f x F x x=;()2()0xf x f x ->',构造2()()f x F x x =;………………… ()()0xf x nf x ->',构造()()nf x F x x =. ()()f x f x '-,构造()()ex f x F x =,()2()f x f x '-,构造2()()e xf x F x =,……………… ()()f x nf x '-,构造()()enxf x F x =, 3.同构异构方法:1.顺反同构:顺即为平移拉伸后的同构函数,反即为乘除导致的凹凸反转同构函数. 2.同位同构:①加减同构是指在同构的过程中“加减配凑”,从而完成同构;②局部同构是指在同构过程中,我们可以将函数的某两个或者多个部分构造出同构式,再构造同构体系中的亲戚函数即可;③差一同构是指指对跨阶以及指数幂和对数真数差1,我们往往可考虑用同构秒杀之.三.导数构造函数典型题型: 1.构造函数之和差构造:例:1.已知定义在R 上的函数()f x 满足()220f =,且()f x 的导函数()f x '满足()262f x x >'+,则不等式()322f x x x >+的解集为( )A .{2}xx >-∣ B .{2}xx >∣ C .{2}xx <∣ D .{2∣<-xx 或2}x > 【答案】B 【分析】令函数()()322g x f x x x =--,求导,结合题意,可得()g x 的单调性,又()20g =,则原不等式等价于()()2g x g >,根据()g x 的单调性,即可得答案. 【详解】令函数()()322g x f x x x =--,则()()2620g x f x x =--'>',所以()g x 在R 上单调递增.因为()2g =()3222220f -⨯-⨯=,所以原不等式等价于()()02g x g >=,所以所求不等式的解集为{2}.xx >∣ 故选:B2.定义在()0,∞+上的函数()f x 满足()()10,42ln 2xf x f '->=,则不等式()xf e x <的解集为( ) A .()0,2ln 2 B .(),2ln 2-∞ C .()2ln 2,+∞ D .()1,2ln 2【答案】B 【分析】构造函数()()ln g x f x x =-,()0,x ∈+∞,先判断其导函数的正负,来确定该函数的单调性,再化简不等式为()()4xg e g <,根据单调性解不等式即可.【详解】设()()ln g x f x x =-,()0,x ∈+∞,则()()()110xf x g x f x x x'-''=-=>, 故()g x 在()0,∞+上单调递增,()()2l 4n 22ln 2404ln g f -===-,不等式()xf ex <,即()ln 0xxf e e-<,即()()4x g e g <,根据单调性知04x e <<,即ln 44x e e <=,得ln 4x <,即2ln 2x <,故解集为(),2ln 2-∞. 故选:B. 【点睛】 思路点睛:利用导数解不等式时,常常要构造新函数,新函数一方面与已知不等式有关,一方面与待求不等式有关,再结合导数判断单调性,利用单调性解不等式.变式:1.已知奇函数()f x 在R 上的导函数为()'f x ,且当(],0x ∈-∞时,()'1f x <,则不等式()()2101110102021f x f x x --+≥-的解集为( ) A .()2021,+∞ B .[)2021,+∞ C .(],2021-∞ D .(),2021-∞【答案】C 【分析】利用()'1f x <构造函数g (x ),即可得到函数g (x )的单调性,再将所解不等式转化为用g (x )表达的抽象函数不等式而得解. 【详解】因()'1f x <,即()10f x '-<,令()()g x f x x =-,则()0g x '<,()g x 在(,0]-∞上递减, 又()f x 是R 上的奇函数,则()g x 也是R 上的奇函数,从而有()g x 在R 上单调递减, 显然()()f x g x x =+,则有()()2101110102021f x f x x --+≥-(21011)(21011)[(1010)(1010)]2021g x x g x x x ⇔-+--+++≥-(21011)21011(1010)10102021g x x g x x x ⇔-+--+--≥- (21011)(1010)g x g x ⇔-≥+由()g x 在R 上单调递减得2101110102021x x x -≤+⇔≤, 所以所求不等式的解集为(],2021-∞. 故选:C 【点睛】关键点睛:解给定导数值特征的抽象函数不等式,根据导数值特征构造对应函数是解题的关键.2.构造函数之乘积构造:例:1.()f x 在()0,∞+上的导函数为()f x ',()()2xf x f x '>,则下列不等式成立的是( ).A .()()222021202220222021f f >B .()()222021202220222021f f <C .()()2021202220222021f f >D .()()2202220222021021f f <【答案】A 【分析】构造()2()f x g x x =,求导得3()2()0()xf x g x f x x '-'=>,知()2()f x g x x=在()0,∞+上为增函数,进而由(2022)(20221)g g >即可判断.【详解】令()2()f x g x x =,则243()()2()()2()x f x xf x xf x g x f x x x''--'==, 因为在()0,∞+上的导函数为()()2xf x f x '>,所以在()0,∞+上()0g x '>,即()2()f x g x x=在()0,∞+上为增函数. 所以()()()()22202220212022202120222021f f g g >⇒>,即()()222021202220222021f f >.故选:A.2.已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()2()0xf x f x '->,(3)1f -=,则不等式()19f x x x <的解集是( ) A .(,3)(0,3)-∞-B .()3,3-C .(3,0)(0,3)-⋃D .(,3)(3,)-∞-⋃+∞【答案】A 【分析】根据题目中信息其导函数为()f x ',若()2()0xf x f x '->可知,需构造函数2()()f x g x x =, 利用导函数判断函数()g x 的单调性,利用函数()g x 的单调性、奇偶性来解题,当0x > 时,即2()19f x x <,1()9g x <,当0x < 时,即2()19f x x >,1()9g x >. 【详解】构造函数2()()f x g x x =,43'()2()'()2()'()xf x f x xf x f x g x x x x --=⋅= , 当0x > 时,()2()0xf x f x '->,故'()0g x >,()g x 在(0,)+∞ 上单调递增, 又()f x 为偶函数,21y x =为偶函数, 所以2()()f x g x x =为偶函数,在,0()-∞ 单调递减. (3)1f -=,则(3)1f =,231(3)(3)39f g g -===(); ()19f x x x <, 当0x > 时,即2()19f x x <,1()(3)9g x g <=,所以(0,3)x ∈ ; 当0x < 时,即2()19f x x >,1()(3)9g x g >=-,所以(,3)x ∈-∞-. 综上所述,(,3)(0,3)x ∈-∞-⋃.故选:A 【点睛】需对题中的信息联想到构造函数利用单调性解不等式,特别是分为当0x > 时, 当0x < 时两种情况,因为两边同时除以x ,要考虑其正负.3.定义在R 上的连续函数()f x 的导函数为()'f x ,且cos ()(cos sin )()xf x x x f x '<+成立,则下列各式一定成立的是( ) A .(0)0f =B .(0)0f <C .()0f π>D .02f ⎛⎫=⎪⎝⎭π【答案】C 【分析】设cos () ()e xx f x g x ⋅=,由条件可得()0g x '<,即()g x 在R 上单调递减,且02g π⎛⎫= ⎪⎝⎭,由此卡判断选项A ,B , C , 将2x π=代入条件可得02f π⎛⎫>⎪⎝⎭,可判断选项D. 【详解】由题可得cos ()sin ()cos ()xf x xf x xf x '-<,所以(cos ())cos ()xf x xf x '<,设cos () ()e x x f x g x ⋅=则(cos ())cos ()()0e xxf x xf x g x '-'=<, 所以()g x 在R 上单调递减,且02g π⎛⎫=⎪⎝⎭由(0)()2g g g ππ⎛⎫>>⎪⎝⎭可得() (0)0e f f ππ>>-, 所以(0)0f >,()0f π>,所以选项A 、B 错误,选项C 正确.把2x π=代入cos ()(cos sin )()xf x x x f x '<+,可得02f π⎛⎫> ⎪⎝⎭,所以选项D 错误,故选:C . 【点睛】关键点睛:本题考查构造函数,判断函数单调性判断函数值的符号,解答本题的关键是根据题意构造函数cos () ()e xx f x g x ⋅=,由条件得出其单调性,根据02g π⎛⎫= ⎪⎝⎭,判断选项,属于难题.变式:1.已知定义在0,2π⎛⎫⎪⎝⎭的函数()f x 的导函数为()f x ',且满足()()sin cos 0f x x f x x '-<成立,则下列不等式成立的是( )A64f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B.36f ππ⎫⎫⎛⎛<⎪ ⎪⎝⎝⎭⎭C43ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D.234f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】B 【分析】 构造函数()()sin f x g x x=,求导后可确定其单调性,利用单调性比较大小可判断各选项. 【详解】设()()sin f x g x x =,则2()sin ()cos ()0sin f x x f x x g x x -''=<,所以()g x 在0,2π⎛⎫⎪⎝⎭上是减函数, 所以()()64sin sin 64f f ππππ>()()64f ππ>,A 错;()()63sin sin 63f f ππππ>()()63f ππ>,B 正确; ()()34sin sin43f f ππππ>()()43ππ>,C 错;3f π⎛⎫ ⎪⎝⎭3π⎛⎫ ⎪⎝⎭与23f π⎛⎫ ⎪⎝⎭大小不确定,D 不能判断.故选:B . 【点睛】关键点点睛:本题考查比较大小问题,解题关键是构造新函数()()sin f x g x x=,由导数确定其单调性,从而可比较函数值大小.变式:2。

