第三章 线性算子与线性泛函
线性泛函数知识点总结
线性泛函数知识点总结一、线性泛函数的基本概念1.1 线性泛函数的定义线性泛函数是指一个将向量空间中的向量映射到另一个向量空间中的函数,且满足线性性质。
设V和W是两个向量空间,如果一个函数T:V→W满足以下两个条件:1) 对于任意的向量x,y∈V,有T(x+y)=T(x)+T(y);2) 对于任意的向量x∈V和标量a,有T(ax)=aT(x);则函数T被称为V到W的线性泛函数。
1.2 线性泛函数的例子下面我们举几个线性泛函数的例子,以便更好地理解这个概念。
例1:设V是实数域上的n维向量空间,W是实数域上的m维向量空间,定义一个函数T:V→W,使得对于任意的向量x=(x1,x2,...,xn)∈V,有T(x)=(x1^2,x2^2,...,xn^2)∈W。
显然,函数T满足线性性质,因此它是一个线性泛函数。
例2:设V是实数域上的3维向量空间,W是实数域上的2维向量空间,定义一个函数T:V→W,使得对于任意的向量x=(x1,x2,x3)∈V,有T(x)=(x1+x2,x2+x3)∈W。
同样地,函数T也满足线性性质,因此它也是一个线性泛函数。
1.3 线性泛函数的表示线性泛函数可以用矩阵来表示。
设V和W分别是n维和m维向量空间,选择它们的一组基{e1,e2,...,en}和{f1,f2,...,fm},则对于任意的向量x=(x1,x2,...,xn)∈V,有其在基{e1,e2,...,en}下的表达式为x=x1e1+x2e2+...+xnen,而对于任意的向量y=(y1,y2,...,ym)∈W,有其在基{f1,f2,...,fm}下的表达式为y=y1f1+y2f2+...+ymfm。
定义一个线性泛函数T:V→W,使得对于任意的向量x∈V,有T(x)=y∈W,则T的矩阵表示为一个m×n的矩阵A,其中A的第i列为T(ei)在基{f1,f2,...,fm}下的坐标表示,即A=[T(e1)|T(e2)|...|T(en)]。
第三章 有界线性算子空间(续)
定义代数运算: f f1 f 2 和 f f1 其含义是指对于 x H 和 C 都有:
f ( x) f1 ( x) f 2 ( x) f ( x) f1 ( x)
H * 构成线性空间。
定义内积:
( f , f ) (, )*
xA x 1
由于 L sup
xA x 0
Lx x
Lx x
L
x1
x
对于 0 必 x1 A 使
Lx1 x1
x x1 L
L
改写成 L 令 x2
x1 x1
即总 x2 A ,且 x2 1使 Lx2 L
4.1 线性泛函的概念 线性泛函是线性赋范空间 A 到复数域 C 的映射,且对 x, y A 及
, K ,有
f ( x y) f ( x) f ( y)
线性泛函的性质: ①连续性:一定连续 处处连续 ②有界性:有界 连续 有界是指 x A ,有 | f ( x) | K x 对于数域,范数用| |代替。
L( x) L1 x L2 ( x) L1 ( x) L2 ( x) K1 x K 2 x K x
其中 K K1 K2 还可证明满足加法的 a、b、c、d 四条。 对于加法中的 0 元素的解释:
x A y B
L 0 是指对于 x A ,都有 Lx 0
x 0
sup Lx
xA x 1
L 的完备性定理: L 完备的充分条件是 A 完备。
定理是说:A 完备, L 一定完备。但 A 不完备, L 可能完备也可 能不完备。 证明略。
任勇课件第03章-泛函分析初步
x t |
b
a
x t dt 不是 Banach 空间,因为存在[a ,b]
p
上的函数 x(t),其 p 次方[R]不可积。 例 3: Lp a, b 是 Banach 空间,即对于 x t C a, b ,均满足其 p 次方 [L]可积。 换言之, Lp a, b 是在 a, b 上 p 次方[L]可积(即 L p 存在)的连续函 数全体,是完备的赋范线性空间,Banach 空间。
W , 是度量空间,可以取 ,
即 , , ,亦即:
0, , 1,
则有 , 1, ;但 , 1。
W , W, ,不满足范数第(ii)条公理。
X xn n 1
p i
x
i 1
,1 p 。
p
n 1
证明: X l p ,因为 xn 所以, N ,使得当 n>N 时,恒有: xn 1
n N
因而, xn xn
nN
q
p
, q p , X l q
1 1 Holder 不等式:若 f x Lp [a, b],g x Lq [a, b], 1 ,则 p q
f x g x dx f x
b a a
b
p
dx
q
1 p
b
a
g x dx
q
1 q
(3-13)
f x
§3.4 巴拿赫(Banach)空间 1. 赋范线性空间: 定义(赋范线性空间) :设 W 是线性空间,若对 , W , 满 足三条公理: ⅰ) 0 ,且 0 = 0 (正定性) ⅱ) , C ⅲ) + (正齐性) (三角不等式)
线性泛函分析
线性泛函分析泛函分析的主要工作在于对积分方程而不是对变分法提供一个抽象的理论. 变分法领域里所需泛函的性质是相当特殊的,对一般的泛函并不成立.此外,这些泛函的非线性造成了困难,而这种困难对于包含在积分方程中的泛函和算子则是无关紧要的.在Schmidt ,Fischer ,Riesz 为积分方程解的理论作具体推广时,他们和其他一些人也同时开始了相应的抽象理论的研究.第一个试图建立线性泛函和算子的抽象理论的,是美国数学家E .H .Moore ,他从1906年开始这一工作. Moore 认识到,在有限多个未知数的线性方程的理论、无限多个未知数的无限多个线性方程的理论、以及线性积分方程的理论之间,有许多共同的地方.他因此着手建立一种称为“一般分析”(Generl Analysis)的抽象理论,它包含上述具体理论作为特殊情形.他用的是公理方法.我们将不叙述其细节,因为他的影响并不广,而且电没有获得很有效的方法.另外,他的符号语言很奇怪,使以后的人理解起来很困难.在建立线性泛函和算子的抽象理论的过程中,第一个有影响的步骤是由Erhard Sohmidt 和Frechet 在1907年采取的.Hilbert 在他的积分方程的工作中,曾经把一个函数看成是由它相应于某标准正交函数系的Fourier 系数给定的.这些系数以及在他的无穷多个变量的二次型理论中他所赋予这些x i 的值,都是使21n x ∑∞成为有限的序列{x n }.然而,Hilbort 并没有把这些序列看成空间中点的坐标,也没有用几何的语言,这一步是由Schmidt 和Frechet 采取的. 把每一个序列{x 。
}看成一个点,函数就被表现为无穷维空间的点.Sohmidt 不仅把实数而且把复数引入序列{x 0}中.这样的空间从此以后被称为Hilbort 空间.我们的叙述 按照Schmidt 的工作.Schmidt 的函数空间的元素是复数的无穷序列z ={z n },使得.21∞∑∞=<zp p Schmidt 引入记号;211⎭⎬⎫⎩⎨⎧∑∞=-p p p z z 来表示z ;z 后来就称为z 的范数(norm).按照Hilbert ,Sehmidt 用记号).,(,),(1-∞==∑z z z 所以z 表示z p p pωω(现在通用的记号是把)),(1p p p z 定义义z -∞=∑ωω.空间中两个元素z 和ω称为正交的,当且仅当.0,=⎪⎭⎫ ⎝⎛-ωz Schmidt ;接着证明了广义的Pythagoras 定理:如果z 1, z 2, …,z n 是空间的n 个两两正交的元素,则由∑==n p p z 1ω知 .212p n p z ∑==ω由此可推出n 个两两正交的元素是线性无关的.Schrnidt 在他的一般空间中还得到了Bessel 不等式:如果{z n }是标准正交元素的无穷序列,即ωδ而z z pq q p ,),(=-是任何一个元素,那末21,(-∞=∑p p z ω≤.2ω 此外,还证明了范数的Schwarz 不等式和三角不等式.元素序列{z n }称为强收敛于z ,如果z z n -趋向于0,而每个强Cauehy 序列,即每个使q p z z -趋于0 (当p ,q 趋于0时)的序列,可以证明都收敛于某一元素z ,从而序列空间是完备的.这是一条非常重要的性质.Schmidt 接着引进了(强)闭子空间的概念.他的空间H 的一个子集A 称为闭子空间,如果在刚才定义的收敛的意义下它是闭子集,并且是代数封闭的,后者意指,如果ω1与ω2是A 的元素,那末2211ωωa a +也是A 的元素,其中a 1,a 2是任何复数.可以证明这样的闭子空间是存在的,这只需取任何一个线性无关的元素列{z n },并取{z n }中元素的所有有限线性组合.全体这些元素的闭包就是一个代数封闭的子空间.现在,设A 是任一固定的闭子空间.Schmidt 首先证明,如果z 是空间的任一元素,则存在唯一的元素ω1和ω2,使得z =ω1+ω2,其中ω1属于A , ω2和A 正交,后者是指ω2和A 的每个元素正交(这个结果,今天称为投影定理;ω1就是z 在A 中的投影)进一步,,min 2z y -=ω 其中y 是A 的变动元素,而且极小值只在21.ωω时达到y =称为z 和A 之间的距离.在1907年,Schmidt 和Frechet 同时注意到,平方可和(Lebesgue 可积) 函数的空间有一种几何,完全类似于序列的Hilbert 空间. 这个类似性的阐明是在几个月之后,当时Riesz 运用在Lebesgue 平方可积函数与平方可和实数列之间建立一一对应的Riesz-Fischer'定理指出,在平方可和函数的集合L 2中能够定义一种距离,用它就能建立这个函数空间的一种几何. L 2中,定义在区间[a , b]上的任何两个平方可积函数之间的距离这个概念,事实上也是Frechet 定义的,他把它定义为(1) ⎰-b a dx x g x f ,)]()([2其中积分应理解为Lebesgue 意义下的;并且两个函数只在一个0测集上不同时就认为是相等的.距离的平方也称为这两个函数的平均平方偏差.f 和g 的内积定义为⎰=ba dx x g x f g f )()(),(. 使(f ,g) = 0的两个函数f 与g 称为是正交的.Schwarz 不等式 dx x g x f ba )()(⎰≤dx g dx fb a b a ⎰⎰22以及对平方可和序列空间成立的其他性质,都适用于函数空间.特别是,这类平方可和函数形成一个完备的空间.这样,平方可和函数的空间,同这些函数相应于某一固定的完备标准正交函数系的Fourier 系数所构成的平方可和序列的空间,可以认为是相同的.在提到抽象函数空间时,我们应重提一下Riesz 引入的空间L p (1<p<∞).这些空间对度量pb a p dx f f f f d 12121),(⎪⎭⎫ ⎝⎛-=⎰ 也是完备的.虽然我们很快就要考察抽象空间领域中的其他成就,但下一发展涉及泛函和算子.在刚才引述的对空间L 2的函数引进了距离的1907年的文章中,以及在同年的其他文章中, Frechet 证明了,对于定义在L 2的每一个连续线性泛函U(f),存在L 2中唯一的一个u(x),使得对L 2的每个f 都有⎰=ba dx x u x f f U .)()()( 这推广了Hadamard 1903年得到的一个结果.1909年Riesz 推广了这个结果,用Stieltjes 积分表示U(f),也就是⎰=ba x du x f f U ).()()(Riesz 自己还把这个结果推广到满足下面条件的线性泛函A:对L p 中所有的f)(f A ≤p ba p dx x f M /1)(⎥⎦⎤⎢⎣⎡⎰其中M 只依赖于A .这样,存在L q 中的一个函数a(x),在允许相差一个积分为0的函数的意义下是唯一的,使得对L p 中所有的f(2) ⎰=b a dx x f x a f U .)()()( 这个结果称为Riesz 表示定理。
泛函分析知识总结
泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
线性算子和线性泛函的最优反演理论
2016年 l2月
D ec.2016
应用教学 计算数学学报
Com munication on Applied M athem atics and Computation
第 30卷 第 4期
VOl_30 N o.4
DOI 10.3969/j.issn.1006—6330.2016.04.001
Optim al recovery of linear functionals and operators
Osipenko K Yu1,2,3
(1.Department of Higher Mathematics,Moscow Aviation Institute(National Research University),Moscow 121552,Russia;
.
