解直角三角形应用复习PPT课件
合集下载
解直角三角形的应用ppt课件
(结果保留一位小数).
(参考数据:sin63°≈0.9,cos63°≈0.5,
tan63°≈2.0, ≈1.73)
26.4 解直角三角形的应用
解:(1)∵MC=AB=10 cm,∠ACM=63°,
重 ∴AM=MC·tan∠ACM=MC·tan63°≈10×2.0=20(cm).
难
题 答:AM 的长为 20 cm;
直接测量的物体高度或长度
26.4 解直角三角形的应用
归纳总结
考
点
(1)仰角和俯角是视线相对于水平视线而言的,可巧记
清
单 为“上仰下俯”;(2)实际问题中遇到仰角或俯角时,要
解
读 放在直角三角形或转化到直角三角形中运用,注意确定水平
视线;(3)在解有关俯角、仰角的问题中,常作水平线或
铅垂线来构造直角三角形.
,
∴tan30°=
=
−
+
=
,解得
x=60 +90,经检验
x=60 +90 是原方程的解且符合题意,∴AB=(60 +90) m
,
26.4 解直角三角形的应用
变式衍生 3 某中学依山而建,校门 A 处有一坡角
重
难
题 α=30°的斜坡 AB,长度为 30 m,在坡顶 B 处测得教学
26.4 解直角三角形的应用
(2)如答案图,过点 D 作 DH⊥AB,垂足为点 H,则
重
难
题 DG=BH=30 m,DH=BG.设 BC=x m,
型
在 Rt△ABC 中,∠ACB=45°,
突
破
∴AB=BC·tan45°=x m,
∴AH=AB-BH=(x-30) m,
(参考数据:sin63°≈0.9,cos63°≈0.5,
tan63°≈2.0, ≈1.73)
26.4 解直角三角形的应用
解:(1)∵MC=AB=10 cm,∠ACM=63°,
重 ∴AM=MC·tan∠ACM=MC·tan63°≈10×2.0=20(cm).
难
题 答:AM 的长为 20 cm;
直接测量的物体高度或长度
26.4 解直角三角形的应用
归纳总结
考
点
(1)仰角和俯角是视线相对于水平视线而言的,可巧记
清
单 为“上仰下俯”;(2)实际问题中遇到仰角或俯角时,要
解
读 放在直角三角形或转化到直角三角形中运用,注意确定水平
视线;(3)在解有关俯角、仰角的问题中,常作水平线或
铅垂线来构造直角三角形.
,
∴tan30°=
=
−
+
=
,解得
x=60 +90,经检验
x=60 +90 是原方程的解且符合题意,∴AB=(60 +90) m
,
26.4 解直角三角形的应用
变式衍生 3 某中学依山而建,校门 A 处有一坡角
重
难
题 α=30°的斜坡 AB,长度为 30 m,在坡顶 B 处测得教学
26.4 解直角三角形的应用
(2)如答案图,过点 D 作 DH⊥AB,垂足为点 H,则
重
难
题 DG=BH=30 m,DH=BG.设 BC=x m,
型
在 Rt△ABC 中,∠ACB=45°,
突
破
∴AB=BC·tan45°=x m,
∴AH=AB-BH=(x-30) m,
26.4 解直角三角形的应用 - 第1课时仰角、俯角、方位角问题课件(共23张PPT)
解:如图,α = 30° , β= 60°,AD=120. ∵ , ∴BD=AD·tanα=120×tan30︒, =120× =40 . CD=AD·tanβ=120×tan60︒, =120× =120 . ∴BC=BD+CD=40 +120 =160 ≈277(m).答:这栋楼高约为277m.
例1 如图,小明在距旗杆4.5 m的点D处,仰视旗杆顶端A,仰角(∠AOC)为50°;俯视旗杆底部B,俯角(∠BOC)为18°.求旗杆的高.(结果精确到0.1 m)
例题示范
知识点2 方向角方位角:由正南或正北方向线与目标方向线构成的锐角叫做方位角.如下图中的目标方向OA,OB,OC,OD的方向角分别表示________60°,________45°(或__________),_________80°及_________30°.
拓展提升
1.热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?
