平行四边形专题训练
人教【数学】培优平行四边形辅导专题训练
一、平行四边形真题与模拟题分类汇编(难题易错题)1.问题发现:(1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长.问题探究:(2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形ABCD 截得线段的长度.问题解决:(3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点(1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由.【答案】(1)作图见解析;(2)25y x =-,353)(0,0)E ,(5,5)F .【解析】试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分.(2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分.(3)存在,直线y x =平分五边形OABCD 面积、周长.试题解析:(1)作图如下:(2)∵(6,7)P ,(4,3)O ',∴设:6PO y kx =+',67{43k b k b +=+=,2{5k b ==-, ∴25y x =-,交x 轴于5,02N ⎛⎫ ⎪⎝⎭, 交BC 于11,62M ⎛⎫ ⎪⎝⎭, 2211563522MN ⎛⎫=+-= ⎪⎝⎭.(3)存在,直线y x =平分五边形OABCD 面积、周长.∵(1052,102)P --在直线y x =上,∴连OP 交OA 、BC 于点E 、F ,设:BC y kx b =+,(8,2)(2,8)B C ,82{28k b k +=+=,1{10k b =-=, ∴直线:10BC y x =-+,联立10{y x y x =-+=,得55x y =⎧⎨=⎩, ∴(0,0)E ,(5,5)F .2.如果两个三角形的两条边对应相等,夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以△ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形.(1)用尺规将图1中的△ABC分割成两个互补三角形;(2)证明图2中的△ABC分割成两个互补三角形;(3)如图3,在图2的基础上再以BC为边向外作正方形BCHI.①已知三个正方形面积分别是17、13、10,在如图4的网格中(网格中每个小正方形的边长为1)画出边长为、、的三角形,并计算图3中六边形DEFGHI的面积.②若△ABC的面积为2,求以EF、DI、HG的长为边的三角形面积.【答案】(1)作图见解析(2)证明见解析(3)①62;②6【解析】试题分析:(1)作BC边上的中线AD即可.(2)根据互补三角形的定义证明即可.(3)①画出图形后,利用割补法求面积即可.②平移△CHG到AMF,连接EM,IM,则AM=CH=BI,只要证明S△EFM=3S△ABC即可.试题解析:(1)如图1中,作BC边上的中线AD,△ABD和△ADC是互补三角形.(2)如图2中,延长FA到点H,使得AH=AF,连接EH.∵四边形ABDE,四边形ACGF是正方形,∴AB=AE,AF=AC,∠BAE=∠CAF=90°,∴∠EAF+∠BAC=180°,∴△AEF和△ABC是两个互补三角形.∵∠EAH+∠HAB=∠BAC+∠HAB=90°,∴∠EAH=∠BAC,∵AF=AC,∴AH=AB,在△AEH和△ABC中,∴△AEH≌△ABC,∴S△AEF=S△AEH=S△ABC.(3)①边长为、、的三角形如图4所示.∵S△ABC=3×4﹣2﹣1.5﹣3=5.5,∴S六边形=17+13+10+4×5.5=62.②如图3中,平移△CHG到AMF,连接EM,IM,则AM=CH=BI,设∠ABC=x,∵AM∥CH,CH⊥BC,∴AM⊥BC,∴∠EAM=90°+90°﹣x=180°﹣x,∵∠DBI=360°﹣90°﹣90°﹣x=180°﹣x,∴∠EAM=∠DBI,∵AE=BD,∴△AEM≌△DBI,∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180°,∴△DBI和△ABC是互补三角形,∴S△AEM=S△AEF=S△AFM=2,∴S△EFM=3S△ABC=6.考点:1、作图﹣应用与设计,2、三角形面积3.如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.求证:AF=BF+EF.【答案】详见解析.【解析】【分析】由四边形ABCD为正方形,可得出∠BAD为90°,AB=AD,进而得到∠BAG与∠EAD互余,又DE垂直于AG,得到∠EAD与∠ADE互余,根据同角的余角相等可得出∠ADE=∠BAF,利用AAS可得出△ABF≌△DAE;利用全等三角的对应边相等可得出BF=AE,由AF-AE=EF,等量代换可得证.【详解】∵ABCD是正方形,∴AD=AB,∠BAD=90°∵DE⊥AG,∴∠DEG=∠AED=90°∴∠ADE+∠DAE=90°又∵∠BAF+∠DAE=∠BAD=90°,∴∠ADE=∠BAF .∵BF ∥DE ,∴∠AFB=∠DEG=∠AED .在△ABF 与△DAE 中,AFB AED ADE BAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△DAE (AAS ).∴BF=AE .∵AF=AE+EF ,∴AF=BF+EF .点睛:此题考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,熟练掌握判定与性质是解本题的关键.4.(1)如图①,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,交AD 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .①求证:四边形BFDE 是菱形;②直接写出∠EBF 的度数;(2)把(1)中菱形BFDE 进行分离研究,如图②,点G 、I 分别在BF 、BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH 并延长,交ED 于点J ,连接IJ 、IH 、IF 、IG.试探究线段IH 与FH 之间满足的关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图③,当矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE 、EF 、DF ,使△DEF 是等腰直角三角形,DF 交AC 于点G.请直接写出线段AG 、GE 、EC 三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH 3;(3)EG 2=AG 2+CE 2.【解析】【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题.(2)IH=3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH =3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH=3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.5.如图,在△ABC 中,∠ACB=90°,∠CAB=30°,以线段AB 为边向外作等边△ABD ,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F .(1)求证:四边形BCFD 为平行四边形;(2)若AB=6,求平行四边形ADBC 的面积.【答案】(1)见解析;(2)S 平行四边形ADBC =32. 【解析】【分析】 (1)在Rt △ABC 中,E 为AB 的中点,则CE=12AB ,BE=12AB ,得到∠BCE=∠EBC=60°.由△AEF ≌△BEC ,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE =∠D=60度.所以FC ∥BD ,又因为∠BAD=∠ABC=60°,所以AD ∥BC ,即FD//BC ,则四边形BCFD 是平行四边形.(2)在Rt △ABC 中,求出BC ,AC 即可解决问题;【详解】解:(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E为AB的中点,∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E为AB的中点,∴CE=12AB,BE=12AB,∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四边形BCFD是平行四边形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=33,∴S平行四边形BCFD=3×33=93,S△ACF=12×3×33=93,S平行四边形ADBC=2732.【点睛】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.6.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度7.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的关系(直接写出结论即可);(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和CG.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.(3)在(2)中,若E是BC的中点,且BC=2,则C,F两点间的距离为.【答案】(1) AE=CG,AE⊥GC;(2)成立,证明见解析; (3)2.【解析】【分析】(1)观察图形,AE、CG的位置关系可能是垂直,下面着手证明.由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE⊥GC.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°﹣∠6,即∠7+∠CEH=90°,由此得证.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.想办法求出CH,HF,再利用勾股定理即可解决问题.【详解】(1)AE=CG,AE⊥GC;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG(SAS),∴AE,CG,∠1=∠2∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG(SAS),∴AE=CG,∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.∵BE=CE=1,AB=CD=2,∴AE=DE=CG═DG=FG5∵DE=DG,∠DCE=∠GND,∠EDC=∠DGN,∴△DCE≌△GND(AAS),∴GCD=2,∵S△DCG=12•CD•NG=12•DG•CM,∴2×25,∴CM=GH45,∴MG=CH22CG CM355,∴FH =FG ﹣FG =5, ∴CF =22FH CH +=22535()()55+=2. 故答案为2.【点睛】 本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.8.如图①,在矩形ABCD 中,点P 从AB 边的中点E 出发,沿着E B C --速运动,速度为每秒2个单位长度,到达点C 后停止运动,点Q 是AD 上的点,10AQ =,设PAQ ∆的面积为y ,点p 运动的时间为t 秒,y 与t 的函数关系如图②所示.(1)图①中AB = ,BC = ,图②中m = .(2)当t =1秒时,试判断以PQ 为直径的圆是否与BC 边相切?请说明理由:(3)点p 在运动过程中,将矩形沿PQ 所在直线折叠,则t 为何值时,折叠后顶点A 的对应点A '落在矩形的一边上.【答案】(1)8,18,20;(2)不相切,证明见解析;(3)t=12、5、173. 【解析】【分析】 (1)由题意得出AB=2BE ,t=2时,BE=2×2=4,求出AB=2BE=8,AE=BE=4,t=11时,2t=22,得出BC=18,当t=0时,点P 在E 处,m=△AEQ 的面积=12AQ×AE=20即可; (2)当t=1时,PE=2,得出AP=AE+PE=6,由勾股定理求出34PQ 为直径的圆的圆心为O',作O'N ⊥BC 于N ,延长NO'交AD 于M ,则MN=AB=8,O'M ∥AB ,MN=AB=8,由三角形中位线定理得出O'M=12AP=3,求出O'N=MN-O'M=5<圆O'的半径,即可得出结论;(3)分三种情况:①当点P 在AB 边上,A'落在BC 边上时,作QF ⊥BC 于F ,则QF=AB=8,BF=AQ=10,由折叠的性质得:PA'=PA ,A'Q=AQ=10,∠PA'Q=∠A=90°,由勾股定理求出22AQ QF '-,得出A'B=BF-A'F=4,在Rt △A'BP 中,BP=4-2t ,PA'=AP=8-(4-2t )=4+2t ,由勾股定理得出方程,解方程即可;②当点P在BC边上,A'落在BC边上时,由折叠的性质得:A'P=AP,证出∠APQ=∠AQP,得出AP=AQ=A'P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可;③当点P在BC边上,A'落在CD边上时,由折叠的性质得:A'P=AP,A'Q=AQ=10,在Rt△DQA'中,DQ=AD-AQ=8,由勾股定理求出DA'=6,得出A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=22-2t,由勾股定理得出方程,解方程即可.【详解】(1)∵点P从AB边的中点E出发,速度为每秒2个单位长度,∴AB=2BE,由图象得:t=2时,BE=2×2=4,∴AB=2BE=8,AE=BE=4,t=11时,2t=22,∴BC=22-4=18,当t=0时,点P在E处,m=△AEQ的面积=12AQ×AE=12×10×4=20;故答案为8,18,20;(2)当t=1秒时,以PQ为直径的圆不与BC边相切,理由如下:当t=1时,PE=2,∴AP=AE+PE=4+2=6,∵四边形ABCD是矩形,∴∠A=90°,∴PQ=2222106234AQ AP+=+=,设以PQ为直径的圆的圆心为O',作O'N⊥BC于N,延长NO'交AD于M,如图1所示:则MN=AB=8,O'M∥AB,MN=AB=8,∵O'为PQ的中点,∴O''M是△APQ的中位线,∴O'M=12AP=3,∴O'N=MN-O'M=534∴以PQ为直径的圆不与BC边相切;(3)分三种情况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,如图2所示:则QF=AB=8,BF=AQ=10,∵四边形ABCD是矩形,∴∠A=∠B=∠BCD=∠D=90°,CD=AB=8,AD=BC=18,由折叠的性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,∴A'F=22AQ QF'-=6,∴A'B=BF-A'F=4,在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,由勾股定理得:42+(4-2t)2=(4+2t)2,解得:t=12;②当点P在BC边上,A'落在BC边上时,连接AA',如图3所示:由折叠的性质得:A'P=AP,∴∠APQ'=∠A'PQ,∵AD∥BC,∴∠AQP=∠A'PQ,∴∠APQ=∠AQP,∴AP=AQ=A'P=10,在Rt△ABP中,由勾股定理得:22108-,又∵BP=2t-4,∴2t-4=6,解得:t=5;③当点P在BC边上,A'落在CD边上时,连接AP、A'P,如图4所示:由折叠的性质得:A'P=AP ,A'Q=AQ=10,在Rt △DQA'中,DQ=AD-AQ=8,由勾股定理得:DA'=22108-=6,∴A'C=CD-DA'=2, 在Rt △ABP 和Rt △A'PC 中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t ,由勾股定理得:AP 2=82+(2t-4)2,A'P 2=22+(22-2t )2,∴82+(2t-4)2=22+(22-2t )2,解得:t=173; 综上所述,t 为12或5或173时,折叠后顶点A 的对应点A′落在矩形的一边上. 【点睛】 四边形综合题目,考查了矩形的性质、折叠变换的性质、勾股定理、函数图象、直线与圆的位置关系、三角形中位线定理、等腰三角形的判定、以及分类讨论等知识.9.在平面直角坐标系中,O 为原点,点A (﹣6,0)、点C (0,6),若正方形OABC 绕点O 顺时针旋转,得正方形OA′B′C′,记旋转角为α:(1)如图①,当α=45°时,求BC 与A′B′的交点D 的坐标;(2)如图②,当α=60°时,求点B′的坐标;(3)若P 为线段BC′的中点,求AP 长的取值范围(直接写出结果即可).【答案】(1)(62,6)-;(2)(333,333)+;(3)323323AP +.【解析】【分析】(1)当α=45°时,延长OA′经过点B ,在Rt △BA′D 中,∠OBC =45°,A′B =626,可求得BD的长,进而求得CD的长,即可得出点D的坐标;(2)过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,证明△OMC′≌△C′NB′,可得C′N=OM=33,B′N=C′M=3,即可得出点B′的坐标;(3)连接OB,AC相交于点K,则K是OB的中点,因为P为线段BC′的中点,所以PK=1OC′=3,即点P在以K为圆心,3为半径的圆上运动,即可得出AP长的取值范围.2【详解】解:(1)∵A(﹣6,0)、C(0,6),O(0,0),∴四边形OABC是边长为6的正方形,当α=45°时,如图①,延长OA′经过点B,∵OB=62,OA′=OA=6,∠OBC=45°,∴A′B=626-,∴BD=(626=-,-)×21262∴CD=6﹣(1262-,-)=626∴BC与A′B′的交点D的坐标为(662-,6);(2)如图②,过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,∵∠OC′B′=90°,∴∠OC′M=90°﹣∠B′C′N=∠C′B′N,∵OC′=B′C′,∠OMC′=∠C′NB′=90°,∴△OMC′≌△C′NB′(AAS),当α=60°时,∵∠A′OC′=90°,OC′=6,∴∠C′OM=30°,∴C′N=OM=33,B′N=C′M=3,∴点B′的坐标为333,333+;(3)如图③,连接OB ,AC 相交于点K ,则K 是OB 的中点,∵P 为线段BC′的中点,∴PK =12OC′=3, ∴P 在以K 为圆心,3为半径的圆上运动,∵AK =32,∴AP 最大值为323+,AP 的最小值为323-,∴AP 长的取值范围为323323AP -+.【点睛】本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.(3)问解题的关键是利用中位线定理得出点P 的轨迹.10.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC 中,CD 是AB 边上的中线,那么△ACD 和△BCD 是“友好三角形”,并且S △ACD =S △BCD .应用:如图②,在矩形ABCD 中,AB=4,BC=6,点E 在AD 上,点F 在BC 上,AE=BF ,AF 与BE 交于点O .(1)求证:△AOB 和△AOE 是“友好三角形”;(2)连接OD ,若△AOE 和△DOE 是“友好三角形”,求四边形CDOF 的面积.探究:在△ABC 中,∠A=30°,AB=4,点D 在线段AB 上,连接CD ,△ACD 和△BCD 是“友好三角形”,将△ACD 沿CD 所在直线翻折,得到△A′CD ,若△A′CD 与△ABC 重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.【答案】(1)见解析;(2)12;探究:2或2.【解析】试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.试题解析:(1)∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC=,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四边形A′BDC是平行四边形,∴A′C=BD=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.考点:四边形综合题.。
专题训练4 平行四边形的存在性问题
专题训练4 平行四边形的存在性问题针对训练1、 如图已知抛物线y=-x 2-2x+3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C 顶点为P.若以A 、C 、P 、M 为顶点的四边形是平行四边形,求点M 的坐标2、 如图,在平面直角坐标系xOy 中,已知抛物线y=-x 2+2x+3与x 轴交于A 、B 两点,点M 在这条抛物线上,点P 在y 轴上,如果以点P 、M 、A 、B 为顶点的四边形是平行四边形,求点M 的坐标3、 将抛物线c1:y=23x 3-+沿x 轴翻折,得到抛物线c2如图所示现将抛物线c1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B :将抛物线c2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D E 在平移过程中,是否存在以点A 、N 、F,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理曰如图,4、 抛物线y=25x bx c 4-++与y 轴交于点A (0,1),过点A 的直线与抛物线交于为一点B (3.2),过点B 作BC ⊥x 轴,垂足为C(1)求抛物线的表达式;(2)点P 是x 轴正半轴上的一动点,过点P 作PN ⊥x 轴交直线AB 于点M ,交抛物线于点N 设OP 的长度为m ,连结CM 、BN ,当m 为何值时,四边形BCMN 为平行四边形?5、如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度过点P作PD∥BC,交AB于点D,连结PQ点P、Q分别从点A、C同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动的时间为t秒(t≥0)(1)直接用含t的代数式分别表示:QB=,PD=(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度6、如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A(4,0)、B(0,3),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴正半轴上的一动点,且满足O=2x,连结DE,以DE、DA 为边作平行匹边形DEFA(1)如果平行四边形DEFA为矩形,求m的值(2)如果平行四边形DEFA为菱形,请直接写出m的值真题演练7、(18衢州24)如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于点D(6,3),交x轴于点C(12,0)(1)求直线CD的函数表达式;(2)动点P在x轴上从点(-10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t①点P在运动过程中,是否存在某个位置,使得∠PDA=∠B?若存在,请求出点P的坐标;若不存在,请说明理由②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O、B、M、Q为顶点的四边形是菱形?并求出此时t的值8、(19连云港26)如图,在平面直角坐标系xOy 中,抛物线L1:y=x 2+bx+c 过点C (0,-3),与抛物线L2:y=213222x x --+的一个交点为A ,且点A 的横坐标为2,点P 、Q 分别是抛物线L1,L2上的动点(1)求抛物线L1的函数表达式(2)若以A 、C 、P 、Q 为顶点的四边形恰为平行四边形,求点P 的坐标;(3)设点R 为抛物线L1上另一个动点,且CA 平分∠PCR 若OQ ∥PR ,求点Q 的坐标9、(19南充25)抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0)、点B (-3,0)与y 轴交于点C ,且OB=OC (如图所示) (1)求抛物线的解析式;(2)若点P 在抛物线上,且∠POB=∠ACB ,求点P 的坐标;(3)抛物线上有两点M 、N ,点M 的横坐标为m ,点N 的横坐标为m+4.点D 是抛物线上M 、N 之间的动点,过点D 作y 轴的平行线交MN 于点①求DE 的最大值 ②点D 关于点E 的对称点为F ,当m 为何值时,四边形MDNF 为矩形?10(17泰安28)如图是将抛物线y=-x 2平移后得到的抛物线,其中对称轴为x=1,与x 轴的一个交点为A (-1,0),另一个交点为B ,与y 轴的交点为C.(1)求抛物线的函数表达式;(2)若点N 为抛物线上一点,且BC ⊥NC ,求点N 的坐标;(3)点P 是抛物线上一点,点Q 是一次函数y=2x+2的图象上一点,若四边形OAPQ 为平行四边形,这样的点P 、Q 是否存在?若存在,分别求出点P 、Q 的坐标;若不存在,请说明理由模拟训练11、(2018年长沙市中考模拟(三)第26题)如图,已知抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为M直线y=2x-a分别与x轴、y轴相交于B、C两点,并且与直线M相交于点N.(1)试用含a的代数式分别表示点M与N的坐标;(2)如图,将△NAC沿y轴翻折,若点N的对应点N恰好落在抛物线上,AN与x轴交于点D,连结CD,求a的值和四边形ADCN的面积;(3)在抛物线y=x2-2x+a上是否存在一点P,使得以P、A、 C、N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,试说明理由12、(2019年内蒙古准格尔旗中考模拟第24题)如图所示,已知抛物线y=-x2+bx+c与一直线相交于A (-1,0)、C(2,3)两点,其顶点为D(1)求抛物线及直线AC的函数关系式(2)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B、D、E、F为顶4O点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由(3)若P是抛物线上位于直线AC上方的一个动点,直接写出△APC的面积的最大值及此时点P的坐标专题预测13、如图,在平面直角坐标系中,矩形1BC的顶点A、C分别在x轴和y轴上,点B的坐标为(3.33)。
平行四边形专题训练(含答案)
平行四边形专题训练一.解答题(共17小题)1.如图,在▱ABCD中,CE⊥AD于点E,且CB=CE,点F为CD边上的一点,CB=CF,连接BF 交CE于点G.(1)若∠D=60°,CF=2,求CG的长;(2)求证:AB=ED+CG.2.如图,在平行四边形ABCD中,过点D作DE⊥BC交BC于点E,且DE=AD,F为DC上一点,且AD=FD,连接AF与DE交于点G.(1)若∠C=60°,AB=2,求GF的长;(2)过点A作AH⊥AD,且AH=CE,求证:AB=DG+AH.3.如图,已知▱ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH 于点F、G、M,且DE=AD.(1)求证:△ADG≌△FDM.(2)猜想AB与DG+CE之间有何数量关系,并证明你的猜想.4.如图,已知▱ABCD中,AE平分∠BAD交DC于E,DF⊥BC于F,交AE于G,且AD=DF.过点D作DC的垂线,分别交AE、AB于点M、N.(1)若M为AG中点,且DM=2,求DE的长;(2)求证:AB=CF+DM.5.在平行四边形ABCD中,BE⊥AD,F为CD边上一点,满足BF=BC=BE.(1)如图1,若BC=12,CD=13,求DE的长;(2)如图2,过点G作DG∥BE交BF于点G.求证:BG=AE+DG.6.如图,在平行四边形ABCD中,∠ACB=45°,点E在对角线AC上,BE的延长线交CD于点F,交AD的延长线于点G.(1)若BE=,EC=,求△BCE的面积;(2)若∠ABE=2∠EBC,且AB=BE,求证:EC=DG.7.如图1,在平行四边形ABCD中,AE⊥BC于点E,E恰为BC的中点,tan B=2.(1)求证:AD=AE;(2)如图2,点P在线段BE上,作EF⊥DP于点F,连接AF,求证:;(3)请你在图3中画图探究:当P为射线EC上任意一点(P不与点E重合)时,作EF 垂直直线DP,垂足为点F,连接AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论.8.如图①,在平行四边形ABCD中,对角线AC、BD交于点O,AB=AC,AB⊥AC,过点A作AE⊥BD于点E.(1)若BC=6,求AE的长度;(2)如图②,点F是BD上一点,连接AF,过点A作AG⊥AF,且AG=AF,连接GC交AE 于点H,证明:GH=CH.9.在▱ABCD中,点E是BC的中点,过点A作AF⊥CD交直线CD于点F,连接AE、DE(1)如图1,当点F与点C重合时,AB=AC=2,求线段DE的长;(2)如图2,若∠EAF=30°,AE=CF,求证:BE=AF.10.已知,在▱ABCD中,AB⊥AC,点E是AC上一点,连换BE,延长BE交AD于点F,BE=CE.(1)如图1,当∠AEB=60°,BF=2时,求▱ABCD的面积;(2)如图2,点G是过点E且与BF垂直的直线上一点,连接GF,GC,FC,当GF=GC时,求证:AB=2EG.ABCD BD AD E CD AE BD F G为AF的中点,连接DG.(1)如图1,若DG=DF=1,BF=3,求CD的长;(2)如图2,连接BE,且BE=AD,∠AEB=90°,M、N分别为DG,BD上的点,且DM=BN,H为AB的中点,连接HM、HN,求证:∠MHN=∠AFB.12.在△BCF中,点D是边CF上的一点,过点D作AD∥BC,过点B作BA∥CD交AD于点A,点G是BC的中点,点E是线段AD上一点,且∠CDG=∠ABE=∠EBF.(1)若∠F=60°,∠C=45°,BC=2,请求出AB的长;(2)求证:CD=BF+DF.13.已知在平行四边形ABCD中,过点D作DE⊥BC于点E,且AD=DE.连接AC交DE于点F,作DG⊥AC于点G.(1)如图1,若,AF=,求DG的长;(2)如图2,作EM⊥AC于点M,连接DM,求证:AM﹣EM=2DG.14.已知,在平行四边形ABCD中,点E是AD边上一点,且DE=DC.(1)若点E与点A重合(如图1),点B沿MN翻折后的点B1恰好落在AC上,且∠MNB1=45°,AB1=1,AM=2,BM=.求:①∠AMN的度数;②BN的长;(2)如图2,若CE交对角线BD于F,∠ABD=2∠DBC,求证:BC=DF+AB.15.在平行四边形ABCD中,点E是AD边上的点,连接BE.(1)如图1,若BE平分∠ABC,BC=8,ED=3,求平行四边形ABCD的周长;(2)如图2,点F是平行四边形外一点,FB=CD.连接BF、CF,CF与BE相交于点G,若∠FBE+∠ABC=180°,点G是CF的中点,求证:2BG+ED=BC.16.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.17.如图,在▱ABCD中,∠ACB=45°,点E在对角线AC上,BE=BA,BF⊥AC于点F,BF的延长线交AD于点G.点H在BC的延长线上,且CH=AG,连接EH.(1)若BC=12,AB=13,求AF的长;(2)求证:EB=EH.18.如图,平行四边形ABCD中,过点C作CE⊥AB于点E,点F是AD上一点,连结BF、CF,交CE于点G。