m ethods. One of the first exam ple of optimal recovery problems is the problem of the best quadra.
数学的泛函分析方法
数学的泛函分析方法泛函分析是数学中的一个分支领域,它研究的是函数空间及其上的线性算子等数学结构。
在数学的各个领域中,泛函分析方法都得到了广泛的应用,包括数论、微分方程、偏微分方程、概率论等等。
本文将介绍数学的泛函分析方法及其在不同领域中的应用。
一、泛函分析的基本概念和原理泛函分析的基本概念包括函数空间、线性算子、内积、范数等。
函数空间是泛函分析的重要概念之一,它是一组具有一定性质的函数的集合。
常见的函数空间有无穷可微函数空间、有界函数空间、连续函数空间等。
线性算子则是函数之间的映射,它保持线性性质。
内积是一个函数空间上的二元运算,它满足线性性、对称性和正定性。
范数是函数空间上的一种度量,它衡量函数的大小和距离。
泛函分析的原理主要包括函数的连续性、可微性、积分等性质。
连续性是泛函分析的基本性质之一,它描述了函数在某一区间上的变化情况。
可微性是指函数在某一点附近存在导数,它描述了函数的变化速率。
积分是泛函分析中常用的计算工具,它描述了函数在某一区间上的总体情况。
二、泛函分析在数论中的应用泛函分析在数论中的应用主要体现在数论函数的性质研究、数论方程的解法等方面。
数论函数是研究整数性质的函数,如欧拉函数、狄利克雷级数等。
泛函分析方法可以用来研究这些数论函数的性质,如连续性、可微性等。
此外,泛函分析方法还可以用来解决一些数论方程,如椭圆曲线方程、费马方程等。
三、泛函分析在微分方程中的应用泛函分析在微分方程中的应用是非常广泛的,它主要体现在解析解的存在性和唯一性、解的稳定性等方面。
微分方程是描述变化的数学模型,而泛函分析方法可以用来证明微分方程的解的存在性和唯一性,以及解的稳定性。
此外,泛函分析方法还可以用来研究微分方程的数值解法,如有限元法、有限差分法等。
四、泛函分析在偏微分方程中的应用泛函分析在偏微分方程中的应用同样是非常广泛的,它主要体现在偏微分方程的解的存在性和唯一性、解的稳定性等方面。
偏微分方程是描述空间变化的数学模型,而泛函分析方法可以用来证明偏微分方程的解的存在性和唯一性,以及解的稳定性。
第三章 有界线性算子
第三章 有界线性算子一 有界线性算子与有界线性泛函 1 定义与例设1,X X 是赋范空间,T 是X 中线性子空间)(T D 上到1X 中的映射 ,满足条件:对于任意)(,T D y x ∈,K ∈α,)(Ty Tx Y x T +=+Tx x T αα=)(称T 是X 中到1X 中的线性算子。
称)(T D 是T 的定义域。
特别地,称赋范空间X 上到数域K 中的线性算子为线性泛函,并且它们是到实数域或复数域分别称为实线性泛函与复线性泛函。
如果一个线性泛函f 是有界的,即)( |||||)(|M x x M x f ∈≤称为f 有界线性泛函。
此外取算子范数作为空间中的范数。
定理1.1 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,如果T 在某一点X x ∈0连续,则T 是连续的。
定理1.2 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,则T 是连续的,当且仅当,T 是有界的。
2 有界线性算子空间设1,X X 是赋范空间,用),(1X X β表示所有X 上到1X 中的有界线性算子全体。
在),(1X X β中可以自然地定义线性运算,即对于任意∈B A ,),(1X X β及K ∈α,定义Bx Ax x B A +=+))((Ax x A αα=))((不难到,两个有界线性算子相加及数乘一个有界线性算子仍有界线性算子。
此个取算子范数作为空间),(1X X β的范数,具体见)(77P 。
由此可知,),(1X X β是一个赋范线性空间,如果1X X =,把),(1X X β简记为)(X β。
在空间),(1X X β中按范数收敛等价于算子列在X 中的单位球面上一致收敛。
事实上,设∈nA A ,),(1X X β,...)2,1(=n 及}1||:||{=∈=X X x S 。
如果)(∞→→n A A n ,则对任意0>ε,存在N ,当N n >时,对于每一个S x ∈≤-||||Ax x A n1||||sup =x ||||Ax x A n -=||||A A n-ε<。
泛函分析知识总结
泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
线性算子与线性泛函
第二章 线性算子与线性泛函第一节 有界线性算子一、线性算子本段中只需假设,,X Y Z 等是K 上的向量空间。
定义: 假设一个映射:T X Y →满足()(,,,)T x y Tx Tyx y X αβαβαβ+=+∈∈K ,则称T 为从X 到Y 的线性算子。
容易看出,上述等式可推广到更一般的情形:()i iiiiiT x Tx αα=∑∑。
命题2 设:T X Y →是一线性算子,则以下结论成立:〔1〕任给子空间A X ⊂与子空间B Y ⊂,TA 与1T B -分别为Y 与X 的子空间。
特别,(0)0T =与()R T TX =〔值域〕是Y 的子空间;1()(0)N T T -是X 的子空间〔称为T 的核或零空间〕。
〔2〕假设向量组{}i x X ⊂线性相关,则{}i Tx 亦线性相关;假设A 是X 的子空间且dim A <∞,则dim dim TA A <。
〔3〕T 是单射(){0}N T ⇔=。
说明:假设0()Tx Y x X ≡∈∈,则称T 为零算子,就记为0;假设(),Tx x x X αα≡∈∈K 为常数,则称T 为纯量算子〔或相似变换,假设0α≠〕,记作I α,当0α=与1时,I α分别是零算子和单位算子。
对线性算子可定义两种自然的运算:线性运算与乘法。
假设,:T S X Y →是线性算子,,αβ∈K ,则:T S X Y αβ+→是一个线性算子,它定义为()().(2.1.2)T S x Tx Sx x X αβαβ+=+∈假设:R Y Z →是另一个算子,则由()()().(2.1.3)RT x R Tx x X =∈定义出一个线性算子:RT X Z →,称它为R 与T 的乘积。
实际上,线性算子的乘积就是它们的复合。
容易原子能正验证,如上定义的运算有以下性质:11(),()();R T S RT RS R R T RT RT +=+⎧⎨+=+⎩分配律()();()Q RT QR T =结合律()()(),()RT R T R T αααα==∈K只要以上等式的一端有意义。
泛函分析读书笔记(上)(可编辑修改word版)
第一部分线性代数第一章 线性空间第一节 线性空间一、基本概念1、 定义:数域P =复数子集+四则运算封闭2、 定义:线性空间=•+),;;(P V 数域P 上的线性空间V =线性空间V ⑴、解释:=V 非空集合⑵、解释:V V V →⨯=+【加法,加法保持封闭】 ⑶、解释:V V P →⨯=•【数乘,数乘保持封闭】 ⑷、解释:=•+),(线性运算【满足8条规则】3、 8条规则加法规则:⑴、交换律:αββα+=+⑵、结合律:)()(γβαγβα++=++⑶、零元素:V ∈∃0,对于V ∈∀α,都有αα=+0⑷、负元素:对于V ∈∀α,V ∈∃β,使得0=+βα【记为:α-】数乘规则:⑸、αα=1⑹、αα)()(kl l k =加法数乘规则:⑺、βαβαk k k +=+)(⑻、αααl k l k +=+)(二、基本性质1、 性质⑴、性质:零元素唯一⑵、证明:假设:V ∈∃10,对于V ∈∀α,都有αα=+10 V ∈∃20,对于V ∈∀α,都有αα=+20 对于V ∈∀α,都有⇒=+αα10特别:212000=+对于V ∈∀α,都有⇒=+αα20特别:121000=+12120000+=+【交换律】2100=⇒ ⑶、性质:负元素唯一2、 性质⑴、性质:ααα-=-==)1(0000,,k⑵、证明:ααααααα==+=+=+1)10(100【规则5+规则8】 )()(]0[0αααααααα-+=-++⇒=+⇒αααααααα000)]([0)(]0[=+=-++=-++⇒【结合律】0)(=-+αα【负元素的定义】00=⇒α第二节 线性无关一、基本概念1、 概念:线性组合(线性表出)如果:r r k k k αααα+++=Λ2211则称:向量α是向量组r ααα,,,Λ21的一个线性组合 或称:向量α可由向量组r ααα,,,Λ21线性表出2、 概念:线性相关如果:存在不全为0的P k k k r ∈,,,Λ21 使得:02211=+++r r k k k αααΛ则称:向量组r ααα,,,Λ21线性相关3、 概念:线性无关如果:不存在不全为0的P k k k r ∈,,,Λ21 使得:02211=+++r r k k k αααΛ则称:向量组r ααα,,,Λ21线性无关 4、 关键:00212211====⇒=+++r r r k k k k k k ΛΛααα二、基本性质1、 性质⑴、性质:向量组r ααα,,,Λ21线性相关 ⇔其中某一向量可由其余向量线性表出 ⑵、证明:必要性:r r r r k kk k k k k αααααα)()(0121212211-++-=⇒=+++ΛΛ 充分性:0)()(221221=-++-+⇒++=r r r r k k k k ααααααΛΛ2、 性质⑴、性质:如果:向量组r ααα,,,Λ21线性无关 并且:可由向量组s βββ,,,Λ21线性表出 则有:s r ≤⑵、证明:∑∑===⇒=⇒+++=sj j ji i sj j j s s t tt t t 111112211111βαβαβββαΛ∑∑∑∑∑=======⇒=+++s j ri j ji i ri sj j jiiri iir r t k tk k k k k 111112211][][0ββααααΛ⎪⎪⎩⎪⎪⎨⎧⇒=+++=+++=+++⇒000221122222111122111sr r s s rr r r t k t k t k t k t k t k t k t k t k ΛΛΛΛs 个方程,r 个未知数⇒如果s r >,则方程存在非零解r k k k ,,,Λ21 ⇒向量组r