人教版初三数学上册求阴影部分面积的常用方法
阴影部分求面积及周长(含答案)
![阴影部分求面积及周长(含答案)](https://img.taocdn.com/s3/m/dac0b41811a6f524ccbff121dd36a32d7375c77a.png)
阴影部分求面积及周长(含答案)LT【史上最全小学求阴影部分面积专题—含答案】小学及小升初复习专题-圆与求阴影部分面积----完整答案在最后面目标:通过专题复习,加强学生对于图形面积计算的灵活运用。
并加深对面积和周长概念的理解和区分。
面积求解大致分为以下几类:c重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。
能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。
例 1.求阴影部分的面积。
(单位:厘米) 例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)例3.求图中阴影部分的面积。
(单位:厘米) 例4.求阴影部分的面积。
(单位:厘米)例5.求阴影部分的面积。
(单位:厘米) 例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?例7.求阴影部分的面积。
(单位:厘米)例8.求阴影部分的面积。
(单位:厘米)例9.求阴影部分的面积。
(单位:厘米)例10.求阴影部分的面积。
(单位:厘米)例12.求阴影部分的面积。
(单位:厘米)例14.求阴影部分的面积。
(单位:厘米)例16.求阴影部分的面积。
(单位:厘米)例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。
例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。
例22. 如图,正方形边长为8厘米,求阴影部分的面积。
例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。
如果圆周π率取3.1416,那么花瓣图形的的面积是多少平方厘米?例25.如图,四个扇形的半径相等,求阴影部分的面积。
(单位:厘米) 例26.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部分的面积。
例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积。
九年级数学人教版(上册)小专题15 四种方法求阴影部分的面积
![九年级数学人教版(上册)小专题15 四种方法求阴影部分的面积](https://img.taocdn.com/s3/m/2c96dcb0162ded630b1c59eef8c75fbfc77d94fc.png)
方法 2 和差法 ★直接和差法
将不规则阴影部分的面积看成是以规则图形为载体的一部分, 其他部分空白且为规则图形,此时采用整体作差法求解.如图:
⇨S 阴影=S△ABC-S 扇形 CAD
⇨ S阴影=S△ABO-S扇形COD
2(. 2021·包头)如图,在 Rt△ABC 中,∠ACB=90°,AB= 5,
方法 4 容斥原理
有的阴影部分面积是由两个基本图形互相重叠得到的.常用的方 法是:两个基本图形的面积-被重叠图形的面积=组合图形的面积.
10.如图,在 Rt△ABC 中,∠ACB=90°,∠A=30°,AC= 3,
分别以点 A,B 为圆心,AC,BC 的长为半径画弧,分别交 AB 于点
D,E,则图中阴影部分的面积是51π2-
与 AB 相交于点 F,连接 OE,OF,则图中阴影部分的面积是
7 2
3-43π .
★构造和差法
先将不规则阴影部分与空白部分组合,构造规则图形或分割后为 规则图形,再进行面积和差计算.如图:
4(. 2021·吉林)如图,在 Rt△ABC 中,∠C=90°,∠A=30°, BC=2.以点 C 为圆心,CB 长为半径画弧,分别交 AC,AB 于点 D, E,则图中阴影部分的面积为 23π- 3 (结果保留 π).
3 2
.
11.如图,正方形 ABCD 的边长为 3,以点 A 为圆心,2 为半径 作圆弧,以点 D 为圆心,3 为半径作圆弧.若图中阴影部分的面积分 别为 S1,S2,则 S1-S2=134π-9 .
BC=2,以点 A 为圆心,AC 长为半径画弧,交 AB 于点 D,交 AC
于点 C,以点 B 为圆心,AC 长为半径画弧,交 AB 于点 E,交 BC
阴影部分求面积及周长(含答案)
![阴影部分求面积及周长(含答案)](https://img.taocdn.com/s3/m/dac0b41811a6f524ccbff121dd36a32d7375c77a.png)
阴影部分求面积及周长(含答案)LT【史上最全小学求阴影部分面积专题—含答案】小学及小升初复习专题-圆与求阴影部分面积----完整答案在最后面目标:通过专题复习,加强学生对于图形面积计算的灵活运用。
并加深对面积和周长概念的理解和区分。
面积求解大致分为以下几类:c重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。
能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。
例 1.求阴影部分的面积。
(单位:厘米) 例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)例3.求图中阴影部分的面积。
(单位:厘米) 例4.求阴影部分的面积。
(单位:厘米)例5.求阴影部分的面积。
(单位:厘米) 例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?例7.求阴影部分的面积。
(单位:厘米)例8.求阴影部分的面积。
(单位:厘米)例9.求阴影部分的面积。
(单位:厘米)例10.求阴影部分的面积。
(单位:厘米)例12.求阴影部分的面积。
(单位:厘米)例14.求阴影部分的面积。
(单位:厘米)例16.求阴影部分的面积。
(单位:厘米)例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影部分的周长。
例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的面积。
例22. 如图,正方形边长为8厘米,求阴影部分的面积。
例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。
如果圆周π率取3.1416,那么花瓣图形的的面积是多少平方厘米?例25.如图,四个扇形的半径相等,求阴影部分的面积。
(单位:厘米) 例26.如图,等腰直角三角形ABC和四分之一圆DEB,AB=5厘米,BE=2厘米,求图中阴影部分的面积。
例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求阴影部分的面积。
4.微专题 三种方法求阴影部分面积
![4.微专题 三种方法求阴影部分面积](https://img.taocdn.com/s3/m/07922b1525c52cc58ad6be69.png)
综合训练
1. 如图,在半径为4的⊙O 中,CD 是直径,AB是弦,且CD⊥AB,垂足为点E, ∠AOB=90°,则阴影部分的面积是___2_π____. 2. 如图,已知AB是⊙O的直径,弦CD⊥AB,垂足为E.若∠AOC=60°,OC=2,则 阴影部分的面积是__2__- __2___3_c_m__2__.
针对训练 2. 如图,正方形ABCD的边长为4,以BC为直径的半圆O交对角线线BD于点E, 则阴影部分的面积为__8_-__π___.
第2题图
二、构造和差法 先设法将不规则阴影部分与空白部分组合或将阴影部分进行分割,构造规则图形, 再进行面积和差计算.如图:
针对训练 3. 如图,在扇形AOB 中,∠AOB=90°,正方形CDEF的顶点C是 »AB 的中点, 点D在OB上,点E在OB的延长线上.当正方形CDEF的边长为2 2 时,则图中 阴影部分的面积为_2_π__-__4__.第1题图第2题图
3. 如图,菱形ABCD的边长为2,∠A=60°,B»D是以点A为圆心,AB长为半径的 弧,C»D 是以点B为圆心,BC长为半径的弧,则阴影部分的面积为___3_____cm2. 4. 如图,在△ABC中,∠C=90°,AC=BC,斜边AB=4 2 ,O是AB的中点, 以O为圆心,线段OC的长为半径画圆心角为90°的扇形EOF,E¼F 经过点C,则阴 影部分的面积为__2_π_-__4__.
第3题图
第4题图
微专题 三种方法求阴影部分面积
方法1 公式法 所求阴影部分的面积是规则图形,直接用扇形的面积公式求解. 如图:
针对训练 1. 如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是 ___3_π____.
