食品分离技术论文
黄秋葵功能成分提取技术的研究进展论文(5篇范文)
黄秋葵功能成分提取技术的研究进展论文(5篇范文)第一篇:黄秋葵功能成分提取技术的研究进展论文摘要:黄秋葵是一种富含蛋白质,维生素,黄酮及碳水化合物等营养与功能成分的绿色新型保健蔬菜,具有极高的食用和药用价值。
本文综述了黄秋葵功能成分物质的提取方法与技术,为其综合开发利用提供科学基础。
关键词:黄秋葵;功能成分;提取;研究进展黄秋葵(Abelmoschus esculentus),俗名羊角豆、咖啡秋葵、毛茄、补肾果等,为锦葵科、秋葵属一年生草本植物,性喜温暖,原产于非洲,素有蔬菜王之称,其嫩荚富含果胶及多糖组成的粘性物质,其茎、叶、芽、花、种子富含蛋白质、维生素及矿物盐等活性成分物质,具有极高的营养食用价值和经济价值,而且还能作为一种园林绿化观赏植物,因此,近几年在国内越来越受欢迎[1]。
由于黄秋葵功能活性成分具有极大的应用价值,笔者就提取其多糖、果胶和黄酮等功能成分的方法与技术进行综述,旨在为黄秋葵功能性成分的开发与利用奠定基础。
黄秋葵功能成分作用黄秋葵多糖可作为营养强化剂、增稠剂、悬浮剂和澄清助剂,具有增强体质和抗疲劳等保健作用[2]。
其果胶能促进机体内有机物的排泄,减少体内毒素,还能降低体内的胆固醇含量;果胶和多糖等组成的粘性物质,对人体具有促进胃肠蠕动、防止便秘等保健作用,适当多食可增强性功能,还可以增强人体的耐力;另外黄秋葵低脂、低糖,可以作为减肥食品[3-4]。
由于其含锌和硒等微量元素,可增强人体防癌抗癌能力;且含有较多维生素A能有效保护视网膜,确保良好的视力,能防止白内障的产生。
黄秋葵中富含维生素C,可预防心血管疾病,能提高机体免疫力,而且维生素C和可溶性纤维(果胶)结合,有利于皮肤的保健,可以代替一些化学护肤用品[5-7]。
植物多酚具有抗氧化、抑制酶活性、抗致突变、抑菌、消炎和降血压等多种生物活性[8]。
生物类黄酮是一种具有较强清除自由基和抗氧化能力的物质,其抗氧化作用甚至比维生素C、维生素E还要高,还具有降脂、抗心血管疾病、抗骨质疏松和防癌抗癌等作用,可在医药、化妆品、食品方面广泛应用[9]。
吡啶和水共沸精馏毕业论文
吡啶和水共沸精馏毕业论文吡啶和水共沸精馏是一种常见的分离技术,适用于分离吡啶和水混合物。
本文主要介绍了吡啶和水共沸精馏的原理、实验方法、操作步骤以及一些实验结果等内容。
希望对读者有所帮助。
第一部分:引言吡啶是一种常用的有机溶剂,在化学实验中广泛使用。
而水是一种常见的溶剂,在许多反应和实验中也必不可少。
然而,吡啶和水在常温下不易分离,因此需要采用其他方法进行分离。
吡啶和水共沸精馏就是一种常用的分离技术。
第二部分:原理吡啶和水共沸精馏是利用吡啶和水的共沸现象进行分离的。
共沸是指两种或多种具有不同沸点的物质在一定条件下,混合后呈现出单一沸点的现象。
在吡啶和水混合物中,吡啶和水的沸点很接近,因此在共沸沸点附近可以进行精馏分离。
第三部分:实验方法1.实验仪器和试剂:实验仪器包括酒精灯、蒸馏装置、烧杯等;试剂包括吡啶和水等。
2.操作步骤:(1)将吡啶和水混合物倒入烧杯中,并加热至沸腾;(2)通过烧杯上的出气孔,将混合物的蒸汽引入蒸馏装置中;(3)在蒸馏装置中进行精馏,收集吡啶和水的分馏液;(4)重复操作,直至蒸馏液的主要成分为吡啶或水。
3.实验注意事项:(1)操作时应注意安全,避免火灾和烫伤等危险;(2)加热时要适度,避免过热和溢出;(3)实验完成后要及时清理和处理实验废弃物。
第四部分:实验结果经过吡啶和水共沸精馏,我们得到了吡啶和水的分馏液。
根据实验结果,我们可以判断吡啶和水在共沸点附近进行了有效分离。
第五部分:结论吡啶和水共沸精馏是一种有效的分离技术,可以用于分离吡啶和水混合物。
该方法操作简单,成本低廉,适用于实验室和工业生产等不同场景。
通过本实验的研究,可以更好地理解吡啶和水的共沸现象,并为实际应用提供一定的参考。
总结:吡啶和水共沸精馏是一种常用的分离技术,可以用于分离吡啶和水混合物。
本文介绍了吡啶和水共沸精馏的原理、实验方法、操作步骤以及一些实验结果等内容。
通过这些内容的学习,我们能更好地理解并应用这种分离技术。
大豆分离蛋白(SPI)分离提取工艺及其优化条件的探究
燕山大学课程设计说明书大豆分离蛋白(SPI)分离提取工艺及其优化条件的探究学院(系):环境与化学工程学院年级专业:08级生物化工学号:燕山大学课程设计(论文)任务书院(系):环境与化学工程学院基层教学单位:生物工程系说明:学生、指导教师、基层教学单位各一份。
2011年 6月 27 日2010-2011 春季学期生物工程专业课程设计结题论文大豆分离蛋白(SPI)分离提取工艺及其优化条件的探究摘要本设计拟定以低温脱脂豆粕为原料,以改良的碱提酸沉新工艺对大豆分离蛋白(SPI)进行分离提取,并对其工艺的优化条件进行探究。
设计实验主要分为三个部分来探究SPI 分离提取工艺及其优化条件:单因素实验确定SPI 提取工艺参数范围的设计;正交实验确定SPI 提取工艺优化条件的设计;最佳SPI 提取工艺优化参数下应用碱提新工艺的设计。
第一部分设计单因素实验分别探究SPI 提取工艺参数(料液比、提取温度、提取时间、酸碱度)范围,为进一步工艺最优条件探究奠定基础;第二部分设计在确定SPI 提取工艺参数基础上,借助正交实验进一步确定其优化条件;第三部分在前两部分基础上,将其最优工艺参数条件应用于改良的SPI 提取新工艺中,以最大化提高蛋白质提取率。
通过本次课程设计,拟确定改良的碱提酸沉新工艺进行SPI 提取的优化条件,以获得较高蛋白质提取率及各项指标的数据范围,进一步扩宽SPI 的应用范围,为蛋白质提取在本专科实验教学中的应用提供参考依据,并为今后某些物质的分离提取工艺研究奠定技术基础。
