浙江省嘉兴一中2021-2022学年高三第三次测评数学试卷含解析
2021年高考真题-数学(浙江卷)【含答案及解析】
2021年普通⾼等学校招⽣全国统⼀考试(浙江卷)(数学)参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+如果事件A ,B 相互独立,那么()()()P AB P A P B =如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k kn k n n P k p p k n -=-=L台体的体积公式121()3V S S h=其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh=其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh=其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =p 球的体积公式343V R =p 其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合{}1A x x =³,{}12B x x =-<<,则A B =I ()A.{}1x x >- B.{}1x x ³ C.{}11x x -<< D.{}12x x £<2. 已知a R Î,()13ai i i +=+,(i 为虚数单位),则a =()A.1- B.1C.3- D.33. 已知非零向量,,a b c r r r ,则“a c b c ×=×r r r r ”是“a b =r r”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件4. 某几何体的三视图如图所示,则该几何体的体积是()A.32 B.3C.2D.5.若实数x ,y 满足约束条件1002310x x y x y +³ìï-£íï+-£î,则12z x y =-的最小值是()A.2- B.32-C.12-D.1106. 如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则()A.直线1A D 与直线1D B 垂直,直线//MN 平面ABCDB.直线1A D 与直线1D B 平行,直线MN ^平面11BDD BC.直线1A D 与直线1D B 相交,直线//MN 平面ABCDD.直线1A D 与直线1D B 异面,直线MN ^平面11BDD B 7.已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是()A.1()()4y f x g x =+-B.1()()4y f x g x =--C.()()y f x g x = D.()()g x y f x =8.已知,,a b g 是互不相同的锐角,则在sin cos ,sin cos ,sin cos a b b g g a 三个值中,大于12的个数的最大值是()A.0B.1C.2D.39.已知,R,0a b ab Î>,函数()2R ()f x ax b x =+Î.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是()A.直线和圆B.直线和椭圆C.直线和双曲线D.直线和抛物线10.已知数列{}n a满足)111,N n a a n *+==Î.记数列{}n a 的前n 项和为n S ,则()A.100321S << B.10034S << C.100942S << D.100952S <<非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2021版《3年高考2年模拟》高考数学(浙江版理)检测:8.2 圆的方程 Word版含答案
§8.2圆的方程A组基础题组1.(2021课标Ⅱ,7,5分)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( )A.2B.8C.4D.102.(2021浙江嘉兴一中阶段测试)若P(2,-1)为圆M:(x-1)2+y2=25的弦AB的中点,则直线AB的方程为( )A.2x+y-3=0B.x-y-3=0C.x+y-1=0D.2x-y-5=03.(2021浙江湖州德清高级中学月考)已知点M是直线3x+4y-2=0上的动点,点N为圆(x+1)2+(y+1)2=1上的动点,则|MN|的最小值是( )A. B.1 C. D.4.