第1题图
初三数学圆阴影部分面积10种解题方法
![初三数学圆阴影部分面积10种解题方法](https://img.taocdn.com/s3/m/5aeac745793e0912a21614791711cc7931b778b5.png)
初三数学圆阴影部分面积10种解题方法01和差法对于不规则图形实施分割、叠合后,把所求的图形面积用规则图形面积的和、差表示,再求面积.贵港中考如图1,在扇形OAB中,C是OA的中点,CD⊥OA,CD与弧AB交于点D,以O为圆心,OC的长为半径作弧CE交OB于点E,若OA= 4,∠AOB=120°,则图中阴影部分的面积为( 结果保留π) .图1解析: 图形中的阴影部分是不规则图形,较难直接计算.注意到阴影部分是环形BECA的一部分,因此阴影部分面积等于环形BECA的面积减去图形DCA的面积,又图形DCA的面积等于扇形DOA 的面积减去△ODC的面积.图2如图2,连接OD交弧CE于M.因为OA=4,C是OA的中点,CD⊥OA,所以OD=4,OC=2,DC=2√3,所以∠ODC=30°,∠DOC=60°02割补法对图形合理分割,把不规则图形补、拼成规则图形会,再求面积.吉林中考如图3,将半径为3的圆形纸片,按下列顺序折叠,若弧AB和弧BC都经过圆心O,则阴影部分的面积是( 结果保留π) .图3解析: 观察图形可以发现: 下方树叶形阴影部分的面积分成左右两块后,可以补到上方两个空白的新月形的位置.是否能够完全重合,通过计算验证即可.图4如图4,过点O作OD⊥AB于D,连接OA、OC、OB.由折叠性质知OD=1/2r=1/2AO,03等积变形法运用平行线性质或其他几何图形性质把不规则图形面积转化为与它等面积的规则图形来进行计算.天水中考如图5,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E 是半圆弧的三等分点,弧BE的长为2π/3,则阴影部分的面积为图5解析: 阴影部分是Rt△ABC的一部分,运用平行线的性质可将图形ABE面积转化成扇形BOE面积.连接BD、BE、BO、OE,如图6.图6因为点E、B是半圆弧的三等分点,所以∠DOB=∠BOE=∠EOA=60°,所以∠BAD=∠EBA=∠BAE=30°,所以BE∥AD.04平移法一些图形看似不规则,将某一个图形进行平移变换后,利用平移的性质,把不规则的图形的面积转化为规则图形的面积来计算.2019年黄石中考模拟如图7,从大半圆中剪去一个小半圆( 小半圆的直径在大半圆的直径MN上),点O为大半圆的圆心,AB是大半圆的弦,且与小半圆相切,AB∥MN,已知AB=12cm,则阴影部分的面积是.图7解析: 因为AB∥MN,由平行线间的距离处处相等,可以平移小半圆,使小半圆的圆心与大半圆的圆心重合,这样不规则的阴影图形就变成一个环形.图8如图8.过点O作OC⊥AB,垂足为C,连接OB,设大半圆的半径为R,小半圆的半径为r.05旋转法一些图形看似不规则,把某个图形进行旋转变换后,利用旋转的性质,把不规则图形的面积转化为规则图形的面积,再进行计算.安顺中考如图9,矩形ABCD中,BC=2,DC=4,以AB 为直径的⊙O与DC相切于点E,则阴影部分的面积为图9解析: 若直接利用弓形面积公式求解相当繁琐,根据已知条件及圆的旋转不变性,利用图形的旋转可实现解题.图10如图10,连接OE 交BD于M.因为CD 是⊙O 的切线,所以OE⊥CD,又AB∥CD,则OE⊥AB,而OE=OB,易知△OBM ≌△EDM,把△OBM绕点M旋转180°就会转到△EDM,阴影部分就转化为扇形BOE,恰好是半径为2的圆的四分之一,06对称法一些图形看似不规则,利用轴对称和中心对称的性质,把不规则图形进行轴对称和中心对称变换,转化为规则图形的面积,再进行计算.赤峰中考如图11,反比例函数y=k/x( k>0) 的图象与以原点(0,0)为圆心的圆交A、B两点,且A( 1,√3) ,图中阴影部分的面积等于 (结果保留π) .图11解析: 根据反比例函数图象及圆的对称性———既是轴对称图形,又是中心对称图形,可知图中两个阴影面积的和等于扇形AOB的面积.过点A作AD⊥x轴于D,如图12.图12因为A( 1,√3) ,所以∠AOD=60°,OA=2,又因为点A、B关于直线y=x对称,所以∠AOB=2×( 60°-45°)=30°.07整体法当已知条件不能或不足以直接求解时,可整体思考,化单一、分散为整体,把所求的未知量整体转换为已知量,再将问题整体化求解.安徽中考如图13,半径均为1的⊙A、⊙B、⊙C、⊙D、⊙E两两外离,A、B、C、D、E分别为五边形的五个顶点,则图中阴影部分的面积是图13解析: 由已知条件,分别求阴影部分的圆心角不易求得,但将五个扇形的圆心角合为一整体,它们的圆心角的和也是五边形的外角之和360°,所以阴影部分面积是一个整圆的面积,所以S阴影=π.08方程法有些图形的局部可以看成某个规则图形,或某些图形具有等面积的性质,这时可以把它们的关系用方程( 组) 来表示,再解方程( 组) ,求出图形的面积.2019年武汉模拟如图14,在边长为2的正方形ABCD 中,分别以2为半径,A、B、C、D 为圆心作弧,则阴影部分的面积是 ( 结果保留π) .图14解析: 仔细观察图形,有两种相同特征的图形在正方形内部,一起围成所求的阴影部分.设弧AC与弧BD交于点G,连接BE、EC,如图15.图15设形如AED 图形的面积为x,形如DEG 图形的面积为y,那么S阴影= S正-4 ( x+y) ,只需求出(x+y)的结果即可.09推算法某些题目运用已知条件,和图形的性质或定理进行推理,可把阴影部分面积用某个式子表示,从而求得不规则图形的面积.南宁中考如图16,Rt△ABC 中,AC=8,BC=6,∠C=90°,分别以AB、BC、AC 为直径作三个半圆,那么阴影部分的面积为平方单位.图16解析: 设左边阴影部分面积为S1,右边阴影部分面积为S2,整个图形的面积可以表示成: 以AC 为直径的半圆+ 以BC为直径的半圆+△ABC.也可以表示成: S1+S2+以AB为直径的半圆。
不规则图形面积的计算(方法总结及详解)
![不规则图形面积的计算(方法总结及详解)](https://img.taocdn.com/s3/m/3ff96860ad02de80d4d840e6.png)
不规则图形计算的方法总结总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如右图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如上页最后一图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求上图(1)中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求右图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。
人教版 九年级数学上册 第24--25章 同步课时训练 (含答案)
![人教版 九年级数学上册 第24--25章 同步课时训练 (含答案)](https://img.taocdn.com/s3/m/571bf993af1ffc4fff47ac19.png)
人教版九年级数学第24章圆一、选择题1. 如图半径为1的⊙O与正五边形ABCDE相切于点A,C,则劣弧AC的长度为()图A.35π B.45π C.34π D.23π2. 如图所示,AB是⊙O的直径,C,D是⊙O上的两点,CD⊥AB.若∠DAB=65°,则∠BOC等于()A.25°B.50°C.130°D.155°3. 如图某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以点A为圆心,AB长为半径的扇形(忽略铁丝的粗细),则所得扇形ADB的面积为()A.6 B.7 C.8 D.94. 如图,已知⊙O1,⊙O2,⊙O3,⊙O4是四个半径为3的等圆,在这四个圆中,若某圆的圆心到直线l的距离为6,则这个圆可能是()A.⊙O1B.⊙O2C.⊙O3D.⊙O45.如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上两点,且∠PDC=60°,则∠OBC等于( )A. 55°B. 65°C. 70°D. 75°6. 如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为P,则OP的长为()A.3 B.2.5 C.4 D.3.57.如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠A OD的度数为( )A. 70°B. 35°C.20°D. 40°8. 一条排水管的截面如图所示,已知排水管的半径OA=1 m,水面宽AB=1.2 m,某天下雨后,排水管水面上升了0.2 m,则此时排水管水面宽为()A.1.4 m B.1.6 mC.1.8 m D.2 m二、填空题9. 如图所示,AB是☉O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则☉O 的半径是.10. 如图是一个圆锥形冰激凌外壳(不计厚度),已知其母线长为12 cm ,底面圆的半径为3 cm ,则这个冰激凌外壳的侧面积等于________ cm2(结果精确到个位).11. 2018·孝感已知⊙O 的半径为10 cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB =16 cm ,CD =12 cm ,则弦AB 和CD 之间的距离是________cm.12. 如图,点A ,B ,C 都在⊙O 上,OC ⊥OB ,点A 在BC ︵上,且OA =AB ,则∠ABC =________°.13. 已知一个圆心角为270°,半径为3 m 的扇形工件未搬动前如图示,A ,B 两点触地放置,搬动时,先将扇形以点B 为圆心,做如图示的无滑动翻转,再使它紧贴地面滚动,当A ,B 两点再次触地时停止,则圆心O 所经过的路线长为________m .(结果用含π的式子表示)14. 如图,在扇形ABC 中,CD ⊥AB ,垂足为D ,⊙E 是△ACD 的内切圆,连接AE ,BE ,则∠AEB 的度数为________.15. 如图,⊙O与正五边形ABCDE 的边AB ,DE 分别相切于点B ,D ,则BD ︵所对的圆心角∠BOD 的大小为________度.16. 如图中的小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”(阴影部分)图案的面积为________.三、解答题17. 已知:如图5,在⊙O 中,M ,N 分别为弦AB ,CD 的中点,AB =CD ,AB不平行于CD.求证:∠AMN =∠CNM.18. 如图,在正六边形ABCDEF 中,点O 是中心,AB =10,求这个正六边形的半径、边心距、周长、面积.19. 在平面直角坐标系中,圆心P 的坐标为(-3,4),以r 为半径在坐标平面内作圆:(1)当r 为何值时,⊙P 与坐标轴有1个公共点? (2)当r 为何值时,⊙P 与坐标轴有2个公共点? (3)当r 为何值时,⊙P 与坐标轴有3个公共点? (4)当r 为何值时,⊙P 与坐标轴有4个公共点?20.(2020·临沂)已知1O 的半径为1r ,2O 的半径为2r .