高中数学求函数值域的解题方法总结(16种)

高中数学求函数值域的解题方法总结(16种)

求函数值域的解题方法总结(16种)一、 观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例:求函数()x 323y -+=的值域。

点拨:根据算术平方根的性质,先求出()x 3-2的值域。

解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。

点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。

本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。

练习:求函数()5x 0x y ≤≤=的值域。

(答案:{}5,4,3,2,1,0)二、反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例:求函数2x 1x y ++=的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数2x 1x y ++=的反函数为:y y --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。

这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数x-x -xx 10101010y ++=的值域。

(答案:{}1y 1-y |y 或)。

三、配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。

例:求函数()2x x-y 2++=的值域。

点拨:将被开方数配方成平方数,利用二次函数的值求。

解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。

此时2x x -2++=4921-x -2+⎪⎭⎫ ⎝⎛()232x x-02≤++≤∴,即原函数的值域为⎭⎬⎫⎩⎨⎧≤23y 0|y点评:求函数的值域的不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。

配方法是数学的一种重要的思想方法。

练习:x 4-155-x 2y +=的值域。

(答案:{}3y |y ≤)四、判别式法:若可化为关于某变量的二次方程的分式函数或无理数,可用判别式法求函数的值域。

高中数学解题教学中构造方法的运用

高中数学解题教学中构造方法的运用

高中数学解题教学中构造方法的运用构造法,简单的说就是在原有数学的基础上,通过一些辅助线、方程等此类,根据已经知道的条件,把未知的数据变成已知的内容,方便我们解答问题。

每一种学习方法有利也有弊,构造法的缺点就是,思路不会按着学生考虑的进行,能想到构造法是不容易的事情。

教育工作者就要根据大纲的内容,从学生的实际出发,对高中数学解题发现新的方法,并且要把这种构造方法引入到教学中去,从而提高学生的学习兴趣,增加课堂的气氛。

然而现实中很多老师,不能完全理解这种教学方法,在课堂上也就完全忽略或是讲解的不详细,不能进行深入的探讨、钻研,这样的教学就会使学生更加的不理解,不能很好的使用这种方法。

构造法作为一种特别的的数学解题方法,和一般同学的逻辑思维是不一样的,它很难让你在解题中想到,它是为了实现从已知的条件向结论的转变,知道了已知条件和结论后,就要想方设法的去求证,从而构造除了不同的数量关系。

构造法在学生中一直被人们广泛的应用,不但在高中数学课堂中出现,也在各种数学的试题中出现,成了许多数学试题常见的解题方法。

一、构造式解题在高中数学中应遵循的原则(一)要想将数学问题的本质、形象直观的显示出来就需要通过构造式解题方式,这样既能引导学生逐步建立模式识别的方法,也能缩短学生的思维过程,从而提高教学的效率。

(二)在老师的引导下,学生能够顺利完成问题的转化,创设的问题一定要符合学生的水平,不能过高,过高的话学生会完全的不理解;也不能过低,过低的不能体现学生水平。

所以在构造式解题时,一定要符合学生的水准,这样才能提高学生的解题能力。

(三)要想找出问题"相似结构"的原型,就要合理的运用直觉、化归等的方式,对现有的条件进行分析,从而找出新的问题,并作出判断,从综合层面引导学生解决数学难题。

二、构造方法(一)构造函数法高中数学解题教学的重点内容是函数教学,在函数构造法教学中,可以培养学生的解题思想,提高学生实际解题能力。

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法1. 了解构造法构造法是一种解题方法,其思路是通过构造一个满足给定条件的对象或模型来证明或求解问题。