分析:如图,α=30°,β=60°.在Rt△ABD中,α =30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
第二十六章 解直角三角形
26.4 解直角三角形的应用
第1课时 仰角、俯角、方位角问题
学习目标
学习重难点
重点
难点
1.巩固解直角三角形有关知识,了解仰角、俯角、方向角的概念.2.运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
回顾复习
例1 如图,小明在距旗杆4.5 m的点D处,仰视旗杆顶端A,仰角(∠AOC)为50°;俯视旗杆底部B,俯角(∠BOC)为18°.求旗杆的高.(结果精确到0.1 m)
例题示范
知识点2 方向角方位角:由正南或正北方向线与目标方向线构成的锐角叫做方位角.如下图中的目标方向OA,OB,OC,OD的方向角分别表示________60°,________45°(或__________),_________80°及_________30°.
拓展提升
1.热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?
分析:如图,α=30°,β=60°.在Rt△ABD中,α =30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
第二十六章 解直角三角形
26.4 解直角三角形的应用
第1课时 仰角、俯角、方位角问题
学习目标
学习重难点
重点
难点
1.巩固解直角三角形有关知识,了解仰角、俯角、方向角的概念.2.运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
回顾复习
解直角三角形及其应用精选教学PPT课件
第24讲┃ 回归教材
中考变式
[2012·扬州] 如图24-7,一艘巡逻艇航行至海面B处 时,得知正北方向上距B处20海里的C处有一渔船发 生故障,就立即指挥港口A处的救援艇前往C处营救. 已知C处位于A处的北偏东45°的方向上,港口A处 位于B处的北偏西30°的方向上. 求A、C两处之间的 距离.(结果精确到0.1 海里. 参考数据:≈1.41, ≈1.73)
你已经可以为自己的幸运 烧香拜佛了
还有什么是真爱呢 真正的爱情
年少时站在校园里期待的那种爱情 早已
在尘世中消失离别的时候 每一句话都是那么重
缓缓地扣击着我们的心灵 窗被敲开了
我们诉说着回忆中的快乐 回想著一张张可爱的笑脸
院子里,操场上 充满了甜甜的空气
离别的时候 每一句话都是那么轻 轻轻地说着离别时的感言 轻轻的拉着彼此的手 轻轻地在耳际说声对不起
第24讲┃ 归类示例
有关解直角三角形的实际问题,一般需要利用方向 角等构造直角三角形解决.
第24讲┃ 归类示例
► 类型之三 利用直角三角形解决坡度问题 命题角度: 1. 利用直角三角形解决坡度问题; 2. 将实际问题转化为直角三角形问题.
例3 [2013·衡阳]如图24-5,一段河坝的横断面为梯形 ABCD,试根据图中的数据,求出坝底宽AD.(i=CE∶ED, 单位:m)
图24-6
第24讲┃ 回归教材
解:如图所示,由题意知,∠CAD=27°,∠CBD=40°,AB=50 m,
点A、B、D在一条直线上,CD⊥AD.设BD=x m,CD=h m,
在Rt△ACD中,
tan27°=50h+
, x
h=(50+x)·tan 27°.①
在Rt△BCD中,
解直角三角形完整版PPT课件
余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。
《专题复习 解直角三角形及应用》课件PPT
考点聚焦
归类探究
回归教材
三、综合运用
A
D
4
B
CQ E
总结:本节课你学到了那些知识? 作业:完成练习册P130-131(2,3,4,5)
中考探究:
D A
B
C
专题复习 解直角三角形及应用
一、知识点回顾:
1.两锐角之间的关系:
∠A+∠B=900
解 2.三边之间的关系:
直 a2+b2=c2
角 三
A
sinA= a
角
c
形
3.边角之间
cosA=
b c
的关系
tanA= a b
B
c a
bC
在解直角三角形及应用时经常接触到的一些概念
(1)仰角和俯角
视线
h
(2)坡度 i =
ห้องสมุดไป่ตู้
l
α为坡角
h
α
l
铅
仰角
α =tan
垂 线
俯角
水平线
视线
(3)方位角
北
A
30°
西
O
东
45°
B
南
二、题型探究:
问题导入1: 直接考查解直角三角形知识 例 1 如图 X3-1,在△ABC 中,∠A=30°,∠B=45°,
AC=2 3,求 AB 的长.