以1O 为圆心,以12r r +的长为半径画弧,再以线段12O O 的中点P 为圆心,以1212O O 的长为半径画弧,两弧交于点A ,连接1O A ,2O A ,1O A 交1O 于点B ,过点B 作2O A 的平行线BC 交12O O 于点C .(1)求证:BC 是2O 的切线;(2)若12r =,21r =,126O O =,求阴影部分的面积.人教版 九年级数学 第24章 圆 同步课时训练-答案一、选择题1. 【答案】B [解析] 连接OA ,OC ,则∠OAE =∠OCD =90°.∵五边形ABCDE 为正五边形,∴∠E =∠D =108°,∴∠AOC =540°-∠OAE -∠OCD -∠E -∠D =144°, ∴劣弧AC 的长度为144180×π×1=45π.2. 【答案】C3. 【答案】D[解析] ∵正方形的边长为3,∴BD ︵的长度为6,∴S 扇形ADB =12lR =12×6×3=9.4. 【答案】B5.【答案】B【解析】连接OP ,如解图,则OP ⊥AP .∵∠D =60°,∴∠COP =120°,∵∠A =20°,∠APO =90°,∴∠AOP =70°,∴∠AOC =50°,∵OB =OC ,∴∠OBC =180°-50°2=65°.解图6. 【答案】C7.【答案】D【解析】∵AB 是⊙O 的直径,AC 切⊙O 于点A ,∴∠BAC =90°,∵∠C =70°,∴∠B =20°,∴∠AOD =∠B +∠BDO =2∠B =2×20°=40°.8. 【答案】B[解析] 如图,过点O 作OE ⊥AB 于点E ,交CD 于点F ,连接OC.∵AB=1.2 m,OE⊥AB,OA=1 m,∴AE=0.6 m,∴OE=0.8 m. ∵排水管水面上升了0.2 m,∴OF=0.8-0.2=0.6(m).由题意可知CD∥AB.∵OE⊥AB,∴OE⊥CD,∴CF=OC2-OF2=0.8 m,CD=2CF,∴CD=1.6 m.故选B.二、填空题9. 【答案】2[解析]连接OC,则OA=OC,∴∠A=∠ACO=30°,∴∠COH=60°.∵OB⊥CD,CD=2,∴CH=,∴OH=1,∴OC=2.10. 【答案】113[解析] 这个冰激凌外壳的侧面积=12×2π×3×12=36π≈113(cm2).故答案为113.11. 【答案】2或14[解析] ①当弦AB和CD在圆心同侧时,连接OA,OC,过点O作OE⊥CD于点F,交AB于点E,如图①,∵AB=16 cm,CD=12 cm,∴AE=8 cm,CF=6 cm.∵OA=OC=10 cm,∴EO=6 cm,OF=8 cm,∴EF=OF-OE=2 cm;②当弦AB 和CD 在圆心异侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点E 并反向延长交AB 于点F ,如图②,∵AB =16 cm ,CD =12 cm , ∴AF =8 cm ,CE =6 cm. ∵OA =OC =10 cm , ∴OF =6 cm ,OE =8 cm , ∴EF =OF +OE =14 cm.∴AB 与CD 之间的距离为2 cm 或14 cm.12. 【答案】15[解析] ∵OC ⊥OB ,∴∠COB =90°.又∵OC =OB ,∴△COB 是等腰直角三角形, ∴∠OBC =45°.∵OA =AB ,OA =OB ,∴OA =AB =OB , ∴△AOB 是等边三角形,∴∠OBA =60°, ∴∠ABC =∠OBA -∠OBC =15°.13. 【答案】6π[解析] 由题意易知∠AOB =90°,OA =OB ,∴∠ABO =45°,圆心O 旋转的长度为2×45π×3180=3π2(m),圆心O 平移的距离为270π×3180=9π2(m),则圆心O 经过的路线长为3π2+9π2=6π(m).14. 【答案】135°[解析] 连接CE.∵∠ADC =90°,∴∠DAC +∠DCA =90°.∵⊙E 内切于△ADC ,∴∠EAC +∠ECA =45°,∴∠AEC =135°.由“边角边”可知△AEC ≌△AEB ,∴∠AEB =∠AEC =135°.15. 【答案】144[解析] ∵⊙O 与正五边形ABCDE 的边AB ,DE 分别相切于点B ,D ,∴OB ⊥AB ,OD ⊥DE.∵正五边形每个内角均为108°, ∴∠BOD =∠C +∠OBC +∠ODC =108°×3-90°×2=144°.16. 【答案】2π-4[解析] 如图所示,由题意,得阴影部分的面积=2(S 扇形OAB-S △OAB)=2(90π×22360-12×2×2)=2π-4. 故答案为2π-4.三、解答题17. 【答案】证明:连接OM ,ON ,OA ,OC ,如图所示.∵M ,N 分别为AB ,CD 的中点,∴OM ⊥AB ,ON ⊥CD ,AM =12AB ,CN =12CD. 又∵AB =CD ,∴AM =CN. 在Rt △AOM 和Rt △CON 中, ⎩⎨⎧OA =OC ,AM =CN , ∴Rt △AOM ≌Rt △CON(HL), ∴OM =ON ,∴∠OMN =∠ONM , ∴∠AMO +∠OMN =∠CNO +∠ONM , 即∠AMN =∠CNM.18. 【答案】解:连接OB ,OC ,过点O 作OH ⊥BC 于点H.∵正六边形的中心角为360°6=60°,OB =OC ,∴△OBC 是等边三角形,∴半径R =OB =BC =AB =10.∵OH ⊥BC ,∴∠BOH =30°,∴BH =12OB =5.在Rt △OBH 中,边心距r =OH =102-52=5 3,周长l =6AB =6×10=60. ∵S △OBC =12BC·OH =12×10×5 3=25 3, ∴正六边形的面积S =6S △OBC =6×25 3=150 3.19. 【答案】解:(1)根据题意,知⊙P 和y 轴相切,则r =3.(2)根据题意,知⊙P 和y 轴相交,和x 轴相离,则3<r <4. (3)根据题意,知⊙P 和x 轴相切或经过坐标原点,则r =4或r =5. (4)根据题意,知⊙P 和x 轴相交且不经过坐标原点,则r >4且r≠5.20. 【答案】证明:(1)连接AP ,过点2O 作直线BC 的垂线,垂足为点M ,如下图:∵线段12O O 的中点是点P ,以1212O O 的长为半径画弧∴121212O P O P AP O O ===∴∠PAO1=∠PO1A ,∠PAO2=∠PO2A ,∴∠O1A O2=∠PAO1+∠PAO2=90°∴△O1A O2是直角三角形∵2O A BC ∴∠O1A O2=∠ABC =90°又∵∠O2MB=90°∴四边形ABM O2是平行四边形∴O2M =AB= O1A -O1B=2r ∴BC 是2O 的切线;M(2)∵12r =,21r =,126O O =, ∴O1A =123r r +=又∵∠O1A O2=90°∴cos ∠A O1 O2=1123162O A O O ==∴∠A O1 O2=60° 在Rt △B O1 C中:1tan602BC BO =⨯==设O1 O2与1O 的交点为点N ,则阴影部分的面积为:11216022==223603BO CBO N S SS ππ⨯-⨯⨯=阴影扇形.NM【解析】(1)证切线常用的方法有“作垂线证半径”和“作半径证垂直” ,考虑到题目中的已知条件,用“作垂线证半径”更简便一些,为此我们可以过点2O 作直线BC 的垂线,垂足为点M ;同时考虑到∠O1A O2可能是直角,可以连接AP 用等腰三角形的等角对等边和三角形内角和定理进行证明;条件中还给出了平行线,因此可以证明∠ABC =90°,则四边形ABM O2是平行四边形,最后证明O2M =AB= O1A -O1B=2r ,问题得以解决.(2)求阴影部分的面积,可以根据割补法来求.解决问题的关键是分别求出△BO1C 和扇形BO1N 的面积,根据已知条件,可以先求出O1A =123r r +=,然后根据三角函数求出∠A O1 O2的度数,需要的数据再通过三角函数求出,问题得解.人教版 九年级数学 第25章 概率初步一、选择题1. 下列事件中,是必然事件的为()A .三点确定一个圆B .抛掷一枚骰子,朝上的一面点数恰好是5C .四边形有一个外接圆D .圆的切线垂直于过切点的半径2. 从-2,-1,2这三个数中任取两个不同的数相乘,积为正数的概率是( )A.23B.12C.13D.143. 有人预测2024年巴黎奥运会上中国女排夺冠的概率是80%,对这个说法正确的理解应该是( ) A .中国女排一定会夺冠 B .中国女排一定不会夺冠 C .中国女排夺冠的可能性比较大 D .中国女排夺冠的可能性比较小4. 甲、乙、丙、丁、戊五名同学参加一次节日活动,很幸运的是他们都得到了一件精美的礼物(如图),他们每人只能从其中一串的最下端取一件礼物,直到礼物取完为止,甲第一个取得礼物,然后乙、丙、丁、戊依次取得第2件到第5件礼物,他们的取法各种各样,事后他们打开这些礼物仔细比较发现礼物D 最精美,那么取得礼物D 可能性最大的同学是( )A .乙B .丙C .丁D .戊5. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中的一项,那么两人同时选择“参加社会调查”的概率为( ) A.14B.13C.12D.346. 2018·柳州如图25-1-5,现有四张扑克牌:红桃A 、黑桃A 、梅花A 和方块A.将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A 的概率为( )图25-1-5 A .1B.14C.12D.347. 一个盒子中装有四张完全相同的卡片,上面分别写着2 cm ,3 cm ,4 cm 和5 cm ,盒子外有两张卡片,上面分别写着3 cm 和5 cm ,现随机从盒中取出一张卡片,与盒子外的两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,那么这三条线段能构成三角形的概率是( ) A.14B.13C.12D.348. 把十位上的数字比个位、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两数,与7组成“中高数”的概率是( ) A.12B.23C.25D.35二、填空题9. 学校组织团员参加实践活动,共安排2辆车,小王和小李随机上了1辆车,结果他们同车的概率是________.10.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为________.11. 2018·湘西州农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了1个,则吃到腊肉棕的概率为________.12. 有五张卡片(形状、大小、质地等均相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.13. 从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球10个和白球若干个,这些球除颜色不同外,其他都一样,由此估计口袋中有________个白球.14. 一个盒中装着质地、大小、外形一模一样的x颗白色弹珠和y颗黑色弹珠,从盒中随机取出1颗弹珠,取得白色弹珠的概率是13.若再往盒中放12颗同样的白色弹珠,取得白色弹珠的概率是23,则原来盒中有白色弹珠________颗.15. 