构造法常用于数学和物理等领域的问题,其基本思路是通过构造一些特殊的结构和形式,来研究和解决问题。

2. 在代数题中的应用在代数题中,构造法通常用于求解方程、不等式等问题。

在求解一些不等式时,可以使用构造法来构造一个特定的函数形式,将原不等式转化为函数对应的关系。

通过对函数的性质进行分析,可以得到不等式的最优解。

在几何题中,构造法通常用于构造一些特殊的图形或研究图形的性质。

例如,在证明某个定理时,可以通过构造一些特定形状的图形,来展示定理的成立条件或性质。

在求解一些几何问题时,也可以通过构造特定的图形或模型,来研究并得出解题的结论。

在组合数学中,构造法通常用于确定一些特殊的组合形式,并研究它们的性质。

例如,在组合数学中,通常要求计算某个复杂的组合数量。

通过采用构造法,可以将复杂的组合问题转化为简单的计数问题,从而得出组合数量的解。

5. 注意事项在应用构造法解题时,需要注意以下几点:(1)适当灵活:构造法并不是针对每一个问题都适用的解题方法,需要根据具体的问题和情况来选择和应用。

(2)构造条件:构造时需要根据问题中给定的条件和要求,来确定构造的形式、对象和结构。

(3)证明正确性:构造完成后,仍需要进一步证明所构造的对象或结构是满足问题所要求的,并验证结果的正确性。

(4)反复思考:构造法是一种独特而灵活的解题方法,需要反复思考、细心推敲,才能得出理想的解题结果。

总之,构造法是一种实用性强、方法简单、思路清晰的解题方法。

在高中数学学习中,合理应用构造法不仅可以提高学生的数学思维和解题能力,还有助于培养学生的创新意识和发散思维。

高中数学解题方法之构造法(含答案)

高中数学解题方法之构造法(含答案)

十、构造法解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维方式来寻求解题途径却比较困难,甚至无从着手。

在这种情况下,经常要求我们改变思维方向,换一个角度去思考从而找到一条绕过障碍的新途径。

历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。

数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。

近几年来,构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。

构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。

用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。

但可以尝试从中总结规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特点,以便依据特点确定方案,实现构造。

再现性题组 1、求证: 31091022≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则42511≥⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+y y x x (构造函数) 3、已知01a <<,01b <<,求证:22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a(构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。

(构造向量)5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当ca b 111+=时取等号。

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法构造法是一种常用的解题方法,在高中数学中有着广泛的应用。

它通过巧妙地构造一些数学对象或者利用某些数学性质,来解决问题。

下面将介绍构造法在高中数学解题中的常见应用方法。

1.构造图形构造图形是构造法的一种常见应用方法。

在解决几何问题时,我们可以通过构造一些特殊的图形,来辅助求解。

要证明一个角为直角,可以通过构造一个等腰直角三角形;要证明两条线段相等,可以构造两个相等的线段等等。

通过构造图形,我们可以更加直观地理解问题,并且根据构造出的特殊图形进行推理和证明。

2.构造等式构造等式是构造法的另一种常见应用方法。

在解决代数问题时,我们可以通过构造一些特殊的等式,利用等式的性质和关系来推导和求解。

要解方程组可以通过构造一个与原方程组等价的等式,从而利用等式的性质消去未知数。

又要证明两个多项式恒等,可以通过构造一个等式,使得等式两边的多项式进行运算后得到相同的结果。

通过构造等式,我们可以把复杂的问题转化为更简单的等式求解问题。

3.构造序列4.构造方法构造方法是构造法的一个重要应用。

在解决问题时,我们可以通过构造一种方法或者算法,来找到问题的解决思路。

要证明一个命题成立,可以通过构造一个反证法,假设命题不成立,然后推导出矛盾;要解决一个最优化问题,可以通过构造一个函数或者模型,然后利用函数的性质进行优化。

通过构造方法,我们可以建立问题与数学方法之间的联系,从而解决问题。

构造法是一种重要的解题方法,在高中数学中有着广泛的应用。

通过构造图形、构造等式、构造序列和构造方法等,我们可以更加直观地理解问题,利用数学性质和关系进行推理和证明,以达到解决问题的目的。

希望通过这些介绍,能够帮助到学生在高中数学中更好地运用构造法解题。

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法
构造法是一种常用的数学解题方法,特别适用于几何问题的解决。

下面我们将介绍在
高中数学解题中构造法的应用方法。

一、构造辅助线:
1. 构造线段、角的等分线:通过构造等分线可以将原先复杂的形状简化为几个简单
的相等的部分,便于解题。

2. 构造三角形的高线、中线、角平分线:通过利用三角形的性质,可以确定三角形
的一些特殊线段,从而解题。

3. 构造平行线、垂直线:通过构造平行线和垂直线,可以得到一些等角关系、相似
三角形等,从而解题。

二、构造形状:
1. 构造圆、三角形、四边形:通过构造几何形状,可以利用其性质来解题。

2. 构造相似形:通过构造相似形状,可以利用相似三角形等性质来解题。

三、构造特殊点:
1. 构造重心、垂心、外心、内心:通过构造特殊点,可以利用它们的性质来解题。

2. 构造交点、中点:通过构造交点和中点,可以得到一些等分线段、等角关系等,
从而解题。

四、构造长度关系:
1. 构造比例关系:通过构造长度的比例,可以利用这些比例关系来解题。

2. 构造勾股定理:通过构造特殊的长度关系,可以利用勾股定理来解题。

构造法是一种灵活但有效的解题方法,在高中数学解题中应用广泛。

通过构造辅助线、形状、特殊点和长度关系等,可以利用它们的性质来解决各种几何问题。

在解题过程中要
善于观察和发现,合理运用构造法,提高解题的效率和准确性。

例谈数学解题中的构造法及其应用

例谈数学解题中的构造法及其应用


:1 Ⅱ>0, ( b>o . )
() 1
数学 学 习与研 究
2 1 9 01
谚.i . t 一 a … x
≥ s+
一痢 汹

6 .构 造 数 列
椤4 6 求 ( +1 )+( +1 。+( +1 +・・ +1 ) ) ・ +( )。 项 的 系 数. 的展 开 式 中

理 解 和 掌握 函数 的思 想 方 法 有 助 于 实 现 数 学 从 常 量 到
变量 的认 识 上 的 飞 跃 . 多 数 学 命 题 繁 冗 复 杂 , 寻 入 口 , 很 难

