第三章 船舶强度.

合集下载

中国船级社 船舶强度直接计算指南

中国船级社 船舶强度直接计算指南

中国船级社船舶强度直接计算指南下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!中国船级社船舶强度直接计算指南第一节强度计算原理1. 船舶强度概述船舶强度是指船舶在航行和运输过程中所承受的外力作用下不发生破坏或形变的能力。

船舶强度核算—局部强度的校核

船舶强度核算—局部强度的校核

“ Q”轮许用均布载荷和集中载荷一览表
某轮车辆许用甲板载荷
堆积负荷
船舶局部强度
三、用经验方法确定的允许负荷 1.上甲板: 允许负荷:
(kPa)
Hc—甲板设计堆高,重结构取1.5m,
轻结构取1.2m。
μ — 设计舱容系数。
三、用经验方法确定的允许负荷
2.中间甲板和底舱:
允许负荷:
实际值的计算
1)集中载荷 P ' 9.81W n
2)均布载荷
Pd
'
9.81 A
Pi
已知重量和底面积
已知高度和积载因数
Pd
'
9.81
hi SFi
四、船舶局部强度条件的校核
2.集装箱船局部强度条件的校核步骤:
1)计算实际值:Pc=∑Pi 2)查取允许值:Ps 3 ) 比较:Pc≤ Ps
四、保证满足船舶局部强度的措施
任务二: 局部强度校核
船舶局部强度
一、船舶局部强度概述 局部强度(local strength): 船体结构具有抵抗在局部外力作用下产生的局部极度变形或损坏的
能力。 重点考虑的船体局部位置:甲板、平台、舱底、舷侧、舱口、首尾
等。 船舶必须满足局部强度条件。
船舶局部强度
二、局部强度的表示方法 许用符荷的表示方法: 船体局部的允许负荷量可在船舶有关资料中查取。 1.均布载荷:kPa 2.集中载荷:kN 3.车辆甲板负荷:车轮 4.堆积负荷:集装箱
1)考虑船龄
2)货物均匀分布
3)加横跨骨材的衬垫
4)舱盖上不装重货
5)散货平舱
6)控制落底速度
7)注意局部强度的校核
(kPa)
H d — 舱高。 无设计值时,取rc=0.72 t/m3, 重结构取rc=1.2 t/m3。 rc =1/μ

第三章:局部强度

第三章:局部强度

船底板架
对于舱长很短的船底板架(例如,舱长与板架计算 宽度之比小于0.8时),为确定这种板架中桁材的 弯曲应力,可将中桁材当作单跨梁处理。 近年来,有限元方法的应用,使得过去近似计算中 的一些难题得以解决。例如船底板架中构件大小形 状等的不同,间距的不同等。但是在按有限元计算 板架强度时要注意下列事项: 1.构件计算尺寸应按实际外形选取,一般不作任何 假定和简化。
桁架:几何不变性由足够数量杆件来保证。桁架传 递的只是轴力。
计算简图和力学模型
工程上的实际问题并不是理想的刚架或者是桁架, 所以只能根据实际传递力的情况来判断用刚架还是 桁架来作为模型。船体肋骨框架各构件连接有肘板 连接,节点刚性极大,约束角位移,所以简化为刚 架,节点为刚性节点;工程上的桁架节点不是理想 的铰支,而是近似刚性节点,但仍简化为桁架计算, 是因为在对比轴力和弯曲内力后,前者远大于后者, 可以将后者忽略不计,故计算时仍按照铰支算。
船底板架
• 内底板结构分析
内底板要求:计算应力不与总纵弯曲应力合成叠加。 横骨架式内底和外底板一样,计算时考虑缩减。
甲板板架
上甲板是船体等值梁的上翼板,是保证总纵强度的 最重要组成部分之一。下甲板主要承受的是货物重 量,局部强度问题在这一部位尤为重要。 横向载荷是甲板板架局部强度计算的主要载荷,无 论是上甲板还是下甲板。横向载荷的主要来源是堆 积货物和甲板上浪,尤其是甲板上浪而造成的积水, 是一定要考虑的。 货船对露天甲板堆积木材有着规范规定,所有的计 算最后都要转化为水头高度来计算。
计算简图和力学模型
• 小结
确定结构计算的力学模型时, 确定结构计算的力学模型时,必须从实际出发和分 清主次。 清主次。 实际出发:考虑结构的布置和构造,了解结构受力 状态的实际情况;

船舶结构强度分析.

船舶结构强度分析.

船舶结构强度分析近几年来,国内船舶修理公司如雨后春笋般出现,修理任务急剧扩张,修理的船型也是多种多样,涵盖整个船舶市场。

而对船体结构的修理也是首当其冲,由于船厂的技术水平和工人技能等多方面原因,对于结构修理过程中拆换结构也会出现不同的修理方案,导致船舶结构在修理后出现异常情况。

因此对于船舶结构强度分析的提出是相当重要的。

其主导思想是在船舶修理的船体拆换强度分析的应用中,运用的基本计算原理和方法,是以船舶原理和船舶结构力学为理论基础。

在以往的工程实际中,修船工程技术人员往往忽略或者不重视将这些理论的知识与船舶修理工程充分地结合起来。

为了很好地说明这些基础理论在修船工程实际中的应用,本文将以船舶原理和船舶结构力学的基本理论,来阐述在船舶修理工程中的基本强度理论和基本计算原理及方法。

一、船舶结构力学在船舶工程传统意义上,船舶结构力学研究和解决船体结构在静力响应,即在给定的外力作用下如何确定船体结构(局部和整体)中的应力、变形情况。

在船舶修理工程中,因船舶在设计建造时已经对船舶的强度进行了计算和设计,所以要解决的问题就是强度计算,概括来讲,就是在船体结构尺寸已知的条件下,在给定的外载荷或工况下,计算出结构的应力和变形,并与许用值比较,从而判断船体结构的强度是否足够。

船体结构强度的计算是依据船舶原理的基本设计理念,运用理论力学和材料力学的力学基本理论来对船舶的结构强度进行计算和校核的。

二、力学模型和船体模型在船舶修理工程中的结构强度计算中,为了便于计算,须对实际的结构进行简化,在简化模型的基础上,施加外载荷,再运用船舶结构力学的基本理论和方法来计算船体结构的应力和变形情况。

为了满足计算的需要,可以将在船舶修理工程实际情况下的船体结构的简化模型分成两个类型,一是基于传统船舶结构力学基础上的“力学模型”,二是在便于现代计算机计算和有限元理论分析的“船体模块”,这两个类型有渐进的关系。

“力学模型”的建立是根据实际结构的受力特征、结构之间的相互影响以及对计算精度的要求等各个方面的因素来确定的。

上海海事大学船舶积载第三章强度国航班.