(2021黑龙江大庆铁人中学月考,4,5分)已知圆C的方程为x2+y2+2x-2y+1=0,当圆心C到直线kx+y+4=0的距离最大时,k的值为( )A. B. C.- D.-5.(2021河北衡水中学一调,5)假如直线l将圆x2+y2-2x-4y=0平分且l不通过第四象限,则l的斜率的取值范围是( )A.[0,2]B.[0,1]C. D.6.(2022福建,9,5分)设P,Q分别为圆x2+(y-6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是( )A.5B.+C.7+D.67.(2021浙江六校联考文,10,6分)已知点M(2,1)及圆x2+y2=4,则过M点的圆的切线方程为,若直线ax-y+4=0与该圆相交于A、B两点,且|AB|=2,则a= .8.(2022山东,14,5分)圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C 的标准方程为.9.(2021湖南,13,5分)若直线3x-4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°(O为坐标原点),则r= .10.(2021湖北,16,5分)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准..方程为;(2)圆C在点B处的切线在x轴上的截距为.11.(2021黑龙江双鸭山一中期中,20)已知圆C的半径为2,圆心在x轴正半轴上,直线3x-4y+4=0与圆C相切.(1)求圆C的方程;(2)若过点(0,-3)的直线l与圆C交于不同的两点A(x1,y1),B(x2,y2),且x1x2+y1y2=3,求三角形AOB的面积. B组提升题组1.(2021宁波十校联考,4,5分)直线x+y-2=0截圆x2+y2=4所得劣弧所对的圆心角的大小为( )A. B. C. D.2.(2021山东烟台诊断)已知P(x,y)是直线kx+y+4=0(k>0)上一动点,PA是圆C:x2+y2-2y=0的一条切线,A是切点,若线段PA长度的最小值为2,则k的值为( )A.3B.C.2D.23.(2022陕西,12,5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.4.(2021诸暨高中毕业班检测,12,6分)已知圆C:(x-1)2+y2=25与直线l:mx+y+m+2=0,若圆C关于直线l对称,则m= ;当m= 时,圆C被直线l截得的弦长最短.5.(2021浙江冲刺卷五,14)过点A(-4,0)作直线l与圆x2+y2+2x-4y-20=0交于M,N两点,若|MN|=8,则l的方程为.6.(2021浙江模拟训练冲刺卷一,14)已知圆的方程为x2+y2+2mx+4y+2m2-3m=0,若过点A(1,-2)的圆的切线有两条,则实数m的取值范围是.7.(2022重庆,13,5分)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a= .8.(2021宁波高考模拟文,12,6分)已知实数a,b,c满足a+b=2c,则直线l:ax-by+c=0恒过定点,该直线被圆x2+y2=9所截得的弦长的取值范围为.9.(2021山东济南模拟)已知P是直线3x+4y-10=0上的动点,PA,PB是圆x2+y2-2x+4y+4=0的两条切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值为.10.(2021湖北华中师大附中期中,14)在平面直角坐标系xOy中,已知点P(3,0)在圆C:x2+y2-2mx-4y+m2-28=0内,动直线AB过点P且交圆C于A,B两点,若△ABC的面积的最大值为16,则实数m的取值范围是.11.(2021河南六市一联)如图所示,在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对相互垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等.试求全部满足条件的点P的坐标.12.(2021重庆一中期中,21)已知点H(-3,0),点P在y轴上,点Q在x轴正半轴上,点M在PQ所在直线上,且满足·=0,=-.(1)当点P在y轴上移动时,求点M的轨迹C的方程;(2)给定圆N:x2+y2=2x,过圆心N作直线l,此直线与圆N和(1)中的轨迹C共有四个交点,自上而下顺次记为A,B,C,D,假如线段AB,BC,CD的长按此挨次构成一个等差数列,求直线l的方程.A组基础题组1.C 设圆心为P(a,b),由点A(1,3),C(1,-7)在圆上,知b==-2.