tn ̄ ,a =Y tn a c = t ,a y:。 于 是 有 ,
一 —
若 巧 妙 运 用 函数 思 想 , 使解 答 别 具 一 格 , 能 耐人 寻味 .
规, 另辟 蹊 径 , 妙 地 解 决 问 题 , 在 数 学 解 题 『 有 着 广 泛 巧 它 1 j

n , 是 方 程 X 、Ⅱ 一6 x+1 8=0 的 两 根 . 6 2
解 方 程 , =2, =6 . 得 , 4



d l=2, =6 n 4或 Ⅱ 1=6 Ⅱ 4, =2 .
tn 一 a ( 卢)+tn( 一 )+ tn( — )=tn( 一 ) ・ a 卢 a a tn 卢 一’)a 一O) a( , tn( /. () 1
分析
此 不 等 式 求 解 比 较 困 难 , 们 可 以 在 不 等 号 两 我
边 构 造 两 个 函数 , 用 函 数 的性 质 求 解 利
列 ” 产 生 意 想不 到 的效 果 . 能 从 以上 各 例 不 难 看 出 , 造 法 是 一 种 极 富 技 巧 性 和 创 构

【高中数学高质量资料】运用构造法巧证组合题

【高中数学高质量资料】运用构造法巧证组合题

运用构造法 巧证组合题周 权 朱金春(江苏省淮安中学,223200) 构造法是一种富有创造性的解题方法,它很好地体现了数学中发现、类比、化归的思想,也渗透着猜想、试验、探索、归纳、概括、特殊化等重要的数学方法.在中学数学教学中加强构造法解题训练,并将构造思维的形成途径展示给学生,这对培养学生多元化思维和创新精神,提高学生分析问题和解决问题的能力大有裨益.本文仅举例阐述构造法在组合题中的应用.一、联想问题背景例1 证明C n m・C p n=C p m・Cn -p m -p.分析 等式左端可看成一个小组有m 个人,从中选出n 个人去打扫卫生,在选出的n 个人中,p 个人去扫地,余下的n -p 个人去拖地的选法数,即有C nm・C p n种;等式右端可看成直接从m 个人中选p 个人去扫地,在余下的m-p 个人中再选n -p 个人去拖地的选法数,有C p m ・C n -p m -p种,显然两种算法是同一个问题,结果当然是一致的.此例问题简单,但它揭示了用组合数的意义证明组合恒等式的一般思路:先由恒等式中意义比较明显的一边构造一个组合问题的模型,再根据分步计数原理或分类计数原理对另一边进行分析,若是几个数(组合)相乘的形式,则把构造的组合题进行分步,若是几个数(组合)相加的形式,则把构造的组合题进行分类.二、构建集合模型例2 求证:C m +1n+C m -1n+2C m n =C m +1n +2.分析 设集合A ={a 1,a 2,…,a n +2}.从集合A 的n +2个不同元素中任取m +1个元素的组合数为C m +1n +2,满足条件的组合数分成三类:一类为a n +1,a n +2都不取的,有C m +1n种取法;一类为a n +1,a n +2都取的,有C m -1n 种取法;一类为a n +1,a n +2只取其中一个的,有2C mn种取法.由分类计数原理,知C m +1n+C m -1n+2C m n =C m +1n +2.从集合的角度研究组合问题,这样便于知识的前后联系,融会贯通,深化学生对集合问题的认识,增强了组合问题的直观性,降低了学习的难度.三、构建二项式模型例3 求证:C 0n C p m +C 1n C p -1m+…+C p n C 0m =C pm +n .分析 构造恒等式(1+x )n(1+x )m=(1+x )n +m ,其中(1+x )n =C 0n +C 1n x +…+C p n x p…+C nn x n ,(1+x )m=C 0m +C 1m x +…+C p m x p…+C mm x m.(1+x )n +m =C 0n +m +C 1n +m x +…+C p n +m x p+…+C n +mn +m xn +m.C pm +n 为(1+x )n +m展开式中x p的系数,(1+x )n(1+x )m中x p的系数为C 0n C p m +C 1n C p -1m+…+C p n C 0m ,所以有C 0n C pm +C 1n C p -1m+…+C p n C 0m =C pm +n .根据题目特征恰当的构造恒等式,并根据其展开式的特性,建立相应的模型,可开辟一条简捷的解题途径.四、构建排列组合模型例4 求证:(C 1n )+2(C 2n )2+…+n (C n n )2=n C n -12n -1.・44・高中数学教与学 2008年分析 建立如下组合模型:从n 个男学生及n 个女学生中,选出n 个学生组成一个代表团,其中男学生至少有1名,并在其中选择1名男学生为团长,问有多少种不同的选法?选法1:按选出的男学生人数k 分类,男学生选法有C kn 种,女学生选法有C n -kn=C kn 种,团长的选法有k 种,故完成这件事情的选法有k C kn C n -kn=k (C k n )2种,令k =1,2,…,n,则符合条件的选法总数为(C 1n )2+2(C 2n )2+…+n (C n n )2.选法2:从n 个男同学中选出团长有n 种方法,然后在剩下的2n -1个学生中选出n -1个团员,有Cn -12n -1种,由分步计数原理,知共有n Cn -12n -1种选法.比较上述两种结果,得(C 1n )2+2(C 2n )2+n (C nn )2=n C n -12n -1.例5 已知m 、n 都是正整数,求证:(1+m )n=1+m C 1n +m 2C 2n +…+m nC nn .分析 可建立这样的模型:n 名旅客到m+1家旅馆投宿,问有多少种不同的投宿方法.这个问题可以这样解决:一方面逐人考虑,安排n 名旅客分n 个步骤,每名旅客都有(m +1)种投宿方法,由分步计数原理共有(1+m )n种方法;另一方面按到某家旅馆的可能的人数0、1、2、…、n 分为n +1类,从n 名旅客中任选r 名到某家旅馆投宿有C rn 种选法,剩下的n -r 名到另外的m 家旅馆投宿有m n -r种选法,根据分步计数原理到某家旅馆投宿人数为r 的分配方法有mn -rC rn =mn -rC n -rn (r =0、1、2、…、n )种,再由分类计数原理知共有1+m C 1n +m 2C 2n +…+m nC n n 种分配方法.两种考虑方法,结果一样,所以等式成立.对于某些组合恒等式,有时其左右两边所表示的意义都不容易看出,但是如果根据组合数的特点仔细分析,往往可以巧妙地构造出一个排列组合问题作为模型,就把问题化难为易.五、构建概率模型例6 求证:(C 0n )2+(C 1n )2+…+(C nn )2=(2n )!n!・n!.分析 将问题转化为事件A 的概率问题来解决,注意到0≤P (A )≤1,于是想到把原等式转化为需要证明C 0n C nn C n2n+C 1n C n -1n C n2n+…+C nn C 0n C n 2n=1,即需要把事件A 看做n +1个互斥事件的和,其基本事件总数为C n2n .可以构造“摸球模型”,从有n 个白球、n 个黑球的口袋中每次随机摸出n 个球的事件,其中包含取出0个白球与n 个黑球、1个白球与n -1个黑球、……直到n 个白球与0个黑球,共n +1个互斥子事件,分别记为A 0、A 1、A 2、…、A n ,A =A 0+A 1+A 2+…+A n ,P (A )=P (A 0)+P (A 1)+…+P (A n )=C 0n C nn C n2n+C 1n C n -1n C n2n+…+C n n C 0n C n2n.由P (A )=1,得C 0n C nn +C 1n C n -1n+…+C n n C 0n =C n2n ,即(C 0n )2+(C 1n )2)+…+(C n n )2=(2n )!n!・n!.用概率思想证明组合数恒等式,可通过构造“摸球模型”,把总事件分解为若干个互斥事件的和,使问题在新的角度下获得解决.・名人名言・有些书可供一尝,有些书可以吞下,有不多的几部分则应当咀嚼消化,这就是说,有些书只要读读他们的一部分就够了,有些书可以全读,但是不必过于细心地读,还有不多的几部书则应当全读,勤读,而且用心地读。