ααα,,,Λ21线性相关⇒矛盾3、 等价⑴、概念:两个向量组等价【互相线性表出】⑵、性质:两个等价的线性无关向量组,必定含有相同数目的向量⑶、证明:假设:向量组r ααα,,,Λ21线性无关 向量组s βββ,,,Λ21线性无关4、 性质⑴、性质:如果:向量组r ααα,,,Λ21线性无关 并且:向量组βααα,,,,r Λ21线性相关 那么:β可由向量组r ααα,,,Λ21线性表出,并且表法唯一 ⑵、证明:向量组βααα,,,,r Λ21线性相关 ⇒存在不全为0的P k k k k r ∈β,,,,Λ21 使得:02211=++++βαααβk k k k r r Λr r k kk k k k k αααβββββ)()()(02221-++-+-=⇒≠⇒Λ 假设:r r k k k αααβ+++=Λ2211r r l l l αααβ+++=Λ22110)()()(222111=-++-+-⇒r r r l k l k l k αααΛ⇒===⇒r r l k l k l k ,,,Λ2211表法唯一第三节 维数、基和坐标1、 定义:n 维线性空间V :恰好存在n 个线性无关的向量2、 定义:n 维线性空间V 的一组基:n 个线性无关的向量n εεε,,,Λ213、定义:坐标:对于V ∈∀α,向量组n εεε,,,Λ21线性无关 向量组n a εεε,,,,Λ21线性相关【否则1+n 维】 n n a a a εεεα+++=⇒Λ2211⇒坐标)(21n a a a ,,,Λ=4、 定理⑴、定理:如果:向量组n ααα,,,Λ21线性无关 并且:线性空间V 中的任意向量,均可由它们线性表出那么:V 的维数n =,并且n ααα,,,Λ21是V 的一组基 ⑵、证明:假设:V 的维数1+=n⇒121+n βββ,,,Λ线性无关,可由向量组n ααα,,,Λ21线性表出 ⇒n n ≤+1⇒矛盾第四节 极大线性无关组1、 定义:极大线性无关组:一个向量组的一部分组称为极大线性无关组 如果:该部分组线性无关并且:添加任一向量均线性相关2、 性质⑴、性质:极大线性无关组与向量组本身等价⑵、证明:假设:向量组r k αααα,,,,,ΛΛ21= 极大线性无关组k ααα,,,Λ21= k ααα,,,Λ21⇒可由r k αααα,,,,,ΛΛ21线性表出 对于}{21r k ααααβ,,,,,ΛΛ∈∀ βααα,,,,k Λ21⇒线性相关【否则与极大线性无关组矛盾】 β⇒可由k ααα,,,Λ21线性表出3、 性质⑴、性质:向量组的极大线性无关组,含有相同个数的向量 ⑵、证明:向量组与极大线性无关组1等价 向量组与极大线性无关组2等价⇒极大线性无关组1与极大线性无关组2等价【等价的传递性】第五节 线性子空间1、 定义:),;;(•+P W 是线性空间),;;(•+P V 的一个子空间 =W 是数域P 上的线性空间V 的一个子空间 =W 是线性空间V 的一个子空间如果:⑴、V W =的非空子集⑵、两种运算封闭:W W W ∈+∈∀∈∀βαβα,, W k W P k ∈∈∀∈∀αα,,2、 )(21r L ααα,,,Λ ⑴、性质:如果:∈r ααα,,,Λ21线性空间V 那么:所有可能的线性组合r r k k k ααα+++Λ2211构成V 的一个子空间称为:由r ααα,,,Λ21生成的子空间 记为:)(21r L ααα,,,Λ ⑵、证明:非空子集+两种运算封闭3、 性质⑴、性质:)()(2121s r L L βββααα,,,,,,ΛΛ= ⇔向量组r ααα,,,Λ21与向量组s βββ,,,Λ21等价⑵、证明:①:充分性:∑==+++=⇒∈∀ri ii r r r k k k k L 1221121)(αααααααααΛΛ,,,∑∑===⇒=+++=sj j ji i s j j j s s i t t t t t 1111221111βαββββαΛ∑∑∑∑∑========⇒s j ri j ji i r i sj j jiir i ii t k tk k 11111][][ββαα)()()(212121s r s L L L βββαααβββα,,,,,,,,,ΛΛΛ⊂⇒∈⇒ ②:必要性:)()(2121s i r i L L βββααααα,,,,,,ΛΛ∈⇒∈ i α⇒可由向量组s βββ,,,Λ21线性表出4、 性质⑴、性质:如果:W 是n 维线性空间V 的一个m 维子空间并且:m ααα,,,Λ21是W 的一组基 那么:m ααα,,,Λ21可以扩充为线性空间V 的一组基 ⑵、证明:V ∈∃β,使得βααα,,,,m Λ21线性无关 反证法:βαααβ,,,,,m V Λ21∈∀线性相关 β∀⇒可由m ααα,,,Λ21线性表出 ⇒线性空间V 的维数⇒=m 矛盾第六节 子空间的交与和1、 定义:}|{22112121V V V V ∈∈+=+αααα,2、 性质⑴、性质:如果:21V V ,是线性空间V 的两个子空间 那么:21V V I 也是线性空间V 的子空间 ⑵、证明:=21V V I 非空子集【至少都包含零元素】 2121V V V V ∈∈⇒∈∀ααα,I 2121V V V V ∈∈⇒∈∀βββ,I2121V V V V I ∈+⇒∈+∈+⇒βαβαβα,3、 性质⑴、性质:如果:21V V ,是线性空间V 的两个子空间 那么:21V V +也是线性空间V 的子空间 ⑵、证明:22112121V V V V ∈∈+=⇒+∈∀αααααα,, 22112121V V V V ∈∈+=⇒+∈∀ββββββ,, 222111V V ∈+∈+⇒βαβα,2122112121)()()()(V V +∈+++=+++=+⇒βαβαββααβα4、 维数公式⑴、公式:维+1V 维=2V 维+)(21V V I 维)(21V V +⑵、证明:假设:m αα,,Λ1是21V V I 的一组基 111n m ββαα,,,,,ΛΛ是1V 的一组基 211n m γγαα,,,,,ΛΛ是2V 的一组基证明:21111n n m γγββαα,,,,,,,,ΛΛΛ是21V V +的一组基①、线性无关:022********=++++++++n n n n m m q q p p k k γγββααΛΛΛ2211111111n n n n m m q q p p k k γγββααα---=+++++=ΛΛΛm m l l V V V V αααααα++=⇒∈⇒∈-∈⇒ΛI 112121, m m n n m m l l p p k k ααββαα++=+++++ΛΛΛ11111111 01111====⇒n m m p p l k l k ,,m m n n l l q q ααγγ++=++ΛΛ11221100211=====⇒n m q q l l ,Λ②、21V V +∈∀α,均可由21111n n m γγββαα,,,,,,,,ΛΛΛ线性表出第七节 子空间的直和1、 直和⑴、定义:=+21V V 直和⇔任何元素的分解式唯一⑵、分析:22112121V V V V ∈∈+=⇒+∈∀αααααα,,唯一2、 性质⑴、性质:=+21V V 直和⇔零元素的分解式唯一⑵、证明:充分性:假设:22112121V V V V ∈∈+=⇒+∈αααααα,,221121V V ∈∈+=ββββα,,)()()()(022112121βαβαββαα-+-=+-+=⇒ 2211βαβα==⇒,3、 性质⑴、性质:=+21V V 直和}0{21=⇔V V I⑵、证明:充分性:22112121V V V V ∈∈+=⇒+∈∀αααααα,,2211210V V ∈∈+=⇒αααα,,1221221121V V V V ∈∈∈∈⇒-=⇒αααααα,,, 021212211==⇒∈∈⇒ααααV V V V I I , 必要性:212121V V V V V V ∈-∈⇒∈∈⇒∈∀ααααα,,I 00)(=⇒=-+ααα4、 性质⑴、引理:⇔=}0{V 维0=V⑵、证明:必要性:向量0线性相关⇒不存在线性相关的向量组 充分性:假设:线性空间V 至少包括一个非零向量α ⇒≠⇒0α向量α线性无关α⇒可以扩充为线性空间V 的一组基⇒维1≥V ⇒矛盾⑶、性质:=+21V V 直和⇔维+1V 维=2V 维)(21V V +第八节 线性空间的同构1、 定义:同构如果:=W V ,线性空间并且:存在W V →的双射σ【双射=一一映射=满射+单射】并且:σ满足两条性质:①)()()(βσασβασ+=+②)()(ασασk k = 则称:V 和W 同构,=σ同构映射2、 基本性质⑴、性质:数域P 上的n 维线性空间V 与n P 同构⑵、证明:①、=•+)(,,;P P n线性空间【两种运算封闭+满足8条性质】 n n n n P b b b P a a a ∈=∀∈=∀)()(2121,,,,,,,ΛΛβα )(2211n n b a b a b a +++=+⇒,,,Λβα n n P a a a P k ∈=∀∈∀)(21,,,,Λα)(21n ka ka ka k ,,,Λ=•⇒α ②、构造nP V →的双射σ【向量到坐标的双射】假设:V n =εεε,,,Λ21的一组基 )()(212211n n n a a a a a a V ,,,ΛΛ=⇒++=⇒∈∀ασεεεαα ③、σ满足两条性质)()(212211n n n a a a a a a V ,,,ΛΛ=⇒++=⇒∈∀ασεεεαα )()(212211n n n b b b b b b V ,,,ΛΛ=⇒++=⇒∈∀βσεεεββn n n b a b a b a εεεβα)()()(222111+++++=+⇒Λ)()()()(2211βσασβασ+=++++=+⇒n n b a b a b a ,,,Λ3、 性质群1⑴、性质:)()()()(22112211r r r r k k k k k k ασασασααασ+++=+++ΛΛ ⑵、证明:σ的两条性质⑶、性质:r ααα,,,Λ21线性无关)()()(21r ασασασ,,,Λ⇔线性无关 ⑷、证明:必要性:假设:0)()()(2211=+++r r k k k ασασασΛ0)(2211=+++⇒r r k k k ααασΛ由于0)0(=σ,并且=σ双射00212211====⇒=+++⇒r r r k k k k k k ΛΛααα⑸、性质:r