再由|PA|=|PB|,得a=1.则P(1,-2),|PA|==5,于是圆P的方程为(x-1)2+(y+2)2=25.令x=0,得y=-2±2,则|MN|=|(-2+2)-(-2-2)|=4.2.B 依题意知圆心M(1,0),MP⊥AB,而k MP==-1,所以k AB=1,由于直线AB过点P(2,-1),所以直线AB的方程为y-(-1)=x-2,即x-y-3=0.故选B.3.C 圆心(-1,-1)到点M的距离的最小值为点(-1,-1)到直线3x+4y-2=0的距离,依据点到直线的距离公式得d==,故点N到点M的距离的最小值为d-1=.故选C.4.D 圆C的方程为(x+1)2+(y-1)2=1,圆心为C(-1,1).又直线kx+y+4=0恒过定点A(0,-4),所以当圆心C到直线kx+y+4=0的距离最大时,直线CA垂直于直线kx+y+4=0,而k CA=-5,则由-5×(-k)=-1,得k=-.5.A 圆的方程x2+y2-2x-4y=0可化为(x-1)2+(y-2)2=5,其圆心坐标为(1,2),经过圆心和原点的直线的斜率为2,由题意知直线l过圆心且不过第四象限,则斜率k的取值范围是0≤k≤2.6.D 设Q(cosθ,sinθ),圆心为M,由已知得M(0,6),则|MQ|= ===≤5当sinθ=-时取等号,故|PQ|max =5+=6.7.答案x=2或3x+4y-10=0;±解析若过M点的圆的切线斜率不存在,则切线方程为x=2,阅历证满足条件.若切线斜率存在,可设切线方程为y=k(x-2)+1,由圆心到切线的距离等于半径得=2,解得k=-,故切线方程为y=-(x-2)+1,即3x+4y-10=0.综上,过M点的圆的切线方程为x=2或3x+4y-10=0.由=得a=±.8.答案(x-2)2+(y-1)2=4解析由于圆心在直线x-2y=0上,且圆C与y轴相切,所以可设圆心坐标为(2a,a),则(2a)2=a2+()2,解得a=±1.又圆C与y轴的正半轴相切,所以a=1,故圆C的标准方程为(x-2)2+(y-1)2=4.9.答案 2解析过O作OC⊥AB于C,则OC==1,在Rt△AOC中,∠AOC=60°,则r=OA==2.10.答案(1)(x-1)2+(y-)2=2(2)--1解析(1)记AB的中点为D,在Rt△BDC中,易得圆C的半径r=BC=.因此圆心C的坐标为(1,),所以圆C的标准方程为(x-1)2+(y-)2=2.(2)由于点B的坐标为(0,+1),C的坐标为(1,),所以直线BC的斜率为-1,所以所求切线的斜率为1.由点斜式得切线方程为y=x++1,故切线在x轴上的截距为--1.11.解析(1)设圆心C的坐标为(a,0)(a>0),则圆C的方程为(x-a)2+y2=4.由于圆C与直线3x-4y+4=0相切,所以=2,解得a=2或a=-(舍),所以圆C的方程为(x-2)2+y2=4.(2)依题意知直线l的斜率存在,设直线l的方程为y=kx-3,由得(1+k2)x2-(4+6k)x+9=0,∵l与圆C相交于不同的两点A(x1,y1),B(x2,y2),∴Δ=[-(4+6k)]2-4(1+k2)×9>0,且x1+x2=,x1x2=,∴y1y2=(kx1-3)(kx2-3)=k2·x1x2-3k(x1+x2)+9=-+9,又∵x1x2+y1y2=3,∴+-+9=3,整理得k2+4k-5=0,解得k=1或k=-5(不满足Δ>0,舍去). ∴直线l的方程为y=x-3.∴圆心C到l的距离d==,易得|AB|=2=,又△AOB的边AB上的高h==,所以S△AOB=|AB|·h=××=.B组提升题组1.C 以直线x+y-2=0与圆x2+y2=4的两个交点及圆心为顶点的三角形为等腰三角形.圆x2+y2=4的圆心为原点,由点到直线的距离公式,得原点到直线x+y-2=0的距离为=,所以直线被圆截得的弦长为2=2,所以该三角形为等边三角形,所以劣弧所对的圆心角的大小为.故选C.2.D 圆C:x2+(y-1)2=1,圆心C(0,1),半径r=1,由题意得=,解得k=2或k=-2(舍去),故选D.3.答案x2+(y-1)2=1解析点(1,0)关于直线y=x对称的点(0,1)为圆心,又半径r=1,所以圆C的标准方程为x2+(y-1)2=1.4.答案-1;1解析当圆C关于l对称时,圆心(1,0)在直线mx+y+m+2=0上,得m=-1.直线l:m(x+1)+y+2=0恒过圆C内的点M(-1,-2),当圆心到直线l的距离最大,即MC⊥l时,圆C被直线l截得的弦长最短,k MC==1,由(-m)×1=-1,得m=1.5.