等差数列的前n项和ppt课件演示文稿
合集下载
4221等差数列的前n项和公式课件共45张PPT
知识点二 等差数列的前 n 项和公式 1.等差数列{an}的前 n 项和公式
已知量 首项 a1、末项 an 与项数 n
求和公式
na1+an Sn=___与项数 n
Sn=__n_a_1+__n__n_2-__1__d___
2.两个公式的关系:把 an=a1+(n-1)d 代入 Sn=na12+an中,就可以得到 Sn =____n_a_1_+__n__n_2-__1_d_______
1.已知 Sn 求 an 利用 an=SS1n, -nS= n-11,,n≥2, 可由数列的前 n 项和 Sn 求得数列的通项公式 an. 解题过程通常分为四步:第一步,令 n=1 得 a1;第二步,令 n≥2 得 an;第三步, 在第二步求得的 an 的表达式中取 n=1,判断其值是否等于 a1;第四步,写出数列 的通项公式(若第三步中 n=1 时,an 的表达式的值不等于 a1,则数列的通项公式一 定要分段表示).
解:(1)因为 Sn=2n2-30n,所以当 n=1 时, a1=S1=2×12-30×1=-28, 当 n≥2 时,an=Sn-Sn-1=2n2-30n-[2(n-1)2-30(n-1)]=4n-32. 验证当 n=1 时上式成立, 所以 an=4n-32. (2)由 an=4n-32,得 an-1=4(n-1)-32(n≥2), 所以 an-an-1=4n-32-[4(n-1)-32]=4(常数), 所以数列{an}是等差数列.
(3)方法一:设等差数列的首项为 a1,公差为 d, 则 S5=5a1+5×25-1d=24, 得 5a1+10d=24,a1+2d=254. ∴a2+a4=a1+d+a1+3d=2(a1+2d)=2×254=458. 方法二:由 S5=5a12+a5=24,得 a1+a5=458. ∴a2+a4=a1+a5=458.
等差数列的前n项和PPT优秀课件10
n 个 2 S n ( a 1 a n ) ( a 1 a n ) ( a 1 a n )
n( a1an)
Sn
n(a1 an) 2
证法二:
Sn= a1+ a2 + a3 + … +an-2+an-1+an 即Sn=an+an-1+an-2 +…+ a3 + a2 + a1
n(n1) Snn1a 2 d ana1(n1)d
结论:知 三 求 二
例 1: (1)求正整数数列前n项和
1、2、3、 n-1、 n
解:Sn=1+2+3+
+n-1+n= n1
2
n
(2)求:1+3+5+ +(2n+1) 解: Sn= 1+3+5+ +(2n+1)
n112n1n12
问题 1:
问题 2:
S100 = 1+2+ ······+100
100 (a1 a100)·
2
S120=1+2+ ······+12
0
120
(a1 a120) ·
2
猜测
? Sn=a1+a2+······+a
n
n
Sn (a1 an)·
2
二、等差数 列前n项求和 公式
这就是等 差数列前n 项和的公式!
共多有少个n (个a1(+aa1n+)an?)