上海海事大学船舶积载第三章强度国航班.

第三章、船舶强度第一节、船舶强度概述1、纵骨架式结构对船舶的()有利。

A.纵向强度 B.横向强度 C.局部强度 D.以上都是2、按照船舶所受外力分布的走向和船体结构变形的方向不同,将船舶强度分为()。

A.纵强度、横强度和局部强度 B.总强度、局部强度和扭转强度C.总强度、扭转强度和纵强度 D.横强度、扭转强度和纵强度3、按照船舶所受外力的分布和船体结构变形范围的不同,将船舶强度分为()。

A.纵强度和横强度 B.总强度和局部强度C.总强度和扭转强度 D.横强度和扭转强度4、杂货船营运中主要应考虑的船舶强度为()。

①总纵强度;②扭转强度;③局部强度;④总强度;⑤横强度。

A.①③ B.①②③ C.①②③④ D.①②③④⑤5、船舶结构抵抗各种内力和外力作用的能力称为()。

A.浮性 B.稳性 C.船体强度 D.船舶抗沉性6、船舶装载轻货时,主要考虑船体的()。

A.横强度 B.纵强度 C.局部强度 D.扭转强度第二节、船舶总纵强度1、船舶纵向上所能承受的最大剪力称为()。

A.许用剪力 B.许用弯矩 C.最小剪力 D.最小弯矩2、船舶发生中拱变形时,船体受()弯矩作用,上甲板受(),船底受()。

A.负;压;拉 B.正;压;拉 C.负;拉;压 D.正;拉;压3、船舶发生中垂变形时,船体受()弯矩作用,上甲板受(),船底受()。

A.负;压;拉 B.正;压;拉 C.负;拉;压 D.正;拉;压4、船舶装载后呈中拱状态,若航行中波长近似等于船长,且()在船中时,会加大中拱弯矩。

A.波峰 B.波谷 C.波长的1/3处 D.波谷与波峰之间5、船舶装载后呈中拱状态,若航行中波长近似等于船长,且()在船中时,会减小中拱弯矩。

A.波峰 B.波谷 C.波长的1/3处 D.波谷与波峰之间6、船舶装载后呈中垂状态,若航行中波长近似等于船长,且()在船中时,会加大中垂弯矩。

A.波峰 B.波谷 C.波长的1/3处 D.波谷与波峰之间7、船舶装载后呈中垂状态,若航行中波长近似等于船长,且()在船中时,会减小中垂弯矩。

船舶强度与结构设计

船舶强度与结构设计
1
2.船体强度计算内容和方法
(1)确定作用在船体及各个结构上的外力。 (2)确定船体结构在外载作用的响应:结构 剖面中的应力与变形 ;结构的极限状态分 析。即所谓内力问题。 (3)确定合适的强度标准,并检验强度条件。 这三部分内容是一个综合的整体,通常 被
分散到船舶静力学、船船结构力学等几门课 程中讨论。
局部强度─局部构件(纵桁、横梁、肋骨等)、节 点(肘板等)、局部结构(舱壁、甲板、船底板、 舷侧板等)的强度。
5
§2 作用在船 体结构上的 载荷
6
作用于船体上的载荷可按其响应和随时间变化进行 分类。
1.按结构响应分类:总体性载荷和局性载荷。 总体性载荷─引起整个船体变形或破坏的载荷和 载荷效应。如总纵弯曲的力矩、剪力、应力及纵 向扭矩等。
14
§4 评价结构 设计的质 量指标
15
为得到一个优秀的结构设汁,应考虑以下问 题:
1.安全性
即结构要能承受正常使用时各种可能的 载荷作用,并在偶然事件发生时及发生后, 仍能保持必需的整体稳定性(即仅产生局部 损坏而不发生整体的破坏)。
2.船舶的整体配合性
船舶是一个整体,在船舶设计时,结构 设计必须同总体、轮机、设备电气及通风等 其它方面的设计互相配合,以保证船舶在各 方面都具有良好的工作性能。
船体强度是研究船体结构安全性的科学。
1.结构的安全性
结构的安全性包括: (1)结构能承受在正常施工和正常使用时可 能出现的各种载荷,并在偶然事件发生时及发 生后仍能保持必需的整体稳定性。 (2)结构在正常使用时,对于民船必须适合 营运的要求,和具有足够的耐久性;对于军船 还必须满足在规定海况下,具有良好的战斗性 能和生命力。
局部性载荷─指引起局部结构、构件变形或破坏的 载荷,如水密试验时的水压力,机器的不平衡所 造成的惯性力、局部振动,海损时的水压力等。