答案x=-4或5x+12y+20=0解析当直线l的斜率不存在时,其方程为x=-4,可得交点坐标为(-4,6),(-4,-2),此时|MN|=8,符合题意. 当直线l的斜率存在时,设其方程为y=k(x+4),圆的标准方程为(x+1)2+(y-2)2=25,则圆心到直线l的距离d=,由|MN|=2=8,得25-=16,解得k=-,故l的方程为5x+12y+20=0.综上,直线l的方程为x=-4或5x+12y+20=0.6.答案解析将圆的方程配方得(x+m)2+(y+2)2=-m2+3m+4,则有-m2+3m+4>0;由题意知点A(1,-2)在圆外,则(1+m)2+(-2+2)2>-m2+3m+4,即2m2-m-3>0.由得故实数m的取值范围是<m<4.7.答案4±解析易知△ABC是边长为2的等边三角形,故圆心C(1,a)到直线AB的距离为,即=,解得a=4±.经检验均符合题意,故a=4±.8.答案;[,6]解析依题意,c=,故ax-by+c=0⇔ax-by+=0,即(2x+1)a-(2y-1)b=0,可知直线l过定点.圆心到直线的距离d=,故弦长为2≥2=,当且仅当a=b时等号成立.又弦长≤6,故弦长的取值范围为[,6].9.答案 2解析圆的标准方程为(x-1)2+(y+2)2=1,其圆心为C(1,-2),半径为1,且直线与圆相离,如图所示,四边形PACB的面积等于2S△PAC,而S△PAC=|PA|·|AC|=|PA|=,又|PC|min==3,∴(S△PAC)min==,故四边形PACB面积的最小值为2. 10.答案(3-2,3-2]∪[3+2,3+2)解析圆C的标准方程为(x-m)2+(y-2)2=32,则圆心C(m,2),半径r=4,S△ABC=r2sin∠ACB=16sin∠ACB,∴当∠ACB=90°时,S△ABC取得最大值16,此时△ABC为等腰直角三角形,∴AB=8,则C到AB的距离为4,∴4≤PC<4,即4≤<4,∴16≤(m-3)2+4<32,即12≤(m-3)2<28,∴解得3-2<m≤3-2或3+2≤m<3+2.故实数m的取值范围是(3-2,3-2]∪[3+2,3+2).11.解析(1)由于直线x=4与圆C1不相交,所以直线l的斜率存在.设直线l的方程为y=k(x-4),圆C1的圆心到直线l的距离为d,由于直线l被圆C1截得的弦长为2,所以d==1.由点到直线的距离公式得d=,从而=1,化简得k(24k+7)=0,所以k=0或k=-,所以直线l的方程为y=0或7x+24y-28=0.(2)设点P(a,b)满足条件,不妨设直线l1的方程为y-b=k(x-a),k≠0,则直线l2的方程为y-b=-(x-a).由于圆C1和C2的半径相等,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,所以圆C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等,即=,整理得|1+3k+ak-b|=|5k+4-a-bk|,从而1+3k+ak-b=5k+4-a-bk或1+3k+ak-b=-5k-4+a+bk,即(a+b-2)k=b-a+3或(a-b+8)k=a+b-5,由于k的取值有无穷多个,所以或解得或这样点P的坐标为或.经检验,上述坐标均满足题目条件.12.解析(1)设M(x,y),P(0,y'),Q(x',0)(x'>0),∵·=0,=-,∴(3,y')·(x,y-y')=0,(x,y-y')=-(x'-x,-y),∴3x+y'y-y'2=0,x'=x,y'=-y,将y'=-y代入3x+y'y-y'2=0,整理得y2=4x,又由x'>0得x>0,∴点M的轨迹C的方程为y2=4x(x>0).(2)圆N:(x-1)2+y2=1,直径为2,圆心为N(1,0),由题意设l的方程为x=my+1,将x=my+1代入y2=4x(x>0),得y2-4my-4=0,设A(x1,y1),D(x2,y2),则y1+y2=4m,y1y2=-4,则|AD|=·=4(m2+1),∵线段AB,BC,CD的长按此挨次构成一个等差数列,∴2|BC|=|AB|+|CD|=|AD|-|BC|,∴|AD|=3|BC|,又|AD|=4(m2+1),|BC|=圆N的直径=2,∴4(m2+1)=6,解得m=±,∴直线l的方程为x-y-=0或x+y-=0.。
浙江省嘉兴市第一中学2022-2023学年高三上学期期中检测化学试卷及答案