图 X3-1
例2: 如图,为了测出某塔CD的高度,在塔前的平地上选 择一点A,用测角仪测得塔顶D的仰角为30°;在A、C之间 选择一点B(A、B、C三点在同一直线上),用测角仪测得塔 顶D的仰角为75°,且A、B间的距离为40 m.求塔高CD(结 果用根号表示).
解直角三角形的应用(19张ppt)课件
选择合适的解法
根据实际情况选择合适的解法,如近似计算、 精确计算等。
注意单位统一
在实际应用中,要注意单位统一,避免计算 错误。
考虑多解情况
在某些情况下,解直角三角形可能存在多个 解,需要全面考虑。
06
练习与巩固
基础练习题
总结词
掌握基本概念和公式
直角三角形中的角度和边长关系
理解直角三角形中锐角、直角和钝角之间 的关系,以及边长与角度之间的勾股定理 。
利用三角函数定义求解
总结词
通过已知角度和邻边长度,求对边或 斜边长度。
详细描述
根据三角函数定义,已知一个锐角和它 所对的边,可以通过三角函数求出其他 两边。例如,已知∠A=30°和a=1,可 以通过三角函数sin(30°)求出对边b。
利用勾股定理求解
总结词
通过已知两边的长度,求第三边长度。
详细描述
向。
确定建筑物的角度
在建筑设计中,通过解直角三角形, 可以确定建筑物的角度和方向。
确定建筑物的长度
在建筑设计中,通过解直角三角形, 可以确定建筑物的长度和方向。
物理问题中的运用
确定物体的运动轨迹
在物理问题中,通过解直角三角形,可以确定物体的运动轨 迹和方向。
确定物体的受力情况
在物理问题中,通过解直角三角形,可以确定物体的受力情 况和方向。
04
实际应用案例
测高问题
01
02
03
测量山的高度
通过测量山脚和山顶的仰 角,利用解直角三角形的 知识,可以计算出山的高 度。
测量楼的高度
利用解直角三角形的知识, 通过测量楼底和楼顶的仰 角,可以计算出楼的高度。
测量树的高度
通过测量树底部和树顶部 的仰角,利用解直角三角 形的知识,可以计算出树 的高度。
解直角三角形复习课课件
解直角三角形在测量中应用广泛 ,如测量高度、距离等。通过已 知的直角三角形角度和一边长度
,可以计算出其他边的长度。
建筑问题
在建筑领域中,解直角三角形可 用于计算建筑物的角度、高度和 斜边长度等。例如,在计算建筑 物倾斜角度时,可以利用直角三
角形的正、距离和位置 等。通过测量船只与陆地之间的 角度和距离,可以确定船只的位
三角形的两边长度和夹角时,可以利用余弦定理来计算第三边的长度,
从而得到三角形的周长。
三角函数问题
正弦函数
解直角三角形与正弦函数密切相关。在直角三角形中,对 边长度与正弦函数值成正比,可以用于计算对边的长度。
余弦函数
余弦函数在解直角三角形中也有应用。例如,在计算角度 时,可以利用余弦函数来求解。
正切函数
正切函数在解直角三角形中也有应用。例如,在计算斜边 长度时,可以利用正切函数来求解。同时,正切函数还可 以用于计算角度,如锐角或钝角。
04
解直角三角形的注意事项
单位统一
总结词
在进行解直角三角形时,必须确保所有的单 位都是统一的,否则会导致计算错误。
详细描述
在解直角三角形时,常常涉及到长度和角度 两个量。这两个量必须使用相同的单位,如 米、厘米、毫米等。如果单位不统一,计算 结果将失去实际意义。例如,如果一边长度 是10米,而对应的锐角是60度,如果单位 不统一,计算出的另一边长度可能是10米 或10厘米,这将导致问题无法解决。因此 ,在解题前,需要先统一单位。
置。
几何问题
01
角度计算
解直角三角形可用于计算角度,如直角三角形中的锐角或钝角。通过已
知的边长和角度,可以计算出其他角度的大小。
02
面积计算
直角三角形的面积可以通过已知的边长来计算。例如,直角三角形的面
,可以计算出其他边的长度。
建筑问题
在建筑领域中,解直角三角形可 用于计算建筑物的角度、高度和 斜边长度等。例如,在计算建筑 物倾斜角度时,可以利用直角三