船舶强度的概念

船舶强度的概念

船舶强度的概念嘿,朋友们!今天咱来唠唠船舶强度这个事儿。

你想啊,船舶就好比是咱在大海上的移动房子,要是这房子不结实,那可不得出大乱子嘛!船舶强度,简单来说,就是船舶能承受多大的力。

这就跟咱人一样,有的人身体壮实,能抗住很多压力,而有的人就比较脆弱。

船舶也是如此啊!一艘船要是强度不够,在海上遇到点风浪,那可能就摇摇晃晃,甚至有散架的危险,这多吓人呀!咱可以把船舶强度想象成是一个大力士。

这个大力士得有足够的力气来应对各种情况。

比如说,船体结构得牢固吧,不能说随便碰一下就破个洞啥的。

还有啊,船上的各种设备、机器啥的,也得稳稳当当的,不能一颠簸就掉下来或者坏了。

你说要是在海上航行着,突然船的某个地方裂了,那可咋办?那不就跟咱家里房子漏了一样嘛,得赶紧修啊!可在海上哪有那么容易修呀,所以一开始就得把船舶强度给搞好。

咱再想想,船舶在海上要面对多大的压力呀!海水的压力、风浪的冲击、货物的重量等等。

这就好像一个人背着很重的东西,还得在狂风暴雨中走路,得多难呀!要是这人身体不强壮,那肯定走不了几步就趴下了。

船舶也是这样啊,强度不够,怎么能在大海上安全航行呢?你看那些大船,为啥造得那么结实?不就是为了保证强度嘛!它们就像是海上的勇士,不管遇到什么困难都能勇往直前。

而那些强度不行的船呢,就只能小心翼翼的,稍微有点风浪就吓得不行。

咱平时过日子还得注意身体呢,船舶也得注意强度呀!船东们得舍得花钱,把船造得结实点,船员们也得好好爱护船,别乱折腾。

只有这样,船舶才能在大海上安全地航行,把货物送到目的地,把乘客平安送回家。

总之,船舶强度可不是小事儿,这关系到船舶的安全,关系到大家的生命和财产。

咱可不能马虎,得重视起来呀!让我们一起为船舶的强度加油,让它们在大海上乘风破浪,勇往直前!。

船舶强度与结构设计授课教案第三章船体局部强度校核计算方法

船舶强度与结构设计授课教案第三章船体局部强度校核计算方法

船舶强度与结构设计授课教案第三章船体局部强度校核计算⽅法第三章船体局部强度校核计算⽅法船体各部分结构抵抗局部载荷直接作⽤⽽不产⽣破坏和超过允许限度的变形的能⼒称为船体结构局部强度。

船体结构主要组成部分为船底结构、甲板结构、舷侧结构和舱壁结构。

在局部强度校核计算中,⾸先要将船体空间⽴体结构简化为板、梁、板架和框架来进⾏计算,在确定局部结构受到最⼤载荷(设计载荷)后,建⽴数学模型计算局部结构的内⼒与变形。

最后要确定局部结构的强度校核衡准。

3.1 局部强度计算的⼒学模型*局部强度概念:船体在外⼒作⽤下除发⽣总纵弯曲变形外,各局部结构,如船底、甲板、船侧和舱壁板架以及横向肋⾻框架也会因局部载作⽤⽽发⽣变形、失稳或破坏。

研究它们的强度问题称为局部强度。

*局部强度的主要研究内容:板架、框架、各种⾻材以及壳板的强度计算。

*局部强度研究⽅法:(1)传统的局部强度计算⽅法:即把船体结构划分成各种板架、刚架、连续梁和板等进⾏计算;(2)有限元法:可以扩展成各种结构的整体计算,如⽴体舱段计算等。

⼀、建⽴计算模型的原则结构模型化是计算的前提和结构分析成败的关键,影响计算模型的主要因素有下列⼏点:(1)结构的重要性:对重要结构应采⽤⽐较精确的计算模型;(2)设计阶段:在初步设计阶段可⽤较粗糙的模型,在详细设计阶段则需要较精确的计算模型;(3)计算问题的性质:对于结构静⼒分析,⼀般可⽤较复杂的计算模型,对于结构动⼒和稳定性分析,由于问题⽐较复杂,可⽤较简单的计算模型。

⼆、构件⼏何尺⼨的简化1、板架计算时:其长度、宽度取相应的⽀持构件间距离。

例如,船底板架和甲板板架的长度取横舱壁之间的距离,宽度取组成肋⾻框架梁中和轴的跨距,或简单地取为船宽。

2、肋⾻刚架计算时:其长度、宽度取组成肋⾻框架梁的中和轴线交点间距离,⽤中和轴线代替实际构件。

3、构件剖⾯要素计算时应包括带板(附连翼板)三、⾻架⽀承条件简化1、⾻架⽀座形式:(1)⾃由⽀持在刚性⽀座上;(2)刚性固定;(3)弹性⽀座和弹性固定。

客船安全管理与操作实务 第三章

客船安全管理与操作实务 第三章
1)稳性过大(即GM值过大),船舶摇摆剧烈(运动周期 短),造成人员不适、航海仪器使用不便、船体结构 容易受损、舱内货物容易移位以致危及船舶安全。 2)稳性过小(即GM值过小),船舶抗倾覆能力较差,容 易出现较大的倾角,回复缓慢(运动周期长),船舶 长时间斜置于水面,航行不力。
(五) 船舶具有稳性的条件
第二节 客船应满足的稳性要求
我国及IMO对客船完整性的衡

我国及SOLAS公约对客船稳性
的特殊要求
(一)我国及IMO对客船完整性的衡准
一、IMO完整稳性衡准数的具体要求:
《在核算装载状况下经自由液面修正后》
1、初稳性高度GM不小于0.15m ; 2、大倾角稳性的要求 :
1) 在横倾角0~30°之间,静稳性曲线下面积应不小 于0.055 m•rad;
(七) 滚装客船横稳性和纵稳性
(七) 滚装客船横稳性和纵稳性
(七) 滚装客船横稳性和纵稳性

滚装客船的特点: 1、 运输汽车或者集装箱和旅客 2、 型深设计较大,导致重心较高(合理的GM值) 3、首尾开门,特殊的装卸方式导致装卸时吃 水差变化,会导致稳性突然变化。 4、水下的特殊的线形导致船舶在艏倾时,稳 性迅速恶化。 5、上层建筑高大,吃水较浅,受风面积大, 一般水上面积是水下面积的3~4倍。 6、前后连通的汽车甲板。
第三章 客船稳性、吃 水差和强度
目前客船安全的几个要点:
稳性 抗沉性
吃水(差)
船舶强度 火灾 操作性事故
第一节 客船稳性和吃水差
稳性的定义和分类 船舶具有稳性的原因
船舶的平衡状态及分类
稳性大小与船舶航行的关系 船舶具有稳性的条件 吃水差 滚装客船横稳性和纵稳性