嘉兴一中2022学年第一学期期中考试高三年级化学试卷可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24 Al 27 S 32 Cl 35.5 Fe 56Cu 64 Zn 65第I部分选择题一、选择题(每题只有一个正确选项,每小题2分,共50分,错选、多选均不得分)1.下列物质属于盐的是A.HNO3B.KO2C.NaOHD.CH3NH3Cl 2.下列物质属于弱电解质的是A.HCOOHB.SO3C.CH3CONH2D.[Cu(NH3)4](OH)23.名称为“干燥管”的仪器是A.B.C.D.4. 下列物质对应的化学式正确的是A.白磷:P2B.乙胺:CH3CH2NH2C.胆矾:FeSO4•7H2OD.硬脂酸:C15H31COOH5.下列化学用语或图示表达不正确...的是A.丙烯氰的键线式:B.基态As原子的价层电子排布式:3d104s24d5C.H2O的结构式:H-O-HD.HClO的空间填充模型:6.下列说法正确的是A.35Cl2和37Cl2互为同素异形体B.14N和14C互为同位素C.乙酸和硬脂酸互为同系物D.CH 3COOCH 2CH 3和CH 3CH 2OOCCH 3互为同分异构体 7.下列说法不正确...的是 A.乙酸与葡萄糖最简式相同,等物质的量的二者燃烧时耗氧量相同B.的系统命名为2,3,6-三甲基庚烷C.CH 3CH =CHCl 存在顺反异构D.李比希法与质谱法结合可确定有机物的分子式 8.下列说法不正确...的是 A.葡萄酒酿制过程中添加少量SO 2可以起到杀菌和抗氧化作用B.石墨烯是只有一个碳原子直径厚度的单层石墨,可用于生产超轻海绵C.可用Na 2SO 4溶液处理锅炉水垢,将CaCO 3转化为CaSO 4然后用酸除去D.白色颜料TiO 2化学性质非常稳定,广泛用于涂料、造纸等工业 9.下列说法不正确...的是 A.该图标是进行化学实验需要佩戴护目镜,以保护眼睛B.向氯化银浊液中滴加1mol/L 氨水至足量,溶液变澄清C.将盛有苯酚与水形成的浊液的试管浸泡在80℃热水中一段时间,浊液变澄清D.不能将实验室用剩的金属钠块放回原试剂瓶10.关于反应4CO 2+SiH 4 ====高温4CO+2H 2O+SiO 2,下列说法正确的是 A.CO 是氧化产物 B.SiH 4发生还原反应C.氧化剂与还原剂的物质的量之比为1∶4 D .生成1mol SiO 2时,转移8mol 电子 11.下列说法正确的是A.用pH 试纸可鉴别未知浓度的碳酸钠溶液和碳酸氢钠溶液B.可用FeCl 3对含酚废水中苯酚的定性检验和定量测定C.向鸡蛋清溶液里加入浓硝酸并加热,出现黄色沉淀,可判断该溶液含有蛋白质D.将红热的炭块加入到浓硝酸中,产生红棕色气体,证明碳和浓硝酸发生了反应12.设N A是阿伏加德罗常数的值,下列说法正确的是A.1mol C3H6含有C-C键为2N AB.0.1 mol 基态氧原子所含有的未成对电子数目为0.2 N AC.足量铁粉与2.24L氯气反应,转移电子数目为0.2N AD.1L pH为9的Na2CO3溶液中,由水电离的H+数目为10-9N A13.下列离子方程式正确的是A.向苯酚钠溶液中通入少量CO2:B.钠投入H2O中:Na+2H2O =Na++2OH-+H2↑C.向氯化二氨合银溶液中加硝酸:Ag(NH3)2++2H++Cl-=AgCl↓+2NH4+D.向溶液中加入铜粉和少量浓H2SO4来检验溶液中存在NO3-:Cu+4H++2NO3-=Cu2++NO2↑+2H2O 14.下列说法不正确...的是A.人造丝、人造棉的化学成分都是纤维素B.DNA分子的双螺旋结构中,两条链的碱基通过氢键实现互补配对C.高密度聚乙烯的支链少,链之间的作用力较大,软化温度和密度较高D.油脂皂化反应后,分离得到下层的高级脂肪酸盐,用于生产肥皂15.2022年10月,美国和丹麦三位科学家在发展点击化学和生物正交化学方面的贡献获得诺贝尔化学奖。
2022年高考数学(文)模拟卷三(全国卷)(原卷版+解析版)
2022年高考数学(文)模拟卷(全国卷)二轮拔高卷03(本卷满分150分,考试时间120分钟。