关键词:大豆分离蛋白;碱提酸沉法;分离提取;工艺条件优化目录第一部分:文献综述1.大豆分离蛋白概况背景 (1)1.1 大豆产物简介 (1)1.2 大豆分离蛋白(SPI)概述 (1)1.3大豆分离蛋白功能特性 (2)1.3.1乳化性 (2)1.3.2水合性 (2)1.3.2.1吸水性 (2)1.3.2.2保水性 (3)1.3.2.3膨胀性 (3)1.3.3吸油性 (3)1.3.4胶凝性(又称凝胶性) (4)1.3.5溶解性 (4)1.3.6起泡性 (4)1.3.7粘性 (5)1.3.8结团性 (5)1.3.9组织性 (5)2. 大豆分离蛋白应用前景 (5)2.1 在乳制品中的应用 (6)2.2 在面制品中的应用 (6)2.2.1面条和挂面 (7)2.2.2培烤食品 (7)2.2.3方便面 (7)2.3 在肉制品中的应用 (7)2.4 在其他食品中的应用 (8)2.4.1饮料生产 (8)2.4.2作为发泡剂 (8)2.4.3罐头食品 (8)3.大豆分离蛋白提取工艺方法 (8)3.1 酸沉碱提法 (9)3.2 超过滤法 (9)3.3反胶束萃取分离法 (9)3.4离子交换法 (10)I燕山大学课程设计说明书3.5起泡法 (10)3.6反相高效液相色谱法 (10)4.我国分离提取大豆分离蛋白(SPI)发展现状 (11)4.1大豆分离蛋白的发展现状 (11)4.2我国大豆分离蛋白生产水平与国外先进水平的差距 (13)4.2.1对大豆原料加工处理不重视 (13)4.2.2产品的功能差 (14)4.2.3综合效益差 (14)5. 总结——本设计的研究宗旨以及意义 (14)第二部分:课程设计部分1. 材料 (16)1.1 实验原料 (16)1.2 实验器材 (17)1.3 实验试剂 (17)2.方法 (17)2.1传统碱提酸沉法 (17)2.1.1原料处理 (17)2.1.2溶解萃取 (18)2.1.3 酸沉淀 (18)2.1.4干燥测定分析 (18)2.2优化改良的碱提酸沉新工艺 (19)2.2.1豆粕浸取处理 (19)2.2.2三次碱提萃取 (19)2.2.3酸沉淀 (19)2.2.4干燥测定分析 (20)3.设计 (20)3.1单因素实验确定SPI提取工艺参数范围的设计 (20)3.1.1提取时间对SPI 二次碱提效果的影响 (20)3.1.2提取pH对SPI二次碱提效果的影响 (20)3.1.3提取温度对SPI 二次碱提效果的影响 (21)3.2正交实验确定SPI提取工艺优化条件的设计 (21)3.3最佳SPI提取工艺优化参数下应用碱提新工艺的设计 (20)4.分析与总结 (22)4.1 分析展望 (22)4.2 总结体会 (24)参考文献 (26)Ⅱ燕山大学课程设计说明书第一部分文献综述1.大豆分离蛋白概况背景大豆的蛋白含量较高而且营养丰富,一般含蛋白30~50 %。
食品加工专业毕业论文
毕业论文题目食品加工新技术在食品中的应用学号班级专业食品加工技术系别作者姓名完成时间2011.5.10指导教师职称食品加工新技术在食品中的应用摘要跨入新世纪,越来越多的高新技术应用于食品加工领域。
食品加工业也呈现出前所未有的繁荣景象,这与新的技术革命密切相关。
本文介绍了在食品加工领域日益扩大应用的现代食品分离技术、微波处理技术、膨化技术、超高温瞬时杀菌技术、包装新技术、软胶囊和微胶囊化技术、高压加工技术、辐射技术、纳米技术、食品生物技术、电磁技术和真空技术。
以便理解食品工业与高新技术唇齿相依的关系。
关键词:高新技术;食品加工一、各种新技术对食品工业的推动作用民以食为天,食物是千百年来人们赖以生存的物质基础之一。
在任何历史阶段,在任何管家,食物始终是重要的战略物资。
二十世纪中后期以来的科学技术革命对食品加工行业也产生了深远的影响。
越来越多的新技术新方法应用于食品加工业,尤其是多种技术的综合运用,对食品行业的发展起了巨大的推动作用。
综观影响和应用于食品加工的新技术有以下几个方面:二、简介各种新技术(一)现代食品分离技术1.膜分离膜分离技术主要为电渗析、精虑,超滤和反渗透,是在常温下以膜两侧的压力差或电位差为动力对溶质和溶剂进行分离、浓缩、纯化等的操作过程。
膜技术在脱盐、饮用水净化等领域已取得了成功。
目前我国研究比较多的是微波、超滤、反渗透在饮料方面的应用。
在发达国家,膜技术已用于食用色素的精制、调味液精制、脱色处理、牛奶浓缩杀菌及香气成分回收等。
2.超临界萃取技术在食品工业领域,超临界流体萃取技术作为一种安全、卫生、高品质、高效率、节省能源的食品加工方法,越来越受到人们的重视。
目前,超临界二氧化碳在食品工业中的应用虽然仅有20~30年的历史,但发展十分迅速。
迄今为止,在食品工业中的应用研究主要集中在如下4个方面:(1)提取风味物质,如香心料、呈味物质的提取等。
(2)食品中某些特定成分的提取额或脱除,如从可可豆、大豆、咖啡豆、棕榈籽、向日葵中提取植物油脂,从鱼油和肝油中提取高营养价值和药物价值的不饱和脂肪酸,从油炸食品中脱除脂肪,从乳脂中脱除胆固醇等。
本科毕业论文:大豆分离蛋白
大豆分离蛋白/羧甲基纤维素共混包装薄膜的制备与性能研究包装工程05-1班张欢指导教师:苏峻峰内容摘要:以羧甲基纤维素(CMC)和大豆蛋白(SPI)为原料,通过加入甘油采用共混的方法制备薄膜。
羧甲基纤维素对共混薄膜的结构、热稳定性和机械强度都有一定的系统改进。
通过红外光谱分析(FTIR),可知:CMC和SPI发生美拉德反应,CMC中的-OH基团和SPI中的氨基团在升温成键过程中被消耗了,生成C=N键;通过XRD测试,可验证美拉德反应,随着CMC和甘油的增加会对SPI的结晶结构和结晶度构成破坏;通过机械性能测试,可知:无甘油时,CMC/SPI共混薄膜随CMC添加量的增加,薄膜的屈服应力和断裂应力相应增加,这是由于分子间交联的结果,且加入甘油后共混膜会变得更加柔软,机械力学性能增强;通过热失重(TGA),可知:混合膜的热稳定性均比纯SPI粉末要高且随着CMC添加比例的升高,混合膜的热稳定性提高。
结果证明,大豆蛋白共混羧甲基纤维素可以改善和提高膜的结构和性能。
关键词:羧甲基纤维素;大豆蛋白;美拉德反应;共混1 导言食品包装,是食品科技领域的一个重要学科,主要是保存和保护所有类型的食品和它们的原材料免受氧化和微生物的腐蚀。
来自于石油化学制品的塑料(如聚烯烃、聚酯、聚胺等),由于其大量存在,价格便宜,具有良好的功能性,如良好的柔韧性、抗拉强度、隔绝氧气和芳香化合物的特性、热稳定性以及水蒸气转移速率低等特性,越来越多地被用作包装材料[1]。
然而,它们不能被生物降解,这样会导致环境污染,从而引发严重的生态问题。
因而它们以何种形式使用会受到严格地限制,甚至逐渐会被淘汰。
1994年我国有关部门的统计表明,北京市每年塑料废弃物达3.6万吨以上,而上海市的塑料垃圾量远大于3.6万吨[2,3]。
非降解塑料垃圾造成的环境污染己经成为全球性的问题[4]。
针对塑料废弃物,除加强回收利用外,我国的一些地区和城市,针对塑料包装袋和一次性餐具等非降解制品造成的污染问题,正在建立限用或禁用非降解性塑料制品的法律和法规[5, 6]。
气相色谱论文 (2)
气相色谱论文 (2)题目:气相色谱技术在食品安全检测中的应用研究摘要:本文介绍了气相色谱技术在食品安全检测中的应用研究。
气相色谱技术是一种优秀的分离和检测技术,可以用于食品中有害物质的检测,如农药、食品添加剂和毒素等。