因此,
Sn
等差数列前n项和(公开课)PPT课件
几何等领域。
组合数学
等差数列的前n项和公式可以应 用于组合数学中,解决一些组合 问题,如计算组合数的公式等。
数列求和
等差数列的前n项和公式是数列 求和的一种重要方法,可以用于
解决等差数列的求和问题。
在物理中的应用
力学
在物理学中,等差数列的 前n项和公式可以应用于求 解一些力学问题,如计算 多自由度振动的周期等。
简化计算
等差数列的前n项和公式在日常生活 和科学研究中有着广泛的应用,如计 算存款利息、解决生产计划问题等。
对于一些较大的等差数列,使用前n 项和公式可以大大简化计算过程,提 高计算效率。
验证答案
使用前n项和公式可以快速验证一些 等差数列求和问题的答案,确保计算 的准确性。
实例解析
简单实例
例如,一个等差数列1, 4, 7, 10... ,使用前n项和公式可以快速求出
统计学
在统计学中,等差数列的 前n项和公式可以用于计算 平均值、中位数等统计指 标。
信号处理
在信号处理中,等差数列 的前n项和可以用于计算信 号的频谱、滤波等操作。
在计算机科学中的应用
数据结构
在计算机科学中,等差数列的前n项和公式可以应用于一些数据结 构的设计,如数组、链表等。
算法设计
等差数列的前n项和公式可以用于设计一些算法,如排序算法、查 找算法等。
详细描述
等差数列是一种特殊的数列,其中任意两个相邻的项之间的 差是一个固定的值,这个值被称为公差。等差数列的通项公 式为 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项,a_1 是首项 ,d 是公差。
性质
总结词
等差数列具有一些重要的性质,包括对称性、中项性质和等差中项性质等。
组合数学
等差数列的前n项和公式可以应 用于组合数学中,解决一些组合 问题,如计算组合数的公式等。
数列求和
等差数列的前n项和公式是数列 求和的一种重要方法,可以用于
解决等差数列的求和问题。
在物理中的应用
力学
在物理学中,等差数列的 前n项和公式可以应用于求 解一些力学问题,如计算 多自由度振动的周期等。
简化计算
等差数列的前n项和公式在日常生活 和科学研究中有着广泛的应用,如计 算存款利息、解决生产计划问题等。
对于一些较大的等差数列,使用前n 项和公式可以大大简化计算过程,提 高计算效率。
验证答案
使用前n项和公式可以快速验证一些 等差数列求和问题的答案,确保计算 的准确性。
实例解析
简单实例
例如,一个等差数列1, 4, 7, 10... ,使用前n项和公式可以快速求出
统计学
在统计学中,等差数列的 前n项和公式可以用于计算 平均值、中位数等统计指 标。
信号处理
在信号处理中,等差数列 的前n项和可以用于计算信 号的频谱、滤波等操作。
在计算机科学中的应用
数据结构
在计算机科学中,等差数列的前n项和公式可以应用于一些数据结 构的设计,如数组、链表等。
算法设计
等差数列的前n项和公式可以用于设计一些算法,如排序算法、查 找算法等。
详细描述
等差数列是一种特殊的数列,其中任意两个相邻的项之间的 差是一个固定的值,这个值被称为公差。等差数列的通项公 式为 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项,a_1 是首项 ,d 是公差。
性质
总结词
等差数列具有一些重要的性质,包括对称性、中项性质和等差中项性质等。
等差数列前n项和(公开课)PPT课件
数学建模
等差数列的前n项和公式也可以用于数学建模,例如在解决一 些实际问题时,可以利用等差数列的前n项和来建立数学模型 ,从而更好地理解和解决这些问题。
在物理中的应用
物理学中的等差数列
在物理学中,有些物理量呈等差数列 分布,例如光的波长、音阶的频率等 ,等差数列的前n项和公式可以用于 计算这些物理量的总和。
物理学中的级数求和
在物理学中,有些级数的求和问题可 以用等差数列的前n项和公式来解决 ,例如在求解一些物理问题的近似解 时,可以利用等差数列的前n项和来 简化计算。
在经济中的应用
金融投资
在金融投资中,有些投资组合的收益 呈等差数列分布,例如定期存款、基 金定投等,等差数列的前n项和公式 可以用于计算这些投资组合的总收益 。
CHAPTER 02
等差数列的前n项和公式
等差数列前n项和的定义
01
02
03
定义
等差数列的前n项和是指 从第一项到第n项的所有 项的和。
符号表示
记作Sn,其中S表示总和 ,n表示项数。
举例
对于等差数列2, 4, 6, ..., 2n,前n项和为Sn = 2 + 4 + 6 + ... + 2n。
等差数列前n项和(公开 课)ppt课件
汇报人:可编辑
2023-12-23
CONTENTS
目录
• 等差数列的概念 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的应用 • 习题与解答