)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数3i z a =+,且()i i ,R z m m a m =+∈,则a m +=( ) A .3B .0C .3-D .6-2.已知命题:p x ∃∈R ,2610x x +=-,命题:q x ∀∈R ,3sin 2cos 22x x +<,则下列命题中为真命题的是( ) A .p q ∧B .p q ∨⌝C .p q ⌝∧⌝D .p q ⌝∧3.某校为了解高一高二各班体育节的表现情况,统计了高一高二各班的得分情况并绘成如图所示的茎叶图,则下列说法正确的是( )A .高一年级得分中位数小于高二年级得分中位数B .高一年级得分方差大于高二年级得分方差C .高一年级得分平均数等于高二年级得分平均数D .高一年级班级得分最低为344.已知在ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,则根据条件解三角形时恰有一解的一组条件是( )A .3a =,4b =,6A π= B .4a =,3b =,3A π=C .1a =,2b =,4A π=D .2a =,3b =,23A π=5.若实数x ,y 满足约束条件10330390x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则2z x y =-的最大值是( )A .-2B .-4C .3D .46.其几何体的三视图如图所示(单位:cm ),则该几何体的体积是A .34cmB .38cmC .3163cm D .3323cm 7.五声音阶(汉族古代音律)就是按五度的相生顺序,从宫音开始到羽音,依次为:宫,商,角,徵,羽,若宫的频率为f ,则宫,商,角,徵,羽的频率分别是f 、98f 、8164f 、32f 、2716f .定义音比(大于1)是相邻两个音的频率比,上述音比只有两个不同的值,记为(),αβαβ>,则下列关系式不成立...的是( )(参考数据:lg 20.301≈、lg30.477≈) A .3227α=B .lg 2lg33lg 2β=-C .10lg lg 9αβ⋅=D .lg lg 0.2αβ-<8.已知函数π()2sin()(0,||)2f x x ωϕωϕ=+><的最小正周期3π4T ≥,且7π12x =是函数()f x 的一条对称轴,π(,0)3是函数()f x 的一个对称中心,则函数()f x 在ππ,46⎛⎤- ⎥⎝⎦上的取值范围是( )A .(B .(]-1,2C .1-12⎛⎤⎥⎝⎦, D .[]1,2-9.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若122F A F A =,则21cos AF F ∠=A .14 B .13C D 10.已知正四棱柱1111ABCD A B C D -中,12312AA AB ==,点M 是线段1BB 的中点,点N 是线段1DD 上靠近D 的三等分点,若正四棱柱1111ABCD A B C D -被过点1A ,M ,N 的平面所截,则所得截面的周长为( )A .10+B .10+C .9+D .9+11.数列{}n a 满足:221110101n n n n a a a a a ++<<≥=+-,,,则( )A .3420191a a a <<,B .3420191a a a ,C .3420191a a a ><,D .3420191a a a >>,12.已知函数()e xf x =,()cosg x t x =;若()()g x f x ≤在,22x ππ⎛⎫∈- ⎪⎝⎭上恒成立,则实数t 的取值范围是( )A.4π⎛⎤-∞ ⎥⎝⎦B.4,π-⎫+∞⎪⎭C.4,π⎫+∞⎪⎭D.4π-⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分。
2021版《3年高考2年模拟》高考数学(浙江版理)检测:8.6 抛物线 Word版含答案
§8.6抛物线A组基础题组1.(2022安徽,3,5分)抛物线y=x2的准线方程是( )A.y=-1B.y=-2C.x=-1D.x=-22.(2021浙江杭州六中期末)已知P是抛物线y2=4x上一动点,则点P到直线l:2x-y+3=0和y轴的距离之和的最小值是( )A. B. C.2 D.-13.(2022课标Ⅱ,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )A. B. C. D.4.(2021浙江嘉兴桐乡第一中学调研卷一,9,5分)抛物线y2=x的焦点为F,点P(x,y)为该抛物线上的动点,点A,则的最小值是( )A. B. C. D.5.(2022四川,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2B.3C.D.6.(2021陕西,14,5分)若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的一个焦点,则p= .7.(2021浙江名校(镇海中学)沟通卷一,14)过抛物线y2=2x的焦点的直线与该抛物线交于A,B两点,且|AB|=4,则AB的中点的横坐标是.8.