为调查某批乒乓球的质量,根据所做试验,绘制了这批乒乓球中“优等品”频率的折线统计图(如图25-3-2),则这批乒乓球中“优等品”的概率的估计值为________.(精确到0.01)16. 某校欲从初三年级3名女生、2名男生中任取两名学生代表学校参加全市举办的“中国梦·青春梦”演讲比赛,则恰好选中一男一女的概率是________.三、解答题17. 现有四张完全相同的不透明卡片,其正面分别写有数字-2,-1,0,2,把这四张卡片背面朝上洗匀后放在桌面上.(1)随机抽取一张卡片,求抽取的卡片上的数字为负数的概率;(2)先随机抽取一张卡片,其上的数字作为点A的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A的纵坐标,试用画树状图或列表的方法求出点A在直线y=2x上的概率.18. “共和国勋章”是中华人民共和国的最高荣誉勋章,在2019年获得“共和国勋章”的八位杰出人物中,有于敏、孙家栋、袁隆平、黄旭华四位院士,如图41-K-2是四位院士(依次记为A,B,C,D),为了让同学们了解四位院士的贡献,老师设计如下活动:取四张完全相同的卡片,分别写上A,B,C,D四个标号,然后背面朝上放置,搅匀后每个同学可以从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应院士的资料制作小报.求小明和小华查找同一位院士资料的概率.19. 一只不透明的袋子中装有4个小球,分别标有数字2,3,4,x,这些小球除所标数字不同外其余都相同.甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上的数字之和.记录后再将小球都放回袋中搅匀,进行重复试验.试验数据如下表:解答下列问题:(1)如果试验继续进行下去,根据上表数据,试估计出现“和为7”的概率;(2)根据(1),若x是不等于2,3,4的自然数,试求x的值.20. 如图①,在Rt△ABC中,∠C=90°,两条直角边长分别为a,b,斜边长为c.如图②,现将与Rt△ABC全等的四个直角三角形拼成一个正方形EFMN.(1)若Rt△ABC的两直角边长之比为2∶3,现随机向图②掷一枚小针,则针尖落在四个直角三角形区域的概率是多少?(2)若正方形EFMN的边长为8,Rt△ABC的周长为18,求Rt△ABC的面积.人教版九年级数学第25章概率初步同步课时训练-答案一、选择题1. 【答案】D2. 【答案】C[解析] 列表如下:由表可知,共有6种等可能的结果,其中积为正数的有(-1,-2)和(-2,-1)这2种,所以P(积为正数)=26=13.3. 【答案】C4. 【答案】B[解析] 甲、乙、丙、丁、戊取礼物的顺序有10种, 如下:①A ,B ,C ,D ,E ;②A ,C ,D ,E ,B ; ③A ,C ,D ,B ,E ;④A ,C ,B ,D ,E ; ⑤C ,D ,E ,A ,B ;⑥C ,D ,A ,B ,E ; ⑦C ,D ,A ,E ,B ;⑧C ,A ,B ,D ,E ; ⑨C ,A ,D ,B ,E ;⑩C ,A ,D ,E ,B. 可见,取得礼物D 可能性最大的同学是丙.5. 【答案】A6. 【答案】B7. 【答案】D[解析] 共有四种等可能的结果,它们为2,3,5;3,3,5;4,3,5;5,3,5,其中三条线段能构成三角形的结果有3种,所以这三条线段能构成三角形的概率=34.8. 【答案】C[解析] 列表如下:个位结果百位 3456893 374 375 376 378 379 4 473 475 476 478 479 5 573 574 576 578 579 6 673 674 675 678 679 8 873 874 875 876 879 9973974975976978由表格可知,所有等可能的结果有30种,其中组成“中高数”的结果有12种,因此组成“中高数”的概率为1230=25.二、填空题9. 【答案】1210.【答案】13【解析】根据题意画树状图如解图,每个运动员抽签的可能性相等,∵每个运动员的出场顺序都发生变化的有下列两种情况:乙、丙、甲;丙、甲、乙,∴每个运动员的出场顺序都发生变化的概率=26=13.11. 【答案】12 [解析] 一共有10种等可能的结果,其中吃到腊肉粽的结果有5种,所以吃到腊肉粽的概率为12.12. 【答案】25 [解析] 五种图形中,既是中心对称图形,又是轴对称图形的有线段、圆2种,所以所求概率为25.13. 【答案】20[解析] 摸了150次,其中有50次摸到黑球,则摸到黑球的频率是50150=13.设口袋中有x 个白球,则10x +10=13, 解得x =20.经检验,x =20是原方程的解, 故答案为20.14. 【答案】4[解析] ∵第一次取得白色弹珠的概率是13,∴x x +y =13, 解得y =2x .∵再往盒中放12颗同样的白色弹珠,取得白色弹珠的概率是23, ∴x +12x +y +12=23, 将y =2x 代入, 解得x =4,y =8.15. 【答案】0.9516. 【答案】35 [解析] 解法1:列表如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种,所以恰好选中一男一女的概率P=1220=35.解法2:画树状图如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种,所以恰好选中一男一女的概率P=1220=35.三、解答题17. 【答案】解:(1)随机抽取一张卡片,抽取的卡片上的数字为负数的概率为24=12.(2)画树状图如图所示:由树状图知,共有16种等可能的结果,其中点A在直线y=2x上的结果有2种,所以点A在直线y=2x上的概率为216=18.18. 【答案】解:根据题意画树状图如下:共有16种等可能的结果,其中小明和小华查找同一位院士资料的结果有4种,所以小明和小华查找同一位院士资料的概率为416=14.19. 【答案】解:(1)估计出现“和为7”的概率是0.33.(2)列表如下:由表可知一共有12种等可能的结果. 由(1)可知,出现“和为7”的概率为0.33, 所以“和为7”出现的次数为0.33×12=3.96≈4.若2+x =7,则x =5,此时P(“和为7”)=13≈0.33,符合题意;若3+x =7,则x =4,不符合题意;若4+x =7,则x =3,不符合题意.综上所述,x =5.20. 【答案】(1)因为Rt △ABC 的两直角边长之比为2∶3, 所以设b =2k ,a =3k ,由勾股定理,得c =a2+b2=13k ,所以针尖落在四个直角三角形区域的概率为4×12×2k×3k 13k2=1213. (2)因为正方形EFMN 的边长为8,所以c =8,所以a2+b2=c2=64. 因为Rt △ABC 的周长为18, 即a +b +c =18, 所以a +b =10,所以Rt △ABC 的面积=12ab =14[(a +b)2-(a2+b2)] =9.。
人教版2020九年级数学上册 第二十四章 圆 小专题16 求阴影部分的面积习题 (新版)新人教版
![人教版2020九年级数学上册 第二十四章 圆 小专题16 求阴影部分的面积习题 (新版)新人教版](https://img.taocdn.com/s3/m/54cc908089eb172dec63b72b.png)
小专题16 求阴影部分的面积——教材P113练习T3的变式与应用【教材母题】 如图,正三角形ABC 的边长为a ,D ,E ,F 分别为BC ,CA ,AB 的中点,以A ,B ,C 三点为圆心,a2长为半径作圆.求图中阴影部分的面积.解:连接AD.由题意,得CD =a2,AC =a ,故AD =AC 2-CD 2=a 2-(a 2)2=32a.则图中阴影部分的面积为12×a×32a -3×60π×(a 2)2360=23-π8a 2.求阴影部分面积的常用方法:①公式法:所求图形是规则图形,如扇形、特殊四边形等,可直接利用公式计算; ②和差法:所求图形是不规则图形,可通过转化成规则图形的面积的和或差;③等积变换法:直接求面积较麻烦或根本求不出时,通过对图形的平移、旋转、割补等,为公式法或和差法创造条件.1.(资阳中考)如图,在Rt△ABC 中,∠ACB=90°,AC =23,以点B 为圆心,BC 的长为半径作弧,交AB 于点D.若点D 为AB 的中点,则阴影部分的面积是(A)A .23-23πB .43-23πC .23-43π D.23π2.(枣庄中考)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=23,则阴影部分的面积为(D)A.2π B.πC.π3D.2π33.(深圳中考)如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为22时,则阴影部分的面积为(A)A.2π-4 B.4π-8C.2π-8 D.4π-44.(朝阳中考)如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为(C)A.32π B.3π C.72π D.2π5.(山西中考)如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10 cm,∠BAC=36°,则图中阴影部分的面积为(B) A.5π cm2 B.10π cm2C.15π cm2 D.20π cm26.(河南中考)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是(C)A.2π3 B .23-π3C .23-2π3 D .43-2π37.(天水中考)如图,在△ABC 中,BC =6,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F ,点P 是优弧EF ︵上的一点,且∠EPF=50°,则图中阴影部分的面积是(6-109π).8.(滨州中考)如图,△ABC 是等边三角形,AB =2,分别以A ,B ,C 为圆心,以2为半径作弧,则图中阴影部分的面积是2π-33.9.(太原二模)如图,AB 是半圆O 的直径,且AB =8,点C 为半圆上的一点.将此半圆沿BC 所在的直线折叠,若圆弧BC 恰好过圆心O ,则图中阴影部分的面积是8π3(结果保留π)10.(南通中考)如图,PA ,PB 分别与⊙O 相切于A ,B 两点,∠ACB=60°. (1)求∠APB 的度数;(2)若⊙O 的半径长为4 cm ,求图中阴影部分的面积.解:(1)连接OA ,OB.∵PA,PB 分别与⊙O 相切于A ,B 两点, ∴∠PAO=∠PBO=90°. ∴∠AOB+∠APB=180°. ∵∠AOB=2∠C=120°, ∴∠APB=60°. (2)连接OP.∵PA,PB 分别与⊙O 相切于A ,B 两点, ∴∠APO=12∠APB=30°.在Rt△APO 中,∵OA =4 cm , ∴PO=2×4=8(cm).由勾股定理得AP =OP 2-OA 2=82-42=43(cm). ∴S 阴影=2×(12×4×43-60×π×42360)=(163-163π)cm 2.11.(本溪中考)如图,点D 是等边△ABC 中BC 边的延长线上一点,且AC =CD ,以AB 为直径作⊙O,分别交边AC ,BC 于点E ,F. (1)求证:AD 是⊙O 的切线;(2)连接OC ,交⊙O 于点G ,若AB =4,求线段CE ,CG 与GE ︵围成的阴影部分的面积S.