CHAPTER 01
等差数列的概念
等差数列的定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常
等差数列前n项和的公式推导
推导方法
等差数列的前n项和公式也可以用于数学建模,例如在解决一 些实际问题时,可以利用等差数列的前n项和来建立数学模型 ,从而更好地理解和解决这些问题。
在物理中的应用
物理学中的等差数列
在物理学中,有些物理量呈等差数列 分布,例如光的波长、音阶的频率等 ,等差数列的前n项和公式可以用于 计算这些物理量的总和。
物理学中的级数求和
在物理学中,有些级数的求和问题可 以用等差数列的前n项和公式来解决 ,例如在求解一些物理问题的近似解 时,可以利用等差数列的前n项和来 简化计算。
在经济中的应用
金融投资
在金融投资中,有些投资组合的收益 呈等差数列分布,例如定期存款、基 金定投等,等差数列的前n项和公式 可以用于计算这些投资组合的总收益 。
CHAPTER 02
等差数列的前n项和公式
等差数列前n项和的定义
01
02
03
定义
等差数列的前n项和是指 从第一项到第n项的所有 项的和。
符号表示
记作Sn,其中S表示总和 ,n表示项数。
举例
对于等差数列2, 4, 6, ..., 2n,前n项和为Sn = 2 + 4 + 6 + ... + 2n。
等差数列前n项和(公开 课)ppt课件
汇报人:可编辑
2023-12-23
CONTENTS
目录
• 等差数列的概念 • 等差数列的前n项和公式 • 等差数列前n项和的特例 • 等差数列前n项和的应用 • 习题与解答
CHAPTER 01
等差数列的概念
等差数列的定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常
等差数列前n项和的公式推导
推导方法
等差数列前n项和PPT优秀课件
n 个 2 S ( a a ) ( a a ) ( a a ) n 1 n 1 n 1 n
n ( a a ) 1 n
n ( a 1 a n) S n 2
等差数列的前n项和公式的其它形式
n ( a 1 a n) S n 2 n ( n 1 ) S na d n 1 2
解: 由题意 , m 是 7 的倍数 , 且 0 m 100 .
练习1.
课 堂 小 练
1. 根据下列条件,求相应的等差数列
a n 的 S
( 1 ) a 5 , a 95 , n 10 ; 1 n
( 2 ) a 100 , d 2 , n 50 ; 1
n
练习2.
解得: n = 4 或 n = 6 a1=6 或 a1= -2
M m |m 7 n ,n N , 且 m 100 例3. 求集合
的元素个数 , 并求这些元素的和 .
将它们从小到大排列得 : ,7 7 0,7 1, 7 2, 7 , 14 , 21 , , 98 . 14 .即 共有 15 个元素 , 构成一个等差数列 ,记为 a , n 15 ( 0 98 ) a 0 , a 98 S 1 15 735 15 2 答 : 集合 M 共有 15 个元素 , 和等于 735 .
= 7260 120 = (1 + 120 ) · 2
120 (a1 a120) · 2
(三)构建数学:猜测
问题 1: 问题 2: S120=1+2+ · · · · · ·+12 0 120
(a1 a120 )· 2
等差数列的前n项和PPT优秀课件1
(2)100元“零存整取”的月利息为 100×1.725‰=0.1725(元), 存3年的利息是
0.1725×(1+2+3+……+36)=114.885(元), 因此李先生多收益
179.82-114.885×(1-20%)=87.912元.
答:李先生办理“教育储蓄”比“零存整 取”多收益87.912元
解:(1)100元“教育储蓄”存款的月利息是 100×2.7‰=0.27(元), 第1个100元存36个月,得利息0.27×36(元); 第2个100元存35个月,得利息0.27×35(元); ………… 第36个100元存1个月,得利息0.27×1(元),
此时李先生获得利息
0.27×(1+2+3+……+36)=179.82(元), 本息和为3600+179.82=3779.82元;
解 得 30AB2
S 3 0 9 0 0 A 3 0 B 3 0 ( 3 0 A B ) 6 0
解法三: 设a1+a2+……+a10=A, a11+a12+……+a20=B,
a21+a22+……+a30=C, 则A,B,C成等差数列, 且A=10,A+B=30, 解得B=20,
2.2.2等差数列的前n项和
如图堆放一堆钢管,最上一层放了4根, 下面每一层比上一层多放一根,共8层,这 堆钢管共有多少根?