ααα,,,Λ21线性相关)()()(21r ασασασ,,,Λ⇔线性相关 ⑹、证明:反证法⑺、性质:同构的线性空间同维⑻、证明:假设:线性空间V 和W 同构,并且维n V =)(,维m W =)(维⇒=n V )(存在n 个线性无关的向量组V n ∈ααα,,,Λ21 ⇒存在n 个线性无关的向量组W n ∈)()()(21ασασασ,,,Λ ⇒维n m W ≥=)( 同理:n m n m =⇒≤4、 性质群2⑴、性质:如果:1V 是线性空间V 的一个子空间那么:}|)({)(11V V ∈=αασσ是线性空间)(V σ的子空间 ⑵、证明:①、=1V 非空子集=⇒)(1V σ非空子集②、两种运算封闭假设:111*)()(*)(*V V ∈=⇒=⇒∈∀-αασασασα【双射】 111*)()(*)(*V V ∈=⇒=⇒∈∀-ββσβσβσβ111*)(*)(V ∈+⇒--βσασ【运算封闭】)(*)](*)([111V σβσασσ∈+⇒--【定义】【σ的两条性质】***)]([*)]([*)](*)([1111βαβσσασσβσασσ+=+=+----)(**1V σβα∈+⇒⑶、性质:=-στσ、1同构映射 ⑷、证明:①、=-1σ双射②、1-σ的两条性质)]([)]([)]([111βσσασσβασσβαβα---+=+⇒+=+ )]()([)]([111βσασσβασσ---+=+⇒【σ的两条性质】)()()(111βσασβασ---+=+⇒第二章 欧几里得空间第一节 实线性空间1、 定义:实线性空间)(•+=,;;R R n⑴、两种运算:①、向量加法n n n n R b b b R a a a ∈=∀∈=∀)()(2121,,,,,,,ΛΛβα)(2211n n b a b a b a +++=+⇒,,,Λβα ②、向量数乘n n R a a a R k ∈=∀∈∀)(21,,,,Λα)(21n ka ka ka k ,,,Λ=•⇒α ⑵、两种运算封闭+满足8条性质第二节 欧几里得空间一、基本概念1、 定义:内积==)(βα,内积的4条性质 ⑴、交换:)()(αββα,,= ⑵、数乘:)()(βαβα,,k k =⑶、分解:)()()(γβγαγβα,,,+=+ ⑷、正定:0)(≥αα,,00)(=⇔=ααα,2、 欧几里得空间【欧氏空间】⑴、定义:欧几里得空间+•+=)(,;;R V 内积⑵、分析:未确定因素;③,;②①•+V 内积⑶、典例:=nE 实线性空间+•+)(,;;R R n内积 ⑷、分析:①、nR V =;②、=•+,向量加法+向量数乘;③、内积:n n n n R b b b R a a a ∈=∀∈=∀)()(2121,,,,,,,ΛΛβα n n b a b a b a +++=⇒Λ2211)(βα,【满足内积的4条性质】3、 基本概念⑴、概念:向量长度)(||ααα,== ⑵、概念:单位向量||αα=⑶、概念:向量距离)(||)(βαβαβαβα--=-==,,d ⑷、概念:夹角||||)(cos 1βαβαβα,,->==<二、柯西不等式1、 基本公式⑴、公式:|||||)(|βαβα≤,⑵、证明:①0)(0||0==⇒=βαββ,, ②⇒≠0β令βαγt +=022≥++=++=⇒),(),(),(),(),(βββαααβαβαγγt t t t04]2[2≤-=∆⇒),)(,(),(ββααβα【开口向上+单根或者无根】),)(,(),(ββααβα≤⇒2][③等号成立条件:βαβαγγγt t -=⇒=+⇒=⇒=000),(),(),(βββα-=-=a b t 2【单根】 βαββββαα、),(),(⇒=⇒线性相关2、 推论⑴、推论:||||||βαβα+≤+⑵、证明:),(),(),(),(βββαααβαβα++=++2 222|]||[|||||||2||βαββαα+=++≤⑶、推论:||||||γββαγα-+-≤-⑷、证明:令γαβαγβββαα-=+⇒-=-=,【代入上式】第三节 标准正交基1、 基本概念⑴、定义:两个向量正交【如果0)(=βα,,则称βα、正交,记为βα⊥】⑵、性质:n 维欧几里得空间V 的内积∑∑====n j ni jiji b a 11)()(εεβα,,⑶、证明:假设:V n =εεε,,,Λ21的一组基 n n a a a V εεεαα+++=⇒∈∀Λ2211n n b b b V εεεββ+++=⇒∈∀Λ22112、 基本概念⑴、定义:正交向量组=两两正交的非零向量组⎩⎨⎧≠==≠==ji ji j i 00)(αα,⑵、定义:正交基=正交向量组+基⑶、定义:标准正交基=正交基+单位向量3、 基本性质⑴、性质:正交向量组线性无关⑵、证明:假设:=r ααα,,,Λ21正交向量组 02211=+++++⇒r r i i k k k k ααααΛΛ0)()(2211==+++++⇒i i i i r r i i k k k k k ααααααα,,ΛΛ 0=⇒i k4、 定理⑴、定理:任何一个正交向量组,可以扩充为一组正交基⑵、证明:①假设:=m ααα,,,Λ21线性空间V 的正交向量组 V ∈∃β,使得βααα,,,,m Λ21线性无关 否则:βαααβ,,,,,m V Λ21∈∀线性相关 β∀⇒可由m ααα,,,Λ21线性表出 ⇒维V ⇒=m 矛盾 ②∑=+-=mj jj m k 11αβαm i k i mj j j i m ,,,,,,Λ21)()(11=-=⇒∑=+ααβαα0))1=-=-=∑=),(,(),(,(i i i i i mj j j i k k αααβαααβ),(,(i i i i k αααβ)=⇒5、 定理⑴、定理:如果:V n =εεε,,,Λ21的一组基 那么:可以找到一组标准正交基n ηηη,,,Λ21 并且:)()(2121n n L L ηηηεεε,,,,,,ΛΛ= ⑵、证明:①||111εεη=②假设:已经找到一组单位正交向量m ηηη,,,Λ21 使得:)()(2121m m L L ηηηεεε,,,,,,ΛΛ= ∑=+++-=⇒mj j j m m m 1111)(ηηεεγ,m i i mj j j m m i m ,,,,,,,Λ21))(()(1111=-=⇒∑=+++ηηηεεηγ))(()())(()(11111i i i m i m i mj j j m i m ηηηεηεηηηεηε,,,,,,++=++-=-=∑0))(()(11=-=++i i i m i m ηηηεηε,,, ||111+++=⇒m m m γγη ③∑=++++-=nj j j m m m m 11111)(||ηηεεγη,1+⇒m η可由121+m εεε,,,Λ线性表出 1+m ε可由121+m ηηη,,,Λ线性表出121+⇒m εεε,,,Λ与121+m ηηη,,,Λ等价 )()(121121++=⇒m m L L ηηηεεε,,,,,,ΛΛ第四节 正交补1、 基本概念⑴、定义:V ⊥α:如果V ∈∀β,都有0)(=βα,则称V 、α正交,记为V ⊥α⑵、定义:W V ⊥:如果W V ∈∀∈∀βα,,都有0)(=βα,则称W V 、正交,记为W V ⊥⑶、定义:正交补:假设:=21V V ,线性空间V 的两个子空间 如果:V V V V V =+⊥2121,则称:12V V =的正交补,记为:⊥=12V V2、 性质⑴、性质:如果:s V V V ,,,Λ21两两正交 那么:=+++s V V V Λ21直和 ⑵、证明:假设:i i s V ∈+++=αααα,Λ21000)(0)(21=⇒=⇒=+++⇒i i i i s ααααααα,,Λ3、 性质⑴、性质:任何子空间的正交补,存在并且唯一⑵、证明:假设:=1V 线性空间V 的一个子空间,⊥=12V V ①、V V V =⇒=21}0{②、1211}0{V V m =⇒≠εεε,,,Λ的一组正交基 ⇒可以扩充为=n m εεε,,,,ΛΛ1V 的一组正交基 )(12n m L V εε,,Λ+=⇒⊥=⇒12V V 【证明集合相等】【根据定义证明正交】③、假设:21V V ⊥,并且V V V =+2131V V ⊥,并且V V V =+313311312222V V V V ∈∈+=⇒∈∀⇒∈∀ααααααα,,00((111131112=⇒=⇒+=⇒ααααααααα),),(),),( 32323323V V V V ⊂⇒∈⇒∈=⇒αααα, 同理可证:3223V V V V =⇒⊂第三章 线性变换一、线性变换的定义1、 定义:线性变换假设:=T 线性空间),;;(•+P V 的一个变换 如果:T 满足两个条件⑴、V T T T ∈∀+=+βαβαβα,,)()()( ⑵、V P k kT k T ∈∀∈∀=ααα,,)()(则称:=T 线性变换2、 等价条件⑴、性质:T 的两个条件等价于V P k k T k T k k k T ∈∀∈∀+=+βαβαβα,,,,212121)()()(⑵、证明:①必要性:)()()()()(212121βαβαβαT k T k k T k T k k T +=+=+②充分性:)()()(121βαβαT T T k k +=+⇒==)()(021ααkT k T k k k =⇒==,二、线性变换的运算1、 线性变换的乘积⑴、定义:V T T T T ∈=ααα,))(())((2121 ⑵、性质:线性变换的乘积,仍是线性变换⑶、证明:①))(())(())((2212121βαβαβα()T T T T T T T +=+=+))(())(())(())((21212121βαβαT T T T T T T T +=+=②)))ααααα)(()(()(())(())((2121212121T T k T kT kT T k T T k T T ====2、 线性变换的加法⑴、定义:V T T T T ∈+=+αααα,)()())((2121 ⑵、性质:线性变换的加法,仍是线性变换 ⑶、证明:同上类似三、线性变换的矩阵1、 定理:⑴、定理:如果:=V 数域P 上的n 维线性空间),;;(•+=P V V n =εεε,,,Λ21的一组基 =n a a a ,,,Λ21任意一组向量那么:存在唯一的一个线性变换T使得:n i a T i i ,,,,Λ21==ε ⑵、证明:存在性和唯一性2、 唯一性⑴、性质:如果:n i T T i i ,,,,Λ2121==εε 那么:21T T =⑵、证明:n n x x x x V x εεε+++=⇒∈∀Λ2211n n n n T x T x T x x x x T x T εεεεεε1212111221111)(+++=+++=⇒ΛΛ x T x x x T T x T x T x n n n n 2221122222121)(=+++=+++=εεεεεεΛΛ3、 存在性⑴、性质:如果:=V 数域P 上的n 维线性空间),;;(•+=P V V n =εεε,,,Λ21的一组基=n a a a ,,,Λ21任意一组向量那么:存在一个线性变换T使得:n i a T i i ,,,,Λ21==ε⑵、证明:①变换T :∑==+++=⇒∈∀ni ii n n x x x x x V x 12211εεεεΛ∑==+++=⇒ni ii n n ax a x a x a x Tx 12211Λ②线性变换T :假设:∑∑===⇒∈∀=⇒∈∀ni ii ni i i z z V z y y V y 11εε,∑∑===+=+⇒ni i i ni i i iky ky z yz y 11)(εε,Tz Ty a z a y a z yz y T ni i i n i i i ni i i i+=+=+=+⇒∑∑∑===111)()(kTy a y k aky ky T ni i i ni ii ===⇒∑∑==11)(③证明i i a T =ε:n i i εεεεε010021+++++=ΛΛi n i a a a a a T =+++++=⇒0100221ΛΛε4、 定义:如果:=V 数域P 上的n 维线性空间),;;(•+=P V V n =εεε,,,Λ21的一组基 V T =的一个线性变换那么:⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=⇒nnn n n n n n n n a a a T a a a T a a a T εεεεεεεεεεεεΛΛΛΛ22112222112212211111 )()(2121222211121121n nn n n n n n T T T a a a a a a a a a εεεεεε,,,,,,ΛΛΛΛΛΛΛΛΛ=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇒ )()(2121n n T T T A εεεεεε,,,,,,ΛΛ=⇒ 则称:=A 线性变换T 在n εεε,,,Λ21下的矩阵⑵、性质:如果:取定一组基并且:=ϕ线性变换n n T ⨯→矩阵的一个映射那么:=ϕ双射⑶、证明:①单射:假设:2211)()(A T A T ==ϕϕ,212121T T T T A A i i =⇒=⇒=εε【唯一性】②满射:i i ni i i i a T a a a a A =⇒=⇒ε)(21,,,Λ【存在性】5、 定理⑴、线性变换的加法,对应于矩阵的加法⑵、线性变换的乘积,对应于矩阵的乘积⑶、线性变换的数乘,对应于矩阵的数乘⑷、线性变换的逆,对应于矩阵的逆第二部分泛函分析第一章 度量空间第一节 度量空间一、度量空间1、 符号约定:),;;(),;;(•+⇒•+F R P V2、 定义:距离ρρ==),(y x 的两条性质⑴、正定:R y x y x y x y x ∈∀=⇔=≥,;),(,),(00ρρ⑵、三角不等式:R z y x z y z x y x ∈∀+≤,,);,(),(),(ρρρ3、 定义:度量空间)ρ,(R =【距离空间】⑴、解释:=R 非空集合⑵、解释:=ρ距离【满足ρ的两条性质】4、 对称性⑴、性质:),(),(x y y x ρρ= ⑵、证明:),(),(),(z y z x y x ρρρ+≤),(),(),(),(),(x y y x x y x x y x ρρρρρ≤⇒+≤⇒同理可证:),(),(),(),(x y y x y x x y ρρρρ=⇒≤二、基本概念1、 子空间⑴、性质:度量空间的任何子空间,仍是度量空间⑵、证明:假设:=)ρ,(R 度量空间, =)ρ,(M 度量空间的子空间证明:=M 非空子集,ρ的两条性质仍然满足2、 一致离散:如果:0>∃α使得:y x R y x ≠∈∀,,;都有:αρ>),(y x则称:=R 一致离散的度量空间3、 等距映射和等距同构⑴、定义:等距映射:假设:=))11ρρ,,(,(R R 度量空间;1R R →=ϕ的映射 如果:),(),(y x y x ϕϕρρ1= 则称:1R R →=ϕ的等距映射⑵、性质:1R R →=ϕ的等距映射1R R →=⇒ϕ的单射⑶、证明:y x y x y x y x ϕϕϕϕρρ≠⇒≠⇒≠⇒≠001),(),(⑷、定义:等距同构:假设:1R R →=ϕ的等距映射如果:1)(R R =ϕ则称:=))11ρρ,,(,(R R 等距同构【双射】 ⑸、性质:11)(R R R R →=⇒=ϕϕ的满射三、极限1、 极限⑴、定义:假设:=R 度量空间,R x n x n ∈=,,,)21(Λ 如果:0)(lim =∞→x x n n ,ρ则称:点列}{n x 按距离收敛于x记为:x x n →【x x n n =∞→lim 】 并称:=}{n x 收敛点列,}{n x x =的极限⑵、归纳:0)(lim lim =⇔=⇔→∞→∞→x x x x x x n n n n n ,ρ2、 性质⑴、性质:收敛点列的极限唯一⑵、证明:假设:0)(lim =⇒→∞→x x x x n n n ,ρ 0)(lim =⇒→∞→y x y x n n n ,ρ )()()(0y x x x y x n n ,,,ρρρ+≤≤⇒【三角不等式】0)]()([lim )(0=+≤≤⇒∞→y x x x y x n n n ,,,ρρρ【夹逼原则】 y x y x =⇒=⇒0)(,ρ3、 性质⑴、性质:如果:00y y x x n n →→,那么:)()(lim 00y x y x n n n ,,ρρ=∞→【y x y x ,,=)(ρ的连续函数】 ⑵、证明:0)(lim 00=⇒→∞→x x x x n n n ,ρ 0)(lim 00=⇒→∞→y y y y n n n ,ρ )()()()(0000n n n n y y y x x x y x ,,,,ρρρρ++≤)()()()(0000y y x x y x y x n n n n ,,,,ρρρρ+≤-⇒)()()()(0000y y y x x x y x n n n n ,,,,ρρρρ++≤)()()()(0000y y x x y x y x n n n n ,,,,ρρρρ+≤-⇒)()(|)()(|00000y y x x y x y x n n n n ,,,,ρρρρ+≤-≤⇒0)]()([lim |)()(|lim 00000=+≤-≤⇒∞→∞→y y x x y x y x n n n n n n ,,,,ρρρρ )()(lim 00y x y x n n n ,,ρρ=⇒∞→4、 定义:开球})(|{)(00R x r x x x r x O ∈<==,,,ρ其中:=R 度量空间,R x ∈0,+∞<<r 0【=r 有限正数】5、 定义:有界集:假设:=R 度量空间,R M =中的点集如果:M 包含在某个开球)(0r x O ,中则称:R M =中的有界集6、 性质⑴、性质:如果=}{n x 收敛点列,那么=}{n x 有界集⑵、证明:=}{n x 收敛点列0lim x x n n =⇒∞→ 0>∃⇒N ,使得当N n >时,都有1)(0<x x n ,ρ1)1)()(m ax (001+=⇒,,,,,x x x x r N ρρΛ }{n x ⇒包含在开球)(0r x O ,中四、常见的度量空间1、 欧氏空间nE =,其中:)()(y x y x y x --=,,ρ【内积】2、 函数空间==][b a C ,区间][b a ,上的连续函数的全体其中:|)()(|max )(][t y t x y x b a t -=∈,,ρ第二节 范数一、范数1、 定义:R 上的实值函数)(x P 的4个条件【范数的4个条件】⑴、正定1:R x x P ∈∀≥,0)(⑵、齐次性:R x F x P x P ∈∀∈∀=,,ααα)(||)(⑶、三角不等式:R y x y P x P y x P ∈∀+≤+,,)()()(⑷、正定2:00)(=⇔=x x P2、 定义:范数:假设:=•+),;;(F R 实数域F 上的线性空间如果:R 上的实值函数)(x P 满足范数的4个条件则称:x x P =)(的范数记为:x x =||||的范数【)(||||x P x =】并称:=R 赋范线性空间【赋范空间】3、 性质⑴、定义:半范数:如果满足范数的前3个条件⑵、性质:范数的第4个条件可以简化为:00)(=⇒=x x P⑶、证明:0)0(0)(|0|)0()0(00=⇒===⇒=P x P x P P x4、 典例:函数空间][b a C ,⑴、性质:如果:][|)(|max ||||][b a C f x f f b a x ,,,∈∀=∈ 那么:=][b a C ,赋范线性空间⑵、证明:①=][b a C ,线性空间),;;(•+F R 定义:=+向量加法,=•向量数乘⇒两种运算封闭+满足8个条件②范数的4个条件正定1:0|)(|max ||||][≥=∈x f f b a x , 齐次性:||||*|||)(|max |||)(|max ||||][][f x f x f f b a x b a x αααα===∈∈,, 三角不等式:|)()(|max ||||][x g x f g f b a x +=+∈, |||||||||)(|max |)(|max ][][g f x g x f b a x b a x +=+≤∈∈,, 正定2:0)(0|)(|max 0||||][=⇒=⇒=∈x f x f f b a x ,5、 典例:n 维向量空间n R⑴、范数1:n n ni i R x x x x x x x x x ∈=∀===∑=)()(||||||2112,,,,,Λ ⑵、范数2:∑==n i ix x 1|||||| ⑶、范数3:||max ||||1i ni x x ≤≤=二、范数和距离1、 性质⑴、性质:利用范数可以定义距离:||||)(y x y x -=,ρ⑵、证明:距离的两个条件①正定:0||||)(≥-=y x y x ,ρy x y x y x =⇔=-⇔=0||||0)(,ρ②三角不等式:||||||||||||y x y x +≤+y x y x y z y z x x -=+⇒-=-=,||||||||||||||||||||z y z x y z z x y x -+-=-+-≤-⇒)()()(z y z x y x ,,,ρρρ+≤⇒⑶、归纳:赋范线性空间+利用范数定义距离⇒度量空间【线性空间+范数+距离】2、 极限⑴、定义:假设:=R 赋范线性空间,R x n x n ∈=,,,)21(Λ 如果:0||||lim =-∞→x x n n 则称:点列}{n x 按范数收敛于x记为:x x n →【x x n n =∞→lim 】 ⑵、归纳:0||||lim lim =-⇔=⇔→∞→∞→x x x x x x n n n n n3、 性质⑴、性质:如果0x x n →,那么||||||||lim 0x x n n =∞→【x x =||||的连续函数】 ⑵、证明:0||||lim 00=-⇒→∞→x x x x n n n ||||||||||||||||||||||||0000x x x x x x x x n n n n -≤-⇒+-≤||||||||||||||||||||||||0000x x x x x x x x n n n n -≤-⇒+-≤||||||||||||||000x x x x n n -≤-≤⇒0||||lim |||]||||[|||lim 000=-≤-≤⇒∞→∞→x x x x n n n n ||||||||lim 0||]||||[||lim 0||||||||||lim 000x x x x x x n n n n n n =⇒=-⇒=-⇒∞→∞→∞→4、 性质⑴、性质:利用范数定义距离,必然满足两个条件①、)0()(,,y x y x -=ρρ②、)0(||)0(,,x x ρααρ=⑵、证明:①、||||)(y x y x -=,ρ||||||0||)0(y x y x y x -=--=-,ρ②、||||*||||||||0||)0(x x x x ααααρ==-=,||||*||||0||*||)0(||x x x ααρα=-=,5、 性质⑴、性质:如果:)(y x ,ρ满足两个条件那么:可以利用距离定义范数:)0(||||,x x ρ=⑵、证明:范数的4个性质①正定1:0)0(||||≥=,x x ρ②齐次性:||||*||)0(||)0(||||x x x x αρααρα===,,③三角不等式:),(),(),(z y z x y x ρρρ+≤ ),(),(),(),(),(),(00000y x y x y x y x ρρρρρρ+≤-⇒+≤⇒ ),(),(),(00|1|0y y y ρρρ=-=- ),(),(),(),(),(),(000000y x y x y x y x ρρρρρρ+≤+⇒-+≤-⇒ ||||||||||||y x y x +≤+⇒④正定2:00)0(0||||=⇒=⇒=x x x ,ρ6、 定理⑴、利用范数,可以定义距离⑵、利用函数,可以定义距离+满足两个条件⑶、利用距离+满足两个条件,可以定义范数⑷、利用距离,不一定可以定义范数【反例】第二章 有界线性算子第一节 度量空间中的点集1、 基本概念⑴、概念:0x 的-ε环境})(|{)(00R x x x x x O ∈<==,,,ερε⑵、概念:A x =0的内点:如果存在0x 的一个-ε环境A x O ⊂=)(0ε,⑶、概念:=A 开集:如果A 的每一个点都是内点⑷、概念:0x 的环境==)(0x O 包含0x 的开集2、 基本性质⑴、性质:)(00ε,x O x ∈,)(00ε,x O x =的内点【ερ<=0)(00x x ,】【2*εε=】⑵、性质:)(00x O x ∈,)(00x O x =的内点【定义】3、 重要性质⑴、性质:=)(0ε,x O 开集⑵、证明:ερε<⇒∈∀)()(00x z x O z ,,)(*0)(000x z x z ,,ρεερε-<<⇒-<⇒*)(*)(ερε<⇒∈∀z x z O x ,, ερερρρ<+<+≤⇒)(*)()()(000z x z x z x x x ,,,,)(*)()(00εεε,,,x O z O x O x ⊂⇒∈⇒)(0ε,x O z =⇒的内点=⇒)(0ε,x O 开集4、 重要性质⑴、性质:0x 的任何一个-ε环境)(0ε,x O =,都是0x 的环境⑵、意义:-ε环境=环境的特殊情况⑶、证明:=∈)()(000εε,,,x O x O x 开集⑷、性质:A x =0的内点⇔存在0x 的一个环境A x O ⊂=)(0⑸、意义:利用环境定义内点⑹、证明:①:A x =0的内点⇒存在0x 的一个-ε环境A x O ⊂=)(0ε,⇒存在0x 的一个环境A x O ⊂=)(0②:存在0x 的一个环境A x O ⊂=)(0)(00x O x =⇒的内点⇒存在0x 的一个-ε环境)()(00x O x O ⊂=ε,⇒存在0x 的一个-ε环境A x O ⊂=)(0ε,A x =⇒0的内点5、 定理⑴、定理:⇔→0x x n对于0x 的任何环境)(0x O =,存在0>N ,当N n >时,)(0x O x n ∈⑵、意义:利用环境定义收敛点列⑶、证明:①:任取0x 的一个环境)(0x O =)(00x O x =⇒的内点⇒存在0x 的一个-ε环境)()(00x O x O ⊂=ε,⇒→0x x n 对于0>ε,存在0>N ,当N n >时,ερ<)(0x x n ,)()(00x O x x O x n n ∈⇒∈⇒ε,②:对于0x 的任何环境)(0x O =,存在0>N ,当N n >时,)(0x O x n ∈⇒对于0x 的任何一个-ε环境)(0ε,x O =,存在0>N ,当N n >时,)(0ε,x O x n ∈00)(x x x x n n →⇒<⇒ερ,⑷、推论:⇔→0x x n对于0x 的任何-ε环境)(0ε,x O =,存在0>N ,当N n >时,)(0ε,x O x n ∈ ⑸、意义:利用-ε环境定义收敛点列第二节 连续映射1、 函数)(x f 在0x 点连续⑴、传统描述:对于00>∃>∀δε,,当δ<-||0x x 时,ε<-|)()(|0x f x f⑵、环境描述:对于)(0x f 的任何-ε环境))((0ε,x f O =存在0x 的一个-δ环境)(0δ,x O =当)(0δ,x O x ∈时,))(()(0ε,x f O x f ∈2、 映射f 在0x 点连续【双重扩展】⑴、定义:假设:=Y X ,度量空间,X D =的一个子空间,Y D f →=的映射如果:对于)(0x f 的任何环境Y x f O ⊂=))((0存在0x 的一个环境D x O ⊂=)(0当)(0x O x ∈时,))(()(0x f O x f ∈则称:映射f 在0x 点连续⑵、定义:如果:映射f 在D 上的每一点都连续则称:D f =上的连续映射3、 等价定理⑴、定理:①:映射f 在0x 点连续②:对于)(0x f 的任何-ε环境))((0ε,x f O =存在0x 的一个-δ环境)(0δ,x O =当)(0δ,x O x ∈时,))(()(0ε,x f O x f ∈③:)()(00x f x f x x n n →⇒→⑵、证明:①⇒②映射f 在0x 点连续⇒对于)(0x f 的任何环境))((0x f O =存在0x 的一个环境)(0x O =当)(0x O x ∈时,))(()(0x f O x f ∈【定义】⇒对于)(0x f 的任何-ε环境))((0ε,x f O =存在0x 的一个环境)(0x O =当)(0x O x ∈时,))(()(0ε,x f O x f ∈【-ε环境=环境的特殊情况】 )(00x O x =的内点⇒存在0x 的一个-δ环境)()(00x O x O ⊂=δ,⇒结论【全局满足则局部满足】⑶、证明:②⇒③⇒→0x x n 对于0>∀δ,存在0>N ,当N n >时,)(0δ,x O x n ⊂ N 由δ决定,δ由ε决定⇒N 由ε决定⇒对于0>∀ε,存在0>N ,当N n >时,))(()(0ε,x f O x f n ∈)()(0x f x f n →⇒⑷、证明:③⇒①反证法:映射f 在0x 点不连续⇒存在)(0x f 的一个环境))((0x f O =对于0x 的任何环境)(0x O =存在)(0x O x ∈,))(()(0x f O x f ∉⇒对于0x 的任何环境)1(0nx O ,=,存在)(0x O x n ∈,))(()(0x f O x f n ∉ 0)(lim 1)(0)(000=⇒<<⇒∈∞→x x nx x x O x n n n n ,,ρρ【夹逼定理】 )()(00x f x f x x n n →⇒→⇒【条件】⇒对于0>∀ε,存在0>N ,当N n >时,))(()(0ε,x f O x f n ∈ ))(()(00x f O x f =的内点⇒存在)(0x f 的一个-*ε环境))((*))((00x f O x f O ⊂=ε,⇒对于0*>ε,存在0>N ,当N n >时,))((*))(()(00x f O x f O x f n ⊂∈ε, ⇒存在0>N ,当N n >时,))(()(0x f O x f n ∈⇒矛盾【N 由*ε决定,*ε由))((0x f O 决定】第三节 线性算子1、 算子⑴、定义:算子=映射⑵、定义:泛函=取值于实数域或者复数域的算子2、 线性算子⑴、定义:假设:=Y X ,实数域F 上的线性空间X D =的子空间Y D T →=的映射如果:T 满足条件:D F k k T k T k k k T ∈∀∈∀+=+βαβαβα,,,,212121)()()(则称:=T 线性算子并称:T D =的定义域,T D x Tx TD =∈=}|{的值域⑵、定义:如果:=T 线性算子并且:F TD ⊂则称:=T 线性泛函第四节 线性算子的有界性与连续性一、有界算子1、 连续定理⑴、定理:线性算子一点连续,处处连续⑵、描述:假设:=Y X ,赋范线性空间,X D =的一个子空间,Y D T →=的线性算子 如果:T 在D x ∈0连续那么:D T =上的连续算子⑶、证明:①:假设:x x D x n →∀⇒∈∀②:x x n →⇒对于0>∀ε,存在0>N ,当N n >时,ερ<)(x x n ,||||)(x x x x n n -=,ρ【=X 赋范线性空间】||||)(00x x x x x x n n -=+-,ρ⇒对于0>∀ε,存在0>N ,当N n >时,ερ<+-)(00x x x x n ,00x x x x n →+-⇒③:T 在0x 点连续00)(Tx x x x T n →+-⇒【等价定理①⇒③】00Tx Tx Tx Tx n →+-⇒【=T 线性算子】Tx Tx n →⇒【=Y 赋范线性空间】T ⇒在x 点连续【+∀n x 等价定理③⇒①】T ⇒在D 上处处连续【x ∀】。