船舶强度与设计名词解释

船舶强度与设计名词解释

船舶强度与设计名词解释
1、相当厚度:船体板厚度与所有纵骨剖面积平铺
2、骨架带板:与骨架相联在骨架受力发生变形时,一起与骨架抵抗变形并作为骨架梁的一部分参加计算骨架梁的剖面积、惯性矩、剖面模数等几何要素的有一定宽度的钢板
3、重量曲线:船舶在某一计算状态下,描述全船重量沿船长分布状况的曲线
4、浮力曲线:船舶在某一计算状态下,描述浮力沿船长分布状况的曲线。

5、总纵强度:船体梁抵抗总纵弯曲的能力
6、局部强度:船体抵抗局部变形失稳破坏的能力
7、剖面模数:W=I/1Z1。

即为剖面模数。

它是表征船体结构抵抗弯曲变形能力的一种几何特征,衡量船体总纵强度
8、纵向强力构件:纵向连续并能有效的传递总纵弯曲应力的构件
9、载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲线。

10、总纵弯矩:静水弯矩和静波浪弯矩的代数和
11、剖面利用系数:实际所用的各种型材,其最小剂面模数仅为理想剂面的剖面模数的一部。

分,即w=yw0,y即为剖面利用系数。

12、剖面模数比面积:产生单位剖面模数所需的面积。

13、剖面惯性比面积:产生单位剖面惯性矩所需的面积。

14、极限弯矩:在船体剂面内离中和轴最远点的刚性构件中引起的应力达到结构材料屈服极。

— 1 —。

船舶强度

船舶强度

hi S.F .i
Pd

9.81
P S
(2)集中载荷:(Concentrated load)
P 9.81 W n
(3)集装箱载荷:(Container load)
Pc 9.81 Pi
(七)最小衬垫面积Smin的确定
Pd

P S

S

P Pd

Smin

P Pd
(八)保证局部强度不受损伤的措施
(五)船体拱垂变形
单位长度的船体,前后两端受到大 小相等,方向相反的弯矩作用,则该段 船体将发生弯曲变形。
弯曲应力的最大值出现在龙骨板或 上甲板。
1、中拱(Hogging) 船体受正弯矩作用,中部的浮力大于 重力,首尾部的浮力小于重力;船舶上甲 板受拉,船底受压,发生中部上拱的变形。
2、中垂(Sagging) 船体受负弯矩作用,中部的浮力小于 重力,首尾部的浮力大于重力;船舶上甲 板受压,船底受拉,发生中部下垂的变形。
3、影响船舶拱垂变形的因素
• 船体有效构件的尺寸、材料及分布 • 载荷配置 • 船舶与波浪的相对位置关系
(1)船舶中拱,处于波浪中,波长约 等
于船长,波峰位于船中,船体中拱加剧。
(2)船舶中垂,处于波浪中,波长约 等
于船长,波谷位于船中,船体中垂加剧。
(六)剖面模数wx
• 总纵弯曲应力为 M Z
M W
I
• M—计算剖面的总纵弯矩
• I—计算剖面对中和的惯性矩
• Z—所求应力点至水平中和轴的垂直距离
面积惯矩Ix
2
I x

z
F
dF
M
W
• W=I/Z称为船体剖面模数,它是表征船体结

船舶强度

船舶强度

1.船体强度是船舶抵抗内外作用力的能力,船舶强度分为总纵强度、横向强度、局部强度和扭转
强度。

其中总纵强度是指船体在整个船长方向上抵抗内外作用力的能力。

2.中垂变形是指中部下垂而首尾两端上翘的一种变形。

由于船体的中部浮力小而首尾两
端浮力大,重力在中部大而首尾小的原因使得船体中垂或中拱变形。

3.承受弯矩和剪力可能致使船体遭受变形和破坏。

最大的弯矩常发生在船中、最大的剪力常等
发生在离船中的1/2 处。

4.纵向构件布置的密,横向构件布置的疏的骨架型式是纵骨架式双层底结构形式。

杂货船常
采用横骨架式单底.式结构。

5.外板的作用有保证船体的密封性;承担船体总纵弯曲强度、横强度、局部强度;承担舷
外水压力、波浪冲击力、坞墩的反作用力、外界的碰撞、挤压和搁浅。

甲板板的板厚是船中比首尾厚的原因是船舶最大总纵弯曲力矩都是作业在船中0.4L船长区段内。

双层底的作用有万一船底破损,内底板可以制止海水浸入舱内,保证船舶和货物安全;增强船底强度;可储存燃料、淡水,空船时装压载水,有效利用空间,并且降低船的重心,增加船舶稳性。

6.肋板是设在双层底内肋位上的横向构件。

中内龙骨是设在中线面上并焊接在平板龙骨
上的纵向连续构件。

实肋板上开孔是为了通空气、水等。

7.仔细看书中图7-7,图7-8,熟识船体常见构件的名称位置和作用。

第三章 船舶强度

第三章 船舶强度

第一节船舶强度概述船舶是一种由板材和骨架构成的浮动建筑物。

船体在重力、浮力、船体摇荡运动中的惯性力、风浪力等外力作用下,将不可避免地发生变形。

为保证船舶安全,船体结构必须具有抵抗发生过大变形和破坏的能力,这种能力称为船舶强度。

按照外力分布和船体结构变形范围的不同,船舶强度可分为总强度和局部强度,而总强度又按外力分布及相应船体变形的不同方向,分为纵向强度和横向强度。

对于营运船舶,主要应考虑船舶的总纵强度和局部强度。

营运中的船舶,为保证船舶安全运输及合理使用,应确保船舶具有足够的强度,这就要求船舶使用者通过合理配置载荷重量、优化载荷装卸顺序、限制载荷就位速度、减小航行中波浪冲击等措施来改善船体受力状态以确保船舶处于良好的营运状态。

第二节船舶总纵强度船舶产生纵向变形的原因: 1.船舶总纵强度概念船舶总纵强度是指船体整个结构抵御纵向变形或破坏的能力。

将船体视为一根空心变断面且两端自由支持的梁,船舶总纵强度研究的是船体在外力作用下整个船体梁所具有的抵御纵向弯曲、剪切和扭转的能力。

2.船舶纵向变形的原因作用于船体上的外力包括重力、浮力、摇荡时的惯性力、螺旋桨的推力、水对船体的阻力、波浪的冲击力等。

由于惯性力、推力、水阻力和波浪的冲击力对船舶总纵强度影响很小,故可忽略不计,而只考虑分布于船体上的重力和浮力。

从整体上讲,船舶重力和浮力大小相等、方向相反并作用于同一垂线上,但这两个力沿船长方向各区段内其大小并不都是相等的,即重力和浮力沿纵向分布规律不一致,由此导致船舶纵向发生变形。