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法构造法在高中数学解题中的应用方法构造法是一种数学解题方法,通过构造出符合题目要求的具体例子或特殊性质,来证明或推导出一般性的结论。

它在高中数学解题中有着广泛的应用,特别是在几何问题和代数问题中常用。

在几何问题中,构造法常常被用来构造符合题目要求的图形。

在证明两条垂直平分线相交于一个点时,可以通过构造两条垂直平分线的交点,来证明这个结论。

在证明三角形的性质时,也可以通过构造特殊的角度或边长来推导出一般性的结论。

在代数问题中,构造法常常被用来构造出满足特定条件的方程或函数。

在证明关于二次方程的性质时,可以通过构造一个满足特定条件的二次方程,来推导出一般性的结论。

在求解方程组或不等式时,构造法也常常被用来构造出满足条件的解集。

构造法的应用方法可以总结为以下几个步骤:1. 分析题目要求,确定需要构造的对象或性质。

需要构造一个特定的图形、一个满足特定条件的方程等等。

2. 根据题目条件和要求,确定构造的具体步骤和方法。

确定构造一个特定角度的方法是通过画一条与其他角度相等的角,或者确定构造一个方程的方法是通过设立一个满足特定条件的系数等等。

3. 进行实际的构造过程。

根据确定的方法,进行具体的构造过程,得到符合题目要求的对象或性质。

4. 利用构造出的对象或性质,进行证明或推导过程。

如果是证明问题,可以利用构造出的对象或性质来构造出一般性的结论,或者进行逆向推理。

如果是求解问题,可以利用构造出的对象或性质来得到解集的一般性特点。

构造法在高中数学中的应用举例:1. 证明点到直线的距离公式。

通过构造垂直于直线的垂线,并计算垂线的长度,来推导出点到直线的距离公式。

2. 求解二元一次方程组。

通过构造一个方程组,其中一个方程的两个系数相等,来得到相应的解集。

3. 证明勾股定理。

通过构造一个直角三角形,其中两条直角边的长度符合特定关系,来证明勾股定理的一般性。

4. 求解不等式。

通过构造一个满足特定条件的变量取值范围,来确定不等式的解集。

构造法求数列通项公式

构造法求数列通项公式

精心整理构造法求数列通项公式求数列通项公式是高考考察的重点和热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考。

一、构造等差数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。

例1 在数列{}n a 中,1a =12解析:由a n+1=33+n n a a 得,a n+1a n 设b n =n a 1,则b n+1-b n =31数列{b n }是首相b 1=2,公差根据等差数列的通项公式得b n =∴数列通项公式为a n =53+n评析:na 1的例2n 项和,且S n ≠0,a 1=1,a n =1222-n n S S (n ≥2),求S n 与a n 。

解析:当a n =1222-n n S S 得,S n -S n-1=1222-n n S S ,变形整理得S n -S n-1=S n S n-1两边除以S n S n-1得,nS 1-11-n S =2,∴{nS 1}是首相为1,公差为2的等差数列∴nS 1=1+2(n-1)=2n-1,∴S n =121-n (n ≥2),n=1也适合,∴S n =121-n (n ≥1)当n ≥2时,a n =S n -S n-1=121-n -321-n =-38422+-n n ,n=1不满足此式,∴a n ={21138422≥=+--n n n n评析:本例将所给条件变形成A n f n f =-+)()1(,先求出)(n f 的通项公式,再求出原数列的通项公式,条件变形是难点。

二、构造等比数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为f (n+1)=Af (n )(其中A为非零常数)形式,根据等比数列的定义知)(n f 是等比数列,根据等比数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法
构造法是一种在数学解题中常用的方法,它通过构造特定的数、图形或形式来解决问题。