[理学]应用数学基础 第三章-赋范线性空间和有界线性算子
1.4
等价范数
如果存在正实数 a 和 b,使得对一切 xX,均有: a ||x||2 ≤ ||x||1 ≤b ||x||2 则称 ||•||1 与 ||•||2 等价
定义6:设 ||•||1 和 ||•||2 是线性空间 X 中的两个范数,
10 如果 ||•||1 和 ||•||2 等价,则{xn} 为 (X, ||•||1) 中的 Cauchy 序列 {xn} 为 (X, ||•||2) 中的 Cauchy 序列; 20 如果 ||•||1 与 ||•||2 等价,则 {xn} 依范数 ||•||1 收敛于x {xn} 依范数 ||•||2 收敛于 x; 30 如果 ||•||1 与 ||•||2 等价,则 (X, ||•||1) 为 Banach 空间 (X, ||•||2) 为 Banach 空间; 40* 有限维空间中任何两种范数都等价。
d (x,y) d ( x, y)
1.2 收敛函数与连续映射
{xn }n1 X 定义2:设 X 为赋范线性空间,
xn x0 0 , 如果存在 x0 X ,使得 lim n
则称 {xn} 依范数收敛于 x0,记为
lim xn x0
n
这时也称 x0 为序列 {xn }n1 的极限。
20 并不是所有的赋范线性空间都可由内积空间按内积诱导 成空间;
例如: l p {(1 , 2 ,, n ,) i C , i } ( p 2)
i 1
p
x (1, 2 ,, n ,) l p
P x i i 1
例 2:
X C[a, b(其中范数取最大值范数),则 ]
lim xn (t ) x (t ) xn (t ) 在 [a,b]上一致收敛于x(t)。
泛函分析知识总结
泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
泛函分析第3章--连续线性算子与连续线性泛函
泛函分析第3章--连续线性算子与连续线性泛函第3章 连续线性算子与连续线性泛函本章将介绍赋范线性空间上,特别是Banach 空间上的有界线性算子与有界线性泛函的基本理论,涉及到泛函分析的三大基本定理,即共鸣定理,逆算子定理及Hahn-Banach 定理。
他们是泛函分析早期最光辉的成果,有广泛的实际背景,尤其在各种物理系统研究中应用十分广泛。
3.1 连续线性算子与有界线性算子在线性代数中,我们曾遇到过把一个n 维向量空间n E 映射到另一个m 维向量空间m E 的运算,就是借助于m 行n 列的矩阵111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪=⎪⎪⎝⎭L L M M M L 对n E 中的向量起作用来达到的。
同样,在数学分析中,我们也遇到过一个函数变成另一个函数或者一个数的运算,即微分和积分的运算等。
把上述的所有运算抽象化后,我们就得到一般赋范线性空间中的算子概念。
撇开各类算子的具体属性,我们可以将它们分成两类:一类是线性算子;一类是非线性算子。
本章介绍有界线性算子的基本知识,非线性算子的有关知识留在第5章介绍。
[定义3.1] 由赋范线性空间X 中的某子集D 到赋范线性空间Y 中的映射T 称为算子,D 称为算子T 的定义域,记为()D T ,为称像集(){},y y Tx x D T =∈为算子的值域,记作()T D 或TD 。
若算子T 满足: (1)()()(),T x y Tx Ty x y D T +=+∀∈ (2)()()(),T x TxF x D T ααα=∀∈∈称T 为线性算子。
对线性算子,我们自然要求()T D 是X 的子空间。
特别地,如果T 是由X 到实数(复数)域F 的映射时,那么称算子T 为泛函。
例 3.1 设X 是赋范线性空间,α是一给定的数,映射:T x x α→是X 上的线性算子,称为相似算子;当1α=时,称T 为单位算子或者恒等算子,记作I 。
泛函分析知识点范文
泛函分析知识点范文泛函分析是数学中的一门学科,研究向量空间上的函数和函数空间的性质,涉及到实数或复数域上的向量空间。
泛函分析包括线性代数、实变函数分析和拓扑学等多个学科的内容,因此具有广泛的应用领域,如物理、工程、经济等。
泛函分析的核心内容包括线性空间、拓扑空间和连续映射等概念、线性算子和泛函的基本性质以及泛函分析中的基本定理等。
1.线性空间:泛函分析的基础是线性空间,也就是向量空间。
线性空间满足线性组合和分配律等性质,例如实数域或复数域上的向量空间。
线性空间中的向量可以是函数、矩阵等不同的对象。
2.拓扑空间:泛函分析中的向量空间往往是赋予了拓扑结构的空间,即拓扑向量空间。
拓扑空间是一种具有连续性质的空间,它引入了开集、闭集和收敛性等概念。
拓扑空间的拓扑结构可以通过开集、闭集、邻域、基等方式来定义。
3.连续映射:泛函分析中的重要概念是映射的连续性。
连续映射是保持拓扑结构的映射,即对于拓扑空间中的开集,其原像仍然是开集。
连续映射可以用来描述泛函和线性算子的性质。
4.线性算子和泛函:线性算子是线性空间之间的映射,它可以是有界算子或无界算子。
线性算子的基本性质包括线性性、有界性、闭图像性等。
泛函是线性空间到数域的映射,它可以看作是线性算子的特殊情况。
泛函的基本性质包括线性性、有界性、连续性等。
5. Hahn-Banach定理:Hahn-Banach定理是泛函分析中的基本定理,它是关于泛函延拓的定理。
该定理说明了任意线性子空间上的有界泛函可以延拓到整个空间上,并且保持原有泛函的范数不变。
6.可分性:可分性是拓扑空间的一个重要性质,它指的是拓扑空间中存在可数稠密子集。
可分性保证了拓扑空间中存在足够多的元素,使得在拓扑空间上可以进行良定义的运算。
7.反射空间:反射空间是泛函分析中的一类特殊线性空间,它是线性空间和拓扑空间的交叉概念。
反射空间具有良好的性质,例如有界闭集外包性、扩张定理等。
8.紧算子和迹类算子:紧算子是对有界算子的一种推广,它在泛函分析中具有重要的地位。
第三章有界线性算子
第三章有界线性算子第三章有界线性算子一有界线性算子与有界线性泛函 1 定义与例设1,X X 是赋范空间,T 是X 中线性子空间)(T D 上到1X 中的映射,满足条件:对于任意)(,T D y x ∈,K ∈α,)(Ty Tx Y x T +=+Tx x T αα=)(称T 是X 中到1X 中的线性算子。
称)(T D 是T 的定义域。
特别地,称赋范空间X 上到数域K 中的线性算子为线性泛函,并且它们是到实数域或复数域分别称为实线性泛函与复线性泛函。
如果一个线性泛函f 是有界的,即)( |||||)(|M x x M x f ∈≤称为f 有界线性泛函。
此外取算子范数作为空间中的范数。
定理1.1 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,如果T 在某一点X x ∈0连续,则T 是连续的。
定理1.2 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,则T 是连续的,当且仅当,T 是有界的。
2 有界线性算子空间设1,X X 是赋范空间,用),(1X X β表示所有X 上到1X 中的有界线性算子全体。
在),(1X X β中可以自然地定义线性运算,即对于任意∈B A ,),(1X X β及K ∈α,定义Bx Ax x B A +=+))((Ax x A αα=))((不难到,两个有界线性算子相加及数乘一个有界线性算子仍有界线性算子。
此个取算子范数作为空间),(1X X β的范数,具体见)(77P 。
由此可知,),(1X X β是一个赋范线性空间,如果1X X =,把),(1X X β简记为)(X β。
在空间),(1X X β中按范数收敛等价于算子列在X 中的单位球面上一致收敛。
事实上,设∈nA A ,),(1X X β,...)2,1(=n 及}1||:||{=∈=X X x S 。
如果)(∞→→n A A n ,则对任意0>ε,存在N ,当N n >时,对于每一个S x ∈≤-||||Ax x A n1||||sup =x ||||Ax x A n -=||||A A n-ε<。
泛函分析第3章 连续线性算子与连续线性泛函
第3章 连续线性算子与连续线性泛函本章将介绍赋范线性空间上,特别是Banach 空间上的有界线性算子与有界线性泛函的基本理论,涉及到泛函分析的三大基本定理,即共鸣定理,逆算子定理及Hahn-Banach 定理。
他们是泛函分析早期最光辉的成果,有广泛的实际背景,尤其在各种物理系统研究中应用十分广泛。
3.1 连续线性算子与有界线性算子在线性代数中,我们曾遇到过把一个n 维向量空间n E 映射到另一个m 维向量空间m E 的运算,就是借助于m 行n 列的矩阵111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭对n E 中的向量起作用来达到的。
同样,在数学分析中,我们也遇到过一个函数变成另一个函数或者一个数的运算,即微分和积分的运算等。
把上述的所有运算抽象化后,我们就得到一般赋范线性空间中的算子概念。
撇开各类算子的具体属性,我们可以将它们分成两类:一类是线性算子;一类是非线性算子。
本章介绍有界线性算子的基本知识,非线性算子的有关知识留在第5章介绍。
[定义3.1] 由赋范线性空间X 中的某子集D 到赋范线性空间Y 中的映射T 称为算子,D 称为算子T 的定义域,记为()D T ,为称像集(){},y y Tx x D T =∈为算子的值域,记作()T D 或TD 。
若算子T 满足: (1)()()(),T x y Tx Ty x y D T +=+∀∈ (2)()()(),T x TxF x D T ααα=∀∈∈称T 为线性算子。