哈尔滨平行四边形综合题20题
中考专题训练——平行四边形的判定和性质1.已知:如图,▱ABCD中,E、F分别是AB、CD的中点.求证:(1)△AFD≌△CEB;(2)四边形AECF是平行四边形.2.已知,四边形ABCD是平行四边形,E、F是对角线AC上的两点,AE=CF.(1)如图1,求证:四边形DEBF是平行四边形;(2)如图2,AE=EF=FC,在不添加任何辅助线的情况下,请直接写出图2中所有面积与四边形DEBF面积相等的三角形.BC,3.已知:△ABC中,AB=AC,AD⊥BC于点D,过点A作AE∥BC,且AE=12连结DE.(1)求证:四边形ABDE是平行四边形;,求FG和FD的长.(2)作FG⊥AB于点G,AG=4,cos∠GAF=454.如图,在△ABC中,AB=BC,BD平分∠ABC交AC于点D,点E为AB的中点,连接DE,过点E作EF∥BD交CB的延长线于点F.(1)求证:四边形DEFB是平行四边形;(2)当AD=4,BD=3时,求CF的长.5.如图,四边形ABCD是平行四边形,延长AD至点E,使DE=AD,连接BD、CE.(1)求证:四边形BCED是平行四边形;,求点B到点E的距离.(2)若DA=DB=4,cos A=146.如图,点D是ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点.(1)求证:四边形EFGH是平行四边形;(2)如果∠BDC=90°,∠DBC=30°,CD=2,AD=6,求四边形EFGH的周长.7.如图,在平行四边形ABCD中,点E,F分别是AB,CD上的点,CF=BE.(1)求证:四边形AEFD是平行四边形;(2)若∠A=60°,AD=2,AB=4,求BD的长.8.如图,在四边形ABCD中,∠ACB=∠CAD=90°,AD=BC,点E在BC延长线上,AE与CD交于点F.(1)求证:四边形ABCD是平行四边形;,求AD和CF的长.(2)若AE平分∠BAD,AB=13,cos B=5139.在▱ABCD中,E,F分别是AB,CD的中点,连接BF,DE,M,N分别是BF,DE的中点,连接EM,FN.(1)求证:四边形BFDE是平行四边形;(2)若AB=12,EM=EN=5,则四边形ABCD的面积为.10.在▱ABCD中,E,F分别为对角线BD上两点,连接AE、CE、AF、CF,且AE∥CF.(1)如图1,求证:四边形AECF是平行四边形;(2)如图2,若2BE=3EF,在不添加任何字母及辅助线的情况下,请直接写出图2中面积是△ABD面积的3的四个三角形.811.如图,已知等边△ABC中,D、F分别是边BC、AB上的点,且CD=BF,以AD为边向左作等边△ADE,联结CF、EF.(1)求证:四边形CDEF是平行四边形;的值.(2)当∠DEF=45°时,求BDCD12.如图,在四边形ABCD中,AB∥CD,AB=CD,点E、F在对角线AC上,且AE=CF.(1)如图1,求证:DF∥BE;(2)如图2,延长DF、BE分别交BC、AD于点P、N,连接BF并延长交CD 于点M,连接DE并延长交AB于Q,在不添加其它线的条件下,直接写出图中所有的平行四边形.13.在△ABC中,D是BC边上的一点,E是AC边的中点,过点A作AF∥BC 交DE的延长线于点F,连接AD,CF.(1)求证:四边形ADCF是平行四边形;(2)若∠FEA=2∠ADE,CF=2√2,CD=1,请直接写出AE的长为.14.已知点E、F分别是▱ABCD的边BC、AD的中点.(1)求证:四边形AECF是平行四边形;(2)若BC=12,∠BAC=90°,求▱AECF的周长.15.如图,在Rt△ABC中,∠ACB=90°,D、E分别是边AC、AB的中点,连接CE、DE,过D点作DF∥CE交BC的延长线于F点.(1)证明:四边形DECF是平行四边形;(2)若AB=13cm,AC=5cm,求四边形DECF的周长.16.已知:如图所示,在△ABC中,D是AC的中点,E是线段BC的延长线上一点,过点A作AF∥BE,交线段ED的延长线于点F,连接AE、CF.(1)求证:CF=AE.(2)若AF=CF=4,∠AFD=30°,则四边形AECF的面积是.17.如图,在四边形ABCD中,∠BCD=90°,对角线AC,BD相交于点N.点M是对角线BD中点,连接AM,CM.如果AM=DC,AB⊥AC,且AB=AC.(1)求证:四边形AMCD是平行四边形.(2)求tan∠DBC的值.18.如图,在△ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB 的平行线,交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)若∠FDB=30°,∠ABC=45°,BC=4√2,求DF的长.19.如图,在△ABC中,点D是BC边的中点,点E,F分别在AC,AB上,且DE∥AB,EF∥BC.(1)求证:CD=EF;(2)连接BE,若BE平分∠ABC,CD=6,求四边形BDEF的周长.20.如图,四边形ABCD是平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)若BF恰好平分∠ABE,连接AC、DE,求证:四边形ACED是平行四边形.21.如图,在平行四边形ABCD中,AE、CF分别平分∠BAD和∠BCD,AE交BC于点E,CF交AD于点F.(1)如图1,求证:BE=DF;(2)如图2,连接BD分别交AE、CF于点G、H,连接AH,CG,CF,EH,AH与GF交于点M,EH与GC交于点N,请直接写出图中所有的平行四边形(平行四边形ABCD除外).22.如图,平行四边形ABCD中,E、F是对角线BD上不同的两点,添加个条件,使得四边形AECF为平行四边形.(1)现有四个条件:①BE=DF;②AF∥CE;③AE=CF;④∠BAE=∠DCF.你添加的条件是:.(填一个序号即可)(2)在(1)的基础上,求证:四边形AECF是平行四边形.23.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF=.24.如图,已知四边形ABCD中,对角线AC,BD相交于点O,且OA=OC,OB =OD,过O点的线段EF,分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)如果∠EBD=∠CBD,请判断并证明四边形BEDF的形状.25.如图,E,F是▱ABCD对角线BD上两点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)连接AC,若∠BAF=90°,AB=4,AF=AE=3,求AC的长.26.如图,在Rt△ABC中,∠ACB=90°,D,E分别是AB,AC的中点,连接CD,过点E作EF∥CD交BC的延长线于点F.(1)证明:四边形CDEF是平行四边形;(2)若∠ABC=30°,AC的长是5cm,求四边形CDEF的周长.27.如图,平行四边形ABCD中,AB=8cm,BC=12cm,∠B=60°,G是CD 的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)当AE=8cm时,四边形CEDF是什么样的特殊平行四边形?请写出你的理由.28.如图,在四边形ABCD中,∠BCD=90°,对角线AC,BD相交于点N,点M是对角线BD中点,连接AM,CM.如果AM=DC,AB⊥AC,且AB=AC.(1)求证:四边形AMCD是平行四边形.(2)若DN=√10,则BC=,tan∠DBC=.29.如图所示,△ABC≌△EAD,点E在BC上.(1)求证:四边形ABCD是平行四边形;(2)若∠B:∠CAD=3:2,∠EDC=25°,求∠AED的度数.30.如图,在△ABC中,∠ABC=90°,DF垂直平分AB,交AC于点E,连接BE、CD,且ED=2FE.(1)如图1,求证:四边形BCDE是平行四边形;(2)如图2,点G是BC的中点,在不添加任何辅助线的情况下,请直接写出图2中所有面积是△BEG的面积的2倍的三角形和四边形.参考答案与试题解析1.已知:如图,▱ABCD中,E、F分别是AB、CD的中点.求证:(1)△AFD≌△CEB;(2)四边形AECF是平行四边形.【分析】根据平行四边形的性质可得到两边及夹角对应相等,根据SAS判定△AFD≌△CEB;根据有一对边平行且相等的四边形是平行四边形可判定四边形AECF是平行四边形.【解答】证明:(1)在▱ABCD中,AD=CB,AB=CD,∠D=∠B,∵E、F分别是AB、CD的中点,∴DF=12CD,BE=12AB.∴DF=BE.∴△AFD≌△CEB.(2)在▱ABCD中,AB=CD,AB∥CD.由(1),得BE=DF.∴AE=CF.∴四边形AECF是平行四边形.【点评】此题考查了平行四边形的性质及判定,全等三角形的判定等知识点的综合运用能力.2.已知,四边形ABCD是平行四边形,E、F是对角线AC上的两点,AE=CF.(1)如图1,求证:四边形DEBF是平行四边形;(2)如图2,AE=EF=FC,在不添加任何辅助线的情况下,请直接写出图2中所有面积与四边形DEBF面积相等的三角形.【分析】(1)证△ADE ≌△CBF (SAS ),得DE =BF ,∠AED =∠CFB ,再证DE ∥BF ,即可得出结论;(2)由平行四边形的性质得S △DEF =S △BEF ,再由三角形面积关系得S △ADE =S △DEF =S △DCF ,S △CBF =S △BEF =S △ABE ,则S △ADF =S △CDE =S △ABF =S △BCF =S 平行四边形DEBF ,即可得出结论.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAE =∠BCF ,在△ADE 和△CBF 中,{AD =CB ∠DAE =∠BCF AE =CF,∴△ADE ≌△CBF (SAS ),∴DE =BF ,∠AED =∠CFB ,∴∠DEF =∠BFE ,∴DE ∥BF ,∴四边形DEBF 是平行四边形;(2)解:∵四边形DEBF 是平行四边形,∴S △DEF =S △BEF ,∵AE =EF =FC ,∴S △ADE =S △DEF =S △DCF ,S △CBF =S △BEF =S △ABE ,∴S △ADF =S △CDE =S △ABF =S △BCF =S 平行四边形DEBF ,∴图2中所有面积与四边形DEBF 面积相等的三角形为△ADF 、△CDE 、△ABF、△BCF.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及三角形面积等知识,熟练掌握平行四边形的判定与性质是解题的关键.3.已知:△ABC中,AB=AC,AD⊥BC于点D,过点A作AE∥BC,且AE=12BC,连结DE.(1)求证:四边形ABDE是平行四边形;(2)作FG⊥AB于点G,AG=4,cos∠GAF=45,求FG和FD的长.【分析】(1)由等腰三角形的性质得BD=CD=12BC,再证AE=BD,然后由AE∥BC,即可得出结论;(2)由锐角三角函数定义求出AF=5,再由勾股定理得FG=3,连接CE,然后证明四边形ADCE是矩形,即可解决问题.【解答】(1)证明:∵AB=AC,AD⊥BC,∴BD=CD=12BC,∵AE=12BC,∴AE=BD,又∵AE∥BC,∴四边形ABDE是平行四边形;(2)解:∵FG⊥AB,∴∠AGF=90°,∵AG=4,cos∠GAF=AGAF =45,∴AF=5,∴FG=√AF2−AG2=√52−42=3,如图,连接CE,由(1)可知,AE=CD,∵AE∥BC,∴四边形ADCE是平行四边形,又∵AD⊥BC,∴∠ADC=90°,∴平行四边形ADCE是矩形,∴CF=AF=5,FD=FE,AC=DE,∴FD=AF=5.【点评】本题考查了平行四边形的频道与性质、等腰三角形的性质、矩形的判定与性质、锐角三角函数定义以及勾股定理等知识,熟练掌握平行四边形的判定与性质是解题的关键.4.如图,在△ABC中,AB=BC,BD平分∠ABC交AC于点D,点E为AB的中点,连接DE,过点E作EF∥BD交CB的延长线于点F.(1)求证:四边形DEFB是平行四边形;(2)当AD=4,BD=3时,求CF的长.【分析】(1)根据等腰三角形的性质得到AD=DC,根据三角形中位线定理得到DE∥BC,根据平行四边形的判定定理即可得到结论;(2)根据等腰三角形的性质得到BD⊥AC,根据勾股定理得到AB=BC=√AD2+BD2=5,根据三角形的中位线定理和平行四边形的性质即可得到结论.【解答】(1)证明:∵AB=BC,BD平分∠ABC交AC于点D,∴AD=DC,∵点E为AB的中点,∴DE是△ABC的中位线,∴DE∥BC,∴DE∥BF,∵BD∥EF,∴四边形DEFB是平行四边形;(2)解:∵AB=BC,BD平分∠ABC交AC于点D,∴BD⊥AC,∴∠ADB=90°,∵AD=4,BD=3,∴AB=BC=√AD2+BD2=5,∵DE是△ABC的中位线,∴DE=12BC=52,∵四边形DEFB是平行四边形,∴BF=DE=52,∴CF=BC+BF=152.【点评】本题考查了平行四边形的判定和性质,三角形中位线定理,等腰三角形的性质,熟练掌握平行四边形的判定和性质定理是解题的关键.5.如图,四边形ABCD是平行四边形,延长AD至点E,使DE=AD,连接BD、CE.(1)求证:四边形BCED是平行四边形;,求点B到点E的距离.(2)若DA=DB=4,cos A=14【分析】(1)根据平行四边形的性质得到AD=BC,AD∥BC,等量代换得到DE=BC,DE∥BC,于是得到四边形BCED是平行四边形;(2)连接BE,根据已知条件得到AD=BD=DE=4,根据直角三角形的判定定理得到∠ABE=90°,AE=8,解直角三角形即可得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=AD,∴DE=BC,DE∥BC,∴四边形BCED是平行四边形;(2)解:连接BE,∵DA=DB=4,DE=AD,∴AD=BD=DE=4,∴∠ABE=90°,AE=8,,∵cos A=14∴AB=2,∴BE=√AE2−AB2=2√15.【点评】本题考查了平行四边形的判定和性质,直角三角形的判定和性质,三角函数的定义,证得∠ABE =90°是解题的关键.6.如图,点D 是ABC 内一点,点E ,F ,G ,H 分别是AB ,AC ,CD ,BD 的中点.(1)求证:四边形EFGH 是平行四边形;(2)如果∠BDC =90°,∠DBC =30°,CD =2,AD =6,求四边形EFGH 的周长.【分析】(1)利用三角形的中位线定理得出EH =FG =12AD ,EF =GH =12BC ,即可得出结论;(2)由(1)得出四边形EFGH 的周长=EH +GH +FG +EF =AD +BC ,即可得出结果.【解答】(1)证明:∵点E ,F ,G ,H 分别是AB ,AC ,CD ,BD 的中点. ∴EH =FG =12AD ,EF =HG =12BC , ∴四边形EFGH 是平行四边形;(2)解:∵∠BDC =90°,∠DBC =30°,∴BC =2CD =4.由(1)得:四边形EFGH 的周长=EH +GH +FG +EF =AD +BC ,又∵AD =6,∴四边形EFGH 的周长=AD +BC =6+4=10.【点评】本题考查了平行四边形的判定与性质,三角形的中位线定理.熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.7.如图,在平行四边形ABCD 中,点E ,F 分别是AB ,CD 上的点,CF =BE .(1)求证:四边形AEFD是平行四边形;(2)若∠A=60°,AD=2,AB=4,求BD的长.【分析】(1)由平行四边形的性质得AB∥CD,AB=CD,再证DF=AE,即可得出结论;AB=(2)过B作BG⊥AD于G,由含30°角的直角三角形的性质得AG=122,则AG=AD,得G与D重合,BD⊥AD,然后由勾股定理求解即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵CF=BE,∴CD﹣CF=AB﹣BE,即DF=AE,又∵DF∥AE,∴四边形AEFD是平行四边形;(2)解:如图,过B作BG⊥AD于G,∵∠A=60°,∴∠ABG=90°﹣60°=30°,AB=2,∴AG=12∵AD=2,∴AG=AD,∴G与D重合,∴BD⊥AD,∴BD=√AB2−AD2=√42−22=2√3.【点评】本题考查了平行四边形的判定与性质、含30°角的直角三角形的性质以及勾股定理得知识,熟练掌握平行四边形的判定与性质是解题的关键.8.如图,在四边形ABCD中,∠ACB=∠CAD=90°,AD=BC,点E在BC延长线上,AE与CD交于点F.(1)求证:四边形ABCD是平行四边形;(2)若AE平分∠BAD,AB=13,cos B=513,求AD和CF的长.【分析】(1)先证AD∥BC,再由AD=BC,即可得出结论;(2)由锐角三角函数定义得BC=5,再由平行四边形的性质得AD=BC=5,然后证BE=AB=13,则CE=BE﹣BC=8,进而证∠CFE=∠BEA,得CF=CE=8.【解答】(1)证明:∵∠ACB=∠CAD=90°,∴AD∥BC,∵AD=BC,∴四边形ABCD是平行四边形;(2)解:∵∠ACB=90°,AB=13,∴cos B=BCAB =513,∴BC=5,由(1)可知,四边形ABCD是平行四边形,∴AD=BC=5,AB∥CD,AD∥BC,∴∠DAE =∠BEA ,∵AE 平分∠BAD ,∴∠DAE =∠BAE ,∴∠BEA =∠BAE ,∴BE =AB =13,∴CE =BE ﹣BC =13﹣5=8,∵AB ∥CD ,∴∠CFE =∠BAE ,∴∠CFE =∠BEA ,∴CF =CE =8.【点评】本题考查了平行四边形的判定与性质、等腰三角形的判定、锐角三角函数定义、平行线的判定与性质等知识,熟练掌握平行四边形的判定与性质是解题的关键.9.在▱ABCD 中,E ,F 分别是AB ,CD 的中点,连接BF ,DE ,M ,N 分别是BF ,DE 的中点,连接EM ,FN .(1)求证:四边形BFDE 是平行四边形;(2)若AB =12,EM =EN =5,则四边形ABCD 的面积为 96 .【分析】(1)根据平行四边形的性质得到AB =DC ,AB ∥DC .根据线段中点的定义得到BE =12AB ,DF =12DC ,根据平行四边形的判定定理即可得到结论; (2)连接EF ,根据平行四边形的性质得到DE =BF ,根据线段中点的定义得到EN =DN =BM =FM =12B B F ,求得EM =12B B F ,根据勾股定理得到EF =√BF 2−BE 2=8,于是得到结论.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AB =DC ,AB ∥DC .∵E ,F 分别是AB ,CD 的中点,∴BE =12AB ,DF =12DC ,∴BE =DF ,∵BE ∥DF∴四边形BFDE 是平行四边形;(2)解:连接EF ,∵四边形BFDE 是平行四边形,∴DE =BF ,∵M ,N 分别是BF ,DE 的中点,∴EN =DN =BM =FM =12BF ,∵EM =EN =5,∴EM =12BF ,∴∠BEF =90°,BF =2EM =10,∵AB =12,∴BE =6,∴EF =√BF 2−BE 2=8,∴四边形ABCD 的面积为AB •EF =12×8=96,故答案为:96.【点评】本题考查了平行四边形的判定和性质,勾股定理,熟练掌握平行四边形的判定和性质定理是解题的关键.10.在▱ABCD 中,E ,F 分别为对角线BD 上两点,连接AE 、CE 、AF 、CF ,且AE ∥CF .(1)如图1,求证:四边形AECF 是平行四边形;(2)如图2,若2BE =3EF ,在不添加任何字母及辅助线的情况下,请直接写出图2中面积是△ABD 面积的38的四个三角形.【分析】(1)先证△ABE ≌△CDF (AAS ),得AE =CF ,再由AE ∥CF ,即可得出四边形AECF 是平行四边形;(2)由(1)得:△ABE ≌△CDF ,则BE =DF ,再由2BE =3EF ,得BE :BD =3:8,即可得出结论.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∴∠ABE =∠CDF ,∵AE ∥CF ,∴∠AEF =∠CFE ,∴∠AEB =∠CFD ,在△ABE 和△CDF 中,{∠ABE =∠CDF ∠AEB =∠CFD AB =CD,∴△ABE≌△CDF(AAS),∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形;(2)解:△ABE、△CDF、△BCE、△ADF,理由如下:由(1)得:△ABE≌△CDF,∴BE=DF,∵2BE=3EF,∴BE:BD=3:8,∴△ABE的面积=△CDF的面积=△BCE的面积=△ADF的面积=△ABD面.积的38【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及三角形面积等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.11.如图,已知等边△ABC中,D、F分别是边BC、AB上的点,且CD=BF,以AD为边向左作等边△ADE,联结CF、EF.(1)求证:四边形CDEF是平行四边形;(2)当∠DEF=45°时,求BD的值.CD【分析】(1)根据等边三角形的性质得到AC=CB,∠ACD=∠B,根据全等三角形的性质得到∠DAC=∠FCB,求得∠BAD=∠ACF,根据平行线的判定定理得到CF∥DE,由平行四边形的判定定理即可得到四边形CDEF是平行四边形;(2)过F作FG⊥BC于G,根据平行四边形的性质得到∠FCB=∠DEF=45°,求得FG=CG,设BG=x,根据三角函数的定义即可得到结论.【解答】(1)证明:∵△ABC是等边三角形,∴AC=CB,∠ACD=∠B,又CD=BF,∴△ACD≌△CBF(SAS),∴∠DAC=∠FCB,∴∠BAD=∠ACF,∵∠EDB=180°﹣∠ADE﹣∠ADC=120°﹣∠ADC,∠FCB=180°﹣∠B﹣∠CFB=120°﹣∠CFB,∴∠EDB=∠FCB,∴CF∥DE,∴四边形CDEF是平行四边形;(2)解:过F作FG⊥BC于G,∵四边形CDEF是平行四边形,∠DEF=45°,∴∠FCB=∠DEF=45°,∴FG=CG,设BG=x,则CG=FG=BG•tan60°=√3x,CD=BF=BG=2x,cos60°∴BC=BG+CG=(1+√3)x,∴BD=BC﹣CD=(1+√3)x﹣2x=(√3−1)x,∴BDCD =(√3−1)x2x=√3−12.【点评】本题主要考查了等边三角形的性质、全等三角形及平行四边形的判定和性质等知识,综合性较强,难度较大.12.如图,在四边形ABCD中,AB∥CD,AB=CD,点E、F在对角线AC上,且AE=CF.(1)如图1,求证:DF∥BE;(2)如图2,延长DF、BE分别交BC、AD于点P、N,连接BF并延长交CD 于点M,连接DE并延长交AB于Q,在不添加其它线的条件下,直接写出图中所有的平行四边形.【分析】(1)由平行线的性质得出∠BAC=∠DCA.证出AF=CE.由AAS证明△ABF≌△CDE即可;(2)根据平行四边形的判定即可得出结论.【解答】(1)证明:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAF=∠BCE.∵AE=CF,∴AE+EF=CF+EF,∴AF =CE .在△ADF 和△CBE 中,{AD =CB ∠DAF =∠BCE AF =CE,∴△ADF ≌△CBE (SAS ),∴∠DF A =∠BEC ,∴DF ∥BE ;(2)解:图中所有的平行四边形有:▱ABCD ,▱NBPD ,▱QBMD ,▱BEDF ,理由如下:∵AB ∥CD ,AB =CD ,∴四边形ABCD 是平行四边形;由(1)知:△ADF ≌△CBE ,∴DF =BE ,∵DF ∥BE ,∴四边形BEDF 是平行四边形;∴DQ ∥BM .∵AB ∥CD ,∴四边形QBMD 是平行四边形;∵BN ∥DQ .∵AD ∥BC ,∴四边形NBPD 是平行四边形.∴图中所有的平行四边形有:▱ABCD ,▱NBPD ,▱QBMD ,▱BEDF .【点评】本题考查了平行线的性质、平行四边形的判定、菱形的判定与性质、全等三角形的判定与性质;熟练掌握菱形的判定与性质,证明三角形全等是解决问题的关键.13.在△ABC 中,D 是BC 边上的一点,E 是AC 边的中点,过点A 作AF ∥BC 交DE 的延长线于点F ,连接AD ,CF .(1)求证:四边形ADCF 是平行四边形;(2)若∠FEA =2∠ADE ,CF =2√2,CD =1,请直接写出AE 的长为 32 .【分析】(1)证△AEF ≌△CED (AAS ),得FE =DE ,再由AE =CE ,即可得出四边形ADCF 是平行四边形;(2)先证AE =DE ,再证平行四边形ADCF 是矩形,得∠AFC =90°,AF =CD =1,然后由勾股定理求出AC =3,即可求解.【解答】(1)证明:∵E 是AC 边的中点,∴AE =CE ,∵AF ∥BC ,∴∠AFE =∠CDE ,在△AEF 和△CED 中,{∠AFE =∠CDE ∠AEF =∠CED AE =CE,∴△AEF ≌△CED (AAS ),∴FE =DE ,又∵AE =CE ,∴四边形ADCF 是平行四边形;(2)解:∵∠FEA =∠ADE +∠DAE ,∠FEA =2∠ADE ,∴∠ADE =∠DAE ,∴AE =DE ,由(1)得:四边形ADCF 是平行四边形,AE =CE ,FE =DE ,∴AC =DF ,∴平行四边形ADCF 是矩形,∴∠AFC =90°,AF =CD =1,∴AC =√AF 2+CF 2=√12+(2√2)2=3,∴AE =12AC =32, 故答案为:32. 【点评】本题考查了平行四边形的判定与性质、矩形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理等知识;熟练掌握平行四边形的判定与性质和矩形的判定与性质是解题的关键.14.已知点E 、F 分别是▱ABCD 的边BC 、AD 的中点.(1)求证:四边形AECF 是平行四边形;(2)若BC =12,∠BAC =90°,求▱AECF 的周长.【分析】(1)根据平行四边形的性质得AD ∥BC ,AD =BC ,再证AF =CE ,即可得出结论;(2)根据直角三角形斜边上的中线性质得到AE =CE =12BC =6,再证平行四边形AECF 是菱形,于是得到结论.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵点E 、F 分别是▱ABCD 的边BC 、AD 的中点,∴AF =12AD ,CE =12BC , ∴AF =CE ,又∵AF ∥CE ,∴四边形AECF 是平行四边形;(2)解:∵BC =12,∠BAC =90°,E 是BC 的中点.∴AE =CE =12BC =CE =6, ∴平行四边形AECF 是菱形,∴▱AECF 的周长=4×6=24.【点评】此题主要考查了平行四边形的判定与性质、菱形的判定与性质、直角三角形斜边上的中线性质等知识,熟练掌握平行四边形的判定与性质是解题的关键.15.如图,在Rt △ABC 中,∠ACB =90°,D 、E 分别是边AC 、AB 的中点,连接CE 、DE ,过D 点作DF ∥CE 交BC 的延长线于F 点.(1)证明:四边形DECF 是平行四边形;(2)若AB =13cm ,AC =5cm ,求四边形DECF 的周长.【分析】(1)证DE 是△ABC 的中位线,得DE ∥BC ,由平行四边形的判定即可得出结论;(2)先由勾股定理得BC =12,再由三角形中位线定理得DE =12BC =6,然后由平行四边形的性质得DE =CF =6,DF =CE ,再由勾股定理得DF =132,即可得出答案.【解答】(1)证明:∵D 、E 分别是边AC 、AB 的中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,∴DE ∥CF ,∵DF ∥CE ,∴四边形DECF 是平行四边形;(2)解:在Rt △ABC 中,由勾股定理得:BC =√AB 2−AC 2=√132−52=12, ∵DE 是△ABC 的中位线,∴DE =12BC =12×12=6, ∵四边形DECF 是平行四边形,∴DE =CF =6,DF =CE ,∵D 是边AC 的中点,∴CD =12AC =12×5=52, ∵∠ACB =90°,CF 是BC 的延长线,∴∠DCF =90°,在Rt △DCF 中,由勾股定理得:DF =√CD 2+CF 2=√(52)2+62=132, ∴四边形DECF 的周长=2(DE +DF )=2×(6+132)=25. 【点评】本题考查了平行四边形的判定与性质、三角形中位线定理、勾股定理等知识;熟练掌握平行四边形的判定与性质以及三角形中位线定理是解题的关键.16.已知:如图所示,在△ABC 中,D 是AC 的中点,E 是线段BC 的延长线上一点,过点A 作AF ∥BE ,交线段ED 的延长线于点F ,连接AE 、CF .(1)求证:CF =AE .(2)若AF =CF =4,∠AFD =30°,则四边形AECF 的面积是 8√3 .【分析】(1)证△ADF ≌△CDE (AAS ),得AF =CE ,再由AF ∥CE ,则四边形AECF 是平行四边形,即可得出结论;(2)证四边形AECF 为菱形,得AD ⊥EF ,EF =2FD ,再由含30°角的直角三角形的性质得AD =12AF =2,然后由勾股定理得FD =2√3,则EF =2FD =4√3,即可求解.【解答】(1)证明:∵D 点为AC 的中点,∴AD =CD ,∵AF ∥BE ,∴∠F AD =∠ECD ,在△ADF 和△CDE 中,{∠FAD =∠ECD ∠ADF =∠CDE AD =CD,∴△ADF ≌△CDE (AAS ),∴AF =CE ,∵AF ∥CE ,∴四边形AECF 是平行四边形,∴CF =AE ;(2)解:∵四边形AECF 为平行四边形,AF =CF =4,∴四边形AECF 为菱形,∴AD ⊥EF ,EF =2FD ,∵∠AFD =30°,∴AD =12AF =2, ∴AC =2AD =4,FD =√AF 2−AD 2=√42−22=2√3,∴EF =2FD =4√3,∴四边形AECF 的面积=12AC •EF =12×4×4√3=8√3, 故答案为:8√3.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质、勾股定理等知识;熟练掌握平行四边形的判定与性质,证明△ADF ≌△CDE 是解题的关键.17.如图,在四边形ABCD 中,∠BCD =90°,对角线AC ,BD 相交于点N .点M 是对角线BD 中点,连接AM ,CM .如果AM =DC ,AB ⊥AC ,且AB =AC .(1)求证:四边形AMCD 是平行四边形.(2)求tan ∠DBC 的值.【分析】(1)要证明四边形AMCD 是平行四边形,已知AM =DC ,只需要证明AM ∥DC 即可;由条件可知△AMB ≌△AMC (SSS ),推理可得∠DCA =∠MAC =45°,由内错角相等两直线平行可知AM ∥CD ,可得结论;(2)延长AM 交BC 于点E ,由等腰三角形三线合一可得点E 是BC 的中点,ME 是△BCD 的中位线,则ME =12CD ,进而ME =13AE ,设AB =a ,分别表达BC ,AE 及BE ,在Rt △ABE 中,表达tan ∠DBC 的值.【解答】解:(1)证明:如图,∵点M 是BD 的中点,∠BCD =90°,∴CM 是Rt △BCD 斜边BD 的中线,∴CM=BM=MD,又AB=AC,AM=AM,∴△AMB≌△AMC(SSS),∴∠BAM=∠CAM,∵BA⊥AC,∴∠BAC=90°,∴∠CAM=45°,又∵AB=AC,∴∠ACB=∠ABC=45°,∴∠DCA=∠DCB﹣∠ACB=45°,∴∠DCA=∠MAC,∴AM∥CD,又∵AM=DC,∴四边形AMCD为平行四边形.