解:(1)证明:∵△ABC 为等边三角形, ∴∠BAC=∠ACB=60°. ∵AC=CD ,∴∠CAD=∠D=30°. ∴∠BAD=90°,即AB⊥AD. ∵AB 为直径,∴AD 是⊙O 的切线. (2)连接OE ,∵OA=OE ,∠BAC=60°,∴△OAE 是等边三角形.∴∠AOE=60°.∵CB=CA ,OA =OB ,∴CO⊥AB.∴∠AOC=90°.∴∠EOC=30°. ∵△ABC 是边长为4的等边三角形,∴AO=2. 由勾股定理得:OC =42-22=2 3.同理等边△AOE 边AO 上的高是22-12=3, ∴S 阴影=S △A OC -S 等边△AOE -S 扇形EOG =12×2×23-12×2×3-30×π×22360 =3-π3.12.(襄阳中考)如图,在正方形ABCD 中,AD =2,E 是AB 的中点,将△BEC 绕点B 逆时针旋转90°后,点E 落在CB 的延长线上点F 处,点C 落在点A 处.再将线段AF 绕点F 顺时针旋转90°得线段FG ,连接EF ,CG. (1)求证:EF ∥CG ;(2)求点C ,点A 在旋转过程中形成的AC ︵,AG ︵与线段CG 所围成的阴影部分的面积.解:(1)证明:∵四边形ABCD 是正方形, ∴AB =BC =AD =2, ∠ABC =90°.∵△BEC 绕点B 逆时针旋转90°得△BFA , ∴△ABF ≌△CBE.∴∠FAB =∠ECB ,∠ABF =∠CBE =90°, AF =EC.∴∠AFB +∠FAB =90°.∵线段AF 绕点F 顺时针旋转90°得线段FG , ∴∠AFB +∠CFG =∠AFG =90°,AF =FG.∴∠CFG =∠FAB =∠ECB.∴EC ∥FG. ∵AF =EC ,AF =FG ,∴EC =FG. ∴四边形EFGC 是平行四边形. ∴EF ∥CG.(2)∵△ABF ≌△CBE ,∴FB =BE =12AB =1.∴AF =AB 2+BF 2= 5. 在△FEC 和△CGF 中,∵EC =GF ,∠ECF =∠GFC ,FC =CF , ∴△FEC ≌△CGF(SAS). ∴S △FEC =S △CGF .∴S 阴影=S 扇形BAC +S △ABF +S △FGC -S 扇形FAG=90π×22360+12×2×1+12×(1+2)×1-90π×(5)2360=52-π4(或10-π4).。
阴影部分求面积及周长练习集(完整答案)
![阴影部分求面积及周长练习集(完整答案)](https://img.taocdn.com/s3/m/5f10609265ce05087632138b.png)
小学及小升初复习专题-圆与求阴影部分面积----完整答案在最后面目标:通过专题复习,加强学生对于图形面积计算的灵活运用。
并加深对面积和周长概念的理解和区分。
面积求解大致分为以下几类:1、从整体图形中减去局部;2、割补法,将不规则图形通过割补,转化成规则图形。
重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。
能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。
一个花瓣图圆心。
图形的的面例29.图中直角三角形ABC的直角三角形的直角边AB=4厘米,BC=6厘米,扇形BCD所在圆是以B为圆心,半径为BC的圆,∠CBD=,问:阴影部分甲比乙面积小多少?举一反三★巩固练习【专1 】下图中,大小正方形的边长分别是9厘米和5厘米,求阴影部分的面积。
【专1-1】.右图中,大小正方形的边长分别是12厘米和10厘米。
求阴影部分面积。
【专1-2】. 求右图中阴影部分图形的面积及周长。
【专2】已知右图阴影部分三角形的面积是5平方米,求圆的面积。
【专2-1】已知右图中,圆的直径是2厘米,求阴影部分的面积。
【专2-2】求右图中阴影部分图形的面积及周长。
【专2-3】求下图中阴影部分的面积。
(单位:厘米)【专3】求下图中阴影部分的面积。
【专3-1】求右图中阴影部分的面积。
【专3-2】求右图中阴影部分的面积。
【专3-3】求下图中阴影部分的面积。
例1解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r ,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
初中数学专题辅导:阴影面积求法9种方法(不规则图形)
![初中数学专题辅导:阴影面积求法9种方法(不规则图形)](https://img.taocdn.com/s3/m/481fb0abad51f01dc281f1e9.png)
阴影面积求法阴影部分的图形一般是不规则图形或没有可直接利用的公式,因此,同学们常感到困难。
本文指出:求解这类问题的关键是将阴影部分图形转化为可求解的规则图形的组合。
如何转化呢?这里给出常用的9种转化方法。
1. 直接组合例1. 如下图,圆A 、圆B 、圆C 、圆D 、圆E 相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE ,则图中五个扇形(阴影部分)的面积之和是()A. B. 1.5 C. 2 D. 2.5ππππ(02年河南省中考)分析:由于每个扇形圆心角的具体角度未知,故无法直接进行计算。
因为五边形ABCDE 的内角和=540°=360°+180°,从而可知所求阴影部分的面积可以重新组合成一个圆和一个半圆的面积,即1.5个圆的面积:,选(B )。
ππ5.1)1(5.12=⋅⨯ 2. 圆形分割例2. 如下图,ΔABC 中,∠C 是直角,AB=12cm ,∠ABC=60°,将ΔABC 以点B 为中心顺时针旋转,使点C 旋转到AB 边延长线上的点D 处,则AC 边扫过的图形(阴影部分)的面积是_________(=3.14159……,最后结果保留三个有效数字)。
2cm π(03年济南市中考)解:在中,ABC Rt ∆所以cm AB BC BAC ABC 6213060==︒=∠︒=∠又易证 ,EBD Rt ABC Rt ∆≅∆。
,,所以︒=∠=∠︒=∠=∠=∆∆12060CBD ABE EBD ABC S S EBD ABC 故所求阴影面积为整个图形的总面积减去空白图形的面积,即)。
(===)()=(扇形扇形扇形扇形阴影22211336636012012360120cm S S S S S S S BCDBAE ABC BCD EBD BAE ≈⋅-⋅-+-+∆∆πππ3. 平移例3. 如下图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为________________。
中考求阴影部分面积
![中考求阴影部分面积](https://img.taocdn.com/s3/m/05dec1742f60ddccda38a0e2.png)
中考求阴影部分面积【知识概述】计算平面图形的面积问题是常见题型,求平面阴影部分的面积是这类问题的难点。
不规则阴影面积常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形组合而成的,在解此类问题时,要注意观察和分析图形,会分解和组合图形。
现介绍几种常用的方法。
一、转化法此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。
例1. 如图1,点C 、D 是以AB 为直径的半圆O 上的三等分点,AB=12,则图中由弦AC 、AD 和C D ⌒围成的阴影部分图形的面积为_________。
二、和差法有一些图形结构复杂,通过观察,分析出不规则图形的面积是由哪些规则图形组合而成的,再利用这些规则图形的面积的和或差来求,从而达到化繁为简的目的。
三、重叠法就是把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法。
这类题阴影一般是由几个图形叠加而成。
要准确认清其结构,理顺图形间的大小关系。
例4. 如图4,正方形的边长为a ,以各边为直径在正方形内作半圆,求所围成阴影部分图形的面积。
四、补形法将不规则图形补成特殊图形,利用特殊图形的面积求出原不规则图形的面积。
例5. 如图5,在四边形ABCD 中,AB=2,CD=1,∠=︒∠=∠=A B D 60,90︒,求四边形ABCD 所在阴影部分的面积。
例2.如图2,PA 切圆O 于A ,OP 交圆O 于B ,且PB=1,PA=3,则阴影部分的面积S=_______.五、拼接法例6. 如图6,在一块长为a 、宽为b 的矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽图2都是c 个单位),求阴影部分草地的面积。
六、特殊位置法例7. 如图8,已知两个半圆中长为4的弦AB 与直径CD 平行,且与小半圆相切,那么图中阴影部分的面积等于_______。
七、代数法将图形按形状、大小分类,并设其面积为未知数,通过建立方程或方程组来解出阴影部分面积的方法。
2020九年级数学小专题系列之求阴影部分面积题型汇总(适合各版本)
![2020九年级数学小专题系列之求阴影部分面积题型汇总(适合各版本)](https://img.taocdn.com/s3/m/38b0dd49453610661ed9f4ff.png)
下面列举初中阶段常用到的技巧方法一、公式法这属于最简单的方法,阴影面积是一个常规的几何图形,例如三角形、正方形等等。
简单举出2个例子:二、和差法攻略一:直接和差法这类题目也比较简单,属于一目了然的题目。
只需学生用两个或多个常见的几何图形面积进行加减。
攻略二:构造和差法学生就要构建自己的数学图形转化思维了,学会通过添加辅助线进行求解三、割补法割补法,是学生拥有比较强的转化能力后才能轻松运用的,否则学生看到这样的题目还是会无从下手。