构造法在高中数学中的应用十分广泛,不仅能够帮助学生理解问题,还能够培养学生
的逻辑思维和创造力。

一、构造法在代数问题中的应用
1. 构造特殊的数:通过构造特殊的数来解决问题,如通过构造一个满足条件的整数、有理数或无理数等。

在解方程问题中,可以通过构造特殊的数来找到解的规律或确定解的
范围。

2. 构造函数式:通过构造合适的函数式来解决问题。

在函数的极值问题中,可以通
过构造一个函数式来描述问题,并通过分析函数式的性质来确定极值点。

3. 构造方程组:通过构造一组方程来解决问题。

在线性方程组的解题中,可以通过
构造一组满足条件的方程来确定未知数的值。

三、构造法在概率与统计问题中的应用
1. 构造样本空间:通过构造合适的样本空间来解决概率问题。

在求解随机事件的概
率问题中,可以通过构造一个恰当的样本空间来确定事件发生的可能性。

2. 构造频数表或频率分布图:通过构造频数表或频率分布图来解决统计问题。

在统
计一组数据的分布特征时,可以通过构造一个频数表或频率分布图来描述数据的分布情
况。

3. 构造统计模型:通过构造合适的统计模型来解决概率与统计问题。

在求解样本均值、方差等问题时,可以通过构造一个适当的统计模型来计算所需的统计量。

高一数学函数解析式、定义域、值域解题方法含答案

高一数学函数解析式、定义域、值域解题方法含答案

A. [-1,3]B. [-3,1]C. [-2,2]D. [-1,1]解∵函数y=f 〔*〕的值域是[-2,2],∴y=f 〔*〕的最大值为2,最小值为-2又∵函数y=f 〔*+1〕的图象是由y=f 〔*〕向左平移1个单位而得∴函数y=f 〔*+1〕最大值是2,最小值是-2所以函数y=f 〔*+1〕的值域仍是[-2,2]应选C2、函数f 〔*〕=*2-2*,则函数f 〔*〕在区间[-2,2]上的最大值为〔 〕 A. 2 B. 4 C. 6 D. 8 解答:二次函数求最值3、一等腰三角形的周长为20,底边长y 是关于腰长*的函数,则其解析式和定义域是〔 〕 A. y =20-2*〔*≤10〕 B.y =20-2*〔*<10〕C.y =20-2*〔4≤*<10〕D.y =20-2*〔5<*<10〕解:Y=20-2* Y>0,即20-2*>0,*<10, 两边之和大于第三边, 2*>Y , 即2*>20-2* 4*>20 *>5。

此题定义域较难,很容易忽略*>5。

∴54、二次函数y =*2-4*+4的定义域为[a ,b ]〔a<b 〕,值域也是[a ,b ],则区间[a ,b ]是〔 〕 A. [0,4] B. [1,4] C. [1,3] D. [3,4]解: a ,由于对称轴为*=2,当*=0或*=4时有最大值y=4,*=2时有最小值y=05、函数y =f 〔*+2〕的定义域是[3,4],则函数y =f 〔*+5〕的定义域是〔 〕 A. [0,1] B. [3,4] C. [5,6] D. [6,7] 解: y =f 〔*+2〕的定义域是[3,4],即 3≤*≤4 则3+2 ≤*+2≤4+2,所以5≤*+2≤6 所以 y=f(*)的定义域为[5,6] 则5≤*+5≤6,则0≤*≤1 所以y =f 〔*+5〕的定义域为[0,1]6、函数22234x y x x +=+的值域是〔 〕 317317317317.[,].,4444317317317317.(,][,).(,)(,)4444A B C D ⎛⎫---+---+ ⎪ ⎪⎝⎭---+---+-∞⋃+∞-∞⋃+∞解:判别式法 7、〔2007〕图中的图像所表示的函数的解析式是〔 〕333.1(02).1(02)2223.1(02).11(02)2A y x x B y x x C y x x D y x x =-≤≤=--≤≤=--≤≤=--≤≤二. 填空题。

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法构造法(Construction Method)是高中数学解题中常用的一种方法。

它是通过构造出具体的数学对象,来辅助推导、证明或解决问题的方法。

在解题过程中,构造法可以帮助学生更直观地理解问题,找到问题的关键点,以及掌握解题的整体思路。

构造法主要应用于以下几个方面:1.构造例证在解决某些问题时,我们可以通过构造出具体的例子来验证问题的正确性或错误性。

通过构造出例子,我们可以更直观地看到问题的特点和规律,从而帮助我们更好地推导出结论。

解决一元二次方程ax^2+bx+c=0有一根,可以构造出一个例子:取a=1,b=-3,c=2,此时方程变为x^2-3x+2=0,可以通过因式分解或求根公式得到唯一解x=1。

通过这个例子,我们可以推广出“一元二次方程ax^2+bx+c=0有一根”的结论。

在证明某些命题是错误的时候,我们可以通过构造出具体的反例来证明其错误。

通过构造出反例,我们可以找到其错误的根源,从而帮助我们更好地理解、修正或推广结论。

要证明命题“在一个三角形内,三条中线相等”的正确性,可以通过构造一个反例:取一个等腰直角三角形,此时由于直角边上的中线和斜边上的中线不等长,所以反例证明了该命题是错误的。

3.构造辅助线构造辅助线是解决几何问题中常用的方法之一。

通过在几何图形中构造出一些额外的直线或线段,可以使问题更加清晰明了,从而更容易推导出结论。

通过构造辅助线,我们可以创造新的图形,将原有的问题转化为更简单的几何关系来求解。

在证明两条直线垂直的问题中,可以通过构造出两条辅助线,使原有的问题转化为三角形中的角关系,从而更容易推导出结论。

4.构造等式5.构造问题模型在解决数学建模问题时,构造问题模型是非常重要的一步。

通过构造问题模型,将原有的实际问题转化为数学问题,可以更好地分析和解决问题。

通过构造问题模型,我们可以将问题抽象化,寻找问题的关键变量和问题之间的关系,从而更好地理清问题的逻辑,确定问题的解题思路。

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法

构造法在高中数学解题中的应用方法构造法是一种寻找解题思路的方法,在高中数学中有广泛的应用。

本文将介绍构造法在高中数学解题中的具体应用方法。

1.构造反函数法当需要求解一元函数的反函数时,可以利用构造反函数法。

具体步骤如下:(1)设函数f(x)的反函数为y=f-1(x)。

(3)将x=f(y)代入f(x)中,得到f(f-1(x))=x。

(1)根据已知条件,设多项式函数为f(x)=ax3+bx2+cx+d。

(2)由于f(1)=1,可以得到a+b+c+d=1。

(6)解方程组得到a=-1/2,b=5/2,c=-3/2,d=1。

(1)根据问题的条件,画出几何图形。

(2)在图形中引入一些辅助线段或角度,使得问题的解析式可以便于构造。

(3)根据条件求解出构造线段或角度的长度或大小。

(4)利用这些线段或角度构造出所求的几何图形。

例如,如果需要求解一条线段与已知线段成等角的问题,则可以先利用等角三角形,再利用正弦定理求解。

2.构造相似图形法(2)通过平移、旋转、缩放等方式得到相似图形。

(3)记录下相应的线段的长度比,角度的大小比等信息。

(4)据此得出两个图形相似的条件。

例如,在证明斜率相等的两条直线是平行的时,可以构造相似三角形,利用三角形内角和定理解决问题。

(1)根据数列的性质,确定数列的通项公式。

(2)构造出几个特殊的数字,计算出对应的数列值。

例如,在求解等差数列的通项公式时,可以构造出首项为1,公差为2的数列,计算出该数列的前几项值,据此求解对应的通项公式。

2.构造递归数列法(2)构造出一个新的数列,使得该数列的通项公式与递归数列的通项公式相同。

例如,在求解斐波那契数列(1,1,2,3,5,8,13……)的通项公式时,可以构造一个数列(1,x,x+1,x+2,x+3,x+5,x+8……),该数列的通项公式为xn=a1fn-1+a2fn,其中a1=1,a2=0,n≥2,据此可以求解出递归数列的通项公式。