本文详细介绍了气相色谱的原理、仪器和方法,并且结合实际案例,探讨了气相色谱的应用研究。
关键词:气相色谱;食品安全检测;分离;检测;农药;食品添加剂;毒素.Abstract:This paper introduces the application of gas chromatography technology in food safety detection. Gas chromatography technology is an excellent separation and detection technology, which can be used for the detection of harmful substances in food, such as pesticides, food additives and toxins. This paper introduces the principle, instrument and method of gas chromatography in detail, and based on actual cases, discusses the application of gas chromatography.Keywords: gas chromatography; food safety detection; separation; detection; pesticide; food additives; toxins.。
膜分离论文
膜分离技术摘要:膜分离技术是指在分子水平上不同粒径分子的混合物在通过半透膜时,实现选择性分离的技术,半透膜又称分离膜或滤膜,膜壁布满小孔,根据孔径大小可以分为:微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)、反渗透膜(RO)等,膜分离都采用错流过滤方式。
它具有许多工艺优点,并且有着广泛的应用领域。
膜分离的基本工艺原理较为简单。
关键字:膜分离技术半透膜滤膜过滤正文:膜分离是在20世纪初出现,20世纪60年代后迅速崛起的一门分离新技术。
膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。
膜是具有选择性分离功能的材料。
利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。
它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。
膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要还只有微滤级别的膜,主要是陶瓷膜和金属膜。
有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。
膜分离的基本工艺原理是较为简单的。
在过滤过程中料液通过泵的加压,料液以一定流速沿着滤膜的表面流过,大于膜截留分子量的物质分子不透过膜流回料罐,小于膜截留分子量的物质或分子透过膜,形成透析液。
故膜系统都有两个出口,一是回流液(浓缩液)出口,另一是透析液出口。
在单位时间(Hr)单位膜面积(m2)透析液流出的量(L)称为膜通量(LMH),即过滤速度。
影响膜通量的因素有:温度、压力、固含量(TDS)、离子浓度、黏度等。
由于膜分离过程是一种纯物理过程,具有无相变化,节能、体积小、可拆分等特点,使膜广泛应用在发酵、制药、植物提取、化工、水处理工艺过程及环保行业中。
生物分离工程论文
超临界萃取技术(分离工程)姜浩化工1010 1001011010摘要:超临界流体萃取(SFE)技术开辟了分离工业的新领域,是一种新型的分离技术。
本文对超临界萃取的基本原理进行了阐述,介绍了超临界萃取的特点及其在天然香料工业、食品和天然中草药等方面的应用和研究进展,并对今后的发展趋势进行了展望。
关键词:超临界萃取应用展望Abstract: Supercritical fluid extraction is a new kind of separation technology. This paper reviewed about its characteristic and the development of application in natural perfume, food, natural herbal medicine and other fields, and prospect of its development in the future Keywords: Supercritical fluid extraction Application Advance超临界萃取技术也叫做超临界流体萃取技术。
超临界流体(Supercritical Fluid) 是指处于超过物质本身的临界温度和临界压力状态的流体。
这种状态下的流体具有与气体相当的高渗透能力和低粘度,又兼有与液体相近的密度和对物质优良的溶解能力[1]。
超临界流体萃取技术(Supercritical Fluid Extraction简称SEE) 以超临界状态下的流体作为溶剂,利用该状态下流体所具有的y 渗透能力和y 溶解能力萃取分离混合物的过程超临界流体的溶解能力随体系参数(温度和压力)而发生连续性变化,因而通过改变操作条件,稍微提y温度或降低压力,便可方便地调节组分的溶解度和萃取的选择性超临界溶剂包括CO2,NO2,SO2,N2低链烃等,而CO2 是最常用的超临界萃取介质,这是因为它的临界温度(31. 1) 接近室温,临界压力(7. 3AmPa) 较低,萃取可以在接近室温下进行,对热敏性食品原料、生理活性物质、酶及蛋自质等无破坏作用,同时又安全、无毒、无臭,因而广泛应用于食品、医药、化妆品等领域中;具有广泛的适应性。
超临界萃取在食品中的应用--食品高新技术结课论文
摘要:综述了超临界萃取技术的原理、特点及其在食品中的研究进展,并介绍了超临界萃取技术在天然香料、色素的生产、油脂的提取分离、食品中功能成分的提取等方面的应用,并对今后的发展趋势作了预测。
关键词:超临界萃取食品工业应用超临界流体萃取(Supercritical fluid extraction,简写SCFE)是一种较新型的萃取分离技术,其起源于20世纪40年代,20世纪70年代投入工业应用,并取得成功。
过去,分离天然的有机成分一直沿用水蒸汽蒸馏法、压榨法、有机溶剂萃取法等。