尤其适用于直接求面积较复杂或无法计算时,通过对图形的平移、旋转、割补等,为利用公式法或和差法求解创造条件攻略一:全等法攻略二:对称法攻略三:平移法攻略四:旋转法九年级(上)阴影部分面积练习1 .如图,在 Rt △ ABC 中,∠ C=90 °,∠ BAC=60 °,将△ ABC 绕点 A 逆时针旋转60 °后得到△ ADE ,若 AC=1 ,则线段 BC 在上述旋转过程中所扫过部分(阴影部分)的面积是(结果保留π).2 .如图, AC 是汽车挡风玻璃前的雨刷器,如果 AO=45cm , CO=5cm ,当 AC 绕点 O 顺时针旋转 90 °时,则雨刷器 AC 扫过的面积为 cm 2 (结果保留π).3 .如图,在半径 AC 为 2 ,圆心角为 90 °的扇形内,以 BC 为直径作半圆,交弦AB 于点 D ,连接 CD ,则图中阴影部分的面积是.4 .如图,在▱ ABCD 中, AD=4 , AB=8 ,∠ A=30 °,以点 A 为圆心, AD 的长为半径画弧交 AB 于点 E ,连接 CE ,则阴影部分的面积是.(结果保留π)5 .如图,以 AD 为直径的半圆 O 经过 Rt △ ABC 的斜边 AB 的两个端点,交直角边 AC 于点 E . B 、 E 是半圆弧的三等分点,弧 BE 的长为,则图中阴影部分的面积为.6 .如图, AB 是⊙ O 的直径,点 E 为 BC 的中点, AB=4 ,∠ BED=120 °,则图中阴影部分的面积之和是.7 .如图, AB 是半圆 O 的直径,且 AB=8 ,点 C 为半圆上的一点.将此半圆沿 BC 所在的直线折叠,若圆弧 BC 恰好过圆心 O ,则图中阴影部分的面积是.(结果保留π)8 .如图,⊙ O 的半径为 4 , OA=8 , AB 切⊙ O 于 B ,弦BC ∥ OA ,连接 AC ,则图中阴影部分的面积为.9 .如图,在圆心角为 90 °的扇形 OAB 中,半径 OA=4 , C 为的中点, D 、 E 分别为 OA , OB 的中点,则图中阴影部分的面积为 ______________ .10 .如图,半圆 O 中, AB 为直径, AB=4 , C 、 D 为半圆上两点,四边形 OACD 为菱形,连接 BC 交 OD 于点 E ,则阴影部分面积为 ______________ .11 .如图,边长为 2 的正方形 MNEF 的四个顶点在大圆 O 上,小圆 O 与正方形各边都相切, AB 与 CD 是大圆 O 的直径, AB ⊥ CD , CD ⊥ MN ,则图中阴影部分的面积是 __________ .12 .如图,在△ ABC 中,∠ C=90 °, AC=BC ,斜边 AB=2 , O 是 AB 的中点,以O 为圆心,线段 OC 的长为半径画圆心角为 90 °的扇形 OEF ,弧 EF 经过点 C ,则图中阴影部分的面积为 _____________ .13 .如图,在扇形 AOB 中,半径 OA=2 ,∠ AOB=120 °, C 为弧 AB 的中点,连接AC 、 BC ,则图中阴影部分的面积是(结果保留π).14 .如图,在△ ABC 中, BC=4 ,以点 A 为圆心, 2 为半径的⊙ A 与 BC 相切于点 D ,交 AB 于点 E ,交 AC 于点 F ,点 P 是⊙ A 上的一点,且∠ EPF=45 °,则图中阴影部分的面积为.15 .如图,△ ABC 是边长为 4 个等边三角形, D 为 AB 边的中点,以 CD 为直径画圆,则图中阴影部分的面积为(结果保留π).16 .如图,在△ ACB 中,∠ BAC=50 °, AC=2 , AB=3 ,现将△ ACB 绕点 A 逆时针旋转 50 °得到△ AC 1 B 1 ,则阴影部分的面积为.17 .如图,在边长为 4 的正方形 ABCD 中,先以点 A 为圆心, AD 的长为半径画弧,再以 AB 边的中点为圆心, AB 长的一半为半径画弧,则阴影部分面积是(结果保留π).18 .如图矩形 ABCD 中, AB=1 , AD= ,以 AD 的长为半径的⊙ A 交 BC 于点E ,则图中阴影部分的面积为.19 .如图,直径 AB 为 4 的半圆,绕 A 点逆时针旋转 60 °,此时点 B 到了点B ′,则图中阴影部分的面积是.20 .如图,已知 AB 是⊙ O 的直径, P 为 BA 延长线上一点, PC 切⊙ O 于 C ,若⊙ O 的半径是 4cm ,∠ P=30 °,图中阴影部分的面积是.21 .如图,已知 C , D 是以 AB 为直径的半圆周上的两点, O 是圆心,半径OA=2 ,∠ COD=120 °,则图中阴影部分的面积等于.22 .如图,在 Rt △ ABC 中,∠ C=90 °,∠ A=30 °, AB=2 .将△ ABC 绕顶点 A 顺时针方向旋转至△ AB ′ C ′的位置, B , A ,C ′三点共线,则线段 BC 扫过的区域面积为.23 .如图,半径为 1cm ,圆心角为 90 °的扇形 OAB 中,分别以 OA 、 OB 为直径作半圆,则图中阴影部分的面积为.24 .如图,在⊙ O 中,直径 AB=2 , CA 切⊙ O 于 A , BC 交⊙ O 于 D ,若∠C=45 °,则阴影部分的面积为.25 .如右图, Rt △ ABC 的面积为 20cm 2 ,在 AB 的同侧,分别以 AB , BC , AC 为直径作三个半圆,则阴影部分的面积为.26 .如图,△ ABC 是⊙ O 的内接正三角形,⊙ O 的半径为 3 ,则图中阴影部分的面积是.27 .如图, AB 是半圆 O 的直径,且 AB=8 ,点 C 为半圆上的一点.将此半圆沿BC 所在的直线折叠,若圆弧 BC 恰好过圆心 O ,则图中阴影部分的面积是.(结果保留π)28 .如图, AB 是半圆 O 的直径,点 C 、 D 是半圆 O 的三等分点,若弦 CD=2 ,则图中阴影部分的面积为.29 .如图,分别以边长等于 1 的正方形的四边为直径作半圆,则图中阴影部分的面积为。
中考数学:求阴影部分面积的几种常见方法
![中考数学:求阴影部分面积的几种常见方法](https://img.taocdn.com/s3/m/371c35d487c24028905fc38d.png)
阴影局部面积的几种常见方法在初中数学中,求阴影局部的面积问题是一个重要容,在近年来的各地中考试题中屡见不鲜.这类试题大多数都是求不规那么图形的面积,具有一定的难度,因此,正确把握求阴影局部面积问题的解题方法,显得尤为重要.本文举例介绍解决这类问题的常见方法.一、直接求解法例1 如图1,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,AD变到AD1位置,折痕为AE.再将△AED1以D1E为折痕,向右折叠,AE变到A1E位置,且A1E交BC于点F.求图中阴影局部的面积.分析因为阴影局部是一个规那么的几何图形Rt△CEF,故根据条件可以直接计算阴影局部面积.解如图1,根据对称性可得AD=AD1=A1D1=6.由条件易知:EC=D1B=4,BC=6;Rt△FBA1∽Rt△FCE.设FC为x,那么FB=6-x.二、间接求解法例2 如图2,⊙O1与⊙O2外切于点C,且两圆分别和直线l相切于A、B两点,假设⊙O1半径为3cm;⊙O2半径为1cm,求阴影局部面积.分析这是求一个不规那么图形的面积,没有现成的面积公式,因此应采用间接的方法,设法转化为规那么图形的面积的和或差去计算.三、整体合并法例3 如图3,⊙A、⊙B、⊙C两两不相交,且半径都是0.5cm,求三个阴影局部面积之和.分析所求的阴影局部面积是三个扇形面积之和,因为三个扇形圆心角度数不知道,所以无法单独求解,但仔细观察发现,三个扇形的圆心角分别是△ABC的三个角,其和为180°,而扇形半径都相等,所以三个扇形能合并成一个半圆.于是问题获解.解如图3,因为三个圆的半径相等,三个扇形圆心角之和是180°,所以其面积就是半圆面积.四、等积变换法例4 如图4,A是半径为R的⊙O外一点,弦BC为3R,OA∥BC,求阴影局部面积.分析此题的阴影局部是不规那么的图形,求其面积较困难,但灵活运用等积变换,就可以把它的面积转化为扇形OBC的面积,从而获解.解连接OC,OB,五、分割法例5 如图5,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,求阴影局部面积.分析阴影局部图形不规那么,不能直接求面积,可以把它分割成几个局部求面积的和.解如图5,连接CD.∵AC、BC是直径,∴∠ADC=∠BDC=90°,∴A、D、B三点共线.设阴影局部面积被分割为S1、S2、S3、S4四局部.那么六、转化法例6如图(1),大半圆O与小半圆O1相切于点C,大半圆的弦AB与小半圆相切于点F,且AB∥CD,AB=4cm,求阴影局部面积.分析如果想直接求阴影局部面积,无法求解,因为它不是规那么图形.但要采取转化思想,把小半圆平移到与大半圆的圆心重合的位置,作OE⊥AB于点E.连接OB,可知BE =2cm,阴影局部面积等于大半圆面积减去小半圆的面积.解如图(2),将小半圆O1移至与大半圆圆心重合,作OE⊥AB于点E,那么BE=12AB=2cm.设大圆半径为R,小圆半径为x,在Rt△OEB中,有七、割补法例7 如图7,点P(3a,a)是反比例函数y=12x与⊙O在第一象限的一个交点,求阴影局部的面积.分析阴影局部分两局部,难于逐一求解,但考虑反比例函数的对称性,结合割补原理,问题变得特别简单.解如图7,把右上角的S1局部分割下来,移到左下方补在S3处,与S2就组成了一个扇形OAB.易知:∵P(3a,a)在反比例函数y=12x的图象上,∴3a=12a.解得:a1=2,a2=-2〔舍去〕.∴P坐标为(6,2).连接OP,作PC⊥x轴于点C,得:八、方程建模法例8如图8,正方形边长为a,以每边为直径在正方形画四个半圆,求阴影局部的面积.分析此题直接求阴影局部面积较复杂,但观察图形特点引入方程的思想,问题变得非常简单.解正方形由四个阴影花瓣和四个空白图形组成,如图8,设一个阴影花瓣面积为x,一个空白图形面积为y.根据题意得:因此阴影局部面积为.222aaπ-.。
阴影部分求面积与周长(含答案)
![阴影部分求面积与周长(含答案)](https://img.taocdn.com/s3/m/a3aa300fc8d376eeafaa3197.png)
【史上最全小学求阴影局部面积专题—含答案】小学与小升初复习专题-圆与求阴影局部面积 ----完整答案在最后面目标:通过专题复习,加强学生对于图形面积计算的灵活运用。
并加深对面积和周长概念的理解和区分。
面积求解大致分为以下几类:c重难点:观察图形的特点,根据图形特点选择适宜的方法求解图形的面积。
能灵活运用所学过的根本的平面图形的面积求阴影局部的面积。
例1.求阴影局部的面积。
例2.正方形面积是7平方厘米,求阴影局部的面积。
(单位:厘米)(单位:厘米)例4.求阴影局部的面积。
(单位:厘米)例3.求图中阴影局部的面积。
(单位:厘米)例5.求阴影局部的面积。
(单位:厘米) 例6.如图:小圆半径为2厘米,大圆半径是小圆的3倍,问:空白局部甲比乙的面积多多少厘米?例7.求阴影局部的面积。
(单位:厘米)例8.求阴影局部的面积。
(单位:厘米)例9.求阴影局部的面积。
(单位:厘米)例10.求阴影局部的面积。
(单位:厘米)例11.求阴影局部的面积。
(单位:厘米)例12.求阴影局部的面积。
(单位:厘米)例13.求阴影局部的面积。
(单位:厘米)例14.求阴影局部的面积。
(单位:厘米)例16.求阴影局部的面积。
(单位:厘米) 例15.直角三角形面积是12平方厘米,求阴影局部的面积。
例17.图中圆的半径为5厘米,求阴影局部的面积。
(单位:厘米) 例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形,求阴影局部的周长。
例19.正方形边长为2厘米,求阴影局部的面积。
例20.如图,正方形ABCD的面积是36平方厘米,求阴影局部的面积。
例21.图中四个圆的半径都是1厘米,求阴影局部的面积。
例22.如图,正方形边长为8厘米,求阴影局部的面积。
例23.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影局部的面积是多少?例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一局部连成一个花瓣图形,图中的黑点是这些圆的圆心。
人教版九年级数学上册求阴影部分面积习题课课件
![人教版九年级数学上册求阴影部分面积习题课课件](https://img.taocdn.com/s3/m/5eba88c380c758f5f61fb7360b4c2e3f572725c8.png)
(1)请写出三条与BC有关的正确结论;
(2)当∠D=30°,BC=1时,求圆中阴影部分的面积.