用构造法求数列的通项公式的分类和求解方法

用构造法求数列的通项公式的分类和求解方法

用构造法求数列的通项公式的分类和求解方法分类,求解方法重庆市綦江县东溪中学任德辉求数列的通项公式是近几年高考重点考察的内容,两类特殊数列等差数列和等比数列可以根据公式直接求解,还有些特殊数列可用累加法、累乘法等来直接求解,但有些数列却不能直接求解,它们往往要转化为等差、等比数列和其他数列后再运用各自的通项公式求解,从而体现化归思想在数列中的运用,此时可用构造法求解。

所谓构造法就是在解决某些数学问题中通过对条件和结论的充分剖析,有时会联想出一些适当的辅助模型,以促成命题的转换,产生新的解题方法。

下面就构造法求数列的通项公式的分类和解题方法分别进行论述。

一、用构造法求数列的通项公式依照构造目标数列的不同可以分为构造等差数列、构造等比数列和构造其他数列。

1.构造等差数列例1、(2022湖北)已知数列{an}的前n项和Snan()12n12(n为正整数),令bn2nan,求证数列{bn}是等差数列,并求数列{an}的通项公式。

解:a11,b121a1122n1∵Snan()12,∴Sn1an1()n22nn1n∴2an1an()等式两边都乘以2得2an12an1,12n即bn1bn1,∴数列{bn}是以1为首项公差为1的等差数列,bn2an=n∴annn2n例2、数列an中,若a12,an1an,则a4()13anA.21683B.C.D.191554分类,求解方法解:an1an13an11,313anan1anan又1111,是首项为公差3的等差数列。

a12an21156n52(n1)33n,anan2226n5a422所以选A645192.构造等比数列例3、(2022上海)已知数列{an}的前n项和为Sn,且Snn5an85,nN 证明:{an1}是等比数列并求{an}的通项公式证明:当n1时,a1S115a185,a114,a1115当n2时,Sn1n15an185,∴anSnSn115an5an16an5an11,an15(an11)65的等比数列。

富有创新思想的数学解题方法——构造法

富有创新思想的数学解题方法——构造法

答案 : 选B 。
例4 : ( 0 6 年福建高考题 ) 已知数列 t a ) } 茼足 =1 , 口 : =3 ,
口 = 3 a + I 一 2 D . ( n E N’ ) 求数 列的 { 口 . 】 通 项公 式。 分析 : 二阶线性 递归 数列求通 项 可通过 其 对 应 的特 征方 程 的 根 位, 构造新 数列 : D + 2 一 p + l =a ( 口 . 1 一 口 ) 构造 特征方 程 。 = 3 x 一 2 = 批I = 1 , 2 = 2 口 + 2 - O , + l = 2 ( 口 + I 一 口 ) 令6 = 口 + 。 一 口 , 则 数列 { b 】 是以b 。 = 口 2 一o 。 = 2为首 项 , 公
( A ) 00 2 8 ( B ) 2 o 1 7 ( C ) 01 2 3 ( D ) 00 2 8 分析 : 联想到等差数列的通项公式 t 1 . =口 + d 则( m+1 ) 圆n =m @n 一1 可等价构 造数 列 - 0 . . . I . 一口 =一1 令, l = 1 , 则数列 l 口 _ . 。 } 是首项为 8 I . 1 =1 01= 2 , 公差 d=一1
话数外学 习
No . O 9 . 2 O l 3
Y u S h u Wa i X u e X i
2 0 1 3年第 9期
富 有 创 新 思 想 的数 学解 题 方 法—— 构造 法
马新 明
( 慈溪市 慈中书院, 浙江 慈溪 3 1 5 3 0 0 )
摘 要: 所谓 的构造 法是 指 某些数 学 问题 用常规 方法一 时难 以解 决 ( 或者 解 决起 来很 复 杂 ) 的情 况下 , 我 们根 据 命题 的条件 和 结
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十、构造法解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维方式来寻求解题途径却比较困难,甚至无从着手。

在这种情况下,经常要求我们改变思维方向,换一个角度去思考从而找到一条绕过障碍的新途径。

历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。

数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。

近几年来,构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。

构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。

用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。

但可以尝试从中总结规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特点,以便依据特点确定方案,实现构造。

再现性题组 1、求证: 31091022≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则42511≥⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+y y x x (构造函数) 3、已知01a <<,01b <<,求证:22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a(构造图形、复数)4、求证:9)9(272≤-+x x ,并指出等号成立的条件。

(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当ca b 111+=时取等号。

(构造图形) 6、求函数y =再现性题组简解:1、解:设)3(92≥+=t x t 则tt y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(21212122212121>--=+-+=-t t t t t t t t t t t f t f∴310313)3(910322=+=≥++=f x x y2、解:左边xy xy xy xy x y y x 121++≥+++= 令 t = xy ,则41202=⎪⎭⎫⎝⎛+≤<y x t ,t t t f 1)(+=在]41,0(上单调递减 ∴417)41()(=≥f t f3、解:构造单位正方形,O 是正方形内一点,O 到AD , AB 的距离为a , b , 则|AO | + |BO | + |CO | + |DO |≥|AC | + |BD |, 其中22||b a AO +=,22)1(||b a BO +-= 22)1()1(||-+-=b a CO22)1(||-+=b a DO又:2||||==BD AC∴22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a另解:从不等式左边的结构特点容易联想到复数的模,将左边看成复数Z 1=x +y i , Z 2 = x +(1- y )i ,Z 3 = 1- x + y i ,Z 4 = 1- x +(1- y )i 模的和,又注意到Z 1+Z 2+Z 3+Z 4=2+2 i ,于是由 1z +2z +3z +4z ≥4321z z z z +++可得2222222222(1)(1)(1)(1)2222x y x y x y x y +++-+-++-+-≥+=4、解:不等式左边可看成7与 x 和2与29x -两两乘积的和,从而联想到数量积的 坐标表示,将左边看成向量a =(7,2)与b =( x , 29x -)的数量积,又||||a b a b ≤,所以9)9(·)2()7()9(2722222=-++≤-+x x x x 当且仅当b =λa (λ>0)时等号成立,故由29072x λ-==>得:x=7,λ=1,即 x =7时,等号成立。