重力、浮力、载荷沿船舶纵向分布:1.重力包括船体、机器设备、燃料、淡水、各种备品、压载水、所载货物等项重力。

由于船体结构和各类载重分布的不连续性,重力纵向分布呈跳跃状。

2.浮力是指船在平静水中或静置于波浪中,舷外水对船体压力的合力。

浮力纵向分布也是不均匀的,它取决于船体水线下的体积和形状。

3.载荷及载荷曲线沿纵向上船体各区段所受重力和浮力的差值就是该区段船体上所受垂向合外力,称为载荷。

船体强度概念(船舶管理课件)

船体强度概念(船舶管理课件)
一、总纵弯曲强度
1.船体发生总纵弯曲的原因 船舶漂浮在静水中受到的外力有整个船舶的重力和水 对船的浮力。整个船舶的总重力与总浮力总是平衡的。 但在船体长度的每一段上其重力与浮力是不平衡的,这 是因为船舶的重力沿船长分布的规律与浮力沿船长分布 的规律不一致的缘故。其结果造成船体沿船长方向上的 弯曲变形,这种弯曲称为纵向弯曲,船舶抵抗纵向弯曲 和损坏的能力称为船体纵向强度。
任务三 船体强度概念 三、 局部强度
船舶局部强度是指船体结构抵抗局部外力作用的能力。
使船体局部产生弯曲变形的力有:
航行时船首底部受到波浪的砰击力、 船舷板受到码头的挤压与碰撞力、机 舱与船尾部受到机器与螺旋桨的振动 力、桅及机器设备对船体结构的局部 作用力、以及触礁、搁浅时产生的作 用力等
任务三 船体强度概念
一、总纵弯曲强度
2.船体总纵弯曲力矩和剪力的分布 (1)由于船舶浮在水上,首尾两端无支持是自由的,所以在船 的首尾两端的弯曲力矩和剪力总是等于零。 (2)总纵弯曲力矩值,从首尾两端向船中逐渐增大,最大的弯 曲力矩一般位于船中0.4L船长范围内。 (3)最大的剪力位于距首尾两端大约1/4船长附近。 (4)根据梁的弯曲理论可知,最大弯曲力矩处其剪力值等于零。 (5)对于营运的船舶来讲,船体的几何形状和大小是一定的。 船舶可能遇到的最不均匀的重力分布的装载状态和可能遇到的 最不均匀的浮力分布的波浪也应是一定的。因此,每一条船舶 就有一个可以确定的最大弯曲力矩值和剪力值。
任务三 船体强度概念
二、 横向强度与扭转强度
船舶横向强度是指船体结构抵抗横向变形的能力。 当船体受到舷外水的压力作用与舱内货物、机器设备等的压力 作用不均匀时,甲板、船底和舷侧结构会在船体横向断面内发 生凹变形。
任务三 船体强度概念