(2021浙江模拟训练冲刺卷一,11)已知点F为抛物线x2=4y的焦点,O为坐标原点,点M是抛物线准线上一动点,A在抛物线上,且|AF|=2,则|OA|= ;|MA|+|MO|的最小值是.9.(2021浙江新高考争辩卷四(舟山中学),11)已知抛物线C:y2=2px(p>0),抛物线C上横坐标为的点到焦点的距离为3.(1)p= ;(2)点M在抛物线C上运动,点N在直线x-y+5=0上运动,则|MN|的最小值等于.10.(2022超级中学原创猜测卷七,11,6分)已知正六边形ABCDEF的边长是2,抛物线y2=2px(p>0)恰好经过该正六边形的四个顶点,,过抛物线的焦点Q的直线交抛物线于M,N两点.若焦点Q是弦MN靠近点N的三等分点,则该抛物线的标准方程是,直线MN的斜率k等于.11.(2021浙江冲刺卷一,14,4分)已知直线x=my+2与抛物线y2=8x交于A,B两点,点C(-1,0),若∠ACB=90°,则m= .12.(2021浙江名校(绍兴一中)沟通卷五,14)已知M(a,4)为抛物线y2=2px(p>0)上一点,F为抛物线的焦点,N 为y轴上的动点,当sin∠MNF的值最大时,△MNF的面积为5,则p的值为.13.(2021浙江七校联考,18)已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若=+λ,求λ的值. 14.(2021福建,19,12分)已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.15.(2021浙江,22,14分)已知抛物线C的顶点为O(0,0),焦点为F(0,1).(1)求抛物线C的方程;(2)过点F作直线交抛物线C于A,B两点.若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.16.(2021浙江模拟训练冲刺卷一,19)已知抛物线C1:x2=4y的焦点为F,过点F且斜率不为零的直线l与抛物线C1相交于不同的两点A,C,并与曲线C2:x2=-4(y-2)相交于不同的两点B,D,其中A,B两点在y轴右侧.(1)求A,B两点的横坐标之积;(2)记直线OA,OB,OC,OD的斜率分别为k1,k2,k3,k4,是否存在常数λ,使得k1+k3=λ(k2+k4)?若存在,求出λ的值;若不存在,请说明理由.B组提升题组1.(2021陕西,3,5分)已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线焦点坐标为( )A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)2.(2022课标Ⅰ,10,5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0=( )A.1B.2C.4D.83.(2021宁波高考模拟考试,5,5分)已知F是抛物线y2=4x的焦点,A,B是抛物线上的两点,|AF|+|BF|=12,则线段AB的中点到y轴的距离为( )A.4B.5C.6D.114.(2021河南焦作期中,11)已知点P在抛物线y2=4x上,点M在圆(x-3)2+(y-1)2=1上,点N的坐标为(1,0),则|PM|+|PN|的最小值为( )A.5B.4C.3D.+15.(2022课标Ⅱ,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|=( )A. B.6 C.12 D.76.已知点P为抛物线y2=2px(p>0)上一点,F为抛物线的焦点,直线l过点P且与x轴平行,若同时与直线l、直线PF、x轴相切且位于直线PF左侧的圆与x轴相切于点Q,则( )A.Q点位于原点的左侧B.Q点与原点重合C.Q点位于原点的右侧D.以上均有可能7.(2021四川,10,5分)设直线l与抛物线y2=4x相交于A,B两点,与圆(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是( )A.(1,3)B.(1,4)C.(2,3)D.(2,4)8.(2021稽阳联考,13,6分)过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是.9.(2021浙江六校联考,13,4分)已知F为抛物线C:y2=2px(p>0)的焦点,过F作斜率为1的直线交抛物线C于A、B两点,设|FA|>|FB|,则= . 10.