这堆钢管从上到下的数 量组成一个等差数列。
其中a1=4,公差d=1. 最下一层中a8=11。
即求4+5+6+……+11=?
我们设想,在这堆钢管旁,如图所示堆放同 样数量的钢管,这时每层都有钢管(4+11)根.
等差数列前n项和(公开课)PPT课件
所以这个等差数列共有(a+d)×(n-2)/2 +10 =25。
04
第二题答案:16;解析:设等差数列的首项为a,公 差为d,根据题意有4a + 6d = 12,解得a+d=2,所 以这个等差数列共有(a+d)×(n-2)/2 +4 =16。
感谢您的观看
THANKS
习题答案与解析
进阶习题答案与解析
01
输标02入题
第一题答案:42;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 10d = 25,解得a+d=5, 所以第6项到第10项的和为5a+35d=42。
03
第三题答案:25;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 20d = 80,解得a+4d=8,
第二题答案:18;解析:设等差数列的首项为a,公差为d,根据题意有3a + 3d = 15,解得a+d=5,所以这个等差数列共有(a+d)×(n-2)/2 +3 =18。
习题答案与解析
• 第三题答案:30;解析:设等差数列的首项为a,公差为d,根据题意有5a + 45d = 200,解得a+d=5,所以这个等差数 列共有(a+d)×(n-2)/2 +10 =30。
公式5
$S_n - S_{n-1} = a_n$
公式6
$S_n = S_{n-1} + a_n$
公式之间的联系与区别
联系
公式1、2、3都是求等差数列前n项 和的基本公式,而公式4、5、6则是 基于这些基本公式的推导或变种。
区别
公式1和公式2形式较为简洁,而公式 3则更便于观察等差数列的对称性质。 公式4、5、6则更注重于相邻两项和 之间的关系,可以用于求解某些特定 问题。
04
第二题答案:16;解析:设等差数列的首项为a,公 差为d,根据题意有4a + 6d = 12,解得a+d=2,所 以这个等差数列共有(a+d)×(n-2)/2 +4 =16。
感谢您的观看
THANKS
习题答案与解析
进阶习题答案与解析
01
输标02入题
第一题答案:42;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 10d = 25,解得a+d=5, 所以第6项到第10项的和为5a+35d=42。
03
第三题答案:25;解析:设等差数列的首项为a,公 差为d,根据题意有5a + 20d = 80,解得a+4d=8,
第二题答案:18;解析:设等差数列的首项为a,公差为d,根据题意有3a + 3d = 15,解得a+d=5,所以这个等差数列共有(a+d)×(n-2)/2 +3 =18。
习题答案与解析
• 第三题答案:30;解析:设等差数列的首项为a,公差为d,根据题意有5a + 45d = 200,解得a+d=5,所以这个等差数 列共有(a+d)×(n-2)/2 +10 =30。
公式5
$S_n - S_{n-1} = a_n$
公式6
$S_n = S_{n-1} + a_n$
公式之间的联系与区别
联系
公式1、2、3都是求等差数列前n项 和的基本公式,而公式4、5、6则是 基于这些基本公式的推导或变种。
区别
公式1和公式2形式较为简洁,而公式 3则更便于观察等差数列的对称性质。 公式4、5、6则更注重于相邻两项和 之间的关系,可以用于求解某些特定 问题。
等差数列前n项和(公开课)PPT课件
成立。
代数证明
利用等差数列的性质和代数方法 ,通过一系列的推导和变换,证
明前n项和公式的正确性。
图形证明
通过图形证明前n项和公式的正 确性。将等差数列的项表示为坐 标平面上的点,利用梯形的面积
公式推导出前n项和公式。
03
等差数列前n项和的性质
和的最小值和最大值
最小值
等差数列的前n项和的最小值出 现在首项小于0,公差小于0的情 况下,此时最小值为 S_n=a_1×n+d/2×n(n-1)。
等差数列的实例
01
自然数列:1, 2, 3, 4, ...