解:(1)BC=BD;OF平行BC;三角形ABC是直角三角形。(等等)
(2)连接OC,则OC=OA=OB∴∠D=30°∴∠A=∠D=30°∴∠AOC=120°
弧长和扇形面积第二课时
已知:如图,半圆O的直径AB=12cm,点C,D是这个半圆的三等分点.求∠CAD的度数及弦AC,AD和 围成的图形(图中阴影部分)的面积S.
解:连接CO、OD,CD,
∵C、D是这个半圆的三等分点,
∴CD∥AB,∠CDO= ,
∴∠CAD= ,
解:因为PA、PB切⊙O于A、B点,PO=4cm,∠APB=60°,
所以∠APO=∠BPO=30°,∠AOB=120°,
所以AO=2cm,AP=BP= cm,
弧AB=120×π×2÷180= cm,
阴影部分的周长:
答:阴影部分的周长是:
S阴影=S四边形APBO-S扇形ABO =AO·AP- =2× -
D.
C.
A.
B.
D
4.如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为( )
A.
B.
C.
D.
C
5.如图,矩形ABCD的边长AB=1,AD= ,如果矩形ABCD以B为中心,按顺时针方向旋转到A ′BCD的位置(点A′落在对角线BD上),则对角线BD扫过的面积为( )
A.
B.
C.
D.
B
6.如图,两个同心圆中,大圆的半径OA=4cm,∠AOB=∠BOC=60°,则图中阴影部分的面积是______cm2.
中考求阴影部分面积(供参考)
![中考求阴影部分面积(供参考)](https://img.taocdn.com/s3/m/55bac58884254b35effd3408.png)
中考求阴影部分面积【知识概述】计算平面图形的面积问题是常见题型,求平面阴影部分的面积是这类问题的难点。
不规则阴影面积常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形组合而成的,在解此类问题时,要注意观察和分析图形,会分解和组合图形。
现介绍几种常用的方法。
一、转化法此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。
例1. 如图1,点C、D是以AB为直径的半圆O上的三等分点,AB=12,则图中由弦AC、AD和C D⌒围成的阴影部分图形的面积为_________。
二、和差法有一些图形结构复杂,通过观察,分析出不规则图形的面积是由哪些规则图形组合而成的,再利用这些规则图形的面积的和或差来求,从而达到化繁为简的目的。
三、重叠法就是把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法。
这类题阴影一般是由几个图形叠加而成。
要准确认清其结构,理顺图形间的大小关系。
例4. 如图4,正方形的边长为a,以各边为直径在正方形内作半圆,求所围成阴影部分图形的面积。
四、补形法将不规则图形补成特殊图形,利用特殊图形的面积求出原不规则图形的面积。
例5. 如图5,在四边形ABCD中,AB=2,CD=1,∠=︒∠=∠=A B D60,90︒,求四边形ABCD所在阴影部分的面积。
例2.如图2,PA切圆O于A,OP交圆O于B,且PB=1,PA=3,则阴影部分的面积S=_______.五、拼接法例6. 如图6,在一块长为a、宽为b的矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽图2都是c 个单位),求阴影部分草地的面积。
六、特殊位置法例7. 如图8,已知两个半圆中长为4的弦AB与直径CD平行,且与小半圆相切,那么图中阴影部分的面积等于_______。
七、代数法将图形按形状、大小分类,并设其面积为未知数,通过建立方程或方程组来解出阴影部分面积的方法。
(完整版)中考求阴影部分面积
![(完整版)中考求阴影部分面积](https://img.taocdn.com/s3/m/ca93ca61998fcc22bdd10d39.png)
中考求阴影部分面积【知识概述】计算平面图形的面积问题是常见题型,求平面阴影部分的面积是这类问题的难点。
不规则阴影面积常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形组合而成的,在解此类问题时,要注意观察和分析图形,会分解和组合图形。
现介绍几种常用的方法。
一、转化法此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。
例1. 如图1,点C 、D 是以AB 为直径的半圆O 上的三等分点,AB=12,则图中由弦AC 、AD 和C D ⌒围成的阴影部分图形的面积为_________。
二、和差法有一些图形结构复杂,通过观察,分析出不规则图形的面积是由哪些规则图形组合而成的,再利用这些规则图形的面积的和或差来求,从而达到化繁为简的目的。
三、重叠法就是把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法。
这类题阴影一般是由几个图形叠加而成。
要准确认清其结构,理顺图形间的大小关系。
例4. 如图4,正方形的边长为a ,以各边为直径在正方形内作半圆,求所围成阴影部分图形的面积。
四、补形法将不规则图形补成特殊图形,利用特殊图形的面积求出原不规则图形的面积。
例5. 如图5,在四边形ABCD 中,AB=2,CD=1,∠=︒∠=∠=A B D 60,90︒,求四边形ABCD 所在阴影部分的面积。
例2.如图2,PA 切圆O 于A ,OP 交圆O 于B ,且PB=1,PA=3,则阴影部分的面积S=_______. 五、拼接法例6. 如图6,在一块长为a 、宽为b 的矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽图2都是c个单位),求阴影部分草地的面积。
六、特殊位置法例7. 如图8,已知两个半圆中长为4的弦AB与直径CD平行,且与小半圆相切,那么图中阴影部分的面积等于_______。
七、代数法将图形按形状、大小分类,并设其面积为未知数,通过建立方程或方程组来解出阴影部分面积的方法。
人教版九年级数学上册专题十一+不规则图形面积计算的技巧同步测试
![人教版九年级数学上册专题十一+不规则图形面积计算的技巧同步测试](https://img.taocdn.com/s3/m/3ec01be851e79b8969022622.png)
不规则图形面积计算的技巧教材P115习题24.4第4题)图1如图1,正方形的边长为a ,以各边为直径在正方形内画半圆,求图中阴影部分的面积. 解:方法一:由图形可以看出,4个相同阴影部分的面积=4个半圆的面积-正方形的面积=12πa 2-a 2. 方法二:阴影部分和空白部分都由四部分组成,且形状大小一样,因此可以根据图形中隐含的数量关系来构造方程求解.设每一部分的阴影部分面积为x ,每一部分的空白部分面积为y ,根据图形得⎩⎪⎨⎪⎧2x +y =12π⎝⎛⎭⎫a 22,4x +4y =a 2,解得⎩⎨⎧x =18πa 2-a 24,y =a 22-18πa 2, 所以阴影部分面积=4x =4⎝⎛⎭⎫18πa 2-a 24=12πa 2-a 2.【思想方法】 将阴影部分的面积转化为规则图形的面积的和差.图2如图2,正方形的边长为2,以各边为直径在正方形内画半圆,则图中阴影部分的面积为__1.7__.(结果保留两个有效数字,参考数据:π≈3.14)【解析】 空白部分的面积等于四个半圆的面积减去正方形的面积,再利用阴影部分的面积等于正方形的面积减去空白部分的面积计算.空白部分的面积=12π⎝⎛⎭⎫222×4-2×2=2π-4, 阴影部分的面积=2×2-(2π-4)=4-2π+4=8-2π≈8-2×3.14=8-6.28=1.72≈1.7.如图3,以等腰直角△ABC 两锐角顶点A ,B 为圆心作等圆,⊙A 与⊙B 恰好外切,若AC =2,那么图中两个扇形(即阴影部分)的面积之和为( B )A.14πB.12πC.22π D.2π图3【解析】∵⊙A与⊙B恰好外切,∴⊙A与⊙B是等圆,∵AC=2,△ABC是等腰直角三角形,∴AB=22,∴⊙A,⊙B的半径均为 2.∴两个扇形(即阴影部分)的面积之和=∠AπR2360+∠BπR2360=(∠A+∠B)πR2360=14πR2=π2.第2课时 圆锥的侧面积和全面积 [见B 本P50]1.已知圆柱的底面半径为3 cm ,母线长为5 cm ,则圆柱的侧面积是( B )A .30 cm 2B .30π cm 2C .15 cm 2D .15π cm 22.用半径为3 cm ,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( D )A .2π cmB .1.5 cmC .π cmD .1 cm【解析】 设此圆锥的底面半径为r ,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr =120π×3180,解得r =1 cm. 3.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为22,则这个圆锥的侧面积是( B )A .AπB .3πC .22πD .2π【解析】 ∵底面半径为1,高为22, ∴母线长=2(2)2+12=3.底面圆的周长为:2π×1=2π,∴圆锥的侧面积为:S 侧=12×2π×3=3π. 4.如图24-4-12,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长为1 cm ,则这个圆锥的底面半径为( C )图24-4-12 A .2 2 cm B. 2 cm C.22 cm D.12cm 【解析】 由图形可知扇形的圆心角为90°,半径为2 2 cm ,根据圆锥的底面圆的周长等于圆锥的侧面展开扇形的弧长可以得2πr =90180×22π,解得r =22(cm). 5.如果圆锥的母线长为5 cm ,底面半径为3 cm ,那么圆锥的表面积为( C )A .39π cm 2B .30π cm 2C .24π cm 2D .15π cm 2【解析】 S 表=S 侧+S 底=π×3×5+π×32=24π.故选C.6.一个圆锥的侧面积是36π cm 2,母线长是12 cm ,则这个圆锥的底面直径是__6__ cm.7.已知圆锥的底面周长是10π,其侧面展开后所得扇形的圆心角为90°,则该圆锥的母线长是__20__.8.底面半径为1,高为3的圆锥的侧面积等于__2π__.【解析】 ∵圆锥的高为3,底面的半径是1, ∴由勾股定理知:母线长=(3)2+1=2, ∴圆锥的侧面积=12底面周长×母线长=12×2π×2=2π. 9.