水蒸汽蒸馏法需要将原料加热,不适用于化学性质不稳定成分的提取;压榨法得率低;有机溶剂萃取法在去除溶剂时会造成产品质量下降或有机溶剂残留;超临界流体萃取法则有效地克服了传统分离方法的不足,他利用在临界温度以上的高压气体作为溶剂,分离、萃取、精制有机成分。
1 超临界萃取技术的基本原理超临界流体(Supercritical Fluid,简写为SCF),是超过临界温度(Tc)和临界压力(Pc)的非凝缩性的高密度流体。
超临界流体没有明显的气液分界面,既不是气体,也不是液体,是一种气液不分的状态,性质介于气体和液体之间,具有优异的溶剂性质,粘度低,密度大,有较好的流动、传质、传热和溶解性能。
流体处于超临界状态时,其密度接近于液体密度,并且随流体压力和温度的改变发生十分明显的变化,而溶质在超临界流体中的溶解度随超临界流体密度的增大而增大。
超临界流体萃敢正是利用这种性质,在较高压力下,将溶质溶解于流体中,然后降低流体溶液的压力或升高流体溶液的温度,使溶解于超临界流体中的溶质因其密度下降溶解度降低而析出,从而实现特定溶质的萃取。
2超临界萃取技术的实验流程示意图放出C02↑冷却水→C02→低温浴槽→高压泵→预热器→萃取器→分离器→产品3超临界萃取技术的流体材料已研究过的萃取剂有多种,如:乙烯、乙烷、正戊烷、一氧化亚氮、二氧化碳、六氟化硫、甲醇、乙醇、丁醇、氨和水等。
离心机的原理及应用论文
离心机的原理及应用1. 离心机的原理离心机是一种利用离心力的原理,将物质从混合物中分离的设备。
其工作原理基于物质在旋转过程中受到离心力的作用,使得重物质向外移动,轻物质向内移动,从而实现分离的目的。
离心机的主要构成部分包括轴、转子、离心力加速度计、电机等。
当离心机启动时,电机带动转子高速旋转,使混合物中的物质受到离心力的作用,进而产生分离效果。
离心机的离心力是根据以下公式计算的:离心力(Fc)= m × ω² × r其中,m为物质的质量,ω为转子角速度,r为物质与转轴的距离。
离心机通常通过调整转速和时间,以及调整离心力的大小,来实现不同混合物的分离效果。
2. 离心机的应用离心机作为一种分离设备,广泛应用于各个领域,包括生物医药、化工、食品、环保等。
以下是离心机在不同领域的应用简介:2.1 生物医药领域离心机在生物医药领域中被用于分离和纯化蛋白质、细胞、病毒等生物材料。
通过调整离心机的参数,可以实现不同密度和分子量的生物材料的分离和纯化,为生物医药研究提供重要的实验基础。
2.2 化工领域离心机在化工领域中被用于固液分离、悬浮液分离、液液分离等工艺过程。
通过离心机的作用,可以有效地分离固体颗粒或悬浮液中的杂质,提高产品的纯度和质量,并减少后续处理工序。
2.3 食品领域离心机在食品领域中常用于乳制品和果汁的脱脂、酒精浓缩、啤酒酵母分离等工艺。
通过离心机的分离效果,可以提高食品加工的效率和产品质量。
2.4 环保领域离心机在环保领域中被用于污水处理、固体废弃物处理等工艺过程。
通过离心机的分离作用,可以实现污水中的沉淀物、固体废弃物的分离和回收利用,提高环境保护的效果。
3. 离心机的优势和发展趋势离心机作为一种重要的分离设备,具有以下优势:•分离效果好:离心机根据离心力的作用,可以实现高效、精确的分离效果。
•操作简单:离心机的操作相对简单,只需调整一些参数,就可以实现不同物质的分离。
食品分析论文
食品分析论文食品分析综合报告(附瘦肉精的几种检测方法)姓名:吴启学号:0902062010 班级:09食品(2)班系别:生物系食品专业摘要:食品分析是关系食品质量和销售的一个重要环节, 是食品科学的一个重要组成成分, 但是我国在这方面的研究还不够深入, 很多方面离开国际水平尚有一定的距离。
食品分析作为食品科学和食品加工业中一个不可缺少的组成部分, 为食品科学的发展和食品加工业的进步起了突出的作用。
未来的食品分析绝不会是现在意义上的只测定食品中的水分、灰分、酸度、总蛋白质和纤维素等一些粗糙的常规指标。
瘦肉精又称盐酸克伦特罗,是一种白色或类白色的结晶粉末,猪食用后在代谢过程中能够促进蛋白质合成,加速脂肪的转化和分解,提高猪肉的瘦肉率。
关键词:分析、检验、色谱、化学、指标正文:近年来, 食品仪器分析的发展十分迅速, 一些学科的先进技术不断渗透到食品分析中, 形成了日益增多的分析仪器和分析方法, 从而使仪器分析在食品分析中所占的比重不断增长, 并成为现代食品分析的重要支柱。
科技水平先进的国家在食品分析中已基本采用仪器分析的方法代替手工操作的老方法, 气相色谱仪、高效液相色谱仪、氨基酸自动分析仪、原子吸收分光光度计以及可进行光谱扫描的紫外一可见分光光度计、荧光分光光度计等均得到了普遍应用, 加上计算机的广泛使用, 有力推动了食品仪器分析的发展, 使得食品分析正处在一个崭新的发展时代。
瘦肉精学名为盐酸克伦特罗(clenbuterol,CLB),化学名为“2 -[(叔丁氨基)甲基]-4-氨基-3,5-二氯苯甲醇盐酸盐”,药品名为“克喘素、安哮素、舒喘宁、双氯醇胺”等。
它是一种营养兴奋剂,属β-兴奋剂类激素。
给猪喂食瘦肉精可以增加生长速度,增加瘦肉率。
瘦肉精能耐受 100℃高温,经126℃油煎5分钟才会破坏减半,常规烹调对肉食品中的瘦肉精残留起不到破坏作用。
人类食用含瘦肉精的猪肉后会发生中毒,会出现手足麻木,头晕、手抖,血钾低,肌肉震颤、心慌、头痛、恶心、呕吐。
柑橘中黄酮类物质提取分离的研究进展
《天然产物提取分离》课程论文班级学号姓名任课教师成绩柑橘中黄酮类物质提取分离的研究进展摘要:柑桔类水果在世界上的分布十分广泛,其种植面积和年产量均为百果之首。
柑橘属植物不仅是一类重要的果树,还是一类经济植物,在我国的种植面积位居第二,仅次于苹果。
黄酮类化合物是柑橘中含量最为丰富的一类生物活性物质,在食品、医药等工业上具有非常广泛的用途。
随着柑橘类水果的产量增加及黄酮类化合物的应用更加广泛,加快柑橘中黄酮类物质提取、分离的研究进展刻不容缓。
在此介绍一些近年来比较常用的柑橘黄酮类化合物提取方法(超声波提取法、碱提取酸沉淀法、闪式提取法、酶辅助提取法、微波辅助萃取法、)和分离方法(柱层析法、大孔树脂分离法)的研究进展,希望对柑橘黄酮类化合物的研究和开发与应用有一定的参考价值。
关键词:柑橘、黄酮类化合物、提取、分离柑橘是芸香科的一类下属植物。
柑橘不光是指柑和橘两类植物,而是指结柑果各属植物的总称。
英文中称其为“Citrus”,即是柑橘属植物属称。
柑橘类植物喜温喜湿,主要分布在北纬35℃以南的区域内,是热带、亚热带常绿果树。