角形的正、距离和位置 等。通过测量船只与陆地之间的 角度和距离,可以确定船只的位
三角形的两边长度和夹角时,可以利用余弦定理来计算第三边的长度,
从而得到三角形的周长。
三角函数问题
正弦函数
解直角三角形与正弦函数密切相关。在直角三角形中,对 边长度与正弦函数值成正比,可以用于计算对边的长度。
余弦函数
余弦函数在解直角三角形中也有应用。例如,在计算角度 时,可以利用余弦函数来求解。
正切函数
正切函数在解直角三角形中也有应用。例如,在计算斜边 长度时,可以利用正切函数来求解。同时,正切函数还可 以用于计算角度,如锐角或钝角。
04
解直角三角形的注意事项
单位统一
总结词
在进行解直角三角形时,必须确保所有的单 位都是统一的,否则会导致计算错误。
详细描述
在解直角三角形时,常常涉及到长度和角度 两个量。这两个量必须使用相同的单位,如 米、厘米、毫米等。如果单位不统一,计算 结果将失去实际意义。例如,如果一边长度 是10米,而对应的锐角是60度,如果单位 不统一,计算出的另一边长度可能是10米 或10厘米,这将导致问题无法解决。因此 ,在解题前,需要先统一单位。
置。
几何问题
01
角度计算
解直角三角形可用于计算角度,如直角三角形中的锐角或钝角。通过已
知的边长和角度,可以计算出其他角度的大小。
02
面积计算
直角三角形的面积可以通过已知的边长来计算。例如,直角三角形的面
解直角三角形(复习课)课件
分析多个直角三角形之间的关系,解 决较为复杂的几何问题。
结合勾股定理和三角函数计算直角三 角形中的未知量。
利用给定的条件,设计合理的方案解 决实际问题,如设计桥梁、建筑等结 构的支撑体系。
06
复习与总结
重点回顾
直角三角形的定义与性质
回顾直角三角形的定义、性质和判定条件,理解其在几何图形中 的重要地位。
求解角度。
常见错误分析
混淆边和角
在解题过程中,有时会混淆边和角,导致计算错误。
忽视勾股定理的条件
在使用勾股定理时,需要确保三角形是直角三角形,否则会导致错 误。
角度范围错误
在计算角度时,需要注意角度的范围,避免出现负角度或超过180 度的角度。
解题方法总结
勾股定理法
适用于已知两边长度, 求第三边长度的情况。
船只安全航行。
物理实验
测量角度
在物理实验中,经常需要测量各 种角度。解直角三角形的方法可 以用来计算这些角度,确保实验
结果的准确性。
计算力的大小
在物理实验中,经常需要计算力的 大小。通过解直角三角形,可以精 确地计算出力的大小,确保实验结 果的可靠性。
确定物体的位置
在物理实验中,物体的位置是非常 重要的。通过解直角三角形,可以 计算出物体的位置,确保实验的准 确性和可靠性。
04
解题技巧与策略
解题思路
01
02
03
04
明确问题要求
首先需要理解题目的要求,确 定需要求解的是什么。
选择合适的三角形
根据问题描述,选择一个合适 的直角三角形来解决问题。
利用勾股定理
在直角三角形中,勾股定理是 一个重要的工具,可以帮助我
们求解边长。
结合勾股定理和三角函数计算直角三 角形中的未知量。
利用给定的条件,设计合理的方案解 决实际问题,如设计桥梁、建筑等结 构的支撑体系。
06
复习与总结
重点回顾
直角三角形的定义与性质
回顾直角三角形的定义、性质和判定条件,理解其在几何图形中 的重要地位。
求解角度。
常见错误分析
混淆边和角
在解题过程中,有时会混淆边和角,导致计算错误。
忽视勾股定理的条件
在使用勾股定理时,需要确保三角形是直角三角形,否则会导致错 误。
角度范围错误
在计算角度时,需要注意角度的范围,避免出现负角度或超过180 度的角度。
解题方法总结
勾股定理法
适用于已知两边长度, 求第三边长度的情况。
船只安全航行。
物理实验
测量角度
在物理实验中,经常需要测量各 种角度。解直角三角形的方法可 以用来计算这些角度,确保实验
结果的准确性。
计算力的大小