(2)如图,延长AM交BC于点E,∵AB=AC,∠BAC=90°,∠BAM=∠CAM,∴AE⊥BC,且点E为BC的中点,∵点M是BD的中点,点E是BC的中点,∴ME是△BCD的中位线,∴CD=2ME,又AM=CD,∴AM=2ME,∴ME =13AE , 设AB =a ,则BC =√2a ,AE =12BC =√22a , ∴ME =13AE =√26a , 又BE =AE =√22a , ∴tan ∠DBC =ME BE =13. 【点评】本题利用了平行四边形的判定和性质,全等三角形的判定和性质,三角函数值等内容.18.如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C 作AB 的平行线,交DE 的延长线于点F ,连接BF ,CD .(1)求证:四边形CDBF 是平行四边形;(2)若∠FDB =30°,∠ABC =45°,BC =4√2,求DF 的长.【分析】(1)欲证明四边形CDBF 是平行四边形只要证明CF ∥DB ,CF =DB 即可;(2)如图,作EM ⊥DB 于点M ,解直角三角形即可;【解答】(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD .∵E 是BC 中点,∴CE =BE .∵∠CEF =∠BED ,∴△CEF ≌△BED .∴CF =BD .∴四边形CDBF是平行四边形.(2)解:如图,作EM⊥DB于点M,∵四边形CDBF是平行四边形,BC=4√2,BC=2√2,DF=2DE.∴BE=12在Rt△EMB中,EM=BE•sin∠ABC=2,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=4,∴DF=2DE=8.【点评】本题考查平行四边形的性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.19.如图,在△ABC中,点D是BC边的中点,点E,F分别在AC,AB上,且DE∥AB,EF∥BC.(1)求证:CD=EF;(2)连接BE,若BE平分∠ABC,CD=6,求四边形BDEF的周长.【分析】(1)先证四边形BDEF是平行四边形,得EF=BD,再证出=BD=CD,即可得到结论;(2)先由平行四边形的性质得BD=EF,BF=ED,EF∥BD,再证∠FBE=∠BEF,得BF=EF,则BD=EF=BF=ED,即可得出答案.【解答】(1)证明:∵DE∥AB,EF∥BC,∴四边形BDEF是平行四边形,∴EF=BD,∵点D是BC边的中点,∴BD=CD,∴CD=EF;(2)解:∵BE平分∠ABC,∴∠FBE=∠DBE,又∵四边形BDEF是平行四边形,∴BD=EF,BF=ED,EF∥BD,∴∠FEB=∠DBE,∴∠FBE=∠BEF,∴BF=EF,∴BD=EF=BF=ED,又∵BD=CD=6,∴BD=EF=BF=ED=6,∴四边形BDEF的周长=6×4=24.【点评】本题考查了平行四边形的判定和性质,等腰三角形的判定,平行线的性质等知识;熟练掌握平行四边形的判定与性质和等腰三角形的判定是解题的关键.20.如图,四边形ABCD是平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)若BF恰好平分∠ABE,连接AC、DE,求证:四边形ACED是平行四边形.【分析】(1)根据平行四边形的性质得出AD∥BC,AB=CD,根据平行线的性质得出∠DAE=∠AEB,求出∠BAE=∠AEB,根据等腰三角形的判定得出即可;(2)根据等腰三角形的性质得出AF=EF,求出△ADF≌△ECF,根据全等三角形的性质得出DF=CF,再根据平行四边形的判定得出即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,∴BE=CD;(2)∵BE=AB,BF平分∠ABE,∴AF=EF,在△ADF和△ECF中,{∠DAE =∠AEBAF =EF ∠AFD =∠EFC, ∴△ADF ≌△ECF (ASA ),∴DF =CF ,又∵AF =EF ,∴四边形ACED 是平行四边形.【点评】本题考查了平行四边形的性质和判定,全等三角形的性质和判定,等腰三角形的判定和平行线的性质等知识点,能综合运用定理进行推理是解此题的关键.21.如图,在平行四边形ABCD 中,AE 、CF 分别平分∠BAD 和∠BCD ,AE 交BC 于点E ,CF 交AD 于点F .(1)如图1,求证:BE =DF ;(2)如图2,连接BD 分别交AE 、CF 于点G 、H ,连接AH ,CG ,CF ,EH ,AH 与GF 交于点M ,EH 与GC 交于点N ,请直接写出图中所有的平行四边形(平行四边形ABCD 除外).【分析】(1)证△ABE ≌△CDF (ASA ),即可得出结论;(2)先证四边形AECF 是平行四边形,得AE ∥CF ,AE =CF ,再证△DAG ≌△BCH (ASA ),得AG =CH ,又∵AG ∥CH ,则四边形AGCH 是平行四边形,然后证四边形EGFH 是平行四边形,最后得四边形MGNH 是平行四边形即可.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴∠B =∠D ,∠BAD =∠BCD ,AB =CD ,∵AE 、CF 分别平分∠BAD 和∠BCD ,∴∠BAE =12∠BAD ,∠DCF =12∠BCD , ∴∠BAE =∠DCF ,在△ABE 和△CDF 中,{∠B =∠DAB =CD ∠BAE =∠DCF, ∴△ABE ≌△CDF (ASA ),∴BE =DF ;(2)解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,由(1)得:∠DAE =∠BCF ,BE =DF ,∴CE =AF ,∴四边形AECF 是平行四边形,∴AE ∥CF ,AE =CF ,∵AD ∥BC ,∴∠ADG =∠CBH ,在△DAG 和△BCH 中,{∠ADG =∠CBHAD =CB ∠DAG =∠BCH, ∴△DAG ≌△BCH (ASA ),∴AG =CH ,又∵AG ∥CH ,∴四边形AGCH 是平行四边形,∴AH ∥CG ,∵AE =CF ,∴AE ﹣AG =CF ﹣CH ,即EG=FH,∴四边形EGFH是平行四边形,∴EH∥GF,又∵AH∥CG,∴四边形MGNH是平行四边形,∴图中所有的平行四边形(平行四边形ABCD除外)为平行四边形AECF、平行四边形AGCH、平行四边形EGFH、平行四边形MGNH.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及平行线的性质等知识;熟练掌握平行四边形的判定与性质和全等三角形的判定与性质是解题的关键.22.如图,平行四边形ABCD中,E、F是对角线BD上不同的两点,添加个条件,使得四边形AECF为平行四边形.(1)现有四个条件:①BE=DF;②AF∥CE;③AE=CF;④∠BAE=∠DCF.你添加的条件是:①BE=DF,②AF∥CE,④∠BAE=∠DCF.(填一个序号即可)(2)在(1)的基础上,求证:四边形AECF是平行四边形.【分析】(1)根据平行四边形的判定解答即可;(2)根据平行四边形的判定解答即可.【解答】解:(1)填①②④的任意一个都正确;故答案为:①BE=DF,②AF∥CE,④∠BAE=∠DCF;(2)以①BE=DF为例,∵四边形ABCD是平行四边形,。
专题训练(3) 平行四边形的性质与判定的四种运用
专题训练(三) 平行四边形的性质与判定的四种运用► 类型一 平行四边形与全等三角形1.用两个全等三角形最多能拼成________个不同的平行四边形.2.如图3-ZT -1,在平行四边形ABCD 中,分别以BC ,AD 为边作等边三角形BCM 和等边三角形AND ,MN 与AC 交于点O .求证:OM =ON .图3-ZT -13.如图3-ZT -2,△ABC 中,分别以AB ,AC 为边向三角形外作△ABD 和△ACE ,使AD =AB ,AE =AC ,∠BAD =∠CAE =90°.AH ⊥BC ,H 为垂足,点F 在HA 的延长线上,且AF =BC .求证:四边形AEFD 是平行四边形.图3-ZT -2► 类型二 平行四边形与等腰三角形4.如图3-ZT -3所示,在▱ABCD 中,AC 的垂直平分线交AD 于点E ,且△CDE 的周长为8,则▱ABCD 的周长是( )A .10B .12C .14D .16图3-ZT -35.如图3-ZT -4,在平行四边形ABCD 中,AB >AD ,按以下步骤作图:以点A 为圆心,小于AD 的长为半径画弧,与AB ,AD 分别交于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧交于点G ;作射线AG 交CD 于点H ,则下列结论中不能由条件推理得出的是( )A .AG 平分∠DAB B .AD =DHC .DH =BCD .CH =DH图3-ZT-46.如图3-ZT-5,平行四边形ABCD和平行四边形DCFE的周长相等,∠B+∠F=220°,则∠DAE的度数为________.图3-ZT-57.在▱ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,则AB的长为________.8.如图3-ZT-6所示,如果▱ABCD的一内角∠BAD的平分线交BC于点E,且AE =BE,求▱ABCD各内角的度数.图3-ZT-69.如图3-ZT-7,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.图3-ZT-7►类型三平行四边形中的中点问题10.如图3-ZT-8所示,在平行四边形ABCD中,AB=3 cm,BC=5 cm,对角线AC,BD相交于点O,则OA长的取值范围是()图3-ZT-8A.2 cm<OA<5 cmB.2 cm<OA<8 cmC.1 cm<OA<4 cmD.3 cm<OA<8 cm11.已知:如图3-ZT-9,四边形ABCD中,AC=7,BD=8,E,F,G,H分别是边AB,BC,CD,DA的中点,则四边形EFGH的周长是________.图3-ZT-912.如图3-ZT-10所示,▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=1,BC=5,则对角线BD=__________.图3-ZT-1013.如图3-ZT-11,AC,BD是四边形ABCD的对角线,E,F分别是AD,BC的中点,M,N分别是BD,CA的中点,求证:EF,MN互相平分.图3-ZT-1114.如图3-ZT-12所示,在▱ABCD中,M是BC的中点,且AM=9,BD=12,AD =10,求▱ABCD的面积.图3-ZT-12►类型四平行四边形中数学思想的运用15.整体思想如图3-ZT-13,在平行四边形ABCD中,对角线AC与BD交于点O,△AOB与△AOD的周长之和为11.4 cm,两对角线的长度之和为7 cm,则这个平行四边形的周长为________cm.图3-ZT-1316.转化思想——分散向集中转化如图3-ZT-14,等边三角形ABC的边长为7 cm,M为△ABC内任一点,MD∥AC,ME∥AB,MF∥BC,则MD+ME+MF=________.图3-ZT-1417.分类讨论思想如图3-ZT-15,直线a和b平行,直线a上有一个定点M和一个动点P,点P从点M开始以2 cm/s的速度向点A的方向运动;直线b上有两个定点E和N,EN=12 cm,动点Q以4 cm/s的速度从点E向点N的方向运动,则经过几秒后,以点P,Q,M,N为顶点的四边形是平行四边形?图3-ZT-15详解详析1.[答案] 32.证明:在平行四边形ABCD 中,AD ∥BC ,AD =BC , ∴∠OAD =∠OCB .∵在等边三角形BCM 和等边三角形AND 中, ∠NAD =∠MCB =60°,AN =AD ,BC =MC , ∴∠NAO =∠MCO ,AN =MC . 又∵∠AON =∠COM , ∴△AON ≌△COM ,∴OM =ON .3.证明:∵∠BAD =90°,点F 在HA 的延长线上, ∴∠DAF +∠BAH =90°.∵AH ⊥BC ,∴∠ABC +∠BAH =90°, ∴∠DAF =∠ABC .又∵AD =BA ,AF =BC , ∴△DAF ≌△ABC (SAS), ∴DF =AC ,∠ADF =∠BAC . ∵AE =AC ,∴AE =DF .∵∠DAE +∠BAC =180°, ∴∠DAE +∠ADF =180°, ∴AE ∥DF ,∴四边形AEFD 是平行四边形. 4.[答案] D5.[解析] D 根据作图可知,AG 平分∠DAB ,故A 正确;再由平行线的性质知∠BAH =∠DHA ,故∠DAH =∠DHA ,所以AD =DH ,再由AD =BC ,得DH =BC .所以应选D.6.[答案] 20° 7.[答案] 3或5[解析] 易知BE =AB =DC =FC .(1)如图①,当AE ,DF 在▱ABCD 内部没有交点时,AB =12×(AD -EF )=3;(2)如图②,当AE ,DF 在▱ABCD 内部相交时,AB =12×(AD +EF )=5.8.解:∵四边形ABCD 是平行四边形, ∴∠BAD =∠C ,∠B =∠D ,AD ∥BC , ∴∠BAD +∠B =180°,∠DAE =∠BEA . 又∵AE 平分∠BAD ,∴∠BAE =∠DAE , ∴∠BAE =∠BEA ,∴AB =BE .又∵AE =BE ,∴AB =BE =AE ,∴∠B =60°, ∴∠D =60°,∠BAD =∠C =120°.[点评] 当平行四边形中有角平分线、线段垂直平分线或特殊角(30°,60°角等)时,通常可以得到等腰三角形,反之亦然.9.解:(1)证明:∵DE ∥AB ,EF ∥AC ,∴∠ABD =∠BDE ,四边形ADEF 是平行四边形,∴AF =DE .∵BD 是△ABC 的角平分线, ∴∠ABD =∠DBE ,∴∠DBE =∠BDE ,∴BE =DE ,∴BE =AF .(2)如图,过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H . ∵∠ABC =60°,BD 是∠ABC 的平分线, ∴∠ABD =∠EBD =30°, ∴DG =12BD =12×6=3.∵BE =DE ,∴BH =DH =12BD =3,∴EH =3,DE =2 3,∴四边形ADEF 的面积=DE ·DG =6 3.10.[答案] C 11.[答案] 15[解析] ∵EF 是△ABC 的中位线,∴EF 平行且等于12AC ,同理,HG 平行且等于12AC ,∴EF 平行且等于HG ,∴四边形EFGH 是平行四边形, ∴四边形EFGH 的周长=2(EF +FG )=2×(12×7+12×8)=15.12.[答案] 2 213.证明:如图,连接EM ,MF ∵FN 是△ABC 的中位线, ∴FN 平行且等于12AB ,同理,EM 平行且等于12AB ,∴FN 平行且等于EM ,∴四边形EMFN 是平行四边形, ∴EF ,MN 互相平分.14.解:如图,延长BC 至点E ,使CE =CM ,连接DE . ∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC ,∴AD ∥ME .又∵M 是BC 的中点,∴BC =2CM =2CE =2BM , ∴AD =ME =10,BE =15,∴四边形AMED 是平行四边形,∴DE =AM =9.∵BD 2+DE 2=122+92=225=152=BE 2,∴BD ⊥DE ,∴▱ABCD 的面积=2(△BDE 的面积-△DCE 的面积)=2×(12×9×12-12×9×12×13)=72.[点评] 在平行四边形的对角线互相平分这一性质中,体现出了线段中点的特点,有中点时就有可能有三角形的中线、中位线、线段垂直平分线等,需灵活处理,积累经验.15.[答案] 8.8[解析] △AOB 的周长等于AO +BO +AB ,而△AOD 的周长等于AO +DO +AD ,即两个三角形的周长之和为AB +AD +AC +BD .因为AC 与BD 的长度之和等于7 cm ,所以AB 与AD 的长度之和等于4.4 cm ,因此平行四边形的周长为8.8 cm.16.[答案] 7 cm[解析] 过点D 作DQ ∥MF ,延长FM 交AB 于点P ,易证△ADQ 和△DPM 为等边三角形, 故MD =PD ,MF =DQ =AD ,ME =BP ,所以MD +ME +MF 可转化为边AB 的长,等于7 cm. 17.解:设运动时间为t s ,则MP =2t cm ,QN =(12-4t )cm(t <3)或QN =(4t -12)cm(t >3). 当t <3时,如图①,因为MP ∥QN ,所以当MP =QN 时,四边形PQNM 为平行四边形, 即2t =12-4t ,解得t =2;当t >3时,如图②,因为MP ∥QN ,所以当MP =QN 时,四边形PNQM 为平行四边形, 即2t =4t -12,解得t =6.所以经过2 s或6 s后,以点P,Q,M,N为顶点的四边形为平行四边形.。
平行四边形专题训练题
平行四边形专题训练题.txt平行四边形专题训练题1. 题目:已知ABCD是一个平行四边形,AB = 10 cm,BC = 8 cm。
求平行四边形的周长和面积。
解答:由于ABCD是一个平行四边形,所以AB || CD,BC || AD。
平行四边形的周长等于四边的长度之和。
周长 = AB + BC + CD + AD= 10 cm + 8 cm + 10 cm + 8 cm= 36 cm平行四边形的面积可以通过底边和高来计算。
底边是AB或CD的长度,高是BC或AD的长度。
面积 = 底边 ×高= AB × BC= 10 cm × 8 cm= 80 cm²2. 题目:已知ABCD是一个平行四边形,AB = 5 cm,BC = 12 cm,DE = 3 cm,AD ⊥ BC。
求平行四边形的周长和面积。
解答:由于ABCD是一个平行四边形,所以AB || CD,BC || AD。
AD ⊥ BC,说明AD和BC垂直相交,可以得出AD和BC是高和底边。
平行四边形的周长等于四边的长度之和。
周长 = AB + BC + CD + AD= 5 cm + 12 cm + 5 cm + 12 cm= 34 cm平行四边形的面积可以通过底边和高来计算。
面积 = 底边 ×高= BC × DE= 12 cm × 3 cm= 36 cm²3. 题目:已知ABCD是一个平行四边形,AC = 20 cm,BD =16 cm,从D、E、F分别向AB、BC、CD引垂线,垂足分别为G、H、I。
若DE = 6 cm,FG = 4 cm,IH = 8 cm,求平行四边形的周长和面积。
解答:由于ABCD是一个平行四边形,所以AB || CD,BC || AD。
从D、E、F向AB、BC、CD引垂线,在相应的垂足上形成三个三角形,它们的边长和面积可以通过给定的信息计算。
DE = 6 cm,FG = 4 cm,IH = 8 cm。
专题训练 平行四边形动点经典题型
-3,0),(0,的坐标分别是(6),动点P如图,在平面直角坐标系中,点A从点,OB出发,沿轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造平行四边形PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为秒时,求此时四边形ADEC的周长是多少如图,在平面直角坐标系中,OABC的顶点A,C的坐标分别为(10,0),(2,4),点D是OA的中点,点P在BC上由点B向点C运动,速度为2cm/s是平行四PCDA运动多少秒时,四边形P)当点1(.P的坐标;边形并求此时点(2)当△ODP是等腰三角形时,求点P的坐标.如下图,梯形ABCD中,AD∥BC,AD=24cm,AB=8cm,BC=26cm,∠B=90°,动点P从A开始沿AD边向D以1cm/s的速度运动,动点Q从点C开始沿CB以3cm/s的速度向点B运动、P、Q同时出发,当其中一点到达顶点时,另一点也随之停止运动,设运动时间为t(s),(1)问t为何值时,四边形PQCD是平行四边形?可能是菱形吗为什么PQCD)在某一时刻,四边形2(ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E已知,矩形、F,垂足为O。
(1)如图1,连接AF、CE,求四边形AECF为菱形,AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值。
②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点满足的数量关系式。
平行四边形专题训练
平行四边形专题训练11、不能判定一个四边形是平行四边形的条件是【 】A . 两组对边分别平行B . 一组对边平行,另一组对边相等C . 一组对边平行且相等D . 两组对边分别相等2、如图,四边形ABCD 是平行四边形,点E 在边BC 上,如果点F 是边AD 上的点,那么△CDF 与△ABE 不一定全等的条件是【 】A .DF =BEB .AF =CEC .CF =AED .CF ∥AE3、如图,在平行四边形ABCD 中,AB =3cm ,BC =5cm ,对角线AC ,BD 相交于点O ,则OA 的取值范围是【 】A .2cm <OA <5cmB .2cm <OA <8cmC .1cm <OA <4cmD .3cm <OA <8cm4、如图,平行四边形ABCD 的对角线相交于点O ,且AB ≠AD ,过O 作OE ⊥BD 交BC 于点E .若△CDE 的周长为10,则平行四边形ABCD 的周长为 .5、如图1, D,E,F 分别在△ABC 的三边BC,AC,AB 上,且DE ∥AB, DF ∥AC, EF ∥BC,则图中共有_______________个平行四边形,分别是_______________________________________.6、如图2,在ABCD 中,AD =8,点E 、F 分别是BD 、CD 的中点,则EF = .图(1) 图(2) (3) 图(4)7、如图3,平行四边形ABCD 中,E,F 是对角线AC 上的两点,连结BE,BF,DF,DE,添加一个条件使四边形BEDF 是平行四边形,则添加的条件是______________(添加一个即可). 8、如图4,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE //AD ,若AC =2,CE =4,则四边形ACEB 的周长为 。
9、如图,四边形ABCD 中,AD ∥BC ,AE ⊥AD 交BD 于点E ,CF ⊥BC 交BD 于点F ,且AE =CF .求证:四边形ABCD 是平行四边形.FED CBAGFEDCBA【课堂练习1】1、如图,已知四边形ABCD是平行四边形,若点E、F分别在边BC、AD上,连接AE、CF,请再从下列三个备选条件中,选择添加一个恰当的条件.使四边形AECF是平行四边形,并予以证明,备选条件:AE=CF,BE=DF,∠AEB=∠CFD,我选择添加的条件是:(注意:请根据所选择的条件在答题卡相应试题的图中,画出符合要求的示意图,并加以证明)2变式训练:已知如图:在ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC 与EF是否互相平分?说明理由.强化训练:1、在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个2、在下面给出的条件中,能判定四边形ABCD是平行四边形的是()A.AB=BC,AD=CDB.AB∥CD,AD=BCC.AB∥CD,∠B=∠DD.∠A=∠B,∠C=∠D3、下面给出的条件中,能判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边平行,一组对角互补C.一组对角相等,一组邻角互补D.一组对角相等,另一组对角互补4、角形三条中位线的长分别为3、4、5,则此三角形的面积为().(A)12 (B)24 (C)36 (D)485、在平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可以是 ( ) (A )1:2:3:4 (B ) 3:4:4:3 (C ) 3:3:4:4 (D ) 3:4:3:46、 能够判定一个四边形是平行四边形的条件是 ( ) A. 一组对角相等 B. 两条对角线互相平分 C. 两条对角线互相垂直 D. 一对邻角的和为180°7、四边形ABCD 中,AD ∥BC,要判定ABCD 是平行四边形,那么还需满足 ( ) A. ∠A+∠C=180° B. ∠B+∠D=180° C. ∠A+∠B=180° D. ∠A+∠D=180°8、如图,□ABCD 中,对角线AC ,BD 相交于点O ,将△AOD 平移至△BEC 的位置,则图中与OA 相等的其它线段有( ).(A)1条 (B)2条 (C) 3条 (D) 4条9、如图,AD ∥BC ,AE ∥CD ,BD 平分∠ABC ,求证:AB=CE .10、如图,点G 、E 、F 分别在平行四边形ABCD 的边AD 、DC 和BC 上,DG =DC ,CE =CF ,点P 是射线GC 上一点,连接FP ,EP . 求证:FP =EP .11、(1) 如图,平行四边形ABCD 中,AB=5cm, BC=3cm, ∠D 与∠C 的平分线分别交AB 于F,E, 求AE, EF, BF 的长?(2) 上题中改变BC 的长度,其他条件保持不变,能否使点E,F 重合,点E,F 重合时BC 长多少?求AE,BE 的长.FEDCBA平行四边形专题训练2(1)如图(1)所示,矩形ABCD的两条对角线相交于点O,若∠AOD=60°,OB=•4,•则DC=_______.(2) 若矩形的对角线长为4cm,一条边长为2cm,则此矩形的面积为()A.83cm2B.43cm2C.23cm2D.8cm2图(1)图(2)图(3)【课堂练习1】1、矩形具有而一般平行四边形不具有的性质是()A.对角线相等 B.对角相等 C.对边相等 D.对角线互相平分2、如图(2)所示,在矩形ABCD中,∠DBC=29°,将矩形沿直线BD折叠,顶点C落在点E处则∠ABE的度数是()A.29° B.32° C.22° D.61°3、矩形ABCD的周长为56,对角线AC,BD交于点O,△ABO与△BCO的周长差为4,•则AB的长是()A.12 B.22 C.16 D.264、如图(3)所示,在矩形ABCD中,E是BC的中点,AE=AD=2,则AC的长是()A.5 B.4 C.23 D.75、矩形的三个顶点坐标分别是(-2,-3),(1,-3),(-2,-4),那么第四个顶点坐标是() A.(1,-4) B.(-8,-4) C.(1,-3) D.(3,-4)例2:如图所示,在矩形ABCD中,对角线AC,BD交于点O,过顶点C作CE∥BD,交A•孤延长线于点E,求证:AC=CE.【课堂练习2】已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.变式训练:如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明.(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH 的值,并说明理由.三、强化训练:1、已知四边形ABCD是平行四边形,请你添上一个条件:________,使得平行四边形ABCD是矩形.2、如图1所示,平行四边形ABCD的对角线AC和BD相交于点O,△AOD是正三角形,AD=4,则这个平行四边形的面积是________.3、在Rt△ABC中,∠ACB=90°,CD是边AB上的中线,若AB=4,则CD=_______.4、如图2所示,在Rt△ABC中,∠ACB=90°,CD是边AB上的中线,若∠ADC=70°,则∠ACD=_______.(1) (2) (3)5、如图3所示,在△ABC中,AD⊥BC于点D,点E,F分别是AB,AC的中点,若AB=8,BC=7,AC=5,则△DEF的周长是________.6、若顺次连结一个四边形的四边中点所组成的四边形是矩形,则原四边形一定是() A.一般平行四边形 B.对角线互相垂直的四边形 C.对角线相等的四边形 D.矩形7、平行四边形的四个内角角平分线相交所构成的四边形一定是()A .一般平行四边形B .一般四边形C .对角线垂直的四边形D .矩形 8、如图4所示,在四边形ABCD 中,∠BDC=90°,AB ⊥BC 于B ,E 是BC•的中点,•连结AE ,DE ,则AE 与DE 的大小关系是( )A .AE=DEB .AE>DEC .AE<DED .不能确定9、如图5所示,将一张矩形纸片ABCD 的角C 沿着GF 折叠(F 在BC 边上,不与B ,C 重合)使得C 点落在矩形ABCD 内部的E 处, FH 平分∠BFE,则∠GFH 的度数a 满足( ) A .90°<α<180° B .α=90° C .0°<α<90° D .α随着折痕位置的变化而变化10、如图所示,在平行四边形ABCD 中,M 是BC MAD=∠MDA ,求证:四边形ABCD 是矩形.11、 如图所示,在矩形ABCD 中,F 是BC 边上一点,AF 的延长线交DC 的延长线于G ,DE ⊥AG 于E ,且DE=DC ,请不添辅助线在图中找出一对全等三角形,并证明之.12、如图所示,在矩形ABCD 中,AB=5cm ,BC=4cm ,动点P 以1cm/s 的速度从A 点出发,•经点D ,C 到点B ,设△ABP 的面积为s (cm 2),点P 运动的时间为t (s ). (1)求当点P 在线段AD 上时,s 与t 之间的函数关系式; (2)求当点P 在线段BC 上时,s 与t 之间的函数关系式;(3)在同一坐标系中画出点P 在整个运动过程中s 与t 之间函数关系的图像.)(4)(5)平行四边形专题训练3(1)菱形的周长为12 cm,相邻两角之比为5∶1,那么菱形对边间的距离是()A.6 cmB.1.5 cmC.3 cmD.0.75 cm(2)如图(1),在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,则∠EAF等于()A.75°B.60°C.45°D.30°图(1)图(2)(3)如图2,已知菱形ABCD中,AE⊥BC于E,若S菱形ABCD=24,且AE=6,则菱形的边长为()A.12B.8C.4D.2【课堂练习1】1、菱形的边长是2 cm,一条对角线的长是23cm,则另一条对角线的长是_____________。
2020-2021学年人教版八年级数学下册第18章 平行四边形 经典常考题专题训练(一)