船舶结构设计中的强度分析

船舶结构设计中的强度分析

船舶结构设计中的强度分析船舶作为海上运输的主要工具之一,其船体结构承担着极其重要的作用。

在船舶结构设计中,强度分析是必不可少的一部分。

本文将从船舶结构设计的重要性出发,展开讨论船舶强度分析的相关内容。

一、船舶结构设计的重要性船舶是在海上环境中不断航行运输的,因此其承受的载荷和受力情况都十分复杂。

而船舶结构的不合理设计会导致结构破坏、倾覆等严重后果,从而造成不可挽回的经济和人身损失。

因此,在船舶设计的过程中,必须充分考虑强度分析,以确保船体结构的安全和稳定性。

二、船舶强度分析内容船舶强度分析的具体内容包括船舶的静态强度分析、疲劳强度分析和动态强度分析。

1、静态强度分析静态强度分析是指船舶结构在静态荷载作用下所承受的载荷和受力情况进行的强度计算和分析。

静态强度分析的关键在于确定船体的最大荷载和受力位置,以及在这些位置上船体结构的强度是否足够。

2、疲劳强度分析疲劳强度分析是指船舶结构在反复荷载作用下产生的疲劳破损情况进行的强度计算和分析。

船舶经常在海上环境中长时间航行,船体结构的材料往往会因为反复荷载而发生疲劳破损。

因此,在船舶强度分析中,进行疲劳强度分析是非常必要的。

3、动态强度分析动态强度分析是指船舶结构在动态环境中承担的载荷和受力情况进行的强度计算和分析。

船舶在海上环境中会遇到许多不同的动态载荷,例如风浪、涌浪、碰撞等。

因此,在船舶强度分析中,进行动态强度分析同样非常必要。

三、船舶强度分析方法船舶强度分析方法主要分为解析法、有限元法和实验法。

1、解析法解析法是指根据船舶各部件的形状和材料性质,通过数学方程式对船舶结构的受力情况进行计算和分析。

2、有限元法有限元法是指利用计算机程序对船舶结构进行建模,然后基于有限元分析理论对结构的受力情况进行计算和分析。

3、实验法实验法是指通过试验、模型试验或者全尺寸试验等手段,对船舶结构的强度进行测试和分析。

四、结语船舶结构的强度分析是船舶设计中不可或缺的一项内容。

船舶强度与结构设计复习

船舶强度与结构设计复习

船舶强度与结构设计复习船舶的强度设计主要涉及到船体的结构强度、结构稳定性和结构可靠性等方面。

结构强度是指船舶在正常服役条件下承受荷载所需的强度。

结构稳定性是指船舶在遇到外界力矩时,保持稳定的能力。

结构可靠性是指船舶结构在各种不确定因素下,如船舶老化、材料损伤、机械疲劳等情况下的可靠性。

在船舶强度设计中,需要进行强度计算和结构分析。

强度计算主要包括刚度计算、应力计算、挠度计算和疲劳寿命计算。

刚度计算是为了确定船体结构的整体刚性,保证船舶在载货和受力的情况下不会发生过度变形。

应力计算是为了确定材料的承载能力,保证船体结构不会发生断裂或损坏。

挠度计算是为了确定船体结构的变形程度,保证船舶在航行时的稳定性和舒适性。

疲劳寿命计算是为了确定船舶结构在疲劳荷载下的寿命,保证船舶在长期使用中不会因疲劳而发生结构破坏。

在船舶结构设计中,需要考虑船体的整体布局和结构形式。

船体的整体布局包括船长、船宽、船高、船舱排列等参数的确定,以及船体的分割和船体连接部分的设计。

船体的结构形式包括船体壳体结构、船舱结构、甲板结构、船尾螺旋桨结构等。

在设计过程中,需要根据船舶用途和航行条件,选择合适的结构形式和材料。

此外,船舶结构设计还需要考虑到各种外界因素的影响,如船体的浸水、船舶碰撞等。

在设计中,需要合理设置各种舱门、舱盖、船舶设备等,保证船体的密封性和船舶的整体安全性。

总之,船舶强度与结构设计是保证船舶在航行中安全可靠的重要环节,涉及到船体的结构强度、结构稳定性和结构可靠性等方面。

在设计过程中,需要进行强度计算和结构分析,并根据船舶用途和航行条件选择合适的结构形式和材料。

同时,还需要考虑外界因素的影响,并合理设置各种舱门、舱盖、船舶设备等,以确保船舶在航行中的安全性和可靠性。

船舶强度与结构设计复习

船舶强度与结构设计复习
为波轴线,绘出波谷在船中的波形线。
第2章 船体外载荷
• 波谷在船中:船舶下沉,增加排水量,真实波面 应该位于参考波面以上。
• 真实波面C-C就是待求的。
第2章 船体外载荷
第1章 船体结构基础
第1章 船体结构基础
• 船体结构各构件的作用 ②总纵强度
表示船体梁抵抗弯曲、剪切和扭转变形的能力。 在抵抗总纵弯曲时,所有的纵向构件都是有效的, 包括船底板、舷侧板、甲板板、纵舱壁以及纵骨。横 向构件如横舱壁以及其上的加强筋,肋板,肋骨,甲 板横梁等横向构件是不参与抵抗总纵弯曲的。 ③横向强度 狭义上:横向强度是表示抵抗横向变形的能力; 广义上:在研究横向变形能力时,考虑力的传递 机理以及相应的结构变形。
长上的差值产生分布载荷。
每单位船长上的差额就构成作用在船体梁上的 分布载荷。船体梁在这个载荷作用下将发生总纵弯 曲变形,并在船体梁断面上产生剪力和弯矩。
第2章 船体外载荷
N
x


x
0
q(
x)dx
剪力载荷曲线的一次积分
M
x

x
0
N
(
x)dx

x
0
x
0
qxdxdx
弯矩载荷曲线的二次积分
应。 • 弯矩曲线在两端的斜率为零,弯矩曲线在两端与x
轴相切。
第2章 船体外载荷
精度要求:
第2章 船体外载荷
• 对于端点不封闭的情况,线性内插修正实际上就 是按线性比例修正。
• 各用一条直线把剪力曲线和弯矩曲线封闭起来, 也就是用此直线作为 x 轴,则在右端点处分别有
N(L) =0,M(L) =0。
第2章 船体外载荷
4、载荷曲线 ①载荷曲线性质 ②载荷曲线与剪力、弯矩曲线的关系※ 5、调整平衡位置的方法 ①逐步近似法 ②直接法 6、规范波浪弯矩、剪力计算公式

船舶强度与结构设计习题集

船舶强度与结构设计习题集

《船舶强度与结构设计》习题集第一章船体外载荷模块1、空船在重量曲线可用抛物线和矩形之和表示,即把空船重量的一半作为均匀分布,另一半作为二次抛物线分布.如下图所示 .试求证距船中x 处单位长度的重量为:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=2175.05.02)(l x i w x ω (kN/m)式中W ——空船重量,kN;l ——船长的一半,m.2、某长方形货驳和10m ,均匀装载正浮于静水中。

若认为货驳自身质量沿船长均匀分布,此时在货驳中央加10t 集中装载荷。

试画出其载荷、剪力和弯矩曲线,并求出最大剪力和最大弯矩。

3、长方形浮码头,长20m 、宽5m 、深3m,空载时吃 水1m (淡水)。

当中部8m 范围内承受布载荷时,吃水增加到2m 。

假定船体质量沿船长均匀分布。

试作出该载荷条件下的浮力曲线、载荷曲线、静水剪力和弯矩曲线,并求出最大剪力与最大弯矩值。

4、某箱形船,长100m 、宽18m ,在淡水中正浮时吃水为5m 。

假定船体质量沿船长均匀分布。

将一个150t 的载荷加在船中后50m 处的一点上,试画出其载荷、剪力和弯矩曲线,并计算此时船中的变矩值。

5、水线面形状如下图所示的一直壁式船,静置于L z h y π2cos 2=的余弦波上,试计算波谷在船中时的最大静波浪弯矩。

6、若将题1.3的船静置于波高h=0.5m 的余弦波上,试求最大静波浪弯矩。

第二章总纵强度模块1、某型深3.5m 的横骨架式船舶,第一次近似计算船中剖面要素时,参考轴选在基线上1.5m 处,并得到以下各数值(对半剖面):(1)使船底板在第二次计算时的折减系数不小于0.5(肋距为500mm ,每四档肋距设一实肋板),该船底板的最小厚度至少应为多少?(2)剖面上甲板宽度为2m ,舱口旁的甲板厚度为5mm ,舷侧板厚度为6mm 。

若该剖面受到1600kN 剪力的作用,求甲板距中心线4m 处和舷侧板在中和轴处的剪应力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节船舶强度概述船舶是一种由板材和骨架构成的浮动建筑物。