如图24-4-13,如果从半径为5 cm 的圆形纸片上剪去15圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是__3__cm.图24-4-13【解析】 ∵从半径为5 cm 的圆形纸片上剪去15圆周的一个扇形, ∴留下的扇形的弧长=4(2π×5)5=8π, 根据底面圆的周长等于扇形弧长,∴圆锥的底面半径r =8π2π=4 cm , ∴圆锥的高为52-42=3 cm.故答案为3.10.已知一个扇形的半径为60厘米,圆心角为150°.用它围成一个圆锥的侧面,那么圆锥的底面半径为__25__厘米.【解析】 扇形的弧长是:150π×60180=50π cm , 设底面半径是r cm ,则2πr =50π,解得:r =25.故答案是25.11.已知圆锥的高为4,底面半径为2,求:(1)圆锥的全面积;(2)圆锥侧面展开图的圆心角.解: (1)∵圆锥的高为4,底面半径为2,∴圆锥的母线长为25,底面周长是2×2π=4π,则侧面积是12×4π×25=45π, 底面积是π×22=4π, 则全面积是45π,+4π=(4+45)π.(2)∵圆锥底面半径是2,∴圆锥的底面周长为4π,设圆锥的侧面展开的扇形圆心角为n °,n π×25,180=4π,解得n =725,圆锥侧面展开图的圆心角为72(5)°.12.如图24-4-14,Rt △ABC 中,∠ACB =90°,AC =BC =22,若把Rt △ABC 绕边AB 所在直线旋转一周,则所得的几何体的表面积为( D )图24-4-14A .4πB .42πC .8π D. 82π【解析】 如图,过C 作CO ⊥AB ,则 Rt △ABC 绕边AB 所在直线旋转一周所得的几何体的表面积为2×π×OC ·AC =2×π×2×22=82π.13.一个几何体由圆锥和圆柱组成,其尺寸如图24-4-15所示,则该几何体的全面积(即表面积)为__68π__(结果保留π).图24-4-15【解析】 圆锥的母线长是32+42=5,圆锥的侧面积是12×8π×5=20π,圆柱的侧面积是8π×4=32π,几何体的下底面面积是π×42=16π,则该几何体的全面积(即表面积)为20π+32π+16π=68π.14.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,则圆锥的母线长是__30__.15.已知在△ABC 中,AB =6,AC =8,∠A =90°,把Rt △ABC 绕直线AC 旋转一周得到一个圆锥,其表面积为S 1,把Rt △ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,求S 1∶S 2.【解析】 以直角三角形的直角边为轴旋转一周得到的几何体是圆锥.圆锥的表面积S 表=S 侧+S 底.解:在Rt △ABC 中,∠A =90°,AB =6,AC =8,∴BC =AB 2+AC 2=62+82=10.(1)绕直线AC 旋转一周所得圆锥的表面积:S 1=π·AB ·BC +π·AB 2=π×6×10+π×62=60π+36π=96π;(2)绕直线AB 旋转一周所得圆锥的表面积:S 2=π·AC ·BC +π·AC 2=π×8×10+π×82=80π+64π=144π.∴S 1S 2=96π144π=23. 16.如图24-4-16,已知在⊙O 中,AB =4,AC 是⊙O 的直径,AC ⊥BD 于F ,∠A =30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD 围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.(3)试判断⊙O 中其余部分能否给(2)中的圆锥做两个底面.图24-4-16解: (1)∵AC ⊥BD 于F ,∠A =30°,∴∠BOC =60°,∠OBF =30°,∵在Rt △ABF 中,AB =4,∴BF =2,∴OB =4,∴S 阴影=S 扇形BOD =120·π·42360=163π; (2)设底面半径为r ,∵半径OB =4,2πr =120·2π·4360∴r =43; (3)∵⊙O 其余部分面积为323 π,而圆锥底面面积为169π. ∴⊙O 中其余部分能给(2)中的圆锥做两个底面.17.在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16 cm 的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图24-4-17所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图24-4-17所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切)(1)请说明方案一不可行的理由;(2)判断方案二是否可行,若可行,请确定圆锥的母线长及其底面圆的半径;若不可行,请说明理由.图24-4-17解:(1)理由如下:∵扇形的弧长=2π×164=8π,圆锥的底面周长=2πr ,∴圆的半径为4 cm. 由于所给正方形纸片的对角线长为16 2 cm ,而制作这样的圆锥实际需要正方形纸片的对角线长为16+4+42=20+42>162,∴方案一不可行.(2)方案二可行.理由如下:设圆锥底面圆的半径为r cm ,圆锥的母线长为R cm ,则(1+2)r +R =162,①2πr =2πR 4.② 由①②,可得R =6425+2=3202-12823, r =1625+2=802-3223, 故所求的圆锥的母线长为3202-12823cm , 底面圆的半径为802-3223cm.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题3:求阴影面积的常用方法
通过几条例题,来和大家一起探讨这类问题的解题基本思路和有关技巧。
现介绍几种常用的方法。
一、转化法
此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。
例1. 如图1,点C 、D 是以AB 为直径的半圆O 上的三等分点,AB=12,则图中由弦AC 、AD 和CD ⌒
围成的阴影部分图形的面积为_________。
例2 (2008浙江温州中考试题)如图3,点A
1,A 2,A 3,
A 4在射线OA 上,点
B 1,B 2,B 3在射线OB 上,且A 1B 1∥A 2B 2
∥A 3B 3,A 2B 1∥A 3B 2∥A 4B 3.若△A 2B 1B 2,△A 3B 2B 3的面积分
别为1,4,则图中三个阴影三角形面积之和为____________.
解析:本题中三个阴影部分均为三角形,但苦于没有现成
的底和高,一时无从下手。
如果我们把注意力仅仅集中在三角形面积公式上,是很难一下子找出问题的解决办法的。
不难看出由A 1B 1∥A 2B 2∥A 3B 3,A 2B 1∥A 3B 2∥A 4B 3可以得到△A 2B 1B 2∽△A 3B 2B 3,于是有21413322==B A B A 。
在梯形3322A B B A 中,利用平行线性质可得:2
12333
22=∆∆B B A A B A S S ,于是2322=∆A B A S ,类似地可以求出其余两个三角形面积分别为
21,8,从而得解2
110。
二、和差法 有一些图形结构复杂,通过观察,分析出不规则图形的面积是由哪些规则图形组合而成的,再利用这些规则图形的面积的和或差来求,从而达到化繁为简的目的。
例3. 如图3是一个商标的设计图案,AB=2BC=8,ADE ⌒为14
圆,求阴影部分面积。
分析:经观察图3可以分解出以下规则图形:矩形ABCD 、扇形ADE 、Rt EBC ∆。
所以,S S S S ADE ABCD Rt EBC 阴影扇形矩形=+-=⋅+⨯-⨯⨯=+∆9043604812
412482ππ。
三、重叠法
就是把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法。
这类题阴影一般是由几个图形叠加而成。
要准确认清其结构,理顺图形间的大小关系。
例4如图4,正方形的边长为a ,以各边为直径在正方形内作半圆,求所围成阴影部分图形的面积。
解:因为4个半圆覆盖了正方形,而且阴影部分重叠了两次,所以阴影部分的面积等于4个半圆的面积和与正方形面积的差。
故S a a a 阴影=⋅-=-2221222ππ()(
)。
四、补形法
将不规则图形补成特殊图形,利用特殊图形的面积求出原不规则图形的面积。
例5.: 如图5,在四边形ABCD 中,AB=2,CD=1,∠=︒∠=∠=A B D 60,90︒,求四边形ABCD 所在阴影部分的面积。
解:延长BC 、AD ,交于点E ,因为∠=︒∠=︒A B 6090,,所以∠=︒E 30,又∠=︒==EDC CE CD DE 9023,所以,,易求得BE =23,所以
S S S AB BE CD DE ABE CDE 阴影=-=
⋅-⋅=∆∆1212332。
五、拼接法 例6. 如图6,在一块长为a 、宽为b 的矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽都是c 个单位),求阴影部分草地的面积。
解:(1)将“小路”沿着左右两个边界“剪去”;(2)将左侧的草地向右平移c 个单位;(3)得到一个新的矩形(如图7)。
由于新矩形的纵向宽仍然为b ,水平方向的长变成了()a c -,所以草地的面积为b a c ab bc ()-=-。
六、特殊位置法
例7 如图8,已知两个半圆中长为4的弦AB 与直径CD 平行,且与小半圆相切,那么图中阴影部分的面积等于__________。
分析:在大半圆中,任意移动小半圆的位置,阴影部分面积都保持不变,所以可将小半圆移动至两个半圆同圆心位置(如图9)。
解:移动小半圆至两半圆同圆心位置,如图9。
设切点为H ,连结OH 、OB ,由垂径定理,知BH AB ==12
2。
又AB 切小半圆于点H ,故OH AB ⊥,故OB OH 22- ==BH 24
∴=-=-=S OB OH OB OH 阴影121212
22222ππππ() 七、代数法
将图形按形状、大小分类,并设其面积为未知数,通过建立方程或方程组来解出阴影部分面积的方法。
例8. 如图10,正方形的边长为a ,分别以两个对角顶点为圆心、以a 为半径画弧,求图中阴影部分的面积。
解:设阴影部分的面积为x ,剩下的两块形状、大小相同的每块面积为y ,则图中正方形的面积是x y +2,而x y +是以半径为a 的圆面积的14。
故有x y a +=22,x y a +=π
42。
解得x a =-()π
212。
即阴影部分的面积是()π
2
12-a 。
需要说明的是,在求阴影部分图形的面积问题时,要具体问题具体分析,从而选取
一种合理、简捷的方法。