03
三角数列:1, 3, 6, 10, ...
02
偶数数列:2, 4, 6, 8, ...
04
等差数列的前n项和为Sn=n/2*(2a1+(n-1)d),其 中a1是第一项,d是公差。
02
等差数列的前n项和公式
前n项和公式的推导
1 2
3
最大值
等差数列的前n项和的最大值出 现在首项大于0,公差大于0的情 况下,此时最大值为 S_n=a_1×n+d/2×n(n-1)。
和的奇偶性
奇数项和
等差数列的奇数项和等于中间项乘 以项数,即S_n=(a_n+a_1)/2×n。
偶数项和
等差数列的偶数项和等于首尾两项的 和乘以项数再除以2,即 S_n=(a_1+a_n)×n/2。
统计学
在统计学中,等差数列的前n项和可 以用于描述一系列数据的分布特征 ,例如测量误差、概率分布等。
在经济中的应用
金融
等差数列的前n项和可以用于计算一 系列金融数据的累加值,例如股票价 格、债券收益、投资回报等。
代数证明
利用等差数列的性质和代数方法 ,通过一系列的推导和变换,证
明前n项和公式的正确性。
图形证明
通过图形证明前n项和公式的正 确性。将等差数列的项表示为坐 标平面上的点,利用梯形的面积
公式推导出前n项和公式。
03
等差数列前n项和的性质
和的最小值和最大值
最小值
等差数列的前n项和的最小值出 现在首项小于0,公差小于0的情 况下,此时最小值为 S_n=a_1×n+d/2×n(n-1)。
等差数列的实例
01
自然数列:1, 2, 3, 4, ...
03
三角数列:1, 3, 6, 10, ...
02
偶数数列:2, 4, 6, 8, ...
04
等差数列的前n项和为Sn=n/2*(2a1+(n-1)d),其 中a1是第一项,d是公差。
02
等差数列的前n项和公式
前n项和公式的推导
1 2
3
最大值
等差数列的前n项和的最大值出 现在首项大于0,公差大于0的情 况下,此时最大值为 S_n=a_1×n+d/2×n(n-1)。
和的奇偶性
奇数项和
等差数列的奇数项和等于中间项乘 以项数,即S_n=(a_n+a_1)/2×n。
偶数项和
等差数列的偶数项和等于首尾两项的 和乘以项数再除以2,即 S_n=(a_1+a_n)×n/2。
统计学
在统计学中,等差数列的前n项和可 以用于描述一系列数据的分布特征 ,例如测量误差、概率分布等。
在经济中的应用
金融
等差数列的前n项和可以用于计算一 系列金融数据的累加值,例如股票价 格、债券收益、投资回报等。
等差数列前n项和(公开课)PPT课件
实例
总结词
等差数列的实例包括正整数序列、负数序列、斐波那契数列等。
详细描述
正整数序列1, 2, 3, ...是一个等差数列,其中首项a=1,公差d=1;负数序列-1, 2, -3, ...也是一个等差数列,其中首项a=-1,公差d=-1;斐波那契数列0, 1, 1, 2, 3, 5, ...也是一个等差数列,其中首项a=0,公差d=1。
01
求等差数列3, 6, 9, ..., 3n的前n项和。
进阶习题2
02
求等差数列-2, -4, -6, ..., -2n的前n项和。
进阶习题3
03
求等差数列5, 10, 15, ..., 5n的前n项和。
高阶习题
1 2
Байду номын сангаас
高阶习题1
求等差数列-3, -6, -9, ..., -3n的前n项和。
高阶习题2
总结词
等差数列是一种特殊的数列,其 中任意两个相邻项的差是一个常 数。
详细描述
等差数列通常表示为“an”,其 中a是首项,n是项数,d是公差 (任意两个相邻项的差)。
性质
总结词
等差数列的性质包括对称性、递增性、递减性等。
详细描述
等差数列的对称性是指任意一项与它的对称项相等,即a_n=a_(n+2m),其中 m是整数;递增性是指如果公差d>0,则数列是递增的;递减性是指如果公差 d<0,则数列是递减的。
PART 04
等差数列前n项和的变式 与拓展
REPORTING
变式公式
01
02
03
04
公式1
$S_n = frac{n}{2} (2a_1 + (n-1)d)$
等差数列的前n项求和公式ppt课件
由等差数列的性质 即
a1+an=a2+an-1=a3+an-2=…
2Sn=(a1+an)+(a1+an)+(a1+an)+..