船体在重力、浮力、船体摇荡运动中的惯性力、风浪力等外力作用下,将不可避免地发生变形。

为保证船舶安全,船体结构必须具有抵抗发生过大变形和破坏的能力,这种能力称为船舶强度。

按照外力分布和船体结构变形范围的不同,船舶强度可分为总强度和局部强度,而总强度又按外力分布及相应船体变形的不同方向,分为纵向强度和横向强度。

对于营运船舶,主要应考虑船舶的总纵强度和局部强度。

营运中的船舶,为保证船舶安全运输及合理使用,应确保船舶具有足够的强度,这就要求船舶使用者通过合理配置载荷重量、优化载荷装卸顺序、限制载荷就位速度、减小航行中波浪冲击等措施来改善船体受力状态以确保船舶处于良好的营运状态。

第二节船舶总纵强度船舶产生纵向变形的原因: 1.船舶总纵强度概念船舶总纵强度是指船体整个结构抵御纵向变形或破坏的能力。

将船体视为一根空心变断面且两端自由支持的梁,船舶总纵强度研究的是船体在外力作用下整个船体梁所具有的抵御纵向弯曲、剪切和扭转的能力。

2.船舶纵向变形的原因作用于船体上的外力包括重力、浮力、摇荡时的惯性力、螺旋桨的推力、水对船体的阻力、波浪的冲击力等。

由于惯性力、推力、水阻力和波浪的冲击力对船舶总纵强度影响很小,故可忽略不计,而只考虑分布于船体上的重力和浮力。

从整体上讲,船舶重力和浮力大小相等、方向相反并作用于同一垂线上,但这两个力沿船长方向各区段内其大小并不都是相等的,即重力和浮力沿纵向分布规律不一致,由此导致船舶纵向发生变形。

重力、浮力、载荷沿船舶纵向分布:1.重力包括船体、机器设备、燃料、淡水、各种备品、压载水、所载货物等项重力。

由于船体结构和各类载重分布的不连续性,重力纵向分布呈跳跃状。

2.浮力是指船在平静水中或静置于波浪中,舷外水对船体压力的合力。

浮力纵向分布也是不均匀的,它取决于船体水线下的体积和形状。

3.载荷及载荷曲线沿纵向上船体各区段所受重力和浮力的差值就是该区段船体上所受垂向合外力,称为载荷。

不同横剖面上的载荷形成载荷随纵向位置的分布曲线,称为载荷曲线。

4.剪力及剪力曲线各段船体上载荷的存在,在不同横剖面处将受到剪力和弯矩的作用。

相对一侧即尾向(或首向)船体产生一作用力通过剖面上的连接构件作用于横剖面上,该作用力称为剪力。

在数值上,纵向各横剖面上的剪力等于该剖面首向或尾向一侧所受重力与浮力的差值。

不同横剖面上的剪力形成剪力随纵向位置的分布曲线,称为剪力曲线。

一般装载情况下,船舶首尾处的剪力为零,最大剪力绝对值出现在距船首和船尾1/4船长附近。

5. 弯矩及弯矩曲线船首向(或尾向)一侧重力对该剖面的力矩不等于该侧浮力对该剖面的力矩,相对一侧即尾向(或首向)船体必然通过剖面上的连接构件传递一反向力矩,使得船体平衡,该力矩称为作用于横剖面上的弯曲力矩,习惯称为弯矩。

在数值上,某剖面上所受弯矩等于该剖面在船首向(或尾向)一侧各段重力与浮力差值对其所取力矩的代数和。

不同横剖面上的弯矩形成弯矩随纵向位置的分布曲线,称为弯矩曲线。

一般装载情况下,船舶首尾处的弯矩为零,最大弯矩绝对值出现在船中附近。

船体拱垂变形:剪力与弯矩作用于船体上,将使船体出现剪切变形和弯曲变形。

若作用于船体各横剖面上的弯矩方向相同,将使整个船体发生方向相同的纵向弯曲变形,称为拱垂变形。

当船舶首尾部重力大于浮力而中部浮力大于重力时,所出现的弯曲变形称为中拱变形。

中拱弯曲变形使甲板受拉,船底受压,从而形成船舶中部上拱。

造成船体中拱变形的弯矩称中拱弯矩,习惯上规定为正值;相反,当船舶中部重力大于浮力而首尾部浮力大于重力时,所出现的弯曲变形称为中垂变形。

中垂变形使船底受拉,甲板受压,形成船体中部下垂,其所受弯矩称中垂弯矩,习惯上规定为负值。

船舶在静水中,即使各舱柜载重比较均衡也会产生拱垂变形,但其变形较小,为一般船舶强度所允许。

若首尾部舱柜载重较多而中部舱柜载重较小,则会产生较大中拱变形;反之,产生较大中垂变形。

若船舶在波浪中航行且有效波长等于船长,当波峰位于中拱变形的船中时,会加剧其中拱变形;反之,当波谷位于中垂变形的船中时则会使中垂变形增大。

许用切力和许用弯矩的概念: 船舶纵向上所能承受的最大剪力和弯矩分别称为许用剪力和许用弯矩。

船舶许用剪力和许用弯矩一般分成如下几种情况给出。

1.对于较小船舶给出船中许用静水弯矩。

2.对于中等大小船舶,给出港内(静水中)和海上(波浪中)船中弯矩许用值。

港内弯矩许用值通常比海上弯矩许用值大些。

3.对于大型船舶,给出重要剖面上的静水剪力和弯矩许用值、波浪中剪力和弯矩许用值。

船舶各剖面许用弯矩和许用剪力中部较大而首尾较小。

应当指出,船舶资料中给出的许用值是针对新船状态列出的,营运中的船舶可按每年扣除其腐蚀量0.4%~0.6%,使用年限小于5年的船舶可取下限值,使用年限在10年以上时可取上限值。

利用强度曲线图进行船舶纵强度校核:强度曲线图校核法实际上是由船中弯矩估算法演变而成的。

当船长小于90m 或装载均匀,可以不校核静水切力时,可以利用强度曲线图法进行纵强度校核。

该方法简便、快速。

令s M '等于某一固定值,则可确定i i p x ∑关于M d 的函数关系。

在强度曲线图,各曲线的意义为: 令s M '=0,得点划线;令s M '=0s M ±,分别得上下两虚线,其中,0s M 为空船状态时的静水弯矩;令s s M M '=±分别得最外侧两实线,s M 为船中许用静水弯矩。