在物理实验中,经常需要计算力的 大小。通过解直角三角形,可以精 确地计算出力的大小,确保实验结 果的可靠性。
确定物体的位置
在物理实验中,物体的位置是非常 重要的。通过解直角三角形,可以 计算出物体的位置,确保实验的准 确性和可靠性。
04
解题技巧与策略
解题思路
01
02
03
04
明确问题要求
首先需要理解题目的要求,确 定需要求解的是什么。
选择合适的三角形
根据问题描述,选择一个合适 的直角三角形来解决问题。
利用勾股定理
在直角三角形中,勾股定理是 一个重要的工具,可以帮助我
们求解边长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17
思考:如图,某人在山坡坡脚A处测得电视塔尖点C的仰 角为60° ,沿山坡向上走到P处再测得点C的仰角为45° , 已知OA=100米,山坡坡
度为 1 ,(即tan∠PAB= 1 )且O、A、B在同一
2
2
条直线上。求电视塔OC的高度以及所在位置点P的铅直高
度.(测倾器的高度忽略不计,结果保留根号形式)
300
450
600
1
2
3
正弦sinα
2
2
2
3
2
1
余弦cosα
2
2
2
正切tanα
3 3
1
3
5
概念反馈
在解直角三角形及应用时经常接触到的一些概念
(1)仰角和俯角
视线
(2)坡度 i =
h l
α 为坡角
h
α
l
铅
α =tan
垂 线
仰角 俯角
水平线
视线
(3)方位角
北
A
30°
西
东
O
45°
6
B
南
例1:山坡上种树,要求株距(相临两树间的
∴ ∠ABC=30˚, ∠ACD= 60˚,
A
N1
N
在Rt△ADC中, CD=Aan60˚= 3
3x
∵ BD-CD=BC,BC=24
∴ 3x 3 x 24
D
C
B
3
∴ X=12 3 ≈12×1.732 =20.784 >
答:20货轮无触礁危险。
14
1、本节例题学习以后,我们可以得到解直角三角
形的两种基本图形:
A
A
B
C
D
B
D
C
2.(1)把实际问题转化成数学问题,这个转化为两
个方面:一是将实际问题的图形转化为几何图形,
画出正确的平面或截面示意图,二是将已知条件
转化为示意图中的边、角或它们之间的关系.
(2)把数学问题转化成解直角三角形问题,如果示意图不是 直角三角形,可添加适当的辅助线,画出直角三角形.
C 山坡
60°45°P
O
AE
B
水平地面 18
请观察:小山的高为h,为了测的小山顶上铁塔AB 的高x,在平地上选择一点P, 在P点处测得B点的 仰角为a, A点的仰角为B.(见表中测量目标图)
题目
测量山顶铁塔的高
A
X
测 量
B
目
标
h
aB
P
已
山高BC
知
仰角a
数 据
仰角B
C
h=150米
a=45º
B=30º
(2)为避免受到台风的影响,
D
该船应在多少小时内卸完货物? 160 120 C
AC= 160 3 120
200
60°
B
320
A
160 3 120 4 3 3 3.8小时
40
16
思想与方法
1.数形结合思想. 2.方程思想. 3.转化(化归)思想. 方法: 可添加适当的辅助线,把一般三角形问题 转化成解直角三角形问题.
1
三角函数定义
锐角三
特殊角的三角函数值
解
角函数
互余两角三角函数关系
直
同角三角函数关系
角
三
角
两锐角之间的关系
形 解直角 三边之间的关系
三角形
边角之间的关系
定义 函数值 互余关系 函数关系
2
什么是解直角三角形?
由直角三角形中除直角外的已 知元素,求未知元素的过程,叫做 解直角三角形.
B
如图:Rt ABC中,
北
E
B 100m
600
西D
东 A
200m
南
C
13
例 5.如图,海岛A四周20海里周围内为暗礁区,一艘货轮由 东向西航行,在B处见岛A在北偏西60˚,航行24海里到C,见 岛A在北偏西30˚,货轮继续向西航行,有无触礁的危险?