Sn=n(a1+an)/2
5
如果代入等差数列的通项公式an=a1+(n-1)d,Sn也可 以用首项a1和公差d表示,即 Sn=na1+n(n-1)d/2 所以,等差数列的前n项求和公式是
-------方程、函数思想 3.公式中五个量a1, d, an, n, sn, 已知 其中三个量,可以求其余两个 -------知三求二
15
A组2、4、5
16
谢谢观赏
17
S
n
n a1 a n 2
或
S
n
n a1
n n 1 d 2
6
例题
例1
54?
等差数列-10,-6,-2, 2,…前多少项的和是
例2
已知一个等差数列{an}的前10项的和是310,前 20项的和是1220 .求等差数列的前n项和的公式
例3
求集合M={m|m=7n, n是正整数, 且m<100}的元素 个数, 并求这些元素的和.
8a 52 d n 2 14n nn 1 d S na d
a
n 1
13 d 0 d 0 2
2
2
解2: S3 S11
即 n=7
a1 0
由等差数列构成的函数图象,可知 n=(3+11)/2=7时,Sn最大
12
an 例8.等差数列 的前项n和S n,且a3 12 ,S12 0, S13 0
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(三)教学重点、难点
1.教学重点: (1)等差数列前n项和的公式及公式的运 用。
2.教学难点: (1)获得等差数列前n项和公式的推导思路。
(2)灵活运用等差数列的前n项和公式解决些 简单的实际问题。
二、教法分析
尝试探究公式的推导思路是教 学的重点。利用多媒体来创设情景, 启迪学生思维,尝试探究,层层铺 垫,自然过度到学习新知识的情景 之中,从特殊到一般,启发学生获 得公式的推导方法。
而应用公式解决问题也是教学 的重点,为了让学生熟练掌握公式, 我采用了设计变式题的教学手段, 通过“选用公式”,“知三求二”, “变用公式”三个层次来促进学生 新的认知结构的形成。
三、学法分析
对学生来说提出一些他们想解决而 未解决的、富有挑战性、趣味性的问 题更能激发学生的向心力,促使他们 积极思考。学生真正做到了动手、动 脑、动口,积极参与教学的全过程, 充分发挥了他们的思维能力和创造能 力。充分发挥了学生在学习过程中的 主体作用,让学生真正成为学习的主 人。
(二)教学目标 1.知识与技能目标: 掌握等差数列前n项和公式及 推导思想方法,能较熟练应用等 差数列前n项和公式解决简单的 实际问题。
2.能力与方法目标: 对公式的探索、发现中, 体会数形结合的思想,体验从特 殊到一般的研究方法,培养学生 类比思维能力,提高学生分析问 题和解决问题的能力。
3.情感态度与价值观目标: 通过具体生动的现实问题, 激发学生探究的兴趣和欲望, 增强学生学习数学的自信心, 逐步养成科学严谨的学习态度。
3 2 1 25 24 23
25
1
Sn a1 (a1 d )
[a1 (n 1)d ]
Sn an (an d )
[an (n 1)d ]
两式左右分别相加,得
2Sn n(a1 an )
an a1 (n 1)d
n(a1 an ) 公式1ห้องสมุดไป่ตู้S n 2
设计意图
运用多媒体创设情境,激发 学生的学习兴趣,诱发学生的求 知欲,点燃了学生思维的火花。 为学习新的知识铺设了一条平坦 的大道,将极大程度地提高学生 的学习效率。
2.尝试探究学习
这里我主要讲述的是怎样利 用多媒体激励、启发学生思维, 突破教材重点难点。 为了促进学生对这种推导方 法的进一步理解,设计了下面三 个问题:
n 1
2 n 1
3.应用知识解决问题
(1)选用公式 (2)变用公式 (3)知三求二
(1)选用公式 例1 如图,一个堆放铅 笔的V形架的最下面一层 放1支铅笔,往上每一层 都比它下面一层多放1支 ,最上面一层放120支. 这个V形架上共放了多少 支铅笔?