人教版八年级数学下册第18章平行四边形经典常考题专题训练(一)1.如图,在▱ABCD中,AB=12cm,BC=6cm,∠A=60°,点P沿AB边从点A开始以2cm/秒的速度向点B移动,同时点Q沿DA边从点D开始以1cm/秒的速度向点A移动,用t表示移动的时间(0≤t≤6).(1)当t为何值时,△PAQ是等边三角形?(2)当t为何值时,△PAQ为直角三角形?2.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且直线AB与DC之间的距离为4,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,求AP的长度.3.如图,已知▱ABCD的对角线AC、BD交于点O,且∠1=∠2.(1)求证:▱ABCD是菱形.(2)F为AD上一点,连接BF交AC于E,且AE=AF,若AF=3,AB=5,求AO 的长.4.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:∠DAC=∠DCA;(2)求证:四边形ABCD是菱形;(3)若AB=,BD=2,求OE的长.5.如图,在正方形ABCD中,点E.F分别在BC和CD上,BE=DF,连接EF.(1)求证:△AEF为等腰三角形.(2)过点E作EM∥AF,过点F作FM∥AE,判断四边形AEMF是什么特殊四边形,并证明你的结论.6.如图,在四边形ABCD中,AC、BD相交于点O,AD∥BC,∠ADC=∠ABC,OA =OB.(1)如图1,求证:四边形ABCD为矩形;(2)如图2,P是AD边上任意一点,PE⊥BD,PF⊥AC,E、F分别是垂足,若AD =12,AB=5,求PE+PF的值.7.如图,在平行四边形BPCD中,点O为BD中点,连接CO并延长交PB延长线于点A,连接AD、BC,若AC=CP,(1)求证:四边形ABCD为矩形;(2)在BA的延长线上取一点E,连接OE交AD于点F,若AB=9,BC=12,AE =3,则AF的长为.8.如图,四边形DEBF是平行四边形,A、C在直线EF上且AE=CF.(1)求证:四边形ABCD是平行四边形;(2)在不添加任何辅助线的条件下,请直接写出图中所有与△DFC面积相等的三角形.9.如图,菱形ABCD中,AC与BD交于点O,DE∥AC,DE=AC.(1)求证:四边形OCED是矩形;(2)连接AE,交OD于点F,连接CF,若CF=CE=1,求AC长.10.如图,AC为矩形ABCD的对角线,点E,F分别是线段BC,AD上的点,连接AE,CF,若∠BAE=∠DCF:(1)求证:四边形AECF是平行四边形;(2)若AC平分∠DAE,AB=4,BC=8,求△AEC的周长.11.已知:如图,在▱ABCD中,∠BCD的角平分线交AB于E,交DA的延长线于F.(1)求证:DF=DC;(2)若E是FC的中点,已知BC=2,DE=3,求FC的长.12.如图,等边△ABC中,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求∠F的度数.13.已知在▱ABCD中,动点P在AD边上,以每秒0.5cm的速度从点A向点D运动.(1)如图1,在运动过程中,若CP平分∠BCD,且满足CD=CP,求∠B的度数.(2)在(1)的条件下,若AB=4cm,求△PCD的面积.(3)如图2,另一动点Q在BC边上,以每秒2cm的速度从点C出发,在BC间往返运动,P,Q两点同时出发,当点P到达点D时停止运动(同时Q点也停止),若AD =6cm,求当运动时间为多少秒时,以P,D,Q,B四点组成的四边形是平行四边形.14.如图,在平行四边形ABCD中,F,G分别是CD,AB上的点,且AG=CF,连接FG,BD交于点O.(1)求证:OB=OD;(2)若∠A=45°,DB⊥BC,当CD=2时,求OC的长.15.如图,平行四边形ABCD中,AB∥CD,AD∥BC,点G是线段BC的中点,点E 是线段AD上的一点,点F是线段AB延长线上一点,连接DF,且∠ABE=∠CDG=∠FDG.(1)∠A=45°,∠ADF=75°,CD=3+,求线段BC的长;(2)求证:AB=BF+DF.参考答案1.解:(1)AP=2t(cm),AQ=6﹣t(cm),∵当△PAQ是等边三角形时,AQ=AP,即2t=6﹣t,解得t=2.∴当t=2时,△PAQ是等边三角形;(2)∵△PAQ是直角三角形,∴∠AQP=90°,当∠AQP=90°时,有∠APQ=30°,,即AP=2AQ,∴2t=2(6﹣t),解得t=3(秒),当∠APQ=90°时,有∠AQP=30°,,即AQ=2AP∴6﹣t=2•2t,解得(秒).∴当t=3或时,△PAQ是直角三角形.2.解:在平行四边形ABCD中,AB=CD,∵BD=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=AM=8.3.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠ACB,∵∠1=∠2,∴∠1=∠ACB,∴AB=CB,∴▱ABCD是菱形.(2)解:由(1)得:▱ABCD是菱形,∴BC=AB=5,AO=CO,∵AD∥BC,∴∠AFE=∠CBE,∵AE=AF=3,∴∠AFE=∠AEF,又∵∠AEF=∠CEB,∴∠CBE=∠CEB,∴CE=BC=5,∴AC=AE+CE=3+5=8,∴AO=AC=4.4.(1)证明:∵AB∥DC,∴∠OAB=∠DCA,∵AC平分∠BAD,∴∠OAB=∠DAC,∴∠DAC=∠DCA;(2)证明:∵∠DAC=∠DCA,AB=AD,∵AB∥DC,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(3)解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,由勾股定理得:OA===2,∴OE=OA=2.5.解:(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌△RtADF(SAS),∴AE=AF,∴三角形AEF是等腰三角形;(2)四边形AEMF是菱形.理由如下:∵EM∥AF,FM∥AE,∴四边形AEMF是平行四边形,由(1)知AE=AF,∴平行四边形AEMF是菱形.6.证明:(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形;(2)如图,连接OP,∵AD=12,AB=5,∴BD===13,∴BO=OD=AO=CO=,∵S△AOD=S矩形ABCD=×12×5=15,∴S△AOP+S△POD=15,∴××FP+××EP=15,∴PE+PF=.7.(1)证明:∵四边形BPCD是平行四边形,∴CP=BD,BP∥CD,BP=CD,∴∠OAB=∠OCD,AB∥CD,∵点O为BD中点,∴OB=OD,在△AOB和△COD中,,∴△AOB≌△COD(AAS),∴AB=CD,∵AB∥CD,∴四边形ABCD是平行四边形,又∵AC=CP,∴AC=BD,∴四边形ABCD为矩形;(2)解:由(1)得:四边形ABCD为矩形,∴AD=BC=12,OA=OC=AC,OB=OD=BD,AC=BD,∠ABC=90°,∴OA=OB,AC===15,∴OA=,作OG⊥AB于G,如图所示:则AG=BG=,∴OG是△ABD的中位线,∴GO∥AD,GO=AD=6,∴GE=AE+AG=3+=,∴=,解得:AF=,故答案为:.8.(1)证明:连接BD交AC于O,如图1所示:∵四边形DEBF是平行四边形,∴OE=OF,OB=OD,∵AE=CF,∴OA=OC,∴四边形ABCD是平行四边形;(2)解:图中所有与△DFC面积相等的三角形为△ADE、△BEA,△CBF,理由如下:∵AE=CF,∴△ADE的面积=△DFC的面积,△ABE的面积=△CBF的面积,由(1)得:四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴△ADE的面积=△CBF的面积,∴△ADE的面积=△DFC的面积=△ABE的面积=△CBF的面积.9.(1)证明:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC=AC,∴∠DOC=90°,∵DE∥AC,DE=AC,∴OC=DE,∴四边形OCED为平行四边形,又∵∠DOC=90°,∴四边形OCED是矩形;(2)解:由(1)得:四边形OCED是矩形,∴OD∥CE,∠OCE=90°,∵O是AC中点,∴F为AE中点,∴CF=AF=EF,∵CF=CE=1,∴CF=1,∴AE=2,∴AC===.10.解:(1)在矩形ABCD中,AF∥CE,AB∥CD,∴∠BAC=∠DCA,∵∠BAE=∠DCF,∴∠CAE=∠ACF,∴AE∥CF,∴四边形AECF是平行四边形.(2)∵AC平分∠DAE,∴∠DAC=∠EAC,∵AF∥CE,∴∠FAC=∠ACE,∴∠CAE=∠ECA,∴AE=CE,设AE=CE=x,∴BE=8﹣x,在Rt△ABE中,∴由勾股定理可知:x2=(8﹣x)2+42,解得:x=5,在Rt△ABC,由勾股定理可知:AC2=42+82,∴△ABC的周长为:5+5+4=10+4.11.解:(1)∵CF平分∠BCD,∴∠BCE=∠DCE,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BCE=∠F,∴∠F=∠DCE,∴DF=DC;(2)∵AD∥BC,∴∠F=∠BCE,∠B=∠FAE,∵E是FC的中点,∴CE=FE,在△AEF和△BEC中,,∴△AEF≌△BEC(AAS),∴AF=BC=2,又∵AD=BC=2,∴DF=4,∵DF=DC,E是CF的中点,∴DE⊥CF,∴Rt△DEF中,EF===,∴FC=2EF=2.12.(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∵CF=BC,∵DE∥CF,∴四边形DCFE是平行四边形,(2)解:由(1)得:四边形DCFE是平行四边形,∴CD∥FE,∴∠F=∠BCD,∵△ABC是等边三角形,D是AB的中点,∴∠ACB=60°,CD平分∠ACB,∴∠BCD=30°,∴∠F=30°.13.解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DPC=∠PCB,∵CP平分∠BCD,∴∠PCD=∠PCB,∴∠DPC=∠DCP,∴DP=CD,∵CD=CP,∴CP=CD=DP,∴△PDC是等边三角形,∴∠B=60°;(2)∵四边形ABCD是平行四边形,∴AB=CD=4,∵△PDC是等边三角形,∴△PCD三边上的高相等,且等于sin60°×4=×4=2,∴S△PCD=×2×4=4(cm2);(3)∵四边形ABCD是平行四边形,∴AD∥BC,∴PD∥BC,若以P,D,Q,B四点组成的四边形是平行四边形,则PD=BQ,设运动时间为t秒,①当0<t≤3时,PD=6﹣0.5t,BQ=6﹣2t,∴6﹣0.5t=6﹣2t,解得:t=0(不合题意舍去);②当3<t≤6时,PD=6﹣0.5t,BQ=2t﹣6,∴6﹣0.5t=2t﹣6,解得:t=4.8;③当6<t≤9时,PD=6﹣0.5t,BQ=18﹣2t,∴6﹣0.5t=18﹣2t,解得:t=8;④当9<t≤12时,PD=6﹣0.5t,BQ=2t﹣18,∴6﹣0.5t=2t﹣18,解得:t=9.6;综上所述,当运动时间为4.8秒或8秒或9.6秒时,以P,D,Q,B四点组成的四边形是平行四边形.14.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ODF=∠OBG,∵AG=CF,∴BG=DF,在△DOF和△BOG中,,∴△DOF≌△BOG(AAS),∴OB=OD;(2)∵四边形ABCD是平行四边形,∴∠BCD=∠A=45°,∵BD⊥BC,∴∠DBC=90°,∴∠BDC=∠BCD=45°,∴DB=CB,又∵CD=2,∴CB=DB=2,∴OB=1,∴Rt△BCO中,OC===.15.(1)解:∵四边形ABCD是平行四边形,∴∠C=∠A=45°,AB∥CD,∴∠ADC=180°﹣∠A=135°,∵∠ADF=75°,∴∠CDF=135°﹣75°=60°,∵∠CDG=∠FDG,∴∠CDG=∠FDG=30°,作GH⊥CD于H,如图1所示:则DH=GH,CH=GH,CG=GH,∵CD=DH+CH,∴GH+GH=3+,解得:GH=,∴CG=GH=,∵点G是线段BC的中点,∴BC=2CG=2;(2)证明:延长DG交AF的延长线于M,如图2所示:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠CDG=∠M,∵CDG=∠FDG,∴∠M=∠FDG,∴DF=MF,∵点G是线段BC的中点,∴BG=CG,在△CDG和△BMG中,,∴△CDG≌△BMG(AAS),∴CD=BM,∵AB=CD,BM=BF+MF,∴AB=BF+DF.。
初中数学平行四边形作图专题题专项训练含答案
初中数学平行四边形作图专题题专项训练含答案姓名:__________ 班级:__________考号:__________一、作图题(共10题)1、如图所示,在形状为平行四边形的一块地ABCD中,有一条小折路EFG.•现在想把它改为经过点E的直路,要求小路两侧土地的面积都不变,•请在图中画出改动后的小路.2、如图,有两个边长为2的正方形,将其中一个正方形沿对角线剪开成两个全等的等腰直角三角形,用这三个图片分别在网格备用图的基础上(只要再补出两个等腰直角三角形即可),分别拼出一个三角形、一个四边形、一个五边形、一个六边形.3、图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)、图(c)中,分别画出符合要求(1),(2),(3)的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.(1)画一个底边为4,面积为8的等腰三角形;(2)画一个面积为10的等腰直角三角形;(3)画一个面积为12的平行四边形.4、如图,AE为菱形ABCD的高,请仅用无刻度的直尺按要求画图。
(不写画法,保留作图痕迹)。
(1)在图1中,过点C画出AB边上的高;(2)在图2中,过点C画出AD边上的高。
5、如图,公园里有一块平行四边形的草坪,草坪里有一个圆形花坛,有关部门计划在草坪上修一条小路,这条小路要把草坪和花坛的面积同时平分,请在图中画出这条小路。
(小路用AB表示)6、我们把能够平分一个图形面积的直线叫“好线”,如图1.图1 图2 图3问题情境:如图2,M是圆O内的一定点,请在图2中作出两条“好线”(要求其中一条“好线”必须过点M),使它们将圆O的面积四等分.小明的思路是:如图3,过点M、O画一条“好线”,过O作OM的垂线,即为另一条“好线”.所以这两条“好线”将的圆O的面积四等分.问题迁移:(1)请在图4中作出两条“好线”,使它们将□ABCD的面积四等分;(2)如图5,M 是正方形内一定点,请在图5中作出两条“好线”(要求其中一条“好线”必须过点),使它们将正方形的面积四等分;(3)如图6,在四边形中,,,点是的中点,点是边一点,请作出“好线”将四边形的面积分成相等的两部分.图6图4图57、如图,多边形ABCDEF中,AB∥CD∥EF,AF∥DE∥BC,请用两种不同的方法用一条直线将该多边形分成面积相等的两块.8、用两种不同方法把平行四边形面积二等分(在所给的图形中画出你的设计方案,画图工具不限).9、如图1,有一张菱形纸片ABCD ,,。
2023年中考九年级数学高频考点 专题训练--平行四边形的判定
2023年中考九年级数学高频考点专题训练--平行四边形的判定一、综合题1.如图,在□ ABCD中,点E、F在对角线BD上,且BE=DF.(1)求证:AE=CF;(2)求证:四边形AECF是平行四边形.2.如图,E、F是平行四边形ABCD对角线AC上两点,且AE=CF.(1)求证:四边形BFDE是平行四边形.(2)如果把条件AE=CF改为BE⊥AC,DF⊥AC,试问四边形BFDE是平行四边形吗?为什么?(3)如果把条件A E=CF改为BE=DF,试问四边形BFDE还是平行四边形吗?为什么?3.如图,平行四边形ABCD 中,AB=8 cm,BC=12 cm,⊥B=60°,G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF 是平行四边形;(2)①AE=cm 时,四边形CEDF 是矩形,请写出判定矩形的依据(一条即可);②AE=cm 时,四边形CEDF 是菱形,请写出判定菱形的依据(一条即可).4.如图,四边形ABCD中,AD⊥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.(1)求证:四边形ABCD是平行四边形.(2)若⊥BAE=⊥BDC,AE=3,BD=9,AB=4,求四边形ABCD的周长.5.如图,直线y=−2x+10与x轴交于点A,点B是该直线上一点,满足OB=OA.(1)求点B的坐标;(2)若点C是直线上另外一点,满足AB=BC,且四边形OBCD是平行四边形,试画出符合要求的大致图形,并求出点D的坐标.6.如图,在⊥ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)若⊥A=50°,则当⊥BOD= °时,四边形BECD是矩形.7.如图,在⊥AFC中,⊥FAC=45°,FE⊥AC于点E,在EF上取一点B,连接AB、BC,使得AB=FC,过点A作AD⊥AF,且AD=BC,连接CD。
初中数学四边形专题训练50题含答案
中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.平行四边形不一定具有的性质是( )A .对角线互相垂直B .对边平行且相等C .对角线互相平分D .对角相等 2.如图,在MON ∠的两边.上分别截取,OA OB ,使OA OB =;分别以点A ,B 为圆心,OA 长为半径作弧,两弧交于点C ;连接,,,AC BC AB OC .若2AB =,四边形OACB 的面积为4.则OC 的长为( )A .2B .3C .4D .5 3.在ABCD 中,下列结论错误的是( )A .//AB CD B .B D ∠=∠C .AC BD =D .180C D ∠+∠=︒ 4.如图,在平行四边形ABCD 中,E 是AB 延长线上的一点,若∠A=60°,则∠1的度数为( )A .120°B .60°C .45°D .30° 5.若平行四边形中两个内角的度数比为1∠2,则其中较大的内角是( ) A .100° B .60° C .120° D .90° 6.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,位似比为2:3,点B 、E 在第一象限.若点A 的坐标为()1,0,则点E 的坐标是( )A .0)B .33,22⎛⎫ ⎪⎝⎭C .D .(2,2) 7.四边形ABCD 中,对角线AC ,BD 交于点O ,AD//BC ,为了判定四边形是平行四边形,还需一个条件,其中错误..的是( ) A .AB//CD B .∠A=∠C C .AB=CD D .AO=CO 8.一个多边形的内角和等于外角和,则这个多边形的边数为( )A .10B .8C .6D .49.顺次连接等腰梯形各边中点所围成的四边形是( )A .平行四边形B .矩形C .菱形D .正方形 10.已知平行四边形ABCD 的周长为32,AB =4,则BC 的长为( )A .4B .12C .24D .48 11.如图,四边形ABCD 是矩形,,把矩形沿直线AC 折叠,点B 落在点E处,连结DE,则的值是( )A .B .C .8D .7:25 12.如图,在平行四边形ABCD 中,AB=4,CE 平分∠BCD 交AD 边于点E ,且AE=3,则BC 的长为( )A .4B .6C .7D .813.如图,在矩形ABCD ,对角线AC 与BD 相交于点O ,EO AC ⊥于点O ,交BC 于点E ,若ABE ∆的周长为8,3AB =,则AD 的长为 ( )A .2B .5.5C .5D .414.如图,矩形ABCD 中,4AB =,2BC =.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则BE 的长是( )A .B C .2.5 D .1.5 15.如图,在平行四边形ABCD 中,过点P 作直线EF 、GH 分别平行于AB 、BC ,那么图中共有( )平行四边形.A .4个B .5个C .8个D .9个 16.如图,已知直线PQ CD ⊥于点P ,B 是CPQ ∠内部一点,过点B 作BA PQ ⊥于点A ,BC CD ⊥于点C ,四边形PABC 是边长为8cm 的正方形,N 是AB 的中点,动点M 从点P 出发,以2cm/s 的速度,沿P A B C →→→方向运动,到达点C 停止运动,设运动时间为()s t ,当CM PN =时,t 等于( )A .2B .4C .2或4D .2或617.如图,在菱形中,,,是的中点.过点作,垂足为.将沿点到点的方向平移,得到.设、分别是、的中点,当点与点重合时,四边形的面积为A .B .C .D . 18.如图,点EF 、分别是菱形ABCD 的边AD 、DC 的中点,如果阴影部分的面积和是10,则菱形对角线AC 与BD 的乘积AC BD ⋅等于( )A .10B .32C .20D .1619.如图,在正方形1ABCB 中,AB =AB 与直线l 所夹锐角为60,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点3A ,作正方形3334A B C B ⋯,依次规律,则线段20212022A A =( )A .20192⨯⎝⎭B .20202⨯⎝⎭C .20212⨯⎝⎭D .20222⨯⎝⎭20.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,添加一个条件使平行四边形ABCD 为矩形的是( )A .AD AB = B .AB AD ⊥C .AB AC =D .CA BD ⊥二、填空题21.如图,这个图案是用形状、大小完全相同的等腰梯形密铺而成的,则这个图案中的等腰梯形的底角(指锐角)是_________度.22.如图,点E 在矩形ABCD 的对角线BD 上,EF BC ⊥于点F ,连接AF ,若5BC =,2EF =,则ABF △的面积为_________.23.已知菱形的两条对角线长分别为3和4,则菱形的面积为______.24.有一个边长为50cm 的正方形洞口,要用一个圆盖去盖住这个洞口,那么圆盖的直径至少应为_____.25.如图,Rt ABC 中,90C BC AC ∠=︒>,,以AB BC AC ,,三边为边长的三个正方形面积分别为1S ,2S ,3S .若ABC 的面积为7,140S =,则32S S -的值等于______.26.如图,将长方形ABCD沿AE折叠,已知50∠=︒,则BADCED'∠'的大小是_____27.如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为CC',则图中阴影部分的面积为__.28.用直角边分别为3和4的两个直角三角形拼成一个平行四边形(非矩形),所得的平行四边形的周长是______.29.如图,菱形ABCD中,点O为对角线AC的三等分点且AO=2OC,连接OB,OD,OB=OC=OD,已知AC=3,那么菱形的边长为_____.30.如图,将四边形ABCD沿BD、AC剪开,得到四个全等的直角三角形,已知,OA =4,OB=3,AB=5将这四个直角三角形拼为一个没有重叠和缝隙的四边形,则重新拼成的四边形的周长为_____.31.在长方形ABCD中,10AB=,将长方形ABCD折叠,折痕为EF.AD=,8(1)如图1,当A'与B重合时,EF=_______;(2)如图1,当直线EF过点D时,点A的对应点A'落在线段BC上,则线段EF的长为______.32.如图,P 是▱ABCD 内的任意一点,连接P A 、PB 、PC 、PD ,得到△P AB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论:∠S 1+S 3=S 2+S 4,∠若S 3=2S 1,则S 2=2S 4,∠若S 1+S 3=5,则ABCD 的面积为10;∠S 1+S 2=S 3+S 4.其中正确的结论的序号是____________(把所有正确结论的序号都填在横线上).33.如图, 直线l 是四边形ABCD 的对称轴,若AB CD =,有下面的结论:∠AB BC ⊥;∠AC BD ⊥;∠//AB CD ;∠AO OC =.其中正确的结论有__.34.如图1是三国时期的数学家赵爽创制的一幅“勾股圆方图”.将图2的矩形分割成四个全等三角形和一个正方形,恰好能拼成这样一个“勾股圆方图”,则该矩形与拼成的正方形的周长之比为________.35.如图,平行四边形ABCD 中,45B ∠=︒,7BC =,CD =E ,F 分别是边AB ,BC 的中点,连接CE ,DF ,取CE ,DF 的中点G ,H ,连接GH ,则GH 的长度为__________.36.如图,正方形ABCD的边长为1,AC,BD是对角线,将∠DCB绕着点D顺时针旋转45°得到∠DGH,HG交AB于点E,连接DE交AC于点F,连接FG,则下列结论:∠DE平分∠ADB;∠BE∠四边形AEGF是菱形;∠BC+FG=1.5.其中结论正确的序号是_______.37.如图,点E、F是平行四边形ABCD的边AB、DC上的点,F与DE相交于点P,BF与CE相交于点Q若S△APD=14cm2,S△BCQ=16cm2,四边形PEQF的面积为______.38.如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为_____.39.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.三、解答题40.□ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F ,四边形AFCE 是否是菱形?为什么?41.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,延长CD 到E ,使DE CD =,连接AE .(1)求证:四边形ABDE 是平行四边形;(2)连接OE ,若60ABC ∠=︒,且8AD DE ==,求OE 的长.42.如图,点E 、F 分别在ABCD 的边AB 、CD 的延长线上,且BE =DF ,连接AC 、EF 、AF 、CE ,AC 与EF 交于点O .(1)求证:AC 、EF 互相平分;(2)若EF 平分∠AEC ,判断四边形AECF 的形状并证明.43.正方形ABCD 的对角线交点为O ,连AE 交BC 于E ,交OB 于F ,2EC FO =,求证:AE 平分BAC ∠.44.如图,在三角形ABC 中,90C ∠=︒,四边形DEFC 是边长为4的正方形,且D 、E 、F 分别在边AC AB BC 、、上.把三角形ADE 绕点E 逆时针旋转一定的角度.(1)当点D 与点F 重合时,点A 的对应点G 落在边BC 上,此时四边形ACGE 的面积为___________;(2)当点D 的对应点1D 落在线段BE 上时,点A 的对应点为点1A ,在旋转过程中点A 经过的路程为1l ,点D 经过的路程为2l ,且12:3:2l l =,求线段1AD 的长. 45.如图所示,已知四边形ABCD 是平行四边形,在AB 的延长线上截取BE=AB ,BF=BD ,连接CE ,DF ,相交于点M .求证:CD=CM .46.如图,在直角梯形ABCD 中,AD ∠BC ,AD ∠CD ,M 为腰AB 上一动点,联结MC 、MD ,AD =10,BC =15,cot B 512=.(1)求线段CD 的长.(2)设线段BM 的长为x ,∠CDM 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域.47.在Rt ABC 与Rt BDE 中,90ABC DBE ∠=∠=︒,AB BC =,BD BE =.(1)如图1,若点D ,B ,C 在同一直线上,连接AD ,CE ,则AD 与CE 的关系为_________;(2)如果将图1中的BDE △绕点B 在平面内顺时针旋转到如图2的位置,那么请你判断AD 与CE 的关系,并说明理由;(3)如图3,若6AB =,2BD =,连接AE ,分别取DE ,AE ,AC 的中点M ,P ,N ,连接MP ,NP ,MN ,将BDE △绕点B 在平面内顺时针旋转一周,请直接写出旋转过程中MPN△面积的最小值和最大值.48.如图,在矩形ABCD中,AD=4,CD=3,点E为AD的中点.连接CE,将∠CDE 沿CE折叠得∠CFE,CE交BD于点G,交BA的延长线于点M,延长CF交AB于点N.(1)求DG的长;(2)求MN的长.49.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.参考答案:1.A【分析】结合平行四边形的性质即可判定.【详解】结合平行四边形的性质可知选项B、C、D均正确,但平行四边形的对角线不垂直,则A不正确.故选A.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是正确解题的关键.2.C【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】解:根据作图,AC=BC=OA,∠OA=OB,∠OA=OB=BC=AC,∠四边形OACB是菱形,∠AB=2,四边形OACB的面积为4,∠12AB•OC=12×2×OC=4,解得OC=4.故选:C.【点睛】本题主要考查菱形的性质与判定,熟练掌握菱形的性质与判定是解题的关键.3.C【分析】根据平行四边形的性质逐项判断即可.【详解】解:A、由平行四边形行两组对边分别平行可得//AB CD,故A正确;B、由平行四边形对角相等可得B D∠=∠,故B正确;C、AC、BD为平行四边形对角线,平行四边形对角线互相平分,但不一定相等,故C错误;D、由平行四边形行两组对边分别平行可得//AD BC,两直线平行同旁内角互补,可得180C D∠+∠=︒,故D正确.故选:C.【点睛】本题主要考查平行四边形的性质及其推论,熟练掌握平行四边形的性质是解题关键.4.B【详解】解:∠四边形ABCD 是平行四边形,∠AD∠BC ,∠∠1=∠A=60°.故选B .5.C【分析】据平行四边形的性质得出AB //CD ,推出∠B +∠C =180°,根据∠B :∠C =1:2,求出∠C 即可.【详解】解:∠四边形ABCD 是平行四边形∠AB //CD ,∠∠B +∠C =180°,∠∠B :∠C =1:2,∠∠C =23×180°=120°,故选:C .【点睛】本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.6.B【分析】由题意可得:2:3OA OD =,又由点A 的坐标为()1,0,即可求得OD 的长,又由正方形的性质,即可求得E 点的坐标.【详解】解:∠正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为2:3, ∠:2:3OA OD =,∠点A 的坐标为()1,0,即1OA =, ∠32OD =, ∠四边形ODEF 是正方形,∠32 DE OD==.∠E点的坐标为:33,22⎛⎫ ⎪⎝⎭.故选:B.【点睛】此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.7.C【分析】根据平行四边形的判定定理逐项判断即可.【详解】解:A.根据两组对边分别平行可判定是平行四边形,不符合题意;B.根据平行线性质可得另一对内角相等,根据两组对角分别相等可判定是平行四边形,不符合题意;C.不能判定是平行四边形,可能是等腰梯形,符合题意;D.可通过全等证对角线互相平分,能判定是平行四边形,不符合题意;故选:C.【点睛】本题考查了平行四边形的判定,解题关键是熟知平行四边形的判定定理,准确进行判断.8.D【分析】设这个多边形的边数为n,根据内角和等于外角和列方程解答即可.【详解】解:设这个多边形的边数为n,则()2180360n-⨯︒=︒,解得4n=,故选:D.【点睛】此题考查了多边形内角和与外角和的计算,熟练掌握多边形内角和公式及外角和是解题的关键.9.C【分析】由E、F、G、H分别为AB、BC、CD、DA的中点,得出EF,HG,FG,EH是中位线,再得出四条边相等,根据“四条边都相等的四边形是菱形”进行证明.【详解】解:如图所示,因为E、F、G、H分别为AB、BC、CD、DA的中点,连接AC、BD,因为E、F分别是AB、BC的中点,所以EF=12AC ,且EF∠AC同理可得HG=12AC ,且HG∠AC , FG=12BD ,且FG∠BD , EH=12BD ,且EH∠BD , ∠EF∠HG ,HE ∠FG ,∠四边形EFGH 是平行四边形,又因为等腰梯形的对角线相等,即AC=BD ,因此有EF=FG=GH=HE ,所以连接等腰梯形各中点所得四边形为菱形.故选:C【点睛】此题考查三角形中位线的性质,解题的关键是掌握三角形的中位线定理及菱形的判定.10.B【详解】由题意得:2()32,4,12AB BC AB BC +===得: .故选B.11.D【详解】试题分析:从D,E 处向AC 作高DF,EH .设AB=4k,AD=3k,则AC=5k .由∠AEC的面积=4k×3k=5k×EH,得EH=95k k;根据勾股定理得CH=,∠四边形ACED是等腰梯形,∠CH=AF=95 k,所以DE=5k﹣95k×2=75k.所以DE:AC=75k:5k=7:25.故选D.考点:翻折变换.12.C【分析】由平行四边形的性质可得AD∠BC,且AD=BC,结合角平分线的性质可求得DE=DC=AB=4,则可求得AD的长,可求得答案.