美洲和亚洲是全球柑橘类水果的两个主要产区,其中美洲柑橘类水果产量占全球产量的41%左右,亚洲柑橘类水果产量为全球产量的38%左右。
全球种植柑橘的国家多达135个,柑橘生产大国主要有中国、美国、巴西、西班牙等国家。
中国是柑橘的重要起源中心,最早的种植记录距今已超过了4000年。
据2016年农业部统计,当年中国柑橘种植面积达3835万亩,产量达3616.8万吨,均处于世界前列。
柑橘有较高的营养价值和保健功能,柑橘的果肉可直接食用,也可榨成果汁或调配成果汁饮料,其果皮、果肉、果籽、橘络甚至枝叶均可作为中药药材,而且可以从柑橘中提取出如类黄酮、单萜、类胡萝卜素、吖啶酮、香豆素、甘油糖脂质等多种化合物,广泛用于各种工业生产中,如作为食品添加剂、用于合成药物、制作精油等。
黄酮类化合物是作为具有多种生理活性的天然有机化合物,广泛存在于自然界,尤其是植物组织。
文献综述 本科毕业论文(食品)
文献综述题目:苹果渣中提取纯化多酚的研究进展苹果渣中提取纯化多酚的研究进展摘要:苹果中含有丰富的营养成分, 位列我国四大水果之首。
近年来, 随着我国苹果种植面积的不断扩大, 苹果产量逐年增加, 苹果加工也越来越受到人们的关注。
由于苹果中含有的生物活性物质--苹果多酚, 具有很强的抗氧化性、清除体内自由基、抑菌、抗衰老、等功能, 因而其广泛应用于医学、食品、制革和日用化工等领域,并发挥着不可替代的作用。
苹果渣是苹果加工中的副产物,含有丰富的生物活性物质,它的综合利用不仅能提高企业的经济效益,还能避免大量的苹果废渣对环境造成污染苹果多酚具有很高的药理生理价值,因而广泛应用于医学食品日用化工等领域,发挥着不可替代的作用。
我国对苹果果渣的研究利用始于20世纪50年代,但一直未取得突破性进展。
因此,如何充分利用苹果渣进行深加工使之变废为宝已经成为眼下较为关注的热点问题。
本文主要论述了苹果渣中多酚类物质的组分、性质、提取工艺、生物活性以及应用现状。
关键词:苹果渣;多酚;提取;分离纯化;生物活性我国现在是世界上最大的苹果生产国和消费国,苹果种植面积和产量均占世界总量的40%以上,在世界苹果产业中占有重要地位。
苹果渣虽然是苹果果汁加工中的废料,但是含有丰富的营养物质,其中果肉和果皮含量占总量的90%。
我国对果渣的研究利用始于20世纪50年代,但是一直未取得突破性进展,果品加工废料的综合利用远远低于发达国家[2]。
目前苹果废渣的综合利用主要有以下几种途径。
利用苹果渣做饲料;利用苹果渣的微生物发酵生产酒精等产品;从苹果渣中提取膳食纤维。
但所利用的苹果渣仅占总量的一小部分,大多数苹果渣还是作为垃圾处理。
既浪费资源,又污染环境,因此,如何充分利用果渣进行深加工已经成为了眼下较为关注的热点问题。
我国对于苹果渣的利用研究目前处于起步阶段,其中对于多酚类物质的提取也进行了初步研究,苹果渣的利用却已经得到人们群众的高度重视,对于苹果渣的资源利用必将具有广阔的前景。
膜分离技术论文
膜分离技术论文摘要简要介绍膜分离技术特点及其在生物化工产品分离应用现状基础上,指出了膜分离技术在应用中仍存在的一些问题,并进一步对其解决对策进行了论述,最后对膜分离技术在生物分离方面的发展方向和用前景进行了展望。
关键词生物化工膜分离技术应用生物技术与化学工程相结合而形成的生物化技术是新兴高技术领域中的重要分支是21 世纪高新技术的核心,已经得到了各国的重视,我国也把生物技术作为新兴的战略产业之一。
根据生物产品的分离经验,下游分离技术是产品制备过程的重要组成部分,对产品的纯度回收率、性状等具有至关重要的影响,并且在成本中占据很大比例,是生物技术实现产业化的关键。
生物化工产品的下游分离与常规化工产品的分离相比具有一定的特殊性,大多要求纯度高并且具有生物活性,因而生物分离过程一般要求在低温、洁净、不改变产品生物活性的条件下进行。
常规的生物分离技术包括离心、沉淀、萃取、过滤、离子交换、蒸馏、结晶、吸附和干燥等,这些工艺往往过程繁杂、分离周期长、原料消耗量大、能耗高、回收率低、易引起二次污染,最重要的是产品在分离纯化过程中易失活。
膜分离技术由于设备简单、易操作、节能、高效、无相变、可低温操作等特点,可替代传统的分离技术;并且膜分离过程可以与生物反应过程耦合,既能将产物实时地从反应体系中分离出来,降低产物抑制、提高反应速率、缩短反应周期,又可以回收利用生化反应过程中的酶等原材料,降低成本,因此膜分离技术在生物化工领域具有广阔的应用前景。
但是,膜分离技术在生物化工领域的工业应用还很有限,仍存在一些问题,这给膜离技术的应用带来诸多不利因素。
在简要介绍膜分离技术及其在生物化工产品的分离纯化方面的应用基础上,指出了膜分离技术在生物化工产品分离方面仍然存在的一些问题,并进一步对其解决对策进行了论述。
1 膜分离技术1. 1 膜分离原理膜分离是指用半透膜作为分离介质, 借助于膜的选择渗透性作用, 在能量, 浓度或化学位差的作用下对混合物中的不同组分进行分离提纯. 由于半透膜中滤膜孔径大小不同, 可以允许某些组分透过膜层, 而其它组分被保留在混合物中, 以达到一定的分离效果. 膜可以是固相, 液相或气相, 膜的结构可以是均质或非均质的, 膜可以是中性的或带电的, 但必须都具有选择性通过物质的特性. 具体的工作原理可分为两类: 一是根据混合物物质的质量, 体积, 大小和几何形态的不同, 用过筛的方法将其分离; 二是根据混合物的不同化学性质分离开物质。
生物分离工程论文
超临界萃取技术研究及应用概况摘要:超临界流体萃取(SFE)技术开辟了分离工业的新领域,是一种新型的分离技术。
本文对超临界萃取的基本原理进行了阐述,介绍了超临界萃取的特点及其在天然香料工业、食品和天然中草药等方面的应用和研究进展,并对今后的发展趋势进行了展望。
关键词:超临界萃取应用展望Abstract: Supercritical fluid extraction is a new kind of separation technology. This paper reviewed about its characteristic and the development of application in natural perfume, food, natural herbal medicine and other fields, and prospect of its development in the future Keywords: Supercritical fluid extraction Application Advance超临界萃取技术也叫做超临界流体萃取技术。