5、解:从三个根式的结构特点容易联想到余弦定理,于是可构造如下图形: 作OA =a ,OB =b ,OC =c ,∠AOB=∠BOC=60° 如图(1)则∠AOC =120°,AB=22b ab a +-,BC=22c bc b +-,AC=22c ac a ++ 由几何知识可知:AB +BC≥AC∴22b ab a +-+22c bc b +-≥22c ac a ++ 当且仅当A 、B 、C 三点共线时等号成立,此时有︒=︒+︒120sin 2160sin 2160sin 21ac bc ab ,即ab+bc=ac故当且仅当ca b 111+=时取等号。

6、解:由根号下的式子看出11x+x=-且01x ≤≤ 故可联想到三角函数关系式并构造2sin x θ= (0)2πθ≤≤所以 sin cos )4y x x πθ=+=+, 当4πθ=即12x =时,max y =示范性题组一、构造函数理解和掌握函数的思想方法有助于实现数学从常量到变量的这个认识上的飞跃。

很多数 学命题繁冗复杂,难寻入口,若巧妙运用函数思想,能使解答别具一格,耐人寻味。

【例1】、已知x,y,z ∈(0,1),求证:x(1-y)+y(1-z)+z(1-x)<1 (第15届俄罗斯数学竞赛题) 分析:此题条件、结论均具有一定的对称性,然而难以直接证明,不妨用构造法一试。

证:构造函数f(x)=(y+z-1)x+(yz-y-z+1)∵y,z ∈(0,1),∴f(0)=yz-y-z+1=(y-1)(z-1)>0,f(1)=(y+z-1)+(yz-y-z+1)=yz >0,而f(x)是一次函数,其图象是直线,∴由x ∈(0,1)恒有 f(x) >0,即(y+z-1)x+(yz-y-z+1)>0,整理可得x(1-y)+y(1-z)+z(1-x) <1 二、构造方程:方程是解数学题的一个重要工具,许多数学问题,根据其数量关系,在已知和未知之间搭上桥梁,构造出方程,使解答简洁、合理。

【例2】、已知a,b,c 为互不相等的实数,试证:bc (a-b)(a-c) +ac (b-a)(b-c) +ab(c-a)(c-b)=1 (1)证:构造方程(x-b)(x-c)(a-b)(a-c) +(x-a)(x-c)(b-a)(b-c) +))(())((b c a c b x a x ----=1 (2)显然a,b,c 为方程的三个互不相等的实根。

从而对任意实数x 均满足(2)式。

特别地,令x=0,即得(1)式。

【例3】、设x,y 为实数,且满足关系式:33(1)1997(1)1(1)1997(1)1x x y y ⎧-+-=-⎨-+-=⎩ 则x+y= .(1997年全国高中数学联赛试题)分析:此题用常规方法,分别求出x 和y 的值后再求x+y 则既繁又难,三次方程毕竟不熟 悉。

若将两方程联立构造出方程33(1)1997(1)(1)1997(1)1x x y y -+-=-+-=-,利用 函数f(t)=t 3+1997t 的单调性,易得11x y -=-,自然、简洁。

三、构造复数复数是实数的延伸,一些难以解决的实数问题通过构造转化为复数问题,虽然数的结构会变复杂,但常使问题简明化,正所谓“退一步海阔一空”。

【例4】、a,b,x,y ∈{正实数},且x 2+y 2=1,求证:a 2x 2+b 2y 2 +a 2y 2+b 2x 2 =≥a+b证:设z 1=ax+byi , z 2=bx+ayi ,则a 2x 2+b 2y 2 +a 2y 2+b 2x 2 =∣Z 1∣+∣Z 2∣≥∣Z 1+Z 2∣=∣(a+b)x+(a+b)yi ∣=(a+b)22y x +=a+b ,不等式得证: 四、构造代数式代数式是数学的重要组成要素之一,有许多性质值得我们去发现和应用。

【例5】、当31x =+时,求321y 12x x x =--+的值. 解:由条件得 31x =+ 所以13x -= ,构造1x -的因式y=32112x x x --+ =321(222)2x x x --+=21[(1)32]2x x x --+=1(332)2x x -+=1 五、构造数列相当多的数学问题,尤其是证明不等式,尝试一下“构造数列”能产生意想不到的效果。

【例6】证明:111111+⎪⎭⎫ ⎝⎛++<⎪⎭⎫ ⎝⎛+n n n n (n=1,2,3……)分析此命题若直接证明,颇具难度,倘若构造数列x 1=x 2=…=x n =1+1n,x n+1=1利用平均值不等式x 1+x 2+…+x n+1n+1≥ n+1x 1x 2…x n+1 ,顿使命题明朗化。

六、构造向量新教材的一个重要特点是引入向量,代数、几何、三角中的很多问题都可以利用向量这一工具来解决.【例7】已知a,b,c 为正数,求函数y=2222)(b x c a x +-++的最小值.解: 构造向量a =(x,a),b =(c-x,b),则原函数就可化为:y=│a │+│b │≥│a +b │22()()x c x a b =+-++=22)(b a c ++ , ∴y min =22)(b a c ++七、构造几何图形一般来讲,代数问题较为抽象,若能通过构造将之合理转化为几何问题,利用“数形结合”这一重要思想方法,往往可增强问题的直观性,使解答事半功倍或独具匠心。

【例8】、(见【例1】)证:构造边长为1的正△ABC ,D ,E ,F 为边上三点, 并设BD=x ,CE=y , AF=z ,如图1 显然有S △BDE +S △CEF +S △ADF <43 即34 x(1-y)+ 34 y(1-z)+ 34 z(1-x)<34这道竞赛题能如此简洁、直观地证明,真是妙不可言。

【例9】、求证:3132294342≤--≤-x x 简析:294x -的结构特点,使我们联想到椭圆方程及数形结合思想。

解:令 )0(942≥-=y x y ,B 则其图象是椭圆149422=+y x 的上半部分,设y -2x=m,于是只需证313234≤≤-m , 因 m 为直线y=2x +m 在y 轴上的截距,由图可知: 当直线 y = 2 x +m 过点(32,0)时,m 有最小值为m=34-; 当直线y =2x +m 与椭圆上半部分相切时,m 有最大值。

相关文档
最新文档