【详解】解:∠四边形ABCD为平行四边形,∠AB=CD=4,AD∠BC,AD=BC,∠∠DEC=∠BCE.∠CE平分∠BCD,∠∠DCE=∠BCE,∠∠DEC=∠DCE,∠DE=DC=4.∠AE=3,∠AD=BC=3+4=7.故选C.【点睛】本题主要考查平行四边形的性质,利用平行线的性质及角平分线的性质求得DE=DC是解题的关键.13.C【分析】由矩形的性质可得AO=CO,由线段垂直平分线的性质可得AE=EC,即可求解.【详解】解:∵四边形ABCD是矩形,∴AO=CO,BC=AD,∵EO⊥AC,∴AE=EC,∵△ABE的周长为8,∴AB+AE+BE=8,∴3+BC=8,∴AD =BC =5,故选:C .【点睛】本题考查了矩形的性质,线段垂直平分线的性质,掌握矩形的性质是本题的关键.14.D【分析】由矩形ABCD 中,四边形EGFH 是菱形,易证得()COF AOE AAS ≌,即可得OA OC =,然后由勾股定理求得AC 的长,继而求得OA 的长,又由AOE ABC ∽△△,利用相似三角形的对应边成比例,即可求得答案.【详解】解:如图,连接EF ,交AC 于O ,∠四边形EHFG 是菱形,EF AC OE OF ∴⊥=,,∠四边形ABCD 是矩形,90B D ∴∠=∠=︒,AB CD ∥,ACD CAB ∴∠=∠,在COF 与AOE △中,FCO OAE FOC AOE OF OE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()COF AOE AAS ∴≌,AO CO ∴=,AC AB ==12AO AC ∴==, 90CAB CAB AOE B ∠=∠∠=∠=︒,,AOE ABC ∴∽,∠AO AE AB AC=,=, 2.5AE ∴=,1.5BE ∴=,故选:D .【点睛】本题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质,准确作出辅助线是解此题的关键.15.D【详解】∠AD∠BC 、AB∠CD ,EF∠AB ,GH∠BC ,∠AB∠EF∠DC ,AD∠GH∠BC ,∠共有9个平行四边形,如平行四边形AGPE ,平行四边形BGPF ,平行四边形PEDH ,平行四边形PFCH ,平行四边形ABFE ,平行四边形EFCD ,平行四边形AGHD ,平行四边形BGHC ,平行四边形ABCD ,故选D.16.D【分析】分点M 是AP 的中点和点M 与点N 重合两种情况讨论,由全等三角形的性质和正方形的性质即可求解.【详解】解:当点M 是AP 的中点时,∵四边形P ABC 是正方形,∴PC =P A =AB ,∠CP A =∠P AN =90°,∵N 是AB 的中点,点M 是AP 的中点,∴PM =AN =4,在△CPM 和△P AN 中,PA CP CPA PAN PM AN =⎧⎪∠=∠⎨⎪=⎩∴△CPM ≌△P AN (SAS ),∴PN =CM ,∴t 42==2, 当点M 与点N 重合时,由正方形的对称性可得PN =CM ,∴t842+==6,故选:D【点睛】本题考查了正方形的性质,全等三角形的性质,利用分类讨论思想解决问题是解题的关键.17.A【详解】试题分析:作在菱形中,,,是的中点是的中点,故答案选A.考点:平行四边形的面积,三角函数.18.B【分析】设EF交BD于G,AC交BD于O,由三角形中位线的性质可得EF=12AC,EF//AC,可得EG为∠AOD的中位线,可得DG=12OD,根据菱形的性质可得BG=34BD,根据菱形的面积公式列方程即可得答案.【详解】设EF交BD于G,AC交BD于O,∠点E F 、分别是菱形ABCD 的边AD 、DC 的中点, ∠EF=12AC ,EF//AC ,∠EG 为∠AOD 的中位线, ∠OG=12OD ,∠四边形ABCD 是菱形, ∠OD=OB=12BD ,BD∠AC , ∠BG=34BD ,BG∠EF , ∠S 菱形ABCD =S 阴影+S △BEF ,阴影部分的面积和是10, ∠12AC·BD=10+12EF·BG=10+12·12AC·34BD , 解得:AC·BD=32.故选:B【点睛】本题考查菱形的性质、三角形中位线的性质及菱形的面积公式,菱形的对角线互相垂直且平分;菱形的面积等于两条对角线乘积的一半;三角形的中位线平行于第三边且等于第三边的一半;熟练掌握相关性质及公式是解题关键.19.C【分析】利用特殊角的三角函数值分别求出11A B 、22A B 、33A B ,以此类推找到规律求出20222022A B ,最后根据202120222022Rt A A B 中20212022202290A B A ∠=︒,20222021202230A A B ∠=︒,即可求解.【详解】解:∠AB 与直线l 所夹锐角为60︒,且1BAB ∠是正方形1ABCB 的一个顶角, ∠11180609030B AA ∠=︒-︒-︒=︒,又∠1190AB A ∠=︒,∠在11Rt AB A △中,11111tan A B AB A AB =⨯∠,∠正方形1ABCB 的边长AB∠11111tan A B AB A AB =⨯∠同理可求得: 222A B =⎝⎭,333A B =⎝⎭,以此类推可知: 20222021202120222022A B ===⎝⎭⎝⎭⎝⎭,∠202120222022Rt A A B 中20212022202290A B A ∠=︒,20222021202230A A B ∠=︒,∠2021202120222022202222A A A B ==⨯⎝⎭,故C 正确.故选:C . 【点睛】本题主要考查了正方形的性质、含特殊角的锐角三角函数等知识,含30°的直角三角形的性质.利用从特殊到一般寻找规律是解题的关键.20.B【分析】根据矩形的判定和平行四边形的性质分别对各个选项进行判断即可.【详解】解: A 、AD AB =时,平行四边形ABCD 是菱形,故选项A 不符合题意; B 、AB AD ⊥时,∠BAD =90°,则平行四边形ABCD 是矩形,故选项B 符合题意; C 、AB AC =时,平行四边形ABCD 不一定是矩形,故选项C 不符合题意;D 、CA BD ⊥时,平行四边形ABCD 是菱形,故选项D 不符合题意;故选:B .【点睛】此题考查的是平行四边形的性质、矩形的判定以及等腰三角形的判定等知识;熟练掌握矩形的判定和平行四边形的性质是解答此题的关键.21.60°【分析】根据图案的特点,可知密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,即可求出等腰梯形的较大内角的度数,进而即可得到答案.【详解】由图案可知:密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,∠等腰梯形的较大内角为360°÷3=120°,∠等腰梯形的两底平行,∠等腰梯形的底角(指锐角)是:180°-120°=60°.故答案是:60°.【点睛】本题主要考查等腰梯形的性质以及平面镶嵌,掌握平面镶嵌的性质是解题的关键.22.5【分析】证明∠BEF∠∠BCD,由相似三角形的性质求得BF•CD,即求得BF•AB,进而由三角形的面积公式求得结果.【详解】解:∠四边形ABCD是矩形,∠AB=CD,∠ABC=∠BCD=90°,∠EF∠BC,∠EF∠CD,∠∠BEF∠∠BDC,∠BF EF BC CD=,∠BC=5,EF=2,∠BF•CD=BC•EF=5×2=10,∠BF•AB=10,∠∠ABF的面积=12BF•AB=5,故答案为:5.【点睛】本题主要考查了矩形的性质,相似三角形的判定与性质,三角形的面积计算,关键是由相似三角形求得BF•AB的值.23.6【分析】根据菱形的面积等于对角线乘积的一半列式进行计算即可得解.【详解】解:∠菱形的两条对角线长分别为3和4,∠菱形的面积为134=6 2⨯⨯故答案为:6【点睛】本题考查了菱形的性质,菱形的面积通常有两种求法,可以用底乘以高,也可以用对角线乘积的一半求解,计算时要根据具体情况灵活运用.24.【分析】根据圆与其内切正方形的关系,易得圆盖的直径至少应为正方形的对角线的长,已知正方形边长为50cm,进而由勾股定理可得答案.【详解】解:根据题意,知圆盖的直径至少应为正方形的对角线的长;再根据勾股定理,50故答案为:.【点睛】题主要考查正多边形和圆的相关知识;注意:熟记等腰直角三角形的斜边是直角边的 倍,可以给解决此题带来方便.25.【分析】结合正方形面积公式,平方差公式,勾股定理,三角形面积公式,可知()()2223S S BC AC BC AC BC AC -=-=+-,2240BC AC +=,14BC AC ⋅=,然后运用完全平方公式()2222a b a b ab ±=+±求解即可.【详解】解:根据题意,2140S AB ==,22S BC =,23S AC = ∠()()2223S S BC AC BC AC BC AC -=-=+-在Rt ABC 中,根据勾股定理,222BC AC AB +=∠2240BC AC +=∠7Rt ABC S = ∠172BC AC ⋅⋅= ∠14BC AC ⋅=∠BC AC +==BC AC -====∠()()BC AC BC AC +-==即23S S -=故答案为:【点睛】本题考查勾股定理与三角形、正方形的面积,完全平方公式与平方差公式的灵活应用,掌握并熟练应用勾股定理和各类公式是解题的关键.26.40【详解】试题分析:先根据折叠的性质求得、的度数,即可求得、的度数,再根据长方形的性质求解即可.∠50CED ∠='︒,AE 为折痕∠∠∠BAD ∠'. 考点:折叠的性质点评:折叠的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.27.342π+【分析】根据菱形的性质以及旋转角为30°,连接CD ′和BC ',可得A 、D′、C 及A 、B 、C′分别共线,求出扇形的面积,再根据AAS 证得两个小三角形全等,求得面积,最后根据扇形ACC '的面积-两个小的三角形的面积即可.【详解】解:连接CD ′和BC '∠∠DAB =60°∠30DAC CAB ∠=∠=︒∠30C AB ∠''=︒∠A 、D′、C 及A 、B 、C′分别共线∠AC =∠扇形ACC′的面积为:2303604ππ⨯=∠AC =AC ′,AD′=AB在OCD OC B ''和中CD BC ACD AC D COD C OB '='⎧⎪∠=∠''⎨⎪∠'=∠'⎩∠()OCD OC B AAS ''≌∠OB =OD′,CO =C′O又∠60,30CBC BC O ︒∠'∠=='︒∠90BOC ∠'=︒在Rt BOC '中,())22211BO BO +-=解得13,22BO C O ='=∠S △OCB=12BO C O '⨯⨯=,∠322442C B AC OC S S Sππ''=-=-=+阴影扇形 故答案为:342π+ 【点睛】本题考查了旋转的性质,菱形的性质,扇形的面积公式,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.28.18或16【分析】首先由直角边分别为3和4,求得其斜边,然后分别从以边长为3,4,5的边为对角线拼成一个平行四边形(非矩形),去分析求解即可求得答案. 【详解】解:直角边分别为3和4,∴5=,若以边长为3的边为对角线,则所得的平行四边形的周长是:2(54)18⨯+=; 若以边长为4的边为对角线,则所得的平行四边形的周长是:2(53)16⨯+=;若以边长为5的边为对角线,则所得的平行四边形的周长是:2(34)14⨯+=(此时是矩形,舍去);综上可得:所得的平行四边形的周长是:16或18.故答案为:16或18.【点睛】此题考查了平行四边形的性质以及勾股定理.注意掌握分类讨论思想的应用是解此题的关键.29【分析】如图,连接BD交AC于E,由四边形ABCD是菱形,推出AC∠BD,AE=EC,在Rt△EOD中,利用勾股定理求出DE,在Rt△ADE中利用勾股定理求出AD即可.【详解】如图,连接BD交AC于E.∠四边形ABCD是菱形,∠AC∠BD,AE=EC,∠OA=2OC,AC=3,∠CO=DO=2EO=1,AE=32,∠EO=12,DE=EB==,∠AD=【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活应用勾股定理解决问题.30.20,22,26,28【分析】以直角三角形边长相等的边为公共边,拼接四边形,再计算周长;【详解】解:∠如图周长=20;∠如图周长=22;∠如图周长=26;∠如图周长=28;∠如图周长=22;∠四边形的周长为:20,22,26,28;故答案为:20,22,26,28.【点睛】本题考查了图形的拼接,四边形的周长;作出拼接图形是解题关键.31.10【分析】(1)根据题意结合图形直接写出答案即可解决问题;(2)根据勾股定理首先求出A C'的长度;再次利用勾股定理求出AE的长度,即可解决问题.【详解】解:(1)如图1,当A'与B重合时,EF=10;(2)如图2,设AE=x,则BE=8-x;∠四边形ABCD为矩形,∠BC=AD=10,DC=AB=8;∠B=∠C=90°;由题意得:=A D AD '=10;由勾股定理得:222A C A D DC 1006436''=-=-=∠A C 6BA 1064''==-=, ,在Rt∠A BE '中,由勾股定理得:222(8)4x x =-+解得:x=5,由勾股定理得:222EF =10+5=125∠EF =【点睛】该命题主要考查了翻折变换及其应用问题;能根据翻折变换的性质准确找出命题图形中隐含的等量关系是解题的关键.32.∠∠【分析】根据平行四边形的的性质可以得到AB =CD ,AD =BC ,设点P 到AB 、BC 、CD 、DA 的距离分别为h 1、h 2、h 3、h 4,然后利用三角形的面积公式列式整理判断即可得到答案.【详解】解:∠四边形ABCD 是平行四边形,∠AB =CD ,AD =BC ,设点P 到AB 、BC 、CD 、DA 的距离分别为h 1、h 2、h 3、h 4,hAB 、hBC 分别为平行四边形的AB 边和BC 边的高则S 1=12AB •h 1,S 2=12BC •h 2,S 3=12CD •h 3,S 4=12AD •h 4,hAB = h 1+h 3,hBC =h 2+h 4 ∠12AB •h 1+12CD •h 3=12AB •hAB ,12BC •h 2+12AD •h 4=12BC •hBC ,又∠S 平行四边形ABCD =AB •hAB =BC •hBC ,∠S 2+S 4=S 1+S 3,故∠正确;根据S 3=2S 1只能判断h 3=2h 1,不能判断h 2=2h 4,即不能得出S 2=2S 4,故∠错误; 根据S 1+S 3=S 2+S 4,S 1+S 3=5,能得出ABCD 的面积为5×2=10,故∠正确;由题意只能得到S 2+S 4=S 1+S 3无法得到S 1+S 2=S 3+S 4,故∠错误;故答案为:∠∠.【点睛】本题主要考查了平行四边形的性质,三角形的面积,用平行四边形的面积表示出相对的两个三角形的面积是解题的关键.33.∠∠∠【分析】根据轴对称的性质得到直线l 垂直平分BD ,则根据线段垂直平分线的性质得AB AD =,CD CB =,由于AB=CD ,则AB BC CD BC ===,于是可判断四边形ABCD 为菱形,然后根据菱形的性质对4个结论进行判断.【详解】证明:∠直线l 是四边形ABCD 的对称轴,∴直线l 垂直平分BD ,AB AD ∴=,CD CB =,AB CD =,AB BC CD BC ∴===,∴四边形ABCD 为菱形,AC BD ∴⊥,//AB CD ,OA OC =,所以∠∠∠正确 .故答案为∠∠∠.【点睛】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.也考查了菱形的判定与性质.34.35)【分析】设图2的矩形分割成四个全等三角形的两直角边为a 、b (a >b ),由图1与图2的两个小正方形相同,得出a 与b 的关系,再求出矩形的边长和大正方形的边长,应用周长公式求得其周长,最后便可求得其比值.【详解】解:设图2的矩形分割成四个全等三角形的两直角边为a 、b (a >b ),小正方形的边长为a-b ,矩形的长为2a+a-b=3a-b ,宽为b ,∠矩形的周长为:2(3a-b+b )=6a ,由图2知,中间小正方形的边长为b ,∠a-b=b ,∠a=2b ,∠大正方形的周长为,==∠该矩形与拼成的正方形的周长之比:=故答案为:3:5).【点睛】本题主要考查了勾股定理,矩形的性质,正方形的性质,关键是根据图形求得全等直角三角形的两直角边与矩形和大正方形的边长的关系.35.134【分析】连接DG 并延长,交于AB 延长线于点M ,过点M 作MN ∠CB ,交于CB 延长线于点N ,首先根据平行四边形的性质证明(),CGD EGM AAS ≅得出,DG GM =即可得出1,2HG FM =再利用勾股定理求出FM ,即可求得答案. 【详解】连接DG 并延长,交于AB 延长线于点M ,过点M 作MN ∠CB ,交于CB 延长线于点N ,如图,∠四边形ABCD 为平行四边形,∠CD ∠AB,AB CD ==∠CDG EMG ∠=∠又∠G 为CE 中点,∠,CG GE =在CGD △和EGM 中∠CDG EMG DGC MGE CG GE ∠=∠⎧⎪∠=∠⎨⎪=⎩∠(),CGD EGM AAS ≅∠,DG GM = ,CD EM = ∠1,2HG FM = AB EM =, ∠,AE BM =∠点E 为AB 的中点,∠1,2AE EB AB ==∠12EB BM AB ===, 又∠45,B ∠=︒∠45,MBN ∠=︒∠,BN MN =设,BN MN x ==在Rt BMN 中,∠222,BN MN BM +=∠222x x +=, 解得,5,2x = 即5,2BN MN == ∠点F 为BC 的中点, ∠17,22BF BC == ∠75622FN BF BN =+=+=, 在Rt MNF △中,∠222,NF MN MF +=∠13,2MF = ∠113,24HG FM == 故填:134. 【点睛】本题考查平行四边形的性质,全等三角形的判定与性质,三角形中位线定理,勾股定理,解题关键是熟练掌握平行四边形的性质和三角形中位线定理.36.∠∠∠【分析】根据旋转的性质可知,∠DGH ∠∠DCB ,进而得知DH =DB ,∠H =∠CBD =45°,∠DGH =∠DCB =90°,DG =DC =AD ,之后可证∠ADF ∠∠GDF ,四边形AEGF 是菱形,再根据勾股定理可知AE 的长度,进而可以一一判断选出答案.【详解】解:根据旋转的性质可知,∠DGH ∠∠DCB ,∠DH =DB ,∠H =∠CBD =45°,∠DGH =∠DCB =90°,DG =DC =AD ,在Rt ∠AED 与Rt ∠GED 中,AD =DG ,ED =ED∠Rt ∠AED ∠Rt ∠GED (HL )∠∠ADE =∠GDE ,即DE 平分∠ADB ,故∠正确;在∠ADF 和∠GDF 中,AD =DG ,∠ADF =∠GDF ,DF =DF ,∠∠ADF ∠∠GDF (SAS )∠AF =GF ,∠DAF =∠DGF =45°又∠∠ABD =45°∠FG ∠AE∠∠DAC =45°,∠∠DAC =∠H ,∠AF ∠EG∠四边形AEGF 是平行四边形,又∠AF =GF∠平行四边形AEGF 是菱形,故∠正确;∠∠H =45°,∠HAE =90°∠AE =AH∠AE =AF =HD -AD =BD -AD∠正方形ABCD 的边长为1,根据勾股定理可知BD ==即HD∠AE 1∠BE =)11=2-∠正确; ∠四边形AEGF 是菱形∠FG =AE 1∠BC +FG =1∠错误;综上答案为:∠∠∠.【点睛】本题考查的是正方形的性质,菱形的判定与性质,勾股定理和直角三角形的性质,是一道综合性较强的题,能够充分调动所学知识是解题的关键.37.30cm 2。
平行四边形 专题训练
1、如图,平行四边形的周长为cm 28,∆ABC 的周长是cm 22,则AC 的长为( )A .cm 6B .cm 12C .cm 4D .cm 82、如图,在平行四边形ABCD 中,AD=5,AB=3,AE 平分∠BAD 交BC 边于点E ,则线段BE 、EC 的长度分别为( )A .2和3B .3和2C .4和1D .1和43、如图,等腰∆ABC 中,AB=AC ,AB=8cm ,D 为BC 上任意一点,DE ∥AC ,DF ∥AB ,则平行四边形AEDF 的周长为 .4、如图,平行四边形ABCD 中,BC=2AB ,现要截取一个直角三角形,使BC 为斜边,且直角顶点E 在AD 上,则E 为AD 的 .5、如图,EF 过平行四边形ABCD 对角线的交点O ,并交AD 于E ,交BC 与F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长是 ( )A .16B .14C .12D .106、在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若AE=4,AF=6,平行四边形ABCD 的周长为40,求平行四边形ABCD 的面积。
7、如图所示,M 、N 分别为平行四边形ABCD 边BC 、CD 上的点,且MN ∥BD ,则∆AND 的面积∆ABM 的面积有怎样的数量关系?请说明理由.C 第1题 DB AC 第2题 ED B A C 第3题 B AEF C 第4题 D A B 第6题NBCA DME C 第5题 O D B A F1、(2011•资阳)如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2、(2011•徐州)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.3、(2011•泸州)如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.4、(2006•巴中)已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?5、如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;6、已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG 是平行四边形.7、(2010•滨州)如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?8、如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.9、(2007•黑龙江)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC 交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.10、(2006•大连)如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).11.(2005•贵阳)在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有_________组;(2)请在图中的三个平行四边形中画出满足小强分割方法的直线;(3)由上述实验操作过程,你发现所画的两条直线有什么规律?提示答案:1.(2011•资阳)如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).考点:平行四边形的判定与性质;全等三角形的判定与性质。
平行四边形综合题(共40道)—2023-2024学年八年级数学下册专题训练 (解析版)
z 平行四边形综合题(共40道)!一、单选题1.如图,平行四边形ABCD 的对角线AC,BD 相交于点O,∠ABC =60°,AB =2BC,E 是AB 的中点,连接CE,OE .下列结论:①∠ACD =30°;②CE 平分∠DCB ;③CD =4OE ;④S △"#$=%&S 四边形'(").其中结论正确的序号有( )A .①②B .②③④C .①②③D .①③④ 【答案】C【分析】根据AB =2BC ,点E 是AB 的中点,∠ABC =60°,可知△BCE 是等边三角形,得出∠BEC =∠BCE =60°,AE =BE =CE ,进而得出∠AEC ,根据平行四边形得性质可判断①,再根据平行四边形的性质得∠BCD =120°,即可说明CE 是否平分∠DCB ,然后说明OE 是△ABC 的中位线,可判断CD 和OE 的关系,再根据点O 是AC 的中点,得S △'#$=S △"#$,由点E 是AB 的中点,得S △'"$=S △("$=2S △"#$,进而得S △'("=4S △"#$,然后根据平行四边形的性质得S 四边形'(")=2S △'(",即可判断④,得出答案.【详解】∵AB =2BC ,点E 是AB 的中点, ∴AB =2BE .∵AB =2BC ,∠ABC =60°,∴BC =BE ,∴△BCE 是等边三角形,∴∠BEC =∠BCE =60°,AE =BE =CE ,∴∠AEC =120°,∴∠ACE =∠CAE =30°.∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD =2BC ,∴∠ACD =∠CAE =30°,∠BCD =120°,∴CE 是平分∠DCB .则①②正确;∵点E 是AB 的中点,点O 是AC 的中点,∴OE 是△ABC 的中位线,∴2OE =BC ,∴CD =4OE .则③正确;∵点O 是AC 的中点,∴S △'#$=S △"#$.∵点E 是AB 的中点,∴S △'"$=S △("$=2S △"#$,∴S △'("=4S △"#$.由平行四边形的性质得S 四边形'(")=2S △'(", ∴S 四边形'(")=8S △"#$,即S △"#$=18S 四边形'("). 则④不正确.所以正确的有①②③.故选:C.【点睛】本题主要考查了平行四边形的性质,等边三角形的判定和性质,中位线的性质,求三角形的面积等,弄清各三角形的面积之间的关系是解题的关键.2.如图,四边形ABCD 是平行四边形,点E 是边CD 上一点,且BC =EC ,CF ⊥BE 交AB 于点F ,P 是EB 延长线上一点,则下列结论:①BE 平分∠CBF ;②CF 平分∠DCB ;③BC =FB ;④PF =PC .其中正确结论的有( )A .①②③B .①②④C .②③④D .①②③④【答案】D【分析】根据等边对等角,平行四边形的性质,平行线的性质即可证明①正确;根据线段垂直平分线的判定即可证明②正确;根据平行线的性质,等角对等边即可证明③正确;根据线段垂直平分线的判定即可证明④正确;即可得出答案.【详解】解:证明:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴BE平分∠CBF,①正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴CF平分∠DCB,②正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.【点睛】本题考查了平行四边形的性质,平行线的性质,线段垂直平分线的性质,等腰三角形的性质等知识,正确应用等腰三角形的性质是解题关键.3.如图,在▱ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,∠ADO;②EG=EF;③GF平分∠AGE;④GF⊥AC,其中正确的有()下列结论:①∠OBE=%*zA .1个B .2个C .3个D .4个 【答案】D【分析】根据AD ∥BC ,AD =BC 可得OB =BC ,由E 是OC 的中点,即可判断①;由E 是OC 的中点,OB =BC ,可得∠AEB =90°,再由点E 、F 是OC 、OD 的中点,即可判断②;证明四边形BEFG 是平行四边形,可判断③,由GF ∥BE ,即可判断④;【详解】解:在▱ABCD 中,AD ∥BC ,AD =BC ,∴∠ADO =∠OBC ,∵BD =2AD ,∴OB =BC ,∵E 是OC 的中点,∴∠OBE =%*∠OBC =%*∠ADO ,故①正确;∵E 是OC 的中点,OB =BC ,∴∠AEB =90°,∵G 是AB 的中点,∴EG =%*AB , ∵点E 、F 是OC 、OD 的中点,∴EF =%*CD ,EF ∥CD ,∵AB =CD ,∴EG =EF ,故②正确;∵EF ∥CD ,AB ∥CD ,∴BG ∥GF∵BG =%*AB =%*CD =EF , ∴四边形BEFG 是平行四边形,∴GF ∥BE ,∴∠AGF=∠ABE,∠FGE=∠BEG,∵BG=GE,∴∠ABE=∠BEG,∴∠AGF=∠FGE,∴GF平分∠AGE,故③正确;∵GF∥BE,∴∠OEB=∠FHO=90°,∴GF⊥AC,故④正确。
第一章特殊的平行四边形专题强化训练2024-2025学年北师大版数学九年级上册