超临界流体(Supercritical Fluid) 是指处于超过物质本身的临界温度和临界压力状态的流体。
这种状态下的流体具有与气体相当的高渗透能力和低粘度,又兼有与液体相近的密度和对物质优良的溶解能力[1]。
超临界流体萃取技术(Supercritical Fluid Extraction简称SEE) 以超临界状态下的流体作为溶剂,利用该状态下流体所具有的y 渗透能力和y 溶解能力萃取分离混合物的过程超临界流体的溶解能力随体系参数(温度和压力)而发生连续性变化,因而通过改变操作条件,稍微提y温度或降低压力,便可方便地调节组分的溶解度和萃取的选择性超临界溶剂包括CO2,NO2,SO2,N2低链烃等,而CO2 是最常用的超临界萃取介质,这是因为它的临界温度(31. 1) 接近室温,临界压力(7. 3AmPa) 较低,萃取可以在接近室温下进行,对热敏性食品原料、生理活性物质、酶及蛋自质等无破坏作用,同时又安全、无毒、无臭,因而广泛应用于食品、医药、化妆品等领域中;具有广泛的适应性。
关于精馏的论文总结范文
摘要:精馏作为化工生产中常用的分离技术,在提高产品质量、降低能耗、减少污染等方面发挥着重要作用。
本文对精馏技术的原理、应用及优化进行了综述,分析了当前精馏技术的研究热点和发展趋势,以期为相关领域的研究和实践提供参考。
一、引言精馏是一种基于组分沸点差异,通过加热、蒸发、冷凝和再冷凝等过程,实现混合物中各组分分离的技术。
随着化工产业的快速发展,精馏技术在石油、化工、医药、食品等领域得到了广泛应用。
提高精馏效率、降低能耗、减少污染成为当前研究的热点。
二、精馏原理与应用1. 精馏原理精馏过程主要包括加热、蒸发、冷凝和再冷凝等步骤。
加热使混合物中的低沸点组分蒸发,蒸汽通过冷凝器冷凝成液体,再通过再冷凝器进一步冷凝,最终实现各组分分离。
2. 精馏应用(1)石油化工:在石油化工领域,精馏技术广泛应用于石油馏分、汽油、柴油、煤油等产品的生产。
(2)医药行业:在医药行业中,精馏技术用于提取、分离和纯化药物中间体及原料。
(3)食品工业:在食品工业中,精馏技术用于生产食醋、酒精、果汁等产品。
三、精馏优化技术1. 优化精馏塔结构(1)优化塔径:合理确定塔径,提高传质效率。
(2)优化塔板结构:采用新型塔板,如浮阀塔板、筛板等,提高传质面积。
2. 优化操作参数(1)优化回流比:合理调整回流比,提高分离效果。
(2)优化进料位置:优化进料位置,提高分离效率。
3. 节能减排技术(1)采用节能型加热设备,如红外加热器、微波加热器等。
(2)优化冷却系统,降低冷却水用量。
四、研究热点与发展趋势1. 精馏塔结构优化研究新型塔板、塔填料等,提高传质效率。
2. 优化操作参数研究智能控制技术,实现精馏过程的自动化、智能化。
3. 节能减排技术研究新型节能设备,降低能耗。
五、结论精馏技术在化工生产中具有重要意义,通过优化精馏塔结构、操作参数和节能减排技术,可提高精馏效率、降低能耗、减少污染。
随着科学技术的不断发展,精馏技术将在化工、医药、食品等领域得到更广泛的应用。
最新精选食品检验论文食品检测毕业论文 3篇
《液相色谱技术进行食品安全检验思考》1液相色谱技术进行食品安全检验的几点思考1.1实现对食品营养成分的检验一般情况下,液相色谱技术以高效液相色谱法为主,可对食品样品中的营养成分进行研究和鉴别,对食品中所含有营养成分的类型、含量等进行具体的分析,对营养成分进行明确的把握。
人体所需的蛋白质、脂肪酸、维生素、微量元素等都可利用液相色谱仪检测出来,进而对食品中所含成分的质量进行鉴定,以提高营养成分含量的科学性与合理性。
利用液相色谱技术进行食品营养成分的检验,其精确度相对较高,速度快、效率高,在脂溶性维生素含量低的食品检验中效果最佳,例如水果。
1.2实现对食品添加剂的检验对于食品安全问题来说,食品添加剂的检验也至关重要。
一些厂家为了提高食品的口味、延长食品的保质期,加入了过多的食品添加剂,改善了食品的口味和色泽,达到了防腐的目的,但是其中所含有的食品添加剂也会对人体健康构成威胁,注重对食品添加剂的检验也是保证食品安全的一项重要课题。
在食品安全领域,已经出现了多种利用液相色谱技术来进行食品检验的方式,可利用高效液相色谱技术实现对多种添加剂的分析和检验,像苯甲酸、山梨酸、糖精钠等主要的食品添加剂成分。
在进行高效液相色谱技术进行食品检验时,流动相可为乙腈-6%乙酸溶液,然后进行梯度洗脱环节,对其波长进行检测,18种添加剂的波长、线性指数在合理的范围内,线性系数高于0.99,标准差规定在2.44%-11.6%之间。
该过程操作相对简单,效率高,且仪器检测的精确度也非常高,在食品安全检验中取得了满意的效果。
1.3实现对残留农药的检验农药残留是导致食品安全问题频繁出现的主要原因之一。
如今,人们生活水平的提高,对食品的要求也越来越高,种植户为了获取更高的利益,满足消费者对食品的需求,喷洒大量的农药,导致农药残留现象的发生,对人们的身体健康构成了严重的威胁,食物中毒成为多见病、常见病。
为了更好的保证食品安全,应利用液相色谱技术对食品中所残留的农药成分进行检测,一旦发现立即切断食品供应来源。
咸蛋黄分离腌制技术研究进展
doi:10.16736/41-1434/ts.2020.24.023咸蛋黄分离腌制技术研究进展Research Progress of Salted Egg Yolk Separation and Curing Technology◎ 王一亭(江西工业职业技术学院,江西 南昌 330039)WANG Yiting(Jiangxi Industry Polytechnic College, Nanchang 330039, China)摘 要:咸蛋黄主要作为馅料或者佐料添加在月饼、粽子、饭团、甜品和菜肴中,以加工成具有蛋黄特殊风味的食品,是我国历史悠久的名特食品。
本文就咸蛋黄腌制技术的进展和存在问题进行综述,为咸蛋黄腌制工业化生产提供科学的指导。