对线性算子,我们自然要求()T D 是X 的子空间。
特别地,如果T 是由X 到实数(复数)域F 的映射时,那么称算子T 为泛函。
例 3.1 设X 是赋范线性空间,α是一给定的数,映射:T x x α→是X 上的线性算子,称为相似算子;当1α=时,称T 为单位算子或者恒等算子,记作I 。
例3.2 [],x C a b ∀∈,定义()()ta Tx t x d ττ=⎰由积分的线性知,T 是[],C a b 到[],C a b 空间中的线性算子。
有界线性算子和连续线性泛函.ppt
Tx c x
(3)
则称 T是 A(T )到 Y 中的有界线性算子,当 A(T) X时,称 T 为X 到 Y中的有界线性
算子,简称为有界算子,对于不 满足条件(3)的算子,称为无界算子。本书主要 讨论有界算子。
定理1 设 T是赋范空间 X 到赋范空间 Y中的线性算子, 则 T 为有界算子的充要条件为 T 是 X 上连续算子。
t nd ,t [a, a 1 ]
a
n
a
1 n
n
d
,
t
(a
1
,b]
a
n
因此
n(t a),t [a,
1,t (a 1
a ,b]
1 n
]
n
bt
Tfn 1 a a fn ( )d dt
a1 t
bt
a n a fn ( )d dt a1 a fn ( )d dt
(1)
T (x) T (x)
(2)
则称T为 A 到Y中的线性算子,其中 A 称为T 的定义域,记为A(T ),TA 称为 T 的值域,记为
R(T ),当 T 取值于实(或复)域时,就称 T 为实(或复)的线性泛函。如果 T为线性算子,
在(2)中取 0,立即可得 T 0 0,即0 (T ),其中 (T )表示算子 T 的零空间
证明 若 T 有界,由(3)式,当 xn x(n ) 时,因为 Txn Tx c xn x
所以 Txn Tx 0 ,即 Txn Tx(n ) ,因此 T 连续。 反之若 T在 X 上连续,但 T 无界,这时在 X 中必有一列向量 x1, x2, x3,,使 xn 0
但
Txn n xn
定 理 5 设T是DT 上的有界线性算子,那么成立着
第三节线性算子
当X = Y时,称T 是线性变换,当Y = K时,称T 是线性泛函。 相关概念:核空间ker T、线性同构。 称T 在x点连续,是指对任意点列{xn }, 若xn → x, 则Txn → Tx; 若T 在X 的每一点都连续,则称T 在X 上连续。 定理1.设X , Y 是赋范线性空间,T : X → Y 是线性算子,则 (a)T 在X 上连续当且仅当T 在X 中的某点x0处连续;特别的 等价于若xn → θ ( X 中零元),则Txn → θ (Y中零元). (b)当X 的维数有限时,T 在X 上是连续的。
fx0有界线性算子空间110111supsupsup1sup0002supsupxxxxxxtxtbxyttxtxxttxttbxyttxtxt????????????????????????算子的范数验证算子算子范数满足以下条件
赋范线性空间
内积空间
三个空间的关系
赋范线性空间都是距离空间:ρ(x,y )= || x y ||; 反之,要求距离满足条件 : ρ (ax, θ ) =| a | ρ ( x, θ ), 范数定义 || x ||= ρ ( x, θ )。 内积空间都是赋范线性空间 :|| x ||= ( x, x) 2 ;反之, 范数满足中线公式: x + y ||2 + || x y ||2 = 2 || x ||2 +2 || y ||2 , || 内积定义 1 (x,y )= (|| x + y ||2 || x y ||2 +i || x + yi ||2 i || x + yi ||2 ) 4
因为任何n维赋范线性空间都与n维欧式空间线性同构,所 以有限维的赋范线性空间是线性同构的当且仅当它们的维 数相等。 绝大多数的泛函分析课程都是讲述特殊的线性空间和线性 算子的性质,而自然界中的现象更多是非线性的,非线性 问题是更广阔更具有挑战性的领域,有着多样性和复杂性。 人们在处理这类问题的方法: 一、推广线性情形时的有关理论的想法和方法; 二、化整为零,在局部范围内运用线性方法,将非线性问 题转化为线性问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证 明 : 用 X 表 示 R上 以 2 为 周 期 的 连 续 函 数 全 体 , 赋 予
范 数 || x || m ax{| x(t) |; t }, 那 么 X 是 一 Banach空 间 。
对 每 个 x X , 其 F - 级 数 的 前 n + 1 项 的 部 分 和 记 为( S n x )(t )。
n
精品课件
共鸣定理的应用
• 1.机械求积公式的收敛性 • 2. Lagrange插值公式的发散性定理:差值
多项式作为连续函数的近似表达时,插值 点的无限增多不能更好的逼近插值函数。 • 3. Fourier级数的发散性问题:存在连续 的周期函数,其Fourier级数在给定点发散。
精品课件
1.机 械 求 积 公 式 的 收 敛 性
如果 fn 在X的每点x处有界, 那么 fn一品课件
定理2.设X,Y都是Banach空间,则B(X,Y)在强收敛意义下是
完备的。
定理3:设X是赋范线性空间,Y是Banach空间, {Tn}B(X,Y) 满足条件:(1){||Tn ||}是有界数列; (2)在X中的某一稠密子集G中的每个元素x,{Tn(x)}都收敛. 则{Tn}强收敛于某一个算子TB(X,Y),且||T||lim||T||.
第三章 线性算子与线性泛函
• 一致有界原理(共鸣定理)及其应用 • Hahn-Banach定理,非零有界线性算子存在
性定理 • 共轭空间与共轭算子 • 开映射、逆算子及闭图形定理 • 算子谱理论简介
精品课件
第一节 共鸣定理及其应用
• 定义:设A是距离空间X的子集,若A在X中的任意 一个非空开集中均不稠密(A没有内点),则称A 是稀疏(疏朗)集;称X是第一纲的,若X可表示成 至多可数的稀疏集的并;不是第一纲的X称为是第 二纲的。
在 函 数 x(t)在 [a,b] 上 积 分 近 似 计 算 中 , 我 们 通 常 考 虑 形 如 :
b x(t)dt
a
Ak x (tk )(a t0 t1 tn b )
0 k n
( 3)
需要讨论的是什么条件下,当n 时,上式的误差趋于0?
现 在 可 证 公 式 (3) 对 每 个 连 续 函 数 x C [a , b ]都 收 敛 , 即
• 例如:求元素的范数就是这种泛函 • 定理1.(Hahn-Banach):设p是实线性空间X
这 意 味 着 x0 (t )的 F -级 数 在 t 0点 是 发 散 的 。
精品课件
第二节 Hahn-Banach定理
• n维赋范线性空间上的线性泛函与n元数组一一对 应,有着具体的形式。
• 有限维赋范线性空间上的线性泛函和线性算子都 是连续的,那无穷维的情形呢,是否有非零的连 续线性泛函,如果有,是否足够多?
• 例子:X=有理数集,定义距离d(x,y)=|x-y|,则X 是第一纲的,每个单点集是X中的疏朗集。
• 定理1(Baire纲定理):完备的距离空间是第二纲 的。
• 推论1:欧式空间、Banach空间、Hilbert空间、有 界线性算子空间L(X,Y)都是第二纲的。
精品课件
第一节 共鸣定理及其应用
定理1.(Banach-Steinhaus定理):设X 是Banach空间,
Y 是 赋 范 线 性 空 间 , 算 子 族 {T; } B( X ,Y ) 满 足 :
sup || T x || , x X .那 么 sup || T || .
推 论1: 设 fn 是 Banach空 间 X 上 的 一 列 有 界 线 性 泛 函,
b
Ak x(tk )
x(t)dt
a
(n )
0 k n
当且仅当以下两个条件成立 :
( 3')
(i)存 在 常 数 M 0, 使 得 | Ak | M ; 0 k n
(ii)公 式 ( 3') 对 每 个 多 项 式 函 数 都 是 收 敛 的 。
精品课件
Fourier级数的发散性问题
• 法国科学家J.-B.-J.傅里叶由于当时工业上处理金属的需要,从事热 流动的研究。他在题为《热的解析理论》一文中,发展了热流动方程, 并指出了任意周期函数都可以用三角基来表示的想法。他的这种思想, 虽然缺乏严格的论证,但对近代数学以及物理、工程技术却都产生了 深远的影响,成为傅里叶分析的起源。
令 t 0,即 点 赋 值 泛 函(Sn x)(0)是 X R的 有 界 线 性 泛 函 ,
计
算
其
范
数
为
||
Sn
||
1
sin[(n 1 / 2)s]
|
| ds
2 sin(s / 2)
1
2 n 1 2
|
sin u
u
|
du
(n
).因 此
sup
n0
||
Sn
||
.
从 而 由 共 鸣 定 理 , 必 有 x0 X ,使 得 lim (Sn x)(0)不 存 在 ;
• 在积分变换中,F-变换是大家熟悉的,为让 符 号Σ与积分的交换,应当对F-级数(1)的收敛性加 以必要的限制,如一致收敛性。因为可能存在不一 致收敛的三角级数,而它确实表示一个函数 。
• 大量的事实让人们误以为:“ƒ的傅里叶级数一定 能收敛于 ƒ自身”
精品课件
3. 存 在 以 2 为 周 期 的 连 续 函 数 , 其 F-级 数 在 给 定 点 发 散 。
• 解决该问题的基本的想法之一:将我们熟悉的有 限维上的泛函进行推广、延拓。
• 这节是考虑的实赋范线性空间,对复的情形,类 似结论都是成立的,不在赘述
精品课件
• 设X是实线性空间,称X上泛函p是次可加正 齐次的,如果满足 (1)p(xy)p(x)p(y);
(2)p(ax)ap(x),(a0,x,yX).
本节主要涉及有界线性算子的收敛性和一致有界问题。
由我们以前的知识,一般来说,收敛序列都是有界的。
问题:设X是赋范线性空间,有界线性算子族Aα | α Γ B X,Y ,如果满足条件:x X,Aαx| α Γ是X中的 有界集.问Aα |α Γ是否为B X,Y 中的有界集?
精品课件
1927年 ,波 兰 数 学 家 Banac(h 巴 拿 赫 ) 和 Steinhaus(斯 帝豪斯)给出的共鸣定理(一致有界定理)回答了这个问题. 这个定理也是Banach空间理论的基石之一.