一、解答题(本大题共3小题,每小题8分,共24分)1.如图,把长方形纸片ABCD 沿EF 折叠后,点D 与点B 重合,点C 落在点C '的位置.(1)若160∠=︒,求23∠∠,的度数;(2)若48AB AD ==,,求四边形ABFE 的面积.2.如图,矩形ABCD 的对角线BD 的垂直平分线分别交AD 于点E ,交BC 于点F ,连接BE DF ,.(1)判断四边形BEDF 的形状,并说明理由;(2)若510AB BC ==,,求四边形BEDF 的周长.3.如图,直线经过矩形ABCD 的对角线BD 的中点O ,分别与矩形的两边相交于点E F 、.(1)求证:OE OF =;(2)若EF BD ⊥,则四边形BEDF 是形,并说明理由;(3)在(2)的条件下,若8AD =,10BD =,求BDE V 的面积.一、解答题(本大题共3小题,每小题8分,共24分)1.如图,将一张长方形纸片ABCD 沿EF 折叠,使C ,A 两点重合,点D 落在点G 处,已知48AB BC ==,.(1)求证:△AEF 是等腰三角形;(2)求线段BE 的长.2.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点C 作BD 的平行线交AB 的延长线于点E .(1)求证:AC CE =.(2)若120BOC ∠=︒,4CE =,求AB 的长.3.如图,矩形AEBO 的对角线AB OE ,交于点F ,延长AO 到点C ,使CO AO =,延长BO 到点D ,使DO BO =,连接AD DC BC ,,.(1)求证:四边形ABCD 是菱形;(2)若1016OE AC ==,,求菱形ABCD 的面积.一、解答题(本大题共3小题,每小题8分,共24分)1.如图,在矩形ABCD 中,AB BC <,将矩形沿EF 折叠,使点C 与点A 重合.(1)若20BAF ∠=︒,求GAE ∠的度数;(2)求证:△AGE ≌△ABF ;(3)若6cm AB =,8cm BC =,求BF 的长.2.如图,在矩形ABCD 中,对角线AC BD 、相交于点O .(1)若45OAB ∠=︒,求证:矩形ABCD 是正方形;(2)请添加一个异于(1)的条件,使矩形ABCD 成为正方形,不用说明理由.3.将矩形ABCD 折叠使A ,C 重合,折痕交BC 于E ,交AD 于F ,(1)求证:四边形AECF 为菱形;(2)若AB =4,BC =8,求菱形的边长.一、解答题(本大题共3小题,每小题8分,共24分)1.已知:如图,在矩形ABCD 中,对角线AC 的垂直平分线EF 分别与AC 、BC 、AD 交于点O 、E 、F ,连接AE 和CF .(1)求证:四边形AECF 为菱形;(2)若AB =3,BC =3,求菱形AECF 的边长.2.如图,在ABC V 中AB AC =,D 为BC 的中点,四边形ABDE 是平行四边形,AC ,D 相交于点O .(1)求证:四边形ADCE 是矩形;(2)若60AOE =︒∠,4AE =,求B 的长.3.如图,在平行四边形ABCD 中,过点A 作AE BC ⊥交BC 边于点E ,点F 在边AD 上,且DF BE =.(1)求证:四边形AECF 是矩形;(2)若BF 平分ABC ∠,且1DF =,3AF =,求线段BF 的长.一、解答题(本大题共3小题,每小题8分,共24分)1.已知:如图,菱形ABCD 对角线交于点O ,CE BD ∥,BE AC ∥.(1)求证:四边形OBEC 是矩形;(2)在矩形OBEC 中,4BE =,3CE =,求菱形ABCD 的面积.2.在平行四边形ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF .(1)求证:四边形BFDE 是矩形;(2)若CF =9,BF =12,DF =15,求证:AF 平分∠DAB .3.如图所示,O 是矩形ABCD 的对角线的交点,DE ∥AC ,CE ∥BD .(1)求证:OE ⊥DC .(2)若∠AOD =120°,DE =2,求矩形ABCD 的面积.一、解答题(本大题共3小题,每小题8分,共24分)1.如图,已知 ABCD 中,E ,F 分别在边BC ,AD 上,且BE =DF ,AC ,EF 相交于O ,连接AE ,CF .(1)求证:AE =CF ;(2)若∠FOC =2∠OCE ,求证:四边形AECF 是矩形.2.如图,四边形ABCD 的对角线AC 、BD 交于点O ,已知O 是AC 的中点,EO =FO ,DF ∥BE .(1)求证:△BOE ≌△DOF ;(2)若AC =2OD ,则四边形ABCD 是什么特殊四边形?请证明你的结论.3.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若10,2,AB BD ==求OE 的长.一、解答题(本大题共3小题,每小题8分,共24分)1.如图,在四边形ABCD 中,,,AB CD AD BC AB BC =∥∥,过点D 分别作DE AB ⊥于点E ,DF BC ⊥于点F .(1)求证:四边形ABCD 是菱形.(2)猜想AE 与CF 的数量关系,并说明理由.2.如图,菱形ABCD 的对角线AC ,BD 交于点O ,且BE AC ∥,AE BD ∥,连接EO ,交AB 于点F .(1)试判断四边形AEBO 的形状,并说明理由;(2)若6EB =,8AE =,求四边形AEOD 的周长.3.如图,已知在平行四边形ABCD 中,点E ,F 分别是AB ,CD 的中点,CE ,AF 与对角线BD 分别相交于点G ,H ,连接EH 、FG .(1)求证:四边形EGFH 是平行四边形;(2)如果AD BD ⊥,求证:四边形EGFH 是菱形.一、解答题(本大题共3小题,每小题8分,共24分)1.如图,菱形ABCD 的对角线相交于点O ,∠BAD =60°,菱形ABCD 的周长为24.(1)求对角线BD 的长;(2)求菱形ABCD 的面积.2.如图在四边形ABEC 中,90ACB ∠=︒,点D 是BA 边的中点,点E 恰是点D 关于BC 所在直线的对称点.(1)证明:四边形CEBD 为菱形;(2)连接DE 交BC 于点O ,若8AC =,求线段OE 的长.3.如图,在ABC V 中,90BAC D ∠=︒,为BC 的中点,E 为AD 的中点.过点A 作AF BC ∥交BE 的延长线于点F ,连接CF .(1)求证:四边形ADCF 是菱形;(2)若8AC =,菱形ADCF 的面积为40,求AB 的长.一、解答题(本大题共3小题,每小题8分,共24分)1.如图,在四边形ABCD 中,AB CD ∥,2AB BC CD ==,E 为对角线AC 的中点,F 为边BC 的中点,连接DE ,EF .(1)求证:四边形CDEF 为菱形;(2)连接DF 交EC 于G ,若6DF =,5CD =,求四边形CDEF 的面积.2.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,BE CF =,连接AF ,DE 交于点G ,求证:(1)ADF DCE ≌△△;(2)AF D E ⊥.3.如图.在△ABC 中,AB =AC ,AD 为∠BAC 的平分线,AN 为△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为E .(1)求证:四边形ADCE 是矩形.(2)若连接DE ,交AC 于点F ,试判断四边形ABDE 的形状(直接写出结果,不需要证明).(3)△ABC 再添加一个什么条件时,可使四边形ADCE 是正方形.并证明你的结论.一、解答题(本大题共3小题,每小题8分,共24分)1.如图,在Rt ABC △中,90C AD ∠=︒,是BAC ∠的平分线,过D 作DE AC DF AB ∥,∥分别交AB AC 、于点E 、F .(1)求证:四边形AEDF 为菱形;(2)若84AC DC ==,,连接EF ,求EF 的长.2.如图,在ABC V 中,BAC ∠的平分线交BC 于点D ,DE AB ∥,DF AC ∥.(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且22AD =,求四边形AFDE 的面积.3.如图,已知在ABC V 中,AB AC =,AD BC ⊥,垂足为点D ,AN 是ABC V 外角CAM ∠的平分线,CE AN ⊥,垂足为点E ,9AD =,5AE =.(1)求证:四边形ADCE 为矩形;(2)当ABC V 满足什么条件时,四边形ADCE 是一个正方形?并证明(3)在矩形ADCE 中内部有一动点P ,满足13CDP ADCE S S =矩形△,直接写出PD PC +的最小值.一、解答题(本大题共3小题,每小题8分,共24分)1.如图,在ABCD 中,AC 的垂直平分线分别交BC 、AD 于点E 、F ,垂足为O ,连接AE 、CF .(1)求证:四边形AECF 为菱形;(2)若AB =5,BC =7,则AC =时,四边形AECF 为正方形.2.如图,在ABC V 中,A B BC =,BD 平分ABC ∠,四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE .(1)求证:四边形BECD 是矩形.(2)若90BFE ∠=︒,2BE =,求矩形BECD 对角线的长.3.如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为1S ,点E 在CD 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为2S ,且12S S =.(1)求线段CE 的长;(2)若点H 为BC 边的中点,连结HD ,求证:HD HG =.一、解答题(本大题共3小题,每小题8分,共24分)1.如图,正方形ABCD 的边长为4,E 是正方形ABCD 的边DC 上的一点,过A 作AF ⊥AE ,交CB 延长线于点F .(1)求证:△ADE ≌△ABF ;(2)若DE =1,求△AFE 的面积.2.如图,在ABC V 中,BAC ∠的平分线交BC 于点D ,DE AB ∥,DF AC ∥.(1)求证:四边形AFDE 是菱形;(2)若90BAC ∠=︒,且12AD =,求四边形AFDE 的面积.3.如图1,在正方形ABCD 中,E ,F 分别是AD ,CD 上两点,BE 交AF 于点G ,且DE =CF .(1)写出BE 与AF 之间的关系,并证明你的结论;(2)如图2,若AB =2,点E 为AD 的中点,求AG 的长度;(3)在(2)的条件下,连接GD ,试证明GD 是∠EGF 的角平分线,并求出GD 的长.一、解答题(本大题共3小题,每小题8分,共24分)1.在菱形ABCD 中,过点B 作BE CD ⊥于点E ,点F 在边AB 上,CD AF DE -=,连接BD 、DF .(1)求证:四边形BFDE 是矩形;(2)若25BD =,4BE =,求BC 的长.2.在矩形ABCO 中,延长AO 到D ,使DO AO =,延长CO 到E ,使EO CO =,连接AE 、ED 、DC 、AC .(1)求证:四边形AEDC 是菱形;(2)若23CD =,120CDE ∠=︒,求菱形AEDC 的面积.3.如图,在菱形ABCD 中,对角线AC 与BD 交于点O ,过点D 作DE BC ⊥交BC 的延长线于点E ,在DA 上截取DF CE =,连接CF .(1)求证:四边形FCED 是矩形;(2)若13BC =,10AC =,求DE 的长.一、解答题(本大题共3小题,每小题8分,共24分)1.如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BD 相交于点O ,与BC 相交于点N ,连接BM 、DN .(1)求证:四边形BNDM 是菱形;(2)若45BD =,5MD =,求AB 的长.2.如图,四边形ABCD 中,AC BD 、交于点O ,AD BC ∥,OA OC =,若8AC =,65BD AB DE BC ==⊥,,于E ,解决下列问题:(1)求证:OB OD =;(2)求证:四边形ABCD 是菱形;(3)写出DE 的长.3.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若10,2,AB BD ==求OE 的长.特殊的平行四边形专题强化训练(1)参考答案一、解答题(本大题共3小题,每小题8分,共24分)1.(1)260360∠=︒∠=︒,(2)16【详解】(1)解:∵四边形ABCD 是长方形,∴AD BC ∥,∴2160∠=∠=︒,由折叠的性质可知,260BEF ∠=∠=︒,∴3180606060∠=︒-︒-︒=︒;(2)解:∵长方形纸片ABCD 沿EF 折叠,∴BE DE DEF BEF =∠=∠,,设AE x =,则8DE BE x ==-,∵222AE AB BE +=,∴()22248x x +=-,解得3x =,∴35AE BE ==,,由(1)知BEF BFE ∠=∠,∴5BE BF ==,∴ABFE S =四边形()()113541622AE BF AB +⨯=+⨯=.2.(1)菱形,理由见解析;(2)25.【详解】(1)解:四边形BEDF 是菱形理由:由作图可知:OB OD =,∵四边形ABCD 是矩形,∴AD BC ∥,∴EDO FBO ∠=∠,∵EOD FOB ∠=∠,∴()ASA EOD FOB ≌,∴ED FB =,∴四边形BEDF 是平行四边形,∵EF ⊥BD ∴四边形BEDF 是菱形;(2)解:∵四边形ABCD 是矩形,10BC =,∴90,10A AD BC ∠=︒==,由(1)可设BE ED x ==,则10AE x =-,∵5AB =,在Rt ABE △中222AB AE BE +=,即()222510x x +-=,解得: 6.25x =,∴四边形BEDF 的周长4 6.25425BE ==⨯=.3.(1)证明见解析;(2)菱,理由见解析;(3)754.【详解】(1)∵四边形ABCD 是矩形,∴AD BC ∥,∴EDO FBO ∠=∠,∵点O 是BD 的中点,∴BO DO =,在BOF 与DOE 中,FBO EDO BO DO BOF DOE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA BOF DOE ≌,∴OE OF =;(2)四边形BEDF 是菱形,理由:∵OE OF =,OB OD =,∴四边形BEDF 是平行四边形,∵EF BD ⊥,∴平行四边形BEDF 是菱形;故答案为:菱;(3)∵四边形ABCD 是矩形,∴90A ∠=︒,∵8AD =,10BD =,∴AB 6==,设BE DE x ==,则8AE x =-,∵222AB AE BE +=,∴()22268x x +-=,解得:254x =,∴25BE 4=,∵152BO BD ==,∴154OE =,∴BDE V 的面积1157510244=⨯⨯=.特殊的平行四边形专题强化训练(2)参考答案一、解答题(本大题共3小题,每小题8分,共24分)1.(1)见解析(2)3【详解】(1)证明:由折叠性质可知,AEF CEF ∠=∠,由题意可得AD BC ∥,∴∠=∠AFE CEF .∴AEF AFE ∠=∠.∴AE AF =.∴AEF △是等腰三角形.(2)解:由折叠可得AE CE =,设BE x =,则8AE C E x ==-.∵90B Ð=°,∴在Rt ABE △中,有222AB BE AE +=,即()22248x x +=-,解得3x =.∴3BE =.2.(1)见解析(2)【详解】(1)证明: 四边形ABCD 是矩形,AB CD ∴∥,AC BD =,BE CD ∴∥.BD CE ∥,∴四边形BDCE 是平行四边形,BD CE ∴=,AC CE ∴=.(2)解: 四边形ABCD 是矩形,OA OB ∴=,90ABC ∠=︒,60OAB OBA ∴∠=∠=︒.∴30ACB ∠=︒4CE = ,4AC CE ∴==,2BC ∴=.3.(1)见解析(2)菱形ABCD 的面积为96【详解】(1)证明:∵CO AO DO BO ==,,∴四边形ABCD 是平行四边形,∵四边形AEBO 是矩形,∴90AOB ∠=︒,∴BD AC ⊥,∴四边形ABCD 是菱形;(2)解:∵四边形AEBO 是矩形,∴10AB OE ==,∵四边形ABCD 是菱形,∴OB OD =,90AOB ∠=︒,1116822OA AC ==⨯=,在Rt AOB 中,由勾股定理得:6OB ===,∴22612BD OB ==⨯=,∴1116129622ABCD S AC BC =�创=菱形.特殊的平行四边形专题强化训练(3)参考答案一、解答题(本大题共3小题,每小题8分,共24分)1.(1)20︒;(2)证明见解析;(3)74BF =.【详解】(1)解:∵四边形ABCD 是矩形,∴90BAD C D ∠=∠=∠=︒,由翻折可知:90FAG C ==︒∠∠,∴9020GAE EAF BAF ∠=︒-∠=∠=︒,∴GAE ∠度数为20︒;(2)证明:∵四边形ABCD 是矩形,∴90BAD C D ∠=∠=∠=︒,AB CD=由翻折可知:90G D ∠=∠=︒,AG CD =,∴90G B ∠=∠=︒,AG AB =,在AGE 和ABF △中,90G B AG AB GAE BAF ⎧∠=∠=⎪=⎨⎪∠=∠⎩,∴()ASA AGE ABF ≌;(3)解:设cm BF x =,则()8cm CF BC BF x =-=-,∵沿EF 翻折后点C 与点A 重合,∴()8cm AF CF x ==-,在Rt ABF 中,由勾股定理得222AB BF AF +=,即()22268x x +=-,解得74x =,∴74BF =.2.(1)见解析(2)AB AD =.(答案不唯一)【详解】(1)证明:∵四边形ABCD 是矩形,∴90ABC ∠=︒,∵45OAB ∠=︒,∴9045ACB OAB CAB ∠=︒-∠=︒=∠,∴AB BC =,∴矩形ABCD 是正方形;(2)解:添加的条件可以是AB AD =.理由如下:∵四边形ABCD 是矩形,AB AD =,∴矩形ABCD 是正方形.3.(1)证明见解析;(2)5【详解】证明:(1)∵矩形ABCD 折叠使A ,C 重合,折痕为EF ,∴OA =OC ,EF ⊥AC ,EA =EC ,∵AD ∥AC ,∴∠FAC =∠ECA ,在△AOF 和△COE 中,∵∠FAO =∠ECO ,AO =CO ,∠AOF =COE∴△AOF ≌△COE ,∴OF =OE ,∵OA =OC ,AC ⊥EF ,∴四边形AECF 为菱形;(2)设菱形的边长为x ,则BE =BC -CE =8-x ,AE =x ,在Rt △ABE 中,∵BE 2+AB 2=AE 2,∴(8-x )2+42=x 2,解得x =5,即菱形的边长为5.特殊的平行四边形专题强化训练(4)参考答案一、解答题(本大题共3小题,每小题8分,共24分)1.(1)见解析;(2)2【详解】(1)证明:∵AC 的垂直平分线EF 分别与AC 、BC 、AD 交于点O 、E 、F ,∴AF =CF ,AE =CE ,OA =OC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠FAO =∠ECO ,在△AOF 和△COE 中,∵∠FAO =∠ECO ,OA =OC ,∠AOF =∠COE ,∴△AOF ≌△COE (ASA ),∴AF =CE ,∴AE =EC =CF =AF ,∴四边形AECF 为菱形;(2)解:设AE =CE =x ,则BE =3﹣x ,∵四边形ABCD 是矩形,∴∠B =90°,在Rt △ABE 中,由勾股定理得:AB 2+BE 2=AE 2,2+(3﹣x )2=x 2,解得:x =2,即AE =2,∴菱形AECF 的边长是2.2.(1)证明见解析;(2)【详解】(1)证明:∵四边形ABDE 是平行四边形,∴BD AE ∥,BD AE =,∵D 为BC 中点,∴DC AE =,∴四边形ADCE 是平行四边形,∵AB AC =,D 为BC 中点,∴AD BC ⊥,∴90ADC ∠=︒,∴平行四边形ADCE 是矩形;(2)解:∵四边形ADCE 是矩形,∴AO CO DO EO ===,DC AE =,∵60AOE =︒∠,4AE =,∴AOE △是等边三角形,∴4AO EO AE ===,∴28AC OA ==,∵90ADC ∠=︒,∴AD =3.(1)见解析;(2)【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD BC =,AD BC ∥,即有AF EC ∥,∵BE DF =,∴AF EC =,∴四边形AECF 是平行四边形,∵AE BC ⊥,∴90AEC ∠=︒,∴四边形AECF 是矩形.(2)解:∵BF 平分ABC ∠,AD BC ∥,∴ABF CBF AFB ∠=∠=∠,∴3AB AF ==,∴4AD BC ==,在Rt ABE △中,AE CF ===在Rt BFC △中,BF =.特殊的平行四边形专题强化训练(5)参考答案一、解答题(本大题共3小题,每小题8分,共24分)1.(1)证明见解析(2)菱形ABCD 的面积为24【详解】(1)证明: CE BD ∥,BE AC ∥,∴CE OB ∥,BE OC ∥,即四边形OBEC 是平行四边形, 菱形ABCD 对角线交于点O ,∴AC BD ⊥,∴90BOC ∠=︒,∴四边形OBEC 是矩形;(2)解: 四边形OBEC 是矩形,∴4OC BE ==,3OB CE == 四边形ABCD 是菱形,∴28AC OC =⋅=,26BD OB =⋅=,即11862422ABCD S AC BD =⋅=⨯⨯=菱形.2.【详解】证明:(1)∵四边形ABCD 为平行四边形,∴DC ∥AB ,即DF ∥BE ,又∵DF =BE ,∴四边形DEBF 为平行四边形又∵DE ⊥AB ,∴∠DEB =90°,∴四边形DEBF 为矩形;(2)∵四边形DEBF 为矩形,∴∠BFC =90°,RtΔBCF 中CF =9,BF =12,∴BC ,∴AD =BC =15,∴AD =DF =15,∴∠DAF =∠DFA ,∵AB ∥CD ,∴∠FAB =∠DFA ,∴∠FAB =∠DAF ,∴AF 平分∠DAB .3.(1)证明见解析(2)【详解】(1)证明:∵DE ∥AC ,CE ∥BD∴DE ∥OC ,CE ∥OD∴四边形ODEC 是平行四边形∵四边形ODEC 是矩形∴OD =OC∴四边形ODEC 是菱形∴OE ⊥DC(2)解:∵DE =2,由(1)知,四边形ODEC 是菱形∴OD =OC =DE =2∵∠AOD =120°∴∠DOC =60°∴△ODC 是等边三角形∴DC =OD =OC =2∵四边形ABCD 是矩形∴AC =2CO =4在Rt △ADC 中,由勾股定理得AD∴S 矩形ABCD特殊的平行四边形专题强化训练(6)参考答案一、解答题(本大题共3小题,每小题8分,共24分)1.(1)见解析(2)见解析【详解】(1)∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∵BE =DF ,∴AF =CE ,AF ∥EC ,∴四边形AECF 是平行四边形,∴AE =CF .(2)∵∠FOC =∠OEC +∠OCE =2∠OCE ,∴∠OEC =∠OCE ,∴OE =OC ,∵四边形AECF 是平行四边形,∴OA =OC ,OE =OF ,∴AC =EF ,∴四边形AECF 是矩形.2.(1)见解析;(2)矩形【详解】(1)证明:∵DF ∥BE ,∴∠FDO =∠EBO ,∠DFO =∠BEO ,∵O 为AC 的中点,即OA =OC ,OE =OF ,∴OA ﹣AE =OC ﹣CF ,即AE =CF ,在△BOE 和△DOF 中,FDO EBO DFO BEO AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△DOF (AAS );(2)若OD =AO ,四边形ABCD 是矩形,理由为:证明:∵△BOE ≌△DOF ,∴OB =OD ,∴OA =OB =OC =OD ,即BD =AC ,∴四边形ABCD 为矩形.3.(1)详见解析(2)3【详解】(1)证明:∵AB DC ,OAB DCA ∴∠=∠,AC 平分BAD ∠,OAB DAC ∴∠=∠,DCA DAC ∴∠=∠,CD AD AB ∴==,∵AB DC ,∴四边形ABCD 是平行四边形,= AD AB ,∴四边形ABCD 是菱形;(2) 四边形ABCD 是菱形,OA OC ∴=,BD AC ⊥,CE AB ⊥ ,12OE AC OA OC ∴===,2BD = ,112OB BD ∴==,在Rt AOB中,AB =1OB =,3OA ∴==,3OE OA ∴==.特殊的平行四边形专题强化训练(7)参考答案一、解答题(本大题共3小题,每小题8分,共24分)1.(1)见解析(2)AE CF =,理由见解析【详解】(1)证明:∵,AB CD AD BC ∥∥,∴四边形ABCD 为平行四边形.又∵AB BC =,∴四边形ABCD 为菱形.(2)解:AE CF =.理由:∵四边形ABCD 为菱形,∴,AD CD A C =∠=∠.∵,DE AB DF BC ⊥⊥,∴90DEA DFC ∠=∠=︒,∴()AAS ADE CDF △≌△,∴AE CF =.2.(1)矩形,理由见解析(2)36【详解】(1)解:四边形AEBO 是矩形.理由: BE AC ∥,AE BD ∥,∴四边形AEBO 是平行四边形,又 菱形ABCD 对角线交于点O ,AC BD ∴⊥,即90AOB ∠=︒,∴四边形AEBO 是矩形;(2)解:6EB = ,8AE =,10AB ∴=, 四边形AEBO 是矩形,AE OB ∴=,四边形ABCD 是菱形,OB OD ∴=,AE OD ∴=,AE BD ∥,∴四边形AEOD 是平行四边形,10AD AB OE ===,∴四边形AEOD 的周长为81081036+++=.3.【详解】(1)证明:连接EF ,交BD 于点O ,如图:AB CD ,AB CD =,点E ,F 分别是AB ,CD 的中点,12112CDFO OD DF EO BO BE AB ∴====,FO EO ∴=,DO BO =,DH GB = ,OH OG ∴=,∴四边形EGFH 是平行四边形.(2)证明:由(1)知,四边形EGFH 是平行四边形, 点E ,O 分别是AB ,BD 的中点,OE AD ∴∥,AD BD ⊥ ,EF GH ∴⊥,∴平行四边形HEGF是菱形.特殊的平行四边形专题强化训练(8)参考答案一、解答题(本大题共3小题,每小题8分,共24分)1.(1)6(2)【详解】(1)解: 菱形ABCD 的周长为24,2464AB AD BC CD ∴=====,又 ∠BAD =60°,ABD ∴∆是等边三角形,6BD AB AD ∴===,故对角线BD 的长为6;(2)解:由菱形的性质可知,对角线AC 与BD 互相垂直且平分,116322OB BD ∴===,90AOB ∠=︒,又 6AB =,AO ∴===,2AC AO ∴==∴菱形ABCD的面积11622AC BD =⋅=⨯=ABCD的面积是2.(1)证明见解析;(2)4.【详解】(1)证明:∵90ACB ∠=︒,点D 是AB 边的中点,∴12CD AB BD ==,∵点E 是点D 关于BC 所在直线的对称点,∴CE CD =,BE BD =,∴CD BD BE EC ===,∴四边形CEBD 为菱形;(2)解:∵四边形CEBD 为菱形;∴OB OC =,OE OD =,即O 为BC 中点,∵点D 是BA 边的中点,∴OD 是ABC 中位线,∴12DO AC =,∴4OE OD ==.3.(1)见解析(2)10【详解】(1)证明:∵AF BC ∥,∴AFE DBE ∠=∠,∵E 是AD 的中点,∴AE DE =,在AEF △和DEB 中,AFE DBE AEF DEB AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AEF DEB ≌;∴AF DB =,∵AD 为BC 边上的中线,∴DB DC =,∴AF CD =,∵AF BC ∥,∴四边形ADCF 是平行四边形,∵90BAC ∠=︒,D 是BC 的中点,∴12AD BC CD ==,∴平行四边形ADCF 是菱形;(2)解:∵D 是BC 的中点,∴2ADC ABC ADCF S S S == 菱形1184022AC AB AB =⋅==,∴10AB =.特殊的平行四边形专题强化训练(9)参考答案一、解答题(本大题共3小题,每小题8分,共24分)1.(1)见解析(2)四边形CDEF 的面积为24.【详解】(1)证明:∵E 为对角线AC 的中点,F 为边BC 的中点,∴12EF AB =,EF AB ∥,12CF BC =,AE CE =,∵AB CD ∥,∴AB CD EF ∥∥,∵2AB BC CD ==,∴EF CF CD ==,∵AB CD EF ∥∥,∴四边形DEFC 是平行四边形,∴四边形CDEF 为菱形;(2)解:如图,连接DF 与EC 交于点G ,∵四边形CDEF 为菱形,6DF =,∴DF CE ⊥,DG DF ==132,EG GC =,∵5CD =,在Rt CDG △中,4GC ==,∴28CE GC ==,∴四边形CDEF 的面积为:11862422CE DF ⋅=⨯⨯=.2.【详解】(1) 四边形ABCD 是正方形,·AD CD BC ∴==,90ADC DCB ∠=∠=︒,BE CF = ,BC BE CD CF ∴-=-,即CE DF =,在ADF △和DCE △中,DF CE ADC DCB AD CD =⎧⎪∠=∠⎨⎪=⎩,(SAS)ADF DCE ∴ ≌;(2)由(1)知ADF DCE ≌△△,DAF CDE ∴∠=∠,90ADC ∠=︒ 即90CDE EDA ∠+∠=︒,90DAF EDA ∴∠+∠=︒180()90AGD DAF EDA ∴∠=︒-∠+∠=︒,AF DE ∴⊥.3.【详解】证明:(1)∵在△ABC 中,AB =AC ,AD 为∠BAC 的平分线,∴AD ⊥BC ,∠BAD =∠CAD ,∴∠ADC =90°,∵AN 为△ABC 的外角∠CAM 的平分线,∴∠MAN =∠CAN ,∴∠DAE =90°,∵CE ⊥AN ,∴∠AEC =90°,∴四边形ADCE 为矩形;(2)四边形ABDE是平行四边形,理由如下:由(1)知,四边形ADCE 为矩形,则AE =CD ,AC =DE .又∵AB =AC ,BD =CD ,∴AB =DE ,AE =BD ,∴四边形ABDE 是平行四边形;(3)当∠BAC =90°时,四边形ADCE 是正方形,理由:∵∠BAC =90°,AB =AC ,AD 为∠BAC 的平分线,∴AD =CD =BD ,又∵四边形ADCE 是矩形,∴四边形ADCE 是正方形.特殊的平行四边形专题强化训练(10)参考答案一、解答题(本大题共3小题,每小题8分,共24分)1.(1)证明见解析(2)EF 的长为【详解】(1)证明:∵,DE AC DF AB ∥∥,∴四边形AEDF 是平行四边形.由AD 是BAC ∠的平分线知,∠∠EAD FAD =,由∥DE AC 知∠∠EAD ADF =,∴FAD ADF ∠=∠∴AF FD =∴四边形AEDF 是菱形.(2)解:∵9084C AC DC ∠=︒==,,∴AD =.由菱形AEDF 的对角线互相垂直平分的性质知,1122OA AD ==⨯OF AD ⊥,12OE OF EF ==.设A F DF x ==,则8CF AC x x =-=-.在Rt CDF △中,222DF CF DC =+∴()22284x x =-+解得:5x =.即5AF =.∴OF ==2EF OF ==2.(1)答案见解析(2)242【详解】(1)解:四边形AFDE 是菱形,理由是:DE AB ∥,DF AC ∥,∴四边形AFDE 是平行四边形. AD 平分BAC ∠FAD EAD ∴∠=∠.DE AB ∥,∴EDA FAD ∠=∠,EDA EAD ∴∠=∠,AE DE ∴=,∴平行四边形AFDE 是菱形.(2)90BAC =︒ ,∴四边形AFDE 是正方形,∴AF DF =.22AD = ,根据勾股定理,得222AD =,即22222AF =,解得AF =,∴四边形AFDE 的面积为∶1212242⨯=.3.【详解】(1)证明:AB AC = ,AD BC ⊥,BAD CAD ∴∠=∠,90ADC ∠=︒,AN 是ABC V 外角CAM ∠的平分线,CAE MAE \Ð=Ð,1902DAC CAE BAD MAE BAM ∴∠+∠=∠+∠=∠=︒,CE AN ⊥ ,90AEC ∴∠=︒,∴四边形ADCE 为矩形;(2)解:当ABC V 是等腰直角三角形时,四边形ADCE 是一个正方形,理由如下:由(1)知四边形ADCE 为矩形,ABC 是等腰直角三角形,AD BC ⊥,12AD BC DC ∴==,∴四边形ADCE 是正方形;(3)解:9545ADCE S =⨯=矩形,11451533CDP ADCE S S ∆∴==⨯=矩形,即15152h ⨯⨯=,解得6h =,即点P 在平行于DC 且到DC 的距离为4的直线上,如图:作点C 关于点P 所在直线的对称点F ,连接DF ,此时PD PC +的值最小为DF 的长,12CF ∴=,13DF ∴=,PD PC ∴+的最小值为13.特殊的平行四边形专题强化训练(11)参考答案一、解答题(本大题共3小题,每小题8分,共24分)1.(1)见解析;(2).【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠1=∠2,∵EF 垂直平分AC ,∴AF =CF ,AE =CE ,∵AE =CE ,EF ⊥AC ,∴∠2=∠3,∴∠1=∠3,∴AE =AF ,∴AE =AF =CE =CF ,∴四边形AECF 是菱形.(2)解:∵四边形AECF 是菱形,∴当∠AEC =90°时,四边形AECF 是正方形,则∠AEB =90°,设AE =EC =x ,则BE =7-x ,AC ,在Rt △ABE 中,222AE BE AB +=,∴222(7)5x x +-=,解得13x =,24x =,∴AC =或2.(1)证明见解析(2)【详解】(1)证明:∵在ABC V 中,AB BC =,BD 平分ABC ∠,∴BD AC ⊥,AD DC =,∵四边形ABED 是平行四边形,∴AD BE =,AD BE ,∴DC BE =,DC BE ,∴四边形BECD 是平行四边形,又∵BD AC ⊥,∴四边形BECD 是是矩形.(2)解:∵四边形BECD 是矩形,90BFE ∠=︒即四边形BECD 的对角线互相垂直,∴四边形BECD 也是菱形,即四边形BECD 是正方形.∴90DBE ∠=︒,2BD BE ==,∴在Rt BDE △中,由勾股定理得:222DE BD BE =+,∴DE =即矩形BECD 对角线的长为3.(1)CE =12;(2)见解析.【详解】根据题意,得AD =BC =CD =1,∠BCD =90°.(1)设CE =x (0<x <1),则DE =1-x ,因为S 1=S 2,所以x 2=1-x ,解得x =512-(负根舍去),即CE =512-(2)因为点H 为BC 边的中点,所以CH =12,所以HD =52,因为CG =CE =512-,点H ,C ,G 在同一直线上,所以HG =HC +CG =12+512-=52,所以HD =HG特殊的平行四边形专题强化训练(12)参考答案一、解答题(本大题共3小题,每小题8分,共24分)1.(1)见解析;(2)172【详解】(1)证明:AF AE ⊥ ,90FAB EAB ∴∠+∠=︒,90DAE EAB ∠+∠=︒ ,FAB DAE ∴∠=∠.= AD AB ,90ABF D ∠=∠=︒,ADE ABF ∴∆≅∆.(2)解:ADE ABF ∆≅∆ ,AF AE ∴=.1DE = ,4=AD ,90D Ð=°,221417AE ∴=+=.AFE ∴∆的面积为:117171722创=.2.