关键词:咸蛋黄;全蛋腌制;干盐腌制;湿法腌制Abstract:Salted egg yolk is mainly used as stuffing or seasoning in moon cakes, zongzi, rice balls, desserts and dishes, and processed into food with special flavor of egg yolk, which is a famous special food with a long history in China. In this paper, the progress and existing problems of salted egg yolk curing technology were reviewed, which provided scientific guidance for the industrial production of salted egg yolk.Keywords:salted egg yolk; whole egg salting; dry salting; wet salting中图分类号:TS253.4咸蛋又称腌蛋、味蛋等[1],大多经过食盐腌制而成。
肥肉和瘦肉分离的原理_概述及解释说明
肥肉和瘦肉分离的原理概述及解释说明1. 引言1.1 概述引言部分旨在介绍本篇长文的主题,即肥肉和瘦肉分离的原理,并概括性地解释其重要性和应用领域。
本文将深入探讨肥肉和瘦肉分离的原理、相关技术以及实践中可能面临的挑战和问题。
1.2 文章结构在论文结构方面,本文总共包含6个主要部分。
除了引言外,第二部分将介绍肥肉和瘦肉,并详细阐述其分离原理,以及应用领域与意义。
第三、四、五部分将解释说明三个关键要点,并通过详细解释、实例分析或案例研究来支持这些要点。
最后一个部分是结论,总结了主要观点和发现,并展望未来的研究或应用。
1.3 目的本文旨在探索肥肉和瘦肉分离的原理,提供对这一技术领域有关要点的详细解释,并识别可能存在的潜在问题和挑战。
通过全面了解这一过程和技术,在农业、食品加工和其他相关领域中,我们将能够更好地利用肥肉和瘦肉的特性,提高产品质量,并满足不同消费者的需求。
2. 肥肉和瘦肉分离的原理:2.1 介绍肥肉和瘦肉:在食品加工过程中,人们通常希望将肥肉和瘦肉分开以获得更健康的食品产品。
肥肉是指含有较高比例的脂肪和胆固醇的组织,而瘦肉则是指相对较少脂肪含量的组织。
由于不同散装动物及其不同阶段会产生不同种类、形态的脂类组。
因此,准确地分离出瘦肉成为提高食品质量和满足消费者需求的重要步骤。
2.2 分离原理:实现肥肉和瘦肉分离的主要原理是基于脂溶性差异。
通常使用化学或物理方法来实现这一目标。
一种常用的方法是冷却法,其中通过将混合了瘦肉和肥胖组织(如皮下脂、内脏脂等)切碎并进行低温处理,通过冷却使得其中相对水化物含量较低且温度更低的部位容易形成固态油或者酥油,而含脂质较高的部位则会变得粘稠,因此可以通过不同的物理分离方法如压榨、筛选等来将两者分开。
另一种被广泛使用的方法是溶剂萃取法。
该法利用脂溶性的特点,将混合物浸泡在适当的溶剂中(如醚类、酮类、烃类等),使脂肪溶解在溶剂中,而瘦肉组织则保持原状。
接下来,可以利用滤网或离心机等设备对混合物进行分离,最终获得独立的肥肉和瘦肉。
粮食检查论文粮食杂质检查机制的评述
粮食检查论文粮食杂质检查机制的评述随着我国粮食生产的不断发展和增长,粮食安全问题的重要性日益增强。
粮食检查作为确保人们食品安全的重要手段,在粮食保障系统中具有不可替代的作用。
本文将就粮食检查论文粮食杂质检查机制进行评述。
一、粮食杂质的检测方法1.目测法目测法是一种非常简单的方法,通常用于检测杂质颗粒的大小、形状、颜色等外观特征。
这种方法比较直观,但是仅限于表面检测,对细小的杂质无法检测到。
2.过筛法过筛法是一种相对简便的方法,通过使用不同的筛网尺寸,筛选出杂质和颗粒,从而检测出颗粒的大小。
但是,这种方法不能准确地检测出杂质种类和数量。
3.酸溶法酸溶法是一种较为精确的方法,可以准确检测杂质种类和数量。
这种方法使用酸溶液将样品腐蚀,并将溶解后的物质分离并检测。
但是,这种方法比较耗时,且涉及到化学试剂,有一定的危险性。
4.电子显微镜法电子显微镜法是一种非常准确的方法,可以检测到微小的杂质和颗粒。
这种方法将样品放入电子显微镜中,通过观察其反射和散射的光线,得出样品的成分和结构。
但是,这种方法设备昂贵,对于贫穷地区的粮商来说是不易采用的。
二、粮食杂质检查机制的评述1. 政府监管政府对粮食安全的监管是确保粮食质量和安全的重要手段。
政府有关部门对粮食的生产、加工、贮存、流通以及食品加工企业要严格监管,公布食品安全信息,及时发布检测结果,确保人民群众的食品安全。
2.粮商自查粮商自查是粮食检查机制的一个重要环节。
粮商应该定期对粮食仓库、货车、集散点等进行自查,并及时清理杂物、进行检验,并积极回应政府的监管。
对于发现的问题要及时处理。
3.市场监管城市居民、农村居民购买的粮食主要来自市场,市场监管则是检查市场的主要手段。
市场监管部门应对超市、卖场等食品销售场所进行监控,发现问题应立即通报相关部门,进行应急处理。
4.检测机构检测机构是保障粮食检查的重要保障。
依靠专业的检测设备和技术,检测机构可以对粮食中各种杂质、农药、重金属等进行精确检测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白质分离纯化技术
摘要:蛋白质的分离纯化方法是生命科学领域关注的热点。
而蛋白质在组织或细胞中是以复杂的混合物形式存在,通过蛋白质分离纯化的依据和要求,设计可行的分离纯化步骤,提取蛋白质有效成分因子,使之达到分离纯化的目的。
关键词:蛋白质,分离纯化方法,技术原理,分离纯化步骤,可行性正文:
蛋白质分离纯化是从混合物之中分离纯化出所需要的蛋白质的一种技术。
生物体内的大部分生命活动,如催化代谢反应、物质运转、运动的相互协调、兴奋的传导、生长与发育等,均是在蛋白质的参与下完成的。
因此,关于研究蛋白质分离纯化的目的,我通过一些课件总结为以下三个方面:1.研究蛋白质的分子结构、组成和某些物理化学性质,需要纯化的蛋白质样品;2.研究蛋白质的生物功能,需要纯品保持它的天然构相;3.制药工业中,需要把某种特殊功能的蛋白质提纯到规定的要求,特别是要把干扰或者拮抗性质的成分除去。
所以,在分离纯化的过程中,必须要了解目的蛋白的分子量、等电点、溶解性及稳定性等基本性质才能制定出合理的分离纯化方法。
通过总结归类,蛋白质的分离纯化方法有以下三种:
1.根据分子大小不同进行分离纯化。
因为蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白质和小分子物质分开,并使蛋白质混合物也得到分离。
根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝
胶过滤等。
透析和超滤是分离蛋白质时常用的方法。