解:过点A作AD⊥BC于D,设AD=x
∵ ∠NBA= 60˚, ∠N1BA= 30˚,
水平距离)是5.5米,测的斜坡倾斜角是30º, 求斜坡上相邻两树间的坡面距离是多少米(精 确到0.1米)
B
解: 在Rt△ABC中 cosA=AC/AB
∴ AB=AC/cosA C
30º A
5.5米
≈6.4(米) 答:斜坡上相邻两树间的坡面距离是6.4米。
7
例2. 如图所示,某地下车库的入口 处 有 斜 坡 AB , 其 坡 度 i=1∶1.5 , 且 AB= 13 m.
B α
D
β
C
A
10
2019/9/19
11
例4、一艘船由A港沿北偏东600方向航 行10km至B港,然后再沿北偏西300方向 10km方向至C港,求 (1)A,C两港之间的距离 (2)确定C港在A港什么方向. M C N
10
答(1) 14.1km
(2)
北偏东15°
B
10
A
12
(2007淄博)王英同学从A地沿北偏西60º方向 走100m到B地,再从B地向正南方向走200m到 C地,此时王英同学离A地多少距离?
a
c
C=90 ,则其余的5个元
素之间关系?
C
b
A
3
1.两锐角之间的关
系∠: A+∠B=900
a +b =c 解 2.三边之间的关系:
直
2 22
角 三 角 形
3.边角之
A
sinA= a
c
cosA=
b c
间的关系
tanA= a b
B
c a
bC
4
要能记 住有多 好
特殊角的三角函数值表
三角函数 锐角α
19
敬
请
知识象一艘船
指
让它载着我们
驶向理想的……
导
可编辑
20
2019/9/19
21
15
例:如图,某货船以20海里/时的速度将一批重要物资 由A处运往正西方向的B处,经16小时的航行到达,到达 后必须立即卸货.此时,接到气象部门通知,一台风正以 40海里/时的速度由A向北偏西60°方向移动.距台风中 心200海里的圆形区域(包括边界)均会受到影响.
(1)问:B处是否受到台风的
北
影响?请说明理由. BD=160海里<200海里
C
8
(2007年昆明)如图,AB和CD是同一地面 上的两座相距36米的楼房,在楼AB的楼顶A点 测得楼CD的楼顶C的仰角为450,楼底D的俯 角为300,求楼CD的高?(结果保留根号)
C
A 450
300
B 36
D
9
练习:在山顶上处D有一铁塔,在塔顶B处测得地面 上一点A的俯角α =60o,在塔底D测得点A的俯角 β=45o,已知塔高BD=30米,求山高CD。
思考:如图,某人在山坡坡脚A处测得电视塔尖点C的仰 角为60° ,沿山坡向上走到P处再测得点C的仰角为45° , 已知OA=100米,山坡坡
度为 1 ,(即tan∠PAB= 1 )且O、A、B在同一
2
2
条直线上。求电视塔OC的高度以及所在位置点P的铅直高
度.(测倾器的高度忽略不计,结果保留根号形式)
300
450
600
1
2
3
正弦sinα
2
2
2
3
2
1
余弦cosα
2
2
2
正切tanα
3 3
1
3
5
概念反馈
在解直角三角形及应用时经常接触到的一些概念
(1)仰角和俯角
视线
(2)坡度 i =
h l
α 为坡角
h
α
l
铅
α =tan
垂 线
仰角 俯角
水平线
视线
(3)方位角
北
A
30°
西
东
O
45°
6
B
南
例1:山坡上种树,要求株距(相临两树间的
∴ ∠ABC=30˚, ∠ACD= 60˚,
A
N1
N
在Rt△ADC中, CD=Aan60˚= 3
3x
∵ BD-CD=BC,BC=24
∴ 3x 3 x 24
D
C
B
3
∴ X=12 3 ≈12×1.732 =20.784 >
答:20货轮无触礁危险。
14
1、本节例题学习以后,我们可以得到解直角三角
形的两种基本图形:
A
A
B
C
D
B
D
C
2.(1)把实际问题转化成数学问题,这个转化为两
个方面:一是将实际问题的图形转化为几何图形,
画出正确的平面或截面示意图,二是将已知条件
转化为示意图中的边、角或它们之间的关系.
(2)把数学问题转化成解直角三角形问题,如果示意图不是 直角三角形,可添加适当的辅助线,画出直角三角形.