(1)见解析(2)72【详解】(1)证明: DE AB ∥,DF AC ∥,∴四边形AFDE 是平行四边形. AD 平分BAC ∠,FAD EAD ∴∠=∠,DE AB ∥,∴EDA FAD ∠=∠,EDA EAD ∴∠=∠,AE DE ∴=,∴平行四边形AFDE 是菱形.(2)解:90BAC =︒ ,四边形AFDE 是菱形,∴四边形AFDE 是正方形,12AD =∵,22126222AF AD ∴==⨯=,∴四边形AFDE 的面积为∶626236272⨯=⨯=.3.(1)BE =AF ,BE ⊥AF ,证明见解析;(2)255AG =;(3)证明见解析;GD =2105.【详解】(1)BE =AF ,BE ⊥AF ,理由:四边形ABCD 是正方形,∴BA =AD =CD ,∠BAE =∠D =90°,∵DE =CF ,∴AE =DE ,∴△BAE ≌△ADF (SAS ),∴BE =AF ,∠ABE =∠DAF ,∵∠ABE +∠AEB =90°,∴∠DAE +∠AEB =90°,∴∠BGA =90°,∴BE ⊥AF .(2)在Rt △ABE 中,∵AB =2,AE =1,∴BE =2222==152AB AE ++,∵S △ABE =12•AB •AE =12•BE •AG ,∴212555AB AE AG BE ⋅⨯===.(3)如图,过点D 作DN ⊥AF 于N ,DM ⊥BE 交BE 的延长线于M ,在Rt △ADF 中,根据勾股定理得,AF ==∵S △ADF =12AD ×FD =12AD ×DN ,∴DN =AG AG =DN ,易证,△AEG ≌△DEM (AAS ),∴AG =DM ,∴DN =DM ,∵DM ⊥BE ,DN ⊥AF ,∴GD 平分∠MGN ,∴∠DGN =12∠MGN =45°,∴△DGN 是等腰直角三角形,∴GD 特殊的平行四边形专题强化训练(13)参考答案一、解答题(本大题共3小题,每小题8分,共24分)1.(1)见解析(2)5BC =.【详解】(1)证明:∵四边形ABCD 为菱形,∴AB CD AB CD ∥,=,∵CD AF DE -=,-=AB AF BF ,∴DE BF =,∴四边形BFDE 为平行四边形,又∵BE CD ⊥,∴90BED ∠=︒,∴四边形BFDE 为矩形;(2)解:在Rt BDE △中:2DE ===,设BC 的长为x ,则CD x =,2CE x =-,由勾股定理得:222BC BE CE =+,即:()22242x x =+-,解得:5x =,∴5BC =.2.(1)见解析(2)【详解】(1)证明:∵DO AO =,EO CO =,∴四边形AEDC 是平行四边形,∵四边形ABCO 是矩形,∴=90AOC ∠︒,即AD EC ⊥,∴平行四边形AEDC 是菱形.(2)解: 四边形AEDC 是菱形,120CDE ∠=︒,∴18060DCA CDE ∠=︒-∠=︒,∴1302DCO DCA ∠=∠=︒,∵90COD ∠=︒,CD =12OD CD ==,∴3OC ==,∴2AD OD ==26EC OC ==,∴菱形AEDC 的面积为11622AD EC ⋅=⨯=3.(1)矩形(2)12013【详解】(1)证明:在菱形ABCD 中,AD BC ∥,∵DF CE =,∴四边形FCED 是平行四边形,又DE BC ⊥,∴平行四边形FCED 是矩形;(2)解:在菱形ABCD 中,AC BD ⊥,152CO AC ==,12BO BD =,∵13BC =,∴12BO ,∴24BD =,∵12AC BD BC CF ⋅=⋅,∴11024132CF ⨯⨯=,∴12013CF =,∵四边形FCED 是矩形,∴12013DE CF ==.特殊的平行四边形专题强化训练(14)参考答案一、解答题(本大题共3小题,每小题8分,共24分)1.(1)见解析(2)4AB =【详解】(1)证明: 四边形ABCD 是矩形,MN 垂直平分BD ,∴AD BC ∥,90A ∠=︒,OB OD =,∴MDO NBO ∠=∠,DMO BNO ∠=∠,在DMO △和BNO 中,MDO NBO DMO BNO OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS DMO BNO ≌△△,∴OM ON =,又 OB OD =,∴四边形BNDM 是平行四边形MN 垂直平分BD ,即MN BD ⊥,∴平行四边形BNDM 是菱形;(2)解: 四边形BNDM 是菱形,∴5BM MD ==,设AM x =,则5AD AM MD x =+=+,在Rt ABM 和Rt ABD △中,222AB BM AM =-,222AB BD AD =-,∴(()222255x x -=-+,解得:3x =,∴4AB ==.2.(1)见解析(2)见解析(3)245【详解】(1)证明:AD BC ,OAD OCB ∠=∠∴,在AOD △和COB △中,OAD OCBOA OC AOD COB ∠=∠⎧⎪=⎨⎪∠=∠⎩,(ASA)AOD COB ∴ ≌,OB OD ∴=;(2)证明:由(1)可知,OB OD =,OA OC = ,∴四边形ABCD 是平行四边形,∴142OA AC ==,132==OB BD ,又5AB = ,2225OA OB ∴+=,225AB =,222OA OB AB ∴+=,AOB ∴ 是直角三角形,90AOB ∠=︒,AC BD ∴⊥,∴平行四边形ABCD 是菱形;(3)解:由(2)可知,四边形ABCD 是菱形,5BC AB ∴==,DE BC ⊥ ,12ABCD S BC DE AC BD ∴=⋅=⋅菱形,即15862DE =,245DE ∴=.3.【详解】(1)证明:∵AB DC ,OAB DCA ∴∠=∠,AC 平分BAD ∠,OAB DAC ∴∠=∠,DCA DAC ∴∠=∠,CD AD AB ∴==,∵AB DC ,∴四边形ABCD 是平行四边形,= AD AB ,∴四边形ABCD 是菱形;(2) 四边形ABCD 是菱形,OA OC ∴=,BD AC ⊥,CE AB ⊥ ,12OE AC OA OC ∴===,2BD = ,112OB BD ∴==,在Rt AOB 中,AB =1OB =,3OA ∴==,3OE OA ∴==.。
平行四边形面积专题训练
平行四边形变式训练班级: 姓名:1、一个平行四边形框架相邻两边的长分别是8分米和5分米,一边上的高是6分米,如果把它拉成一个长方形,它的面积是( )平方分米。
2、观察下图,长方形的面积( )平行四边形的面积(填大于、小于或等于)。
3、求出下面图形的高。
4、求出下面图形的面积。
5、一个平行四边形的停车位的面积是14平方米,已知它的高是2.5米,它的底边长是多少米?6、在一条长12米的围墙边,靠着墙刚好围成了一个平行四边形的花圃,这个花圃的面积是57m 2,这个花圃的高是多少米?7、如下图,一块平行四边形的草地中间有一条长8m 、宽1m 的小路,求草地的面积?8、用一根铁丝围成一个平行四边形,如下图,至少要用多长的铁丝才够(接头处忽略不计)?5dm 8dm 6dm? cm9、一块平行四边形街头广告牌,底是8.5m,高是5.4m。
要粉刷这块广告牌,每平方米要用油漆0.5kg,至少需要准备多少千克油漆?10、学校跑道旁有一块平行四边形的草地,同学们测量了一下它对边之间的垂直距离是3.6米,已知这块草地的面积是30.6平方米,它的一条边长是多少米?11、在一块长方形的菜地上,修两条宽度分别为2米和3米的交叉路,如下图,这块菜地的面积是多少平方米?2312、小西家有一块平行四边形麦田,麦田的高是34.6米,底比高长16.4米,这块麦田的面积是多少平方米?13、小东家有一块平行四边形麦田,麦田的底是34.6米,底是高的2倍,(1)这块麦田的面积是多少平方米?(2)如果每平方米可以产小麦0.6千克,那么小东家的这块麦田共可产小麦多少千克?(一年只产一季)14、一个平行四边形的周长是66dm,已知一条边的长是14dm,它邻边上的高是10.4dm,这个平行四边形的面积是多少平方分米?。
中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)
中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,ab ≠0),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.2.(1)如图1,点P 为矩形ABCD 对角线BD 上一点,过点P 作//EF BC ,分别交AB 、CD 于点E 、F .若2BE =,PF=6,AEP △的面积为1S ,CFP 的面积为2S ,则12S S +=________;(2)如图2,点P 为ABCD 内一点(点P 不在BD 上),点E 、F 、G 、H 分别为各边的中点.设四边形AEPH 的面积为1S ,四边形PFCG 的面积为2S (其中21S S >),求PBD △的面积(用含1S 、S的代数式表示);2(3)如图3,点P为ABCD内一点(点P不在BD上)过点P作//EF AD,HG//AB与各边分别相交于点E、F、G、H设四边形AEPH的面积为1S,四边形PGCF的面积为2S(其中21),S S求PBD△的面积(用含1S、2S的代数式表示);(4)如图4 点A B C D把O四等分.请你在圆内选一点P(点P不在AC BD 上)设PB PC BC围成的封闭图形的面积为1S PA PD AD围成的封闭图形的面积为2S PBD△的面积为3S PAC△的面积为4S.根据你选的点P的位置直接写出一个含有1S2S3S4S的等式(写出一种情况即可).3.已知直线y=x+4与x轴y轴分别交于A B两点∠ABC=60°BC与x轴交于点C.(1)试确定直线BC的解析式.(2)若动点P从A点出发沿AC向点C运动(不与A C重合)同时动点Q从C点出发沿CBA向点A运动(不与C A重合) 动点P的运动速度是每秒1个单位长度动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S P点的运动时间为t秒求S与t的函数关系式并写出自变量的取值范围.(3)在(2)的条件下当△APQ的面积最大时y轴上有一点M 平面内是否存在一点N 使以A Q M N为顶点的四边形为菱形?若存在请直接写出N点的坐标;若不存在请说明理由.4.如图在等腰梯形ABCD中AB∥DC AB=8cm CD=2cm AD=6cm.点P 从点A出发以2cm/s的速度沿AB向终点B运动;点Q从点C出发以1cm/s的速度沿CD DA向终点A运动(P Q两点中有一个点运动到终点时所有运动即终止).设P Q同时出发并运动了t秒.(1)当PQ将梯形ABCD分成两个直角梯形时求t的值;(2)试问是否存在这样的t 使四边形PBCQ的面积是梯形ABCD面积的一半?若存在求出这样的t的值若不存在请说明理由.5.如图在平面直角坐标系中以坐标原点O为圆心2为半径画⊙O P是⊙O上一动点且P在第一象限内过点P作⊙O的切线与轴相交于点A与轴相交于点B.(1)点P在运动时线段AB的长度也在发生变化请写出线段AB长度的最小值并说明理由;(2)在⊙O上是否存在一点Q使得以Q O A P为顶点的四边形时平行四边形?若存在请求出Q点的坐标;若不存在请说明理由.6.如图已知长方形ABCD中AD=6cm AB=4cm 点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动同时点Q在线段BC上由点B向点C运动.(1)若点Q的运动速度与点P的运动速度相等经过1秒后△AEP与△BPQ是否全等请说明理由并判断此时线段PE和线段PQ的位置关系;(2)若点Q的运动速度与点P的运动速度相等运动时间为t秒设△PEQ的面积为Scm2请用t的代数式表示S;(3)若点Q的运动速度与点P的运动速度不相等当点Q的运动速度为多少时能够使△AEP与△BPQ全等?7.如图长方形ABCD中5cm,8cm==现有一动点P从A出发以2cm/s的速度沿AB BC----返回到点A停止设点P运动的时间为t秒.长方形的边A B C D At=时BP=___________cm;(1)当2(2)当t为何值时连接,,△是等腰三角形;CP DP CDP(3)Q为AD边上的点且6DQ=P与Q不重合当t为何值时以长方形的两个顶点及点P为顶点的三角形与DCQ全等.8.如图平行四边形ABCD中6cmB∠︒G是CD的中点E是BC==60AB=8cm边AD上的动点EG的延长线与BC的延长线交于点F连接CE DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=______时四边形CEDF是矩形;②AE=______时四边形CEDF是菱形.9.在平面直角坐标系中点A在第一象限AB⊥x轴于点B AC⊥y轴于点C已知点B(b0)C(0 c)其中b c满足|b﹣8|6+-=0.c(1)直接写出点A坐标.(2)如图2 点D从点O出发以每秒1个单位的速度沿y轴正方向运动同时点E从点A出发以每秒2个单位的速度沿射线BA运动过点E作GE⊥y轴于点G设运动时间为t 秒当S四边形AEGC<S△DEG时求t的取值范围.(3)如图3 将线段BC平移使点B的对应点M恰好落在y轴负半轴上点C的对应点为N连接BN交y轴于点P当OM=4OP时求点M的坐标.10.如图在平面直角坐标系中点A B的坐标分别是(﹣4 0)(0 8)动点P从点O出发沿x轴正方向以每秒1个单位的速度运动同时动点C从点B出发沿12.在四边形ABCD中//,90,10cm,8cm∠=︒===点P从点A出发沿折线AB CD BCD AB AD BCABCD方向以3cm/s的速度匀速运动;点Q从点D出发沿线段DC方向以2cm/s的速度匀速运动.已知两点同时出发当一个点到达终点时另一点也停止运动设运动时间为()s t.(1)求CD的长;(2)当四边形PBQD为平行四边形时求四边形PBQD的周长;(3)在点P Q的运动过程中是否存在某一时刻使得BPQ的面积为220cm若存在请求出所有满足条件的t的值;若不存在请说明理由.13.在平面直角坐标系中矩形OABC的边OA任x轴上OC在y轴上B(4 3)点M从点A开始以每秒1个单位长度的速度沿AB→BC→CO运动设△AOM的面积为S 点M运动的时间为t.(1)当0<t<3时AM=当7<t<10时OM=;(用t的代数式表示)(2)当△AOM为等腰三角形时t=;(3)当7<t<10时求S关于t的函数关系式;(4)当S=4时求t的值.14.如图1 在平面直角坐标系中正方形OABC的边长为6 点A C分别在x y 正半轴上点B在第一象限.点P是x正半轴上的一动点且OP=t连结PC将线段PC绕点P顺时针旋转90度至PQ连结CQ取CQ中点M.(1)当t=2时求Q与M的坐标;(2)如图2 连结AM以AM AP为邻边构造平行四边形APNM.记平行四边形APNM 的面积为S.①用含t的代数式表示S(0<t<6).②当N落在△CPQ的直角边上时求∠CPA的度数;(3)在(2)的条件下连结AQ记△AMQ的面积为S'若S=S'则t=(直接写出答案).15.如图平面直角坐标系中矩形OABC的顶点B的坐标为(7 5)顶点A C 分别在x轴y轴上点D的坐标为(0 1)过点D的直线与矩形OABC的边BC交于点G 且点G不与点C重合以DG为一边作菱形DEFG 点E在矩形OABC的边OA 上设直线DG的函数表达式为y=kx+b(1)当CG=OD时求直线DG的函数表达式;(2)当点E的坐标为(5 0)时求直线DG的函数表达式;(3)连接BF 设△FBG的面积为S CG的长为a 请直接写出S与a的函数表达式及自变量a 的取值范围.16.如图 在四边形ABCD 中 //AD BC 3AD = 5DC = 42AB = 45B ∠=︒ 动点M 从点B 出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从点C 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动 设运动的时间为s t .(1)求BC 的长.(2)当//MN AB 时 求t 的值(3)试探究:t 为何值时 MNC ∆为等腰三角形?参考答案:1.(1)证明:∵四边形ABCD 是矩形∴AD ∥BC∴∠CAD =∠ACB ∠AEF =∠CFE∵EF 垂直平分AC 垂足为O∴OA =OC∴△AOE ≌△COF∴OE =OF∴四边形AFCE 为平行四边形又∵EF ⊥AC∴四边形AFCE 为菱形设菱形的边长AF =CF =x cm 则BF =(8﹣x )cm在Rt △ABF 中 AB =4cm由勾股定理得42+(8﹣x )2=x 2解得x =5iii )如图3 当P 点在AB 上 Q 点在CD 上时 AP =CQ 即12﹣a =b 得a +b =12. 综上所述 a 与b 满足的数量关系式是a +b =12(ab ≠0).2.(1)过P 点作AB∥MN∵S 矩形AEPM +S 矩形DFPM =S 矩形CFPN +S 矩形DFPM =S 矩形ABCD -S 矩形BEPN又∵11,,22AEP CFP AEPM CFPN SS S S ==矩形矩形 ∴1==26=62AEP CFP S S ⨯⨯, ∴1212.S S +=(2)如图 连接PA PC在APB △中 因为点E 是AB 中点可设APE BPE S S a ==同理 ,,BPF CPF CPG DFG DPH APH S S b S S c S S d ======所以APE APH CPF AEPH PFCG CPG S S SS a b d S S c =+++=++++四边形四边形 BPE BPF DPH DPH EDFP HPGD S S S S S S a b c d +=+++=+++四边形四边形.所以12EBFP HPGD AEPH PFCG S S S S S S +++=+四边形四边形四边形四边形所以1212ABD ABCD SS S S ==+ 所以1DPH APH S S S a ==-. ()()()1121121PBD ABD BPE PDH S S S S S S S S a S a S S =-++=+-++-=-.(3)易证四边形EBGP 四边形HPFD 是平行四边形.EBP SHPD S .()()121211122222ABD ABCD EBF HPD EBP HPD SS S S S S S S S S ==+++=+++ ()()12112FBD ABD EBP HPD S S S S S S S =-++=-. (4)试题解析:(1)由已知得A 点坐标(﹣4﹐0) B 点坐标(0﹐43﹚ ∵OB=3OA ∴∠BAO=60° ∵∠ABC=60° ∴△ABC 是等边三角形 ∵O C=OA=4 ∴C 点坐标﹙4 0﹚ 设直线BC 解析式为y kx b =+∴ ∴直线BC 的解析式为343y x =-+; ﹙2﹚当P 点在AO 之间运动时 作QH⊥x 轴 ∵QH CQ OB CB= ∴2843QH t = ∴QH=3t ∴S △APQ =AP•QH=132t t ⋅=232t ﹙0<t≤4﹚ 同理可得S △APQ =t·﹙833t -﹚=23432t t -+﹙4≤t<8﹚∴223(04)2{343?(48)2t t S t t t <≤=-+≤<; (3)存在 如图当Q 与B 重合时 四边形AMNQ 为菱形 此时N 坐标为(4 0) 其它类似还有(﹣4 8)或(﹣4 ﹣8)或(﹣4 ).4.(1)53(2)存在 使四边形PBCQ 的面积是梯形ABCD 面积的一半.(1)过D 作DE⊥AB 于E 过C 作CF⊥AB 于F 通过Rt ADE Rt BCF ∆≅∆ 得AE BF = 若四边形APQD 是直角梯形 则四边形DEPQ 为矩形 通过AP AE EP =+ 代入t 值 即可求解(2)假设当时 通过点Q 在CD 上或在AD 上 两种情况进行讨论求解5.(1)线段AB 长度的最小值为4理由如下:连接OP如图② 设四边形APQO 为平行四边形因为OQ PA ∥ 90APO ︒∠=所以90POQ ︒∠= 又因为OP OQ =所以45PQO ︒∠= 因为PQ OA ∥所以PQ y ⊥轴.设PQ y ⊥轴于点H在Rt △OHQ 中 根据2,45OQ HQO ︒=∠= 得Q 点坐标为(2,2-)所以符合条件的点Q 的坐标为(2,2-)或(2,2-).6.(1)∵长方形ABCD∴∠A =∠B =90°∵点E 为AD 的中点 AD =6cm∴AE =3cm又∵P 和Q 的速度相等可得出AP =BQ =1cm BP =3 ∴AE =BP在△AEP 和△BQP 中∴y=xy 3=4-y⎧⎨⎩ 解得:x=1y=1⎧⎨⎩ (舍去). 综上所述,点Q 的运动速度为32cm /s 时能使两三角形全等.7.(1)1(2)54t =或4或232 (3) 3.5t = 5.5或10(1)解:动点P 的速度是2cm/s∴当2t =时 224AP =⨯=∵5cm AB =∴BP =1cm ;(2)解:①当点P 在AB 上时 CDP △是等腰三角形∴PD CP =在长方形ABCD 中 ,90AD BC A B =∠=∠=︒∴()HL DAP CBP ≌∴AP BP =∴1522AP AB ==∵动点P 的速度是2cm/s∵90D5DP CD == 2AB CB CD t ++=∴要使一个三角形与DCQ 全等①当点P运动到1P时16△≌△DCQ CDPCP DQ==此时1∴点P的路程为:1527AB BP+=+=∴72 3.5t=÷=;②当点P运动到2P时26△≌△CDQ ABPBP DQ==此时2∴点P的路程为:25611+=+=AB BP∴112 5.5t=÷=③当点P运动到3P时35△≌△CDQ BAP==此时3AP DQ∴点P的路程为:3585220AB BC CD DP+++=+++=∴20210t=÷=④当点P运动到4P时即P与Q重合时46△≌△CDQ CDPDP DQ==此时4∴点P的路程为:4585624+++=+++=AB BC CD DPt=÷=此结果舍去不符合题意∴24212综上所述t的值可以是: 3.5t= 5.5或10.8.(1)四边形ABCD是平行四边形∥∴BC AD∴∠=∠FCG EDGG是CD的中点∴=CG DG△中在CFG△和DEGCFG∴≅(ASA)DEGFG EG∴=又CG DG=∴四边形CEDF是平行四边形.2)①当5AE=如图过60B∠=12BM∴=5AE=DE AD∴=在MBA△BM DEB=⎧⎪∠=∠⎨⎪(SAS)MBA EDC∴≅CED AMB∴∠=∠四边形CEDF是平行四边形∴平行四边形CEDF②当2AE cm =时 四边形CEDF 是菱形 理由如下:四边形ABCD 是平行四边形8AD ∴= 6CD AB == 60CDE B ∠=∠=︒2AE =6DE AD AE ∴=-=DE CD ∴=CDE ∴∆是等边三角形CE DE ∴=四边形CEDF 是平行四边形∴平行四边形CEDF 是菱形故答案为:2;9.(1)解:∵|b ﹣8|6c +-=0∴b -8=0 c -6=0∴b =8 c =6∵B (b 0) C (0 c )∴B (8 0) C (0 6)又∵AB ⊥x 轴 AC ⊥y 轴∴A (8 6);(2)∵AB ⊥x 轴 AC ⊥y 轴 GE ⊥y 轴∴四边形AEGC 是矩形设运动时间为t 秒∴OD =t AE =2t DG =6+2t-t =6+t∴S 四边形AEGC =8×2t =16t S △DEG =12×(6+t )×8=4t +242∵OM=4OP∴-m=-4×62m解得m=-12综上所述m的值为-4或-12.10.(1)∵点A B的坐标分别是(﹣4 0)(0 8)∴OA=4 OB=8∵点C运动到线段OB的中点∴OC=BC=12OB=4∵动点C从点B出发沿射线BO方向以每秒2个单位的速度运动∴2t=4解之:t=2;∵PE=OA=4 动点P从点O出发沿x轴正方向以每秒1个单位的速度运动∴OE=OP+PE=t+4=2+4=6∴点E(6 0)(2)证明:∵四边形PCOD是平行四边形∴OC=PD OC∥PD当点C在y轴的负半轴上时③如果点M在DE上时24163(3)22t tt--=++解得423t=+④当N在CE上时28(3)8214tt tt-⋅++-=-+解得12t=综上分析可得满足条件的t的值为:t1=28﹣16 3t2=2 t3=4+2 3t4=12.11.(1) ()30D,,()1,3E;(2)933022933222572222t tS t tt t⎧⎛⎫-+≤≤⎪⎪⎝⎭⎪⎪⎛⎫=-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-≤⎪ ⎪⎝⎭⎩<(3)198s解:(1)3922y x=-+当y=0时39=022x-+则x=3 即点()30D,当y=3时39=322x-+则x=1 故点()1,3E故:()30D,,()1,3E;(2)如图1 ①当点P在OD段时此时0≤t<32119()2223233S PD OC t t=⨯⨯=⨯-⨯=-+;②当点P在点D时此时t=32此时三角形不存在0S=;''6ADP BEP S S -=-30232t t ⎛⎫≤≤ ⎪⎝⎭⎫<≤⎪;即当点P 在边AB 上运动 且PD PE +的值最小时 运动时间t 为198s . 12.(1)16cm ;(2)(8813)cm +;(3)53t =秒或395秒 解:(1)如图1过A 作AM DC ⊥于M在四边形ABCD 中 //AB CD 90BCD ∠=︒//AM BC ∴∴四边形AMCB 是矩形10AB AD cm == 8BC cm =8AM BC cm ∴== 10CM AB cm ==在Rt AMD ∆中 由勾股定理得:6DM cm =10616CD DM CM cm cm cm =+=+=;(2)如图2当四边形PBQD 是平行四边形时 PB DQ =即1032t t -=解得2t =此时4DQ = 12CQ = 22413BQ BC CQ =+=所以()28813PBQD C BQ DQ =+=+;1003t 14(102BPQ BP BC ==解得53t =;P 在BC 上时 63t1(32BP CQ t =此方程没有实数解;CD 上时:在点Q 的右侧54(34PQ BC =6< 不合题意若P 在Q 的左侧 如图6 即3485t <14(534)202BPQ S PQ BC t ∆==-= 解得395t =; 综上所述 当53t =秒或395秒时 BPQ ∆的面积为220cm . 13.(1)t 10-t ;(2)5;(3)S =20-2t ;(4)2或8. 解:(1)当0<t <3时 点M 在线段AB 上 即AM =t 当7<t <10时 点M 在线段OC 上 OM =10-t故填:t 10-t ;(2)∵四边形ABCO 是矩形 B (4 3)∴OA =BC =4 AB =OC =3∵△AOM 为等腰三角形∴只有当MA =MO 此时点M 在线段BC 上 CM =BM =2 ∴t =3+2=5故填:5;(3)∵当7<t <10时 点M 在线段OC 上∴114(10)20222S OA OM t t =⋅⋅=⨯⨯-=-;(4)①当点M 在线段AB 上时 4=12×4t 解得t =2;②当点M 在线段BC 上时 S =6 不符合题意;当点M 在线段OC 上时 4=20-2t 解得t =8.∴OD =OP +PD =8∴Q (8 2)∵M 是CQ 的中点 C (0 6)∴M (4 4);(2)①∵△COP ≌△PDQ∴OP =OQ =t OC =PD =6∴OD =t +6∴Q (t +6 t )∵C (0 6)∴M (62t + 62t +) 当0<t <6时 S =AP ×y M =(6﹣t )×62t +=2362t -; ②分两种情况:a 当N 在PC 上时 连接OB PM 如图2﹣1所示:∵点M 的横 纵坐标相等∴点M 在对角线BD 上∵四边形OABC 是正方形∴OC =OA ∠COM =∠AOM∴∠MPA =12(180°﹣45°)=67.5° ∴∠CPA =67.5﹣45=22.5°;综上所述 当点N 在△CPQ 的直角边上时 ∠CPA 的度数为112.5°或22.5°;(3)过点M 作MH ⊥x 轴于点H 过点Q 作QG ⊥x 轴于点G∵AMQ AHM AGQ MHGQ S S S S =--△△△梯形∴S '=12(62t ++t )•62t +﹣12(6﹣62t +)•62t +﹣12t •t =3t ①当0<t <6时 即点AP 在点A 左侧时 如图3所示:∵S =S '∴2362t -=3t 解得:t =﹣3+35 或t =﹣3﹣35(舍去);②当t >6时 即点P 在点A 右侧时 如图4所示:S =AP ×y M =(t ﹣6)×62t +=2362t - ∵S =S '将D (0 1)G (10 5)代入y=kx+b 得:1105b k b =⎧⎪⎨+=⎪⎩解得:21051k b ⎧=⎪⎨⎪=⎩∴当CG=OD 时 直线DG 的函数表达式为y=2105x+1.(3)设DG 交x 轴于点P 过点F 作FM⊥x 轴于点M 延长MF 交BC 于点N 如图所示.∵DG∥EF∴∠FEM=∠GPO.∵BC∥OA∴∠DGC=∠GPO=∠FEM.在△DCG 和△FME 中90DCG FME DGC FEMDG FE⎧∠=∠=⎪∠=∠⎨⎪=⎩ ∴△DCG≌△FME(AAS )∴FM=DC=4.∵MN⊥x 轴∴四边形OMNC 为矩形在Rt△CDH 中 由勾股定理可得: HC=22543-=∴BC=BK+KH+HC=4+3+3=10;(2)如图② 过D 作DG∥AB 交BC 于G 点 则四边形ADGB 为平行四边形 ∴BG=AD=3∴GC=BC−BC=10−3=7由题意得 当M N 运动t 秒后 CN=t CM=10−2t∵AB∥DG MN∥AB∴DG∥MN∴∠NMC=∠DGC又∵∠C=∠C∴△MNC ~△GDC∴CN CM CD CG=, ∴10257tt -=解得t=5017; (3)第一种情况:当NC=MC 时 如图③22∵∠C=∠C∠MFC=∠DHC=90°∴△MFC~△DHC∴FC MCHC DC=即:1 102253tt-=解得:t=6017;综上所述当t=103t=258或t=6017时△MNC为等腰三角形.。
人教版初二数学8年级下册 第18章(平行四边形)证明题专题训练(含答案)