即 sn 1 2 3
(n 1) n
解: sn 1
2 3
(n 1) n 2 1
sn n (n 1) (n 2) 2sn (1 n) (1 n)
n
(1 n)
n(n 1) sn 2
问题3:推广到更一般的情形: 等差数列 {an} 的首项为a1,公差 为d,如何求等差数列的前n项和 Sn= a1 +a2+a3+…+an?
问题1:如图,第1层到第25层一共有多少块瓦?
进而提出有无简单的方法?
3
2
1
2 24 23
25
1
设计意图
运用多媒体辅助教学,做出几何 图形能直观能启迪学生的思路,帮助 理解问题,揭示研究对象的性质和关 系,把抽象的问题简单化,直观化, 既符合学生的认识规律,又渗透了数 形结合的数学思想。
问题2:求1到n的正整数之和,
(a a ) n 1 n S n 2
n (n 1) S n a1 d n 2
公式说明:
用上述公式1必须具备三个件:n, a1, an , n(n 1)d 但 an a1 (n 1)d 代入公式得: S na 2 公式要求 Sn 必须已知三个条件: (有 n, a1 , d 时比较有用) 总之:两个公式都表明要求 Sn 必须已知 n, a1 , d , an 中三个。 d d S n (a )n 公式二又可化成式子: , 2 2 当d≠0,是一个常数项为零的二次式
四、过程分析
1.创设问题情景 2.尝试探究学习 3.应用知识解决问题 4.课堂小结 5.作业布置
1.创设问题情景
中和殿平面呈正方形, 面阔、进深各为3间,四 面出廊,金砖铺地,建 筑面积580㎡。屋顶为单 檐四角攒尖,每个屋面 都由一个三角形组成, 以大小相同的黄色琉璃 瓦铺盖而成,共有100层 (如右图),辉煌程度 可见一斑。 如果你是建筑设计师, 你能计算出一个这样三 角形屋面有多少块琉璃 瓦吗?
设计意图
(方法1)主要是以学生掌握了等差 数列的性质(教材内容始终未出现, 增加了学生的负担)为基础的,起点 比较高,因而方法显得抽象一些,很 多中等偏下的学生一下子或许难以理 解和掌握,而比较优秀的学生则可能 更容易理解和接受。 因此,设计了如下的问题:
追问学生:为什么在等差数列中有:
a2 an1 a1 an ,
n(n 1) 公式2 Sn na1 d 2
设计意图
(方法2)是以等差数列的定义为 基础,用等差数列的基本元表示, 反映了等差数列的本质,,是学生 熟悉的背景知识,结合直观的图形, 使大多数学生比较容易理解、记忆 和掌握。
类比梯形面积记忆公式:
a1
n E n B
a1
A
an
C
D
a1
(n 1) d
《等差数列的前n项和》 (第一课时) 教学构思与设计
人民教育出版社第一册(上)第三章3.3
一、教材分析 二、教法分析 三、学法分析 四、过程分析
一、教材分析
(一)教材地位与作用
本节课的主要内容是等差数列前n项和公 式,是人教版第一册(上)第三章第三节的 内容,它是在学生学习了等差数列的基础上 学习和研究的。是进一步学习数列知识和解 决一类求和问题的重要基础和有力工具。反 映了从特殊到一般的数学思维形式,同时蕴 涵丰富的解题技巧,这对培养学生的创新意 识和发展学生的思维能力有重要的作用。