C 山坡
60°45°P
O
AE
B
水平地面 18
请观察:小山的高为h,为了测的小山顶上铁塔AB 的高x,在平地上选择一点P, 在P点处测得B点的 仰角为a, A点的仰角为B.(见表中测量目标图)
题目
测量山顶铁塔的高
A
X
测 量
B
目
标
h
aB
P
已
山高BC
知
仰角a
数 据
仰角B
C
h=150米
a=45º
B=30º
(2)为避免受到台风的影响,
D
该船应在多少小时内卸完货物? 160 120 C
AC= 160 3 120
200
60°
B
320
A
160 3 120 4 3 3 3.8小时
40
16
思想与方法
1.数形结合思想. 2.方程思想. 3.转化(化归)思想. 方法: 可添加适当的辅助线,把一般三角形问题 转化成解直角三角形问题.
1
三角函数定义
锐角三
特殊角的三角函数值
解
角函数
互余两角三角函数关系
直
同角三角函数关系
角
三
角
两锐角之间的关系
形 解直角 三边之间的关系
三角形
边角之间的关系
定义 函数值 互余关系 函数关系
2
什么是解直角三角形?
由直角三角形中除直角外的已 知元素,求未知元素的过程,叫做 解直角三角形.
B
如图:Rt ABC中,
北
E
B 100m
600
西D
东 A
200m
南
C
13
例 5.如图,海岛A四周20海里周围内为暗礁区,一艘货轮由 东向西航行,在B处见岛A在北偏西60˚,航行24海里到C,见 岛A在北偏西30˚,货轮继续向西航行,有无触礁的危险?
解:过点A作AD⊥BC于D,设AD=x
∵ ∠NBA= 60˚, ∠N1BA= 30˚,
水平距离)是5.5米,测的斜坡倾斜角是30º, 求斜坡上相邻两树间的坡面距离是多少米(精 确到0.1米)
B
解: 在Rt△ABC中 cosA=AC/AB
∴ AB=AC/cosA C
30º A
5.5米
≈6.4(米) 答:斜坡上相邻两树间的坡面距离是6.4米。
7
例2. 如图所示,某地下车库的入口 处 有 斜 坡 AB , 其 坡 度 i=1∶1.5 , 且 AB= 13 m.
B α
D
β
C
A
10
2019/9/19
11
例4、一艘船由A港沿北偏东600方向航 行10km至B港,然后再沿北偏西300方向 10km方向至C港,求 (1)A,C两港之间的距离 (2)确定C港在A港什么方向. M C N
10
答(1) 14.1km
(2)
北偏东15°
B
10
A
12
(2007淄博)王英同学从A地沿北偏西60º方向 走100m到B地,再从B地向正南方向走200m到 C地,此时王英同学离A地多少距离?
a
c
C=90 ,则其余的5个元
素之间关系?
C
b
A
3
1.两锐角之间的关
系∠: A+∠B=900
a +b =c 解 2.三边之间的关系:
直
2 22
角 三 角 形
3.边角之
A
sinA= a
c
cosA=
b c
间的关系
tanA= a b
B
c a
bC
4
要能记 住有多 好
特殊角的三角函数值表
三角函数 锐角α
19
敬
请
知识象一艘船
指
让它载着我们
驶向理想的……
导
可编辑
20
2019/9/19
21
15
例:如图,某货船以20海里/时的速度将一批重要物资 由A处运往正西方向的B处,经16小时的航行到达,到达 后必须立即卸货.此时,接到气象部门通知,一台风正以 40海里/时的速度由A向北偏西60°方向移动.距台风中 心200海里的圆形区域(包括边界)均会受到影响.
(1)问:B处是否受到台风的
北
影响?请说明理由. BD=160海里<200海里
C
8
(2007年昆明)如图,AB和CD是同一地面 上的两座相距36米的楼房,在楼AB的楼顶A点 测得楼CD的楼顶C的仰角为450,楼底D的俯 角为300,求楼CD的高?(结果保留根号)
C
A 450
300
B 36
D
9
练习:在山顶上处D有一铁塔,在塔顶B处测得地面 上一点A的俯角α =60o,在塔底D测得点A的俯角 β=45o,已知塔高BD=30米,求山高CD。