人教版八年级下册数学第十八章平行四边形证明题专题训练1.如图,在平行四边形ABCD中,E、F是对角线AC所在直线上的两点,且AE=CF.求证:四边形EBFD 是平行四边形.2.如图,在△ABC中,点D,E分别是BC,AC的中点,延长BA至点F,使得AF= 1AB,连接DE,AD,EF,DF.2(1)求证:四边形ADEF是平行四边形;(2)若AB=6,AC=8,BC=10,求EF的长.的对角线AC的垂直平分线与边AD,BC分别相交于点E,3.如图所示,ABCDF.求证:四边形AFCE是菱形.AC BD交于点,O过点O任作直线分别交4.如图,在平行四边形ABCD中,对角线,AB CD于点E F,、.求证:OE OF =.5.已知:如图,在ABCD 中,,E F 是对角线BD 上两个点,且BE DF =.求证:.AE CF =6.已知:如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB 、CD 的延长线分别相交于点E 、F .(1)求证:△BOE ≌△DOF ;(2)当EF 与AC 满足什么关系时,以A 、E 、C 、F 为顶点的四边形是菱形?并给出证明.7.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,//BE AC ,//AE BD ,OE 与AB 交于点F .(1)求证:四边形AEBO 的为矩形;(2)若OE =10,AC =16,求菱形ABCD 的面积.8.已知:如图,在ABC 中,中线,BE CD 交于点,,O F G 分别是,OB OC 的中点.求证:(1)//DE FG ;(2)DG 和EF 互相平分.9.如图,在平行四边形ABCD 中,AC 是对角线,且AB =AC ,CF 是∠ACB 的角平分线交AB 于点F ,在AD 上取一点E ,使AB =AE ,连接BE 交CF 于点P .(1)求证:BP =CP ;(2)若BC =4,∠ABC =45°,求平行四边形ABCD 的面积.10.如图,AB,CD相交于点O,AC∥DB,OA=OB,E、F分别是OC,OD中点.(1)求证:OD=OC.(2) 求证:四边形AFBE平行四边形.11.如图所示,在菱形ABCD中,E、F分别为AB、AD上两点,AE=AF.(1)求证:CE=CF;(2)若∠ECF=60°,∠B=80°,试问BC=CE吗?请说明理由.12.已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)当AB:AD的值为多少时,四边形MENF是正方形?请说明理由.13.如图,在矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD 和CB于点E,F连接AF,CE.(1)求证:OE=OF;(2)求证:四边形AFCE是菱形.14.如图,BD是△ABC的角平分线,过点作DE//BC交AB于点E,DF//AB交BC 于点F.(1)求证:四边形BEDF是菱形;(2)若∠ABC=60°,∠ACB=45°,CD=6,求菱形BEDF的边长.15.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求∠EAG的度数;(3)求BG的长.16.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D在AB边上一点.过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当点D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由.17.如图,在△ABC中,AB=AC,点D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD、EC.(1)求证:△ADC≌△ECD; (2)若BD=CD,求证:四边形ADCE是矩形.18.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.19.在平行四边形ABCD中,点E在AD边上,连接BE、CE,EB平分∠AEC,(1)如图1,判断△BCE的形状,并说明理由;(2)如图2,若∠A=90°,BC=5,AE=1,求线段BE的长.20.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连接DF.(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.参考答案:1.解:证明:如图,连接BD交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AE=CF,∴OA-AE=OC-CF,即OE=OF,∴四边形EBFD是平行四边形.2.(1)证明:∵点D,E分别是BC,AC的中点,∴DE是△ABC的中位线,∴DE∥AB,DE=12 AB,∵AF=12 AB,∴DE=AF,DE∥AF,∴四边形ADEF是平行四边形;(2)解:由(1)得:四边形ADEF是平行四边形,∴EF=AD,∵AB=6,AC=8,BC=10,∴AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∵点D是BC的中点,∴AD=12BC=5,∴EF=AD=5.3.证明:∵四边形ABCD 是平行四边形∴//AE FC ,AO CO =,∴EAC FCA ∠=∠,∵EF 是AC 的垂直平分线,∴EF AC ⊥,在AOE △与COF 中,EAO FCO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA AOE COF ≌△△,∴EO FO =,∴四边形AFCE 为平行四边形,又∵EF AC ⊥,∴四边形AFCE 为菱形.4.解:证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,OA =OC ,∴∠EAO =∠FCO ,在△AEO 和△CFO 中,OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEO ≌△CFO (ASA ),∴OE =OF .5.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD .∴∠ABE =∠CDF .在△ABE 和△CDF 中AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS )∴AE =CF .6.(1)证明:∵四边形ABCD 是矩形,∴OB =OD ,∵AE //CF ,∴∠E =∠F ,∠OBE =∠ODF ,在△BOE 与△DOF 中,E F OBE ODF OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△DOF (AAS );(2)当EF ⊥AC 时,四边形AECF 是菱形. 证明:∵△BOE ≌△DOF ,∴OE =OF ,∵四边形ABCD 是矩形,∴OA =OC ,∴四边形AECF 是平行四边形,∵EF ⊥AC ,∴四边形AECF 是菱形.7.解:(1)证明:∵//BE AC ,//AE BD ,∴四边形AEBO 为平行四边形,又∵四边形ABCD 为菱形,∴BD AC ⊥,∴90AOB ∠=︒,∴平行四边形AEBO 为矩形;(2)∵四边形AEBO 为矩形,∴AB =OE =10,又∵四边形ABCD 为菱形,∴AO =12AC =8,∴90AOB ∠=︒,∴6BO ==,∴BD =2BO =12,∴菱形ABCD 的面积=12121696⨯⨯=.8.(1)在△ABC 中,∵BE 、CD 为中线∴AD =BD ,AE =CE ,∴DE ∥BC 且DE =12BC .在△OBC 中,∵OF =FB ,OG =GC ,∴FG ∥BC 且FG =12BC .∴DE ∥FG(2)由(1)知:DE ∥FG ,DE =FG .∴四边形DFGE 为平行四边形.∴DG 和EF 互相平分9.解:(1)设AP 与BC 交于H ,∵在平行四边形ABCD 中,AD ∥BC ,∴∠AEB=∠CBE,∵AB=AE,∴∠ABE=∠AEB,∴∠ABE=∠CBE,∴BE平分∠ABC,∵CF是∠ACB的角平分线,BE交CF于点P,∴AP平分∠BAC,∵AB=AC,∴AH垂直平分BC,∴PB=PC;(2)∵AH垂直平分BC,∴AH⊥BC,BH=CH=12BC=2,∵∠ABH=45°,∴AH=BH=2,∴平行四边形ABCD的面积=4×2=8.10.证明:(1)∵AC∥DB,∴∠CAO=∠DBO,∵∠AOC=∠BOD,OA=OB,∴△AOC≌△BOD,∴OC=OD;(2)∵E是OC中点,F是OD中点,∴OE=12OC,OF=12OD,∵OC=OD,∴OE=OF,又∵OA=OB,∴四边形AFBE是平行四边形.11.(1)证明:∵ABCD是菱形,∴AB =AD ,BC =CD ,∠B =∠D ,∵AE =AF ,∴AB ﹣AE =AD ﹣AF ,∴BE =DF ,在△BCE 与△DCF 中,∵BE DF B D BC CD =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCF ,∴CE =CF ;(2)结论是:BC =CE .理由如下:∵ABCD 是菱形,∠B =80°,∴∠A =100°,∵AE =AF ,∴180100402AEF AFE ︒-︒∠=∠==︒由(1)知CE =CF ,∠ECF =60°,∴△CEF 是等边三角形,∴∠CEF =60°,∴∠CEB =180°﹣60°﹣40°=80°,∴∠B =∠CEB ,∴BC =CE .12.(1)证明:∵四边形ABCD 是矩形,∴AB =DC ,∠A =∠D =90°,∵M 为AD 中点,∴AM =DM ,在△ABM 和△DCM ,AM DM A D AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△DCM (SAS );(2)解:当AB :AD =1:2时,四边形MENF 是正方形,理由:当四边形MENF 是正方形时,则∠EMF =90°,∵△ABM ≌△DCM ,∴∠AMB =∠DMC =45°,∴△ABM 、△DCM 为等腰直角三角形,∴AM =DM =AB ,∴AD =2AB ,即当AB :AD =1:2时,四边形MENF 是正方形.13.解:(1)∵四边形ABCD 是矩形,∴//AD BC ,∴∠EAO =∠FCO ,∵AC 的中点是O ,∴OA =OC ,在EOA △和FOC 中,AOE COF AO COEAO FCO ∠=∠⎧⎪=⎨⎪∠=∠⎩,()EOA FOC ASA ∴ ≌,∴OE =OF ;(2)∵OE =OF ,AO =CO ,∴四边形AFCE 是平行四边形,∵EF ⊥AC ,∴四边形AFCE 是菱形.14.证明:(1)∵DE ∥BC ,DF ∥AB ,∴四边形DEBF 是平行四边形,∵DE ∥BC ,∴∠EDB =∠DBF ,∵BD平分∠ABC,∠ABC,∴∠ABD=∠DBF=12∴∠ABD=∠EDB,∴DE=BE,又∵四边形BEDF为平行四边形,∴四边形BEDF是菱形;(2)如图,过点D作DH⊥BC于H,∵DF∥AB,∴∠ABC=∠DFC=60°,∵DH⊥BC,∴∠FDH=30°,DF,DH,∴FH=12∵∠C=45°,DH⊥BC,∴∠C=∠HDC=45°,∴DC DH=6,∴DF=,∴菱形BEDF的边长为15.(1)证明;在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt △ABG 和Rt △AFG 中,AG=AG AB=AF ⎧⎨⎩,∴△ABG ≌△AFG (HL );(2)∵△ABG ≌△AFG ,∴∠BAG =∠FAG ,∴∠FAG =12∠BAF ,由折叠的性质可得:∠EAF =∠DAE ,∴∠EAF =12∠DAF ,∴∠EAG =∠EAF +∠FAG =12(∠DAF +∠BAF )=12∠DAB =12×90°=45°;(3)∵E 是CD 的中点,∴DE =CE =12CD =12×6=3,设BG =x ,则CG =6﹣x ,GE =EF +FG =x +3,∵GE 2=CG 2+CE 2∴(x +3)2=(6﹣x )2+32,解得:x =2,∴BG =2.16.(1)证明:∵DE ⊥BC ,∴∠DFB =90°,∵∠ACB =90°,∴∠ACB =∠DFB ,∴AC ∥DE ,∵MN ∥AB ,即CE ∥AD ,∴四边形ADEC 是平行四边形,∴CE =AD ;(2)解:四边形BECD 是菱形,理由是:∵D 为AB 中点,∴AD =BD ,∵CE =AD ,∴BD =CE ,∵BD ∥CE ,∴四边形BECD 是平行四边形,∵∠ACB =90°,D 为AB 中点,∴CD =BD ,∴四边形BECD 是菱形.17.(证明:(1)∵四边形ABDE 是平行四边形(已知),∴AB ∥DE ,AB =DE (平行四边形的对边平行且相等);∴∠B =∠EDC (两直线平行,同位角相等);又∵AB =AC (已知),∴AC =DE (等量代换),∠B =∠ACB (等边对等角),∴∠EDC =∠ACD (等量代换);∵在△ADC 和△ECD 中,AC ED ACD EDC DC CD =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△ECD (SAS );(2)∵四边形ABDE 是平行四边形(已知),∴BD ∥AE ,BD =AE (平行四边形的对边平行且相等),∴AE ∥CD ;又∵BD =CD ,∴AE =CD (等量代换),∴四边形ADCE 是平行四边形(对边平行且相等的四边形是平行四边形);在△ABC 中,AB =AC ,BD =CD ,∴AD ⊥BC (等腰三角形的“三合一”性质),∴∠ADC =90°,∴▱ADCE 是矩形.18.证明:(1)∵BF=DE ,∴BF EF DE EF -=-,即BE=DF ,∵AE ⊥BD ,CF ⊥BD ,∴∠AEB=∠CFD=90°,在Rt △ABE 与Rt △CDF 中,AB CD BE DF =⎧⎨=⎩,∴Rt ABE Rt CDF ∆∆≌(HL );(2)如图,连接AC 交BD 于O ,∵Rt ABE Rt CDF ∆∆≌,∴ABE CDF ∠=∠,∴//D AB C ,∵=D AB C ,∴四边形ABCD 是平行四边形,∴AO CO =.19.证明:∵四边形ABCD 是平行四边形,∴BC ∥AD ,∴∠CBE=∠AEB ,∵EB 平分∠AEC ,∴∠CBE=∠BEC ,∴CB=CE ,∴△CBE 是等腰三角形;(2)如图2中,∵四边形ABCD 是平行四边形,∠A=90°,∴四边形ABCD 是矩形,∴∠A=∠D=90°,BC=AD=5,在Rt △ECD 中,∵∠D=90°,ED=AD-AE=4,EC=BC=5,3AB CD ∴====,在Rt AEB 中,∵∠A=90°,AB=3.AE=1,BE ∴===20.(1)证明:在△ABC 和△ADC 中,AB AD CB CD AC AC =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC(SSS),∴∠BAC=∠DAC ,在△ABF 和△ADF 中,AB AD BAF DAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△ADF(SAS),∴∠AFB=∠AFD ,∵∠CFE=∠AFB ,∴∠AFD=∠CFE ,∴∠BAC=∠DAC ,∠AFD=∠CFE ;(2)证明:∵AB ∥CD ,∴∠BAC=∠ACD ,∵∠BAC=∠DAC ,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)BE⊥CD时,∠BCD=∠EFD;理由如下:∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD=∠EFD.。
人教版初二数学8年级下册 第18章(平行四边形)最值问题专题训练(含答案)
人教版数学八年级下期第十八章平行四边形最值问题训练一、选择题1.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A. 1B. 1C. 2D. 222.如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是( )A. 33B. 3+33C. 6+3D. 633.如图,在矩形ABCD中,AB=3,BC=4,在矩形内部有一动点P满足S△PAB=3S△PDC,则动点P到点A,B两点距离之和PA+PB的最小值为()A. 5B. 35C. 3+32D. 2134.如图,在边长为4的菱形ABCD中,BD=4,E、F分别是AD、CD上的动点(包含端点),且AE+CF=4,连接BE、EF、FB.则EF的最大值与最小值分别为()A. 4,2B. 4,23C. 5,3D. 5,325.如图,点P是正方形ABCD的边AD上的一动点,正方形的边长为4,点P到正方形的两条对角线AC和BD的距离分别为PM,PN,则PM2+PN2的最小值为()A. 2B. 4C. 9D. 126.如图,四边形ABCD是菱形,AB=8,且∠ABC=60°,M为对角线BD(不含B点)BM的最小值为( )上任意一点,则AM+12A. 43B. 33C. 42D. 32二、填空题7.如图,P为菱形ABCD的对角线上一点,PF⊥AD于F,PF=3cm,点E为AB边上一动点,则PE的最小值为______cm.8.如图,在边长为4的菱形ABCD中,∠A=60°,若M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则A′C的最小值为 .9.如图,在菱形ABCD中,∠ABC=60°,AB=8,点M、N分别在边AB、CD上,且AM=2,DN=4,点P、Q分别为BC、AD上的动点,连接PM、PN、PQ,则PM+PN+PQ 的最小值为______.10.如图,长方形ABCD中,AB=6,BC=4,在长方形的内部以CD边为斜边任意作Rt△CDE,连接AE,则线段AE长的最小值是_____.11.如图,在矩形ABCD中,AB=3,AD=10,点E在AD上且DE=2.点G为AE的中点,点P为BC边上的一个动点,F为EP的中点,则GF+EF的最小值为________.12.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为4,则线段DH长度的最小值是____.三、解答题13.如图,在边长为m的菱形ABCD中,∠DAB=60°,E是AD上不同于A,D两点的一动点,F是CD上一动点,且AE+CF=m.(1)证明:无论E,F怎样移动,△BEF总是等边三角形;(2)求△BEF面积的最小值.14.如图,在菱形ABCD中,AB=6,∠ADC=120°,P为对角线AC上的一点,过P作PE∥AB交AD与E,PF∥AD交CD于F,连接BE、BF、EF(1)求AC的长;(2)求证:△BEF为等边三角形;(3)四边形BEPF面积的最小值为______15.如图1,四边形ABCD是矩形,点O位于对角线BD上,将△ADE,△CBF分别沿DE、BF翻折,点A,点C都恰好落在点O处.(1)求证:∠EDO=∠FBO;(2)求证:四边形DEBF是菱形:(3)如图2,若AD=2,点P是线段ED上的动点,求2AP+DP的最小值.16.如图,在矩形ABCD中,AD=2AB,E是边AD的中点,F是边AB上的一个动点,连结EF,过点E作EG⊥EF交BC于点G.(1)求证:EF=GE;(2)若AB=1,则AF+EF+CG的最小值为______.17.如图,正方形ABCD的边长为25,O是BC边的中点,P是正方形内一动点,且OP=2,连接DP,将线段DP绕点D逆时针旋转90°到DQ,连接AP,CQ.(1)直接写出线段AP和CQ的关系.(2)当A,O,P三点共线时,求线段DP的长.(3)连接PQ,求线段PQ的最小值.18.如图,菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图2,若∠EAF=60°,求证:△AEF是等边三角形;(3)在(2)的条件下,如果AB=10,那么△AEF的周长是否存在最小值?如果存在,请求出来.参考答案1.B2.D3.B4.B5.B6.A7.38.27-29.231+4310.211.512.25-213.解:(1)连接BD,∵∠DAB=60°,∴△ABD是等边三角形,∴AB=DB,又∵AE+CF=m,∴AE=DF,在△ABE 和△DBF 中AB =DB ∠A =∠BDF =60°AE =DF,∴△ABE ≌△DBF (SAS ),∴BE =BF ∴∠EBF =∠ABD =60°,∴△BEF 是等边三角形.(2)当BE ⊥AD 时面积最小,此时BE =m 2−(12m )2=32m ,△BEF 的EF 边上的高=(32m )2−(34m )2=34m ,S △BEF =12×32m ×34m =3163m 2.14.解:(1)连接BD ,交AC 于G ,∵菱形ABCD 中,AC 和BD 是对角线,∴BD ⊥AC ,AG =CG =12AC ,∵AB =6,∠ADC =120°,∴∠BAC =∠BCA =30°,在Rt △ABG 中,AG =AB •cos ∠BAC =6×32=33,∴AC =2AG =63;(2)证明:∵在菱形ABCD 中,AB =6,∠ADC =120°,∴∠BAD =∠BCD =60°,∠ABD =∠CBD =∠ADB =∠CDB =60°,∴△ABD 是等边三角形,∴BD =AB =BC =6,∵PE ∥AB ,PF ∥AD ,∴∠CPF =∠CAD ,四边形DEPF 是平行四边形,∴ED =PF ,∵AD =DC ,∴∠CAD =∠ACD ,∴∠CPF =∠ACD ,∴PF =FC ,∴ED =FC ,在△BED 和△BFC 中ED =FC ∠EDB =∠FCB =60°BD =BC∴△BED ≌△BFC (SAS ),∴BE =BF ,∠EBD =∠FBC ,∵∠FBC +∠FBD =∠CBD =60°,∴∠EBD +∠FBD =∠EBF =60°,∴△BEF 是等边三角形;(3)93215.(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠ADB =∠CBD ,∵将△ADE ,△CBF 分别沿DE 、BF 翻折,点A ,点C 都恰好落在点O 处.∴△ADE ≌△ODE ,∴△CFB ≌△OFB ,∴∠ADE =∠ODE =12∠ADB ,∠CBF =∠OBF =12∠CBD ,∴∠EDO =∠FBO ;(2)证明:∵∠EDO =∠FBO ,∴DE ∥BF ,∵四边形ABCD 是矩形,∴AB ∥CD ,AD =BC ,∠A =90°,∵DE ∥BF ,AB ∥CD ,∴四边形DEBF 是平行四边形,又∵△ADE △≌△ODE ,∴∠A =∠DOE =90°,∴EF ⊥BD ,∴四边形DEBF 是菱形;(3)解:过点P 作PH ⊥AD 于点H ,∵四边形DEBF是菱形,△ADE≌△ODE,∴∠ADE=∠ODE=∠ODF=30°,∴在Rt△DPH中,2PH=PD,∴2AP+PD=2PA+2PH=2(AP+PH),过点O作OM⊥AD,与DE的交点即是2AP+PD的值最小的点P的位置.而此时(2AP+PD)的最小值=2OM,∵△ADE≌△ODE,AD=2,∴AD=DO=2,在Rt△OMD中,∵∠ODA=2∠ADE=60°,∴∠DOM=30°,∴DM=12DO=1,∵DM2+OM2=DO2,∴12+OM2=22,∴OM=3,∴(2PA+PD)的最小值为2OM=23.16.217.解:(1)AP=CQ,AP⊥CQ;理由如下:延长QC、AP交于点E,AP的延长线交BC于F,如图1所示:∵四边形ABCD是正方形,∴AD=CD,∠ADC=∠BCD=90°,AD∥BC,由旋转的性质得:∠PDQ=90°,DP=DQ,∴∠ADP=∠CDQ,在△ADP和△CDQ中,AD=CD∠ADP=∠CDQDP=DQ,∴△ADP≌△CDQ(SAS),∴AP=CQ,∠DAP=∠DCQ,∵∠BCD=90°,∴∠DCQ+∠ECF=90°,∵AD∥BC,∴∠DAP=∠CFE,∴∠CFE+∠ECF=90°,∴∠CEF=90°,∴AE⊥QE,∴AP⊥CQ;(2)作DH⊥AP于H,如图2所示:∵O是BC边的中点,∴OB=12BC=5,当A,O,P三点共线时,由勾股定理得:AO=AB2+OB2=(25)2+(5)2=5,∵四边形ABCD是正方形,∴∠B=90°,AD∥BC,∴∠DAH=∠BOA,∴sin∠DAH=sin∠BOA=ABAO =255,cos∠DAH=cos∠BOA=OBAO=55,∴DH=AD×sin∠DAH=25×255=4,AH=AD×cos∠DAH=25×55=2,∴PH=AO-AH-OP=5-2-2=1,∴DP=42+12=17;(3)连接OD,如图3所示:∵DQ=DP,∠PDQ=90°,∴PQ=2DP,OD=DC2+OC2=(25)2+(5)2=5,∵OP+DP≥OD,∴DP≥OD-OP=5-2=3,∴PQ≥32,∴线段PQ的最小值为32.18.证明:(1)如图1,连接AC,∵在菱形ABCD中,∠B=60°,∴AB=BC=CD,∠C=180°-∠B=120°,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC,∵∠AEF=60°,∴∠FEC=90°-∠AEF=30°,∴∠CFE=180°-∠FEC-∠ECF=180°-30°-120°=30°,∴∠FEC=∠CFE,∴EC=CF,∴BE=DF;(2)如图2,连接AC,∵△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠B=∠ACF=60°,∵AD∥BC,∴∠AEB=∠EAD=∠EAF+∠FAD=60°+∠FAD,∠AFC=∠D+∠FAD=60°+∠FAD,∴∠AEB=∠AFC,在△ABE和△ACF中,∠B=∠ACF∠AEB=∠AFC,AB=AC∴△ABE≌△ACF(AAS),∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形.(3)由垂线段最短可知:当AE⊥BC时,AE有最小值.∵AE⊥BC,∠B=60°,∴AE AB =32.∴AE=10×32=53.∴△AEF周长的最小值为3×53=153.。
专题训练(三)-平行四边形的性质与判定的综合应用讲解学习
四清导航
四清导航
解 : ∵ 四 边 形 ABCD 是 平 行 四 边 形 . ∴AD∥BC,又∵AE=CF,∴四边形AFCE是 平行四边形.∴AF∥EC.同理:BE∥FD.∴四 边形MFNE是平行四边形.
解:∵EB=ED,∴∠EDB=∠ABC.∵AB=AC, ∴∠ABC=∠ACB.∴∠EDB=∠ACB.∴EF∥AC.又 ∵ EF = AB , AB = AC , ∴EF = AC.∴ 四 边 形 EFCA是平行四边形.∴∠F=∠A.
(2)过 P 点,作 PE⊥BC 于 E,DF⊥BC 于 F,∴DF=AB=8,FC=BC-AD=18-12=6.① 当 PQ⊥BC,则 BE+CE=18.即:2t+t=18,∴t=6;②当 QP⊥PC,∴PE=4,CE=3+t, QE=12-2t-(3+t)=9-3t,∴16=(3+t)(9-3t),解得:t= 33;③情形:当 CP⊥BC 时,
3 因∠DCB<90°,此种情形不存在.∴当 t=3 或 33时,△PQC 是直角三角形.
3
四清导航
四清导航
解:(1)以①②作为条件构成的命题是真命题,证明:∵AB∥CD,∴∠OAB=∠OCD,在
ቤተ መጻሕፍቲ ባይዱ
∠OAB=∠OCD
△AOB 和△COD 中,AO=CO
,∴△AOB≌△COD,∴OB=OD,∴四边形 ABCD
四清导航
四清导航
解:(1)GF⊥EF,GF=EF (2)GF⊥EF,GF=EF 成立;理由:∵四边形 ABCD 是平行 四边形,∴AB=CD,∠DAB+∠ADC=180°,∵△ABE,△CDG,△ADF 都是等腰直角 三角形,∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45°,∴∠BAE+ ∠DAF+∠EAF+∠ADF+∠FDC=180°,∴∠EAF+∠CDF=45°,∵∠CDF+∠GDF
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B A D
C E O
B
A D C 平行四边形专题训练
一、选择题:
1.在平行四边形ABCD 中,∠A :∠B=7:2,则∠C 等于( ) A.40° B.80° C.120° D.140°
2.若从等腰三角形底边上的任意一点作两腰的平行线, 则所成的平行四边形的周长等
于这个等腰三角形的( )
3.如图所示,四边形ABCD 是CEFG 均为平行四边形,则下列错误的等式是( )
A.∠1+∠8=180°
B.∠4+∠6=180°;
C.∠2+∠8=180°
D.∠1+∠5=180°
8
76
5
132
4
G
B
A
D
F
C E O
B
A
D
F C
E
G H
B
A M D
F C
E
(第3题) (第4题) (第7题)
4.如图所示,在ABCD 中,EF 过对角线AC,BD 的交点O,若AB=4,AD=3,OF=1.3,那么,四
边形BCEF 的周长为( )
A.8.3
B.9.6
C.12.6
D.13.6
5.以不共线三点A,B,C 为顶点的平行四边形共有( ) A.1 B.2 C.3 D.无数个
6.平行四边形的一条对角线和一边垂直,且邻边之比是1:2, 那么平行四边形相邻内角
之比是( ) A.1:1 B.1:2 C.1:3 D.1:4
7.如图所示,在ABCD 中,EF ∥BC,GH ∥AB,EF,GH 的交点M
在对角线BD 上,则图中面积相等的两个平行四边形是( ) A. GMFD 和GMEA; B.AEMG 和FMHC; C.AEMG 和EBHM; D.GMFD 和FMHC 8.如图所示,在ABCD 中,E 是BC 边上的三分之一点,则ABE S :ABCD
S
的值为( )
A.
12 B.14 C.16 D.18
二、填空题:
1.若平行四边形的周长为16厘米,且两邻边长度相等,
若高为2厘米,则这个四边形最大内角的度数是_________.
2.如图5所示,平行四边形ABCD 的周长为60厘米,对角线相交于点O,△BOC 的周长比△
AOB 的周长小8厘米,则AB,BC 的长分别为______厘米. 三、创新题:
1.如图所示,试用几种方法将平行四边形ABCD 分成面积相等的两部分,并用文字说明你
的设计方法,并讲述其道理.
(1)
(2)
(3)(4)
2.用九个全等的等边三角形,按图拼成一个几何图案,从该图案中可找出多少个平行四
边形
?
3.如图所示,BC 为固定的木条,AB,AC 为可伸缩的橡皮筋,当A 点在与BC 平行的轨道上滑
动时,你能说明△ABC 的面积将如何变化呢?
B
A C
四、竞赛题: 如图所示,设P 为
ABCD 内一点,过点P 分别作AB,AD 的平行
线交平行四边形的四边于E,F,G,H 四点,若AHPE
S =3,
PFCG
S
=5,则PBD S =_______.
五、中考题:
1.(2002,云南)如图所示,已知平行四边形ABCD 的周长为56cm,AB=12cm,则AD 的长为()
A.14cm;
B.16cm;
C.18cm;
D.20cm
B A D
C B
A D C
E
2.(2002,浙江)如图所示,在平行四边形ABCD 中,若DB=CD,∠C=70°,AE ⊥BD 于E,则∠
DAE=_______.
3.(2002.浙江)如图所示,在ABCD 中,E,F 分别AB,CD 上的点,且AE=CF,试说明DE=BF.
B
A
D F C
E
4.(2002.四川)如图所示,已知在四边形ABCD 中,AB=CD,AD=BC,点E 在BC 上,点F 在AD
上,AF=CE,EF 与对角线BD 相交于点O,试说明O 是BD 的中点.
B
A
D
F C
E O
答案:
一、1.D 2.C 3.A 4.B 5.C 6.B 7.B
8.C[提示:因为AD ∥BC,则平行线间距离相等,
S △ABE =
1
2
BE ×高, ABCD
S = BC ×高=3BE ×高, ∴
1
1236
ABE ABCD
BE S S BE ⨯==⨯高
高]
二、1.150° 2.19cm,11cm[提示:在ABCD 中,因为AB=CD,BC=AD,所以2(AB+ BC)=60,即AB+BC=30,①因为平行四边形的对角线互相平分,所以AO=CO,BO=DO, 所以△AOB 的周长-△BOC 的周长=(AB+OB+OC)-(BC+OB+OC)=AB+OB+OA-BC-OB-OC=AB-BC=8 ②由①②可得AB=19cm ,BC=11cm.] 三、
1.如图所示,
过平行四边形的中心任意一条直线都能将平行四边形的面积平分,由平行四边形是中心对称图形可得此法
.
2.共有平行四边形15个.
3.提示:△ABC 的面积不发生变化,因为S △ABC =
1
2
BC ×高,且因为BC 不变,BC 与L 平行,平行线间距离不变,即高不变,所以面积的值不变.
四、提示:平行四边形ABCD 的面积等于四个小平行四边形的面积之和.△PBD 的面积可转
化为111
2
2
2
EPGD
PHBF
GPFC ABCD
S
S S
S ⎛⎫+- ⎪⎝⎭ 来计算.
解:设EPGD
S =m, HBFP
S
=n, 则11,,22
PDG BPF S m S n ∆∆=
= ∴ 358ABCD
S
m n m n =+++=++,
∴111
()5(8)1222
PBD DPG PBF PFCG
DBC S S S S
S m n m n ∆∆∆∆⎛⎫=++-=++-++= ⎪⎝⎭
五、1.B 2.20°
3.解:在ABCD 中,因为AB ∥CD,AB=CD,又因为AE=CF,所以AB-AE=CD-CF,即BE= DF,
所以BE ∥DF,BE=DF.所以四边形DEBF 是平行四边形,所以DE=BF.
4.提示:本题是考查平行四边形的性质与识别方法的综合题,要使O 是BD 的中点,应根
据已知条件和图形特征,先判定四边形BEDF 为平行四边形.
解:连结BF,DE,因为AB=CD,AD=BC,所以四边形ABCD 是平行四边形,所以AD ∥BC, 又
因为AD=BC,AF=CE,所以DF=BE,即DF ∥BE,DF=BE,所以四边形BEDF 是平行四边形.由平行四边形对角线互相平分,得BO=DO,OF=OE,所以O 是BD 的中点.。