船体纵向变形的吃水校核法:实际工作中,可以通过观测并比较首尾平均吃水及船中吃水来判断船体拱垂变形的大小和方向。

若首尾平均吃水大于船中吃水,说明船舶处于中拱变形状态;若首尾平均吃水小于船中吃水,则船舶于中垂变形状态。

同时,两者差值的绝对值,反映了拱垂变形的程度,称为拱垂值,即MZ d d -=δ式中:δ──拱垂值(m );d Z ──船中左右舷平均吃水(m );M d ──首尾平均吃水(m )。

经验表明,正常拱垂变形值为L bp /1200 m ,极限拱垂变形值为L bp /800 m ,危险拱垂值为L bp /600 m 。

船舶装载或压载后,其拱垂值在正常范围内,则可以开航;拱垂值接近极限值,只允许在海况良好的天气开航;拱垂值接近危险值,应在对其进行调整使其脱离危险值后方可开航。

按舱容比分配各舱配货重量:1.按舱容比分配货物重量的方法船体所受浮力沿纵向的分布是由水线下排水体积沿纵向分布决定的,而排水体积的纵向分布规律与船体内部容积沿纵向变化规律大体一致。

因此,在配载中,应按各舱容积大小成正比地分配各货舱货物重量。

设全船货舱总容积∑ch V ,航次货运量∑Q ,则具有chi V 舱容的某货舱应分配的货物重量i p 为:chi i ch V p Q V =⋅∑∑在实际装载中,由于受到各种其他因素的影响,有时难以准确达到按舱容比分配货物重量,应允许对所确定的分配重量做适量浮动,其上下浮动量一般可取分配货量的10%,有时甚至更大些。

应该指出,按舱容比大小确定的各货舱装载计划,并不是使船舶受力最小的最佳方案。

2.根据机舱不同位置适当调整中区货舱货物分配量中机船满载时存在较大中拱变形,为此,应在中区货舱适当增大货物分配量而在首尾部货舱适当减少货物分配量,以减小中区重力和浮力的差异,通常中部货舱的货物分配量可取上限,首尾货舱则取下限;对于大型尾机船因满载时呈中垂变形,则应适当减少中区货舱货物分配量并相应增大首尾货舱货物分配量,通常满载时中部货舱的货物分配重量可取下限,首尾货舱则取上限。

船上其他载荷的合理配置:1.油水的合理分布和使用对于中机船,满载时常处于较大中拱状态,所以出港时油水尽量集中在中部液舱柜,航行中使用时则应先用首尾部液舱柜油水而后用中部舱位油水。

对于尾机船,空载时一般处于较大中拱状态,因此其油水的分布和使用原则与中机船满载时相同;大型船舶满载时常处于中垂状态,所以油水分布和使用原则与空载时相反,即中部液舱油水尽量装载少些,首尾液舱尽量满些,航行中则先用中部液舱油水而后用首尾部液舱油水。

对于中后机船,满载航行时,可能处于较小中拱或中垂状态,应依据船舶具体状态确定油水分布及使用方案;压载航行时,一般为中拱状态,因此油水分布和使用原则与尾机船的空船压载状态相同。

2. 合理压载为改善船舶的航行性能,空载船舶需注入相当数量的海水以确保航行安全。

对于尾机船,空载时尾吃水差较大,且船舶处于中拱状态,欲减小船舶尾吃水差及中拱弯矩,除首部压载外,应尽量使用接近中区的压载水舱。

货物装卸及船舶航行中改善船舶纵向: 1.中途港装卸货物对强度的考虑当船舶在中途港卸下或装上的货物数量较大时,该港货物不得过于集中配装在一个货舱内,以免卸货或装货后产生过大剪力或弯矩而损伤船体强度;也不应过于分散,否则会过多地移动或更换装卸工具。

应视其货物装上或卸下的重量情况,分装于2~3个货舱内。

2.均衡装卸各舱货物,合理安排装卸顺序在实际工作中,应争取多头装卸作业,及时更换作业舱室,即各货舱交替进行装卸,防止在作业过程中出现某一货舱中货物与其他货舱中的货物重量相差过分悬殊。

3.避免船舶在波浪中的纵谐摇船舶在波浪中航行时,若船长等于波长且船速等于波速,船舶则会出现纵向谐摇,船体中部处于波谷或波峰位置上,会加大船舶的中拱弯矩或中垂弯矩,且长时间得不到改变,这对船体强度极为不利,应避免这种纵谐摇的存在和持续状态,采取改向或变速的措施。

第三节船舶局部强度船舶局部强度概述:1.局部强度定义船体各部分结构在外力作用下具有抵抗局部变形和损坏的能力称为局部强度。

对营运船舶来说,主要应考虑甲板、平台、舱底及舱口盖等载货部位的局部强度。

2.许用负荷量载货部位局部强度所允许的载荷重量的极值称为该位置处的许用负荷量。

根据载荷的分布情况及特征,实际营运中有以下几种形式的许用负荷量表示方法:(1)均布载荷均布载荷是作用在载荷部位上货物重力均匀分布在某一较大面积上,如固体散货或液体散货均匀装于舱室内,使甲板或舱底所受压力相同。

由于均布载荷时载货部位上各处压力相同,因此,将载货部位单位面积上允p,单位为9.81kPa。

许承受的最大重量定义为均布载荷条件下的许用负荷量d(2)集中载荷集中载荷是指货物重力集中作用在一个较小的特定面积上,如重大件货的底脚、支架等。

特定面积是指向该区域下的承重构件(如甲板纵桁)施加集中压力的骨材(如甲板纵骨和横梁)之间的面积。

由于集中载荷时货重作用在一特定面积上,因此,将载货部位特定面积上允许承受的最大重量定义为集中载荷条件下的许用负荷量P ,单位为t。

(3)车辆载荷车辆载荷是指载车部位上的车辆及其所载货物的重量集中作用在特定数目的车轮上,如铲车及其所铲起的货物、拖车及其上面的集装箱等。

相关文档
最新文档