透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。
超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。
这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。
离心也是经常和其它方法联合使用的一种分离蛋白质的方法。
当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。
凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。
凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动,并最先流出柱外。
反之,比凝胶珠孔径小的分子后流出柱外。
凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质。
2. 根据溶解度不同进行分离纯化。
影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。
但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。
常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法等。
等电点沉淀和pH值调节是最常用的方法。
每种蛋白质都有自己的等电点,而且在等电点时溶解度最低,相反,有些蛋白质在一定pH值时很容易溶解。
因而可以通过调节溶液的pH值来分离
纯化蛋白质。
蛋白质的盐溶和盐析是中性盐显著影响球状蛋白质溶解度的现象,其中,增加蛋白质溶解度的现象称盐溶,反之为盐析。
有机溶剂提取法的原理是:与水互溶的有机溶剂(如甲醇、乙醇)能使一些蛋白质在水中的溶解度显著降低,而且在一定温度、pH值和离子强度下,引起蛋白质沉淀的有机溶剂的浓度不同,因此,控制有机溶剂的浓度可以分离纯化蛋白质。
由于在室温下,有机溶剂不仅能引起蛋白质的沉淀,而且伴随着变性。
因此,通常要将有机溶剂冷却,然后在不断搅拌下加入有机溶剂防止局部浓度过高,蛋白质变性问题就可以很大程度上得到解决。
对于一些和脂质结合比较牢固或分子中极性侧链较多、不溶于水的蛋白质,可以用乙醇、丙酮和丁醇等有机溶剂提取,它们有一定的亲水性和较强的亲脂性,是理想的提取液。
3.根据电荷不同进行分离纯化。
根据蛋白质电荷的不同分离蛋白质的方法有电泳和离子交换层析两类。
在外电场的作用下,带电颗粒将向着与其电性相反的电极移动,这种现象称为电泳。
聚丙烯酰胺电泳是一种以聚丙烯酰胺为介质的区带电泳,常用于分离蛋白质。
它的优点是设备简单、操作方便、样品用量少。
等电聚焦是一种高分辨率的蛋白质分离技术,也可以用于蛋白质的等电点测定。
利用等电聚焦技术分离蛋白质混合物是在具有pH梯度的介质中进行的。
在外电场作用下各种蛋白质将移向并聚焦在等于其等电点的pH值梯度处形成一个窄小条带。
离子交换层析是以离子交换剂为固定相,依据流动相中的组分离子与交换剂上的平衡离子进行可逆交换时结合力大小的差别而进行分离的一种层析方法。
离子交换层析中,基质由带有电
荷的树脂或纤维素组成。
带有正电荷的为阴离子交换树脂;反之为阳离子交换树脂。
离子交换层析同样可以用于蛋白质的分离纯化。
当蛋白质处于不同的pH值条件下,其带电状况也不同。
阴离子交换基质结合带有负电荷的蛋白质,被留在层析柱上,通过提高洗脱液中的盐浓度,将吸附在层析柱上的蛋白质洗脱下来,其中结合较弱的蛋白质首先被洗脱下来。
反之阳离子交换基质结合带有正电荷的蛋白质,结合的蛋白可以通过逐步增加洗脱液中的盐浓度,或是提高洗脱液的pH 值洗脱下来。
【1】
在对目标蛋白还不了解的情况下,应根据各种分离纯化方法的特点、基本原理和应用情况,设计纯化程序。
食品分离过程的特点:1.分离对象种类多,性质复杂。
2.产品质量与分离过程密切相关。
3.产品要求食用安全。
4.分离对象在分离过程易腐败。
总的原则是先要确定分离的目的,了解待分离混合物中各组分的物理、化学、生物学方面的性质,并要充分关注分离的目标成分。
对目标成分,要了解目标成分的性质,即相对分子量、化学结构、理化性质、电荷性、热敏性以及生物活性等基础性资料对确定分离方法的选择起决定性作用。
很多情况下,采取三阶段纯化策略:第一阶段的目标是捕获目标蛋白质,采取分离、浓缩方法,使样品转成小体积的操作;第二阶段为中间提纯阶段,在该阶段应除去大量杂质;第三阶段为最终提纯阶段,目的是获得最后的高纯度的目标蛋白。
具体来讲,蛋白质分离纯化的一般程序可分为以下几个步骤:1.材料的预处理及细胞破碎分离提纯某一种蛋白质时,首先要把蛋白质从组织或细
胞中释放出来并保持原来的天然状态,不丧失活性。
所以要采用适当的方法将组织和细胞破碎。
2.蛋白质的抽提。
通常选择适当的缓冲液溶剂把蛋白质提取出来。
抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。
如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂,使膜结构破坏,利于蛋白质与膜分离。
在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。
3.蛋白质粗制品的获得。
选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。
4.样品的进一步分离纯化。
用等电点沉淀法、盐析法所得到的蛋白质一般含有其他蛋白质杂质,须进一步分离提纯才能得到有一定纯度的样品。
在实际工作中,很难用单一方法实现蛋白质的分离纯化,往往要综合几种方法才能提纯出一种蛋白质。
理想的蛋白质分离提纯方法,要求产品纯度和总回收率越高越好,但实际上两者难以兼顾,因此,考虑分离提纯的条件和方法时,不得不在两者之间作适当的选择。
因此,每当需要提纯某种蛋白质时,首先要明确分离纯化的目的和蛋白质的性质,以便选择最佳的分离纯化方法,从而得到理想的效果。
今后,蛋白质提纯技术的发展将不断促进对蛋白质性质的研究,同时对蛋白质性质的研究也将反过来提高蛋白质分离纯化技术,两者的互相促进终将会对生命科学的进步作重大贡献。
【2】
参考文献:
【1】赵永芳;生物化学技术原理及其应用第二版;武汉大学出版社:2001:24-173 【2】许亚军,林俊岳;蛋白质提纯研究进展[J];天津化工,2006:9-12。