(2021杭州二中高三仿真考,13,4分)已知点A在抛物线C:y2=2px(p>0)的准线上,点M,N在抛物线C上,且位于x轴的两侧,O是坐标原点,若·=3,则点A到动直线MN的最大距离为.11.(2021嘉兴教学测试二,14,4分)抛物线y2=4x的焦点为F,过点(0,3)的直线与抛物线交于A,B两点,线段AB的垂直平分线交x轴于点D,若|AF|+|BF|=6,则点D的横坐标为.12.(2022超级中学原创猜测卷五,14,6分)已知抛物线y2=4x的焦点为F,则点F的坐标为,若A,B是抛物线上横坐标不相等的两点,且线段AB的垂直平分线与x轴的交点为M(4,0),则|AB|的最大值为.13.(2021稽阳联考文,19,15分)点P是在平面坐标系中不在x轴上的一个动点,满足:过点P可作抛物线x2=y 的两条切线,切点分别为A,B.(1)设点A(x1,y1),求证:切线PA的方程为y=2x1x-;(2)若直线AB交y轴于R,OP⊥AB于点Q,求证:R是定点并求的最小值.14.(2021浙江五校二联文,19,15分)已知抛物线y2=2x上有四点A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),点M(3,0),直线AB、CD都过点M,且都不垂直于x轴,直线PQ过点M且垂直于x轴,交AC于点P,交BD于点Q.(1)求y1y2的值;(2)求证:MP=MQ.15.(2021浙江冲刺卷一,22)已知点M(0,-1),抛物线E:x2=4y,过点N(-4,1)的直线l交抛物线E于A,B两点,点A在第一象限.(1)若直线MA与抛物线相切,求直线MA的方程;(2)若直线MA交抛物线E于另一点C,问直线BC是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.16.(2022浙江,22,14分)已知△ABP的三个顶点都在抛物线C:x2=4y上,F为抛物线C的焦点,点M为AB的中点,=3.(1)若||=3,求点M的坐标;(2)求△ABP面积的最大值. A组基础题组1.A 由y=x2得x2=4y,焦点在y轴正半轴上,且2p=4,即p=2,因此准线方程为y=-=-1.故选A.2.D 由题意知,抛物线的焦点为F(1,0),设点P到直线l的距离为d,由抛物线的定义可知,点P到y轴的距离为|PF|-1,所以点P到直线l的距离与到y轴的距离之和为d+|PF|-1,易知d+|PF|的最小值为点F到直线l的距离,故d+|PF|的最小值为=,所以d+|PF|-1的最小值为-1.3.D 易知直线AB的方程为y=,与y2=3x联立并消去x得4y2-12y-9=0.设A(x1,y1),B(x2,y2),则y1+y2=3,y1y2=-.S△OAB=|OF|·|y1-y2|=×==.故选D.4.C 点A是抛物线的准线与x轴的交点,过P作抛物线准线的垂线,记垂足为B,则由抛物线的定义可得==sin∠PAB,当∠PAB最小时,的值最小,此时,直线PA与抛物线相切,可求得直线PA的斜率k=±1,所以∠PAB=45°,的最小值为,故选C.5.B 依题意不妨设A(x1,),B(x2,-),·=2⇒x1x2-=2⇒=2或=-1(舍去).当x1=x2时,有x1=x2=2,则S△ABO+S△AFO=2+=;当x1≠x2时,直线AB的方程为y-=(x-x1),则直线AB与x轴的交点坐标为(2,0).于是S△ABO+S△AFO=×2×(+)+×=+≥2=3当且仅当=时取“=”,而>3.故选B.6.答案 2解析抛物线y2=2px(p>0)的准线方程为x=-(p>0),故直线x=-过双曲线x2-y2=1的左焦点(-,0),从而-=-,得p=2.7.答案解析由已知得AB为抛物线的焦点弦,则|AB|=x A+x B+1=4,∴x A+x B=3,故AB的中点的横坐标是.8.答案;解析易知F(0,1).设A(x,y),由|AF|=2,得y+1=2,∴y=1,代入x2=4y得x=±2,所以A(±2,1),则|OA|=.设B(0,-2),因点M在抛物线准线上,则|MO|=|MB|,从而|MA|+|MO|的最小值就是|MA|+|MB|的最小值.因A,B为定点,则|MA|+|MB|的最小值即为|AB|=,故|MA|+|MO|的最小值是.9.答案(1)1 (2)解析(1)依题意得+=3,解得p=1.(2)设M(x,y),则y2=2x.则|MN|的最小值等于点M到直线x-y+5=0的距离d的最小值.而d====,则当y=1时,d min=,故|MN|的最小值等于.10.答案y2=x;±2解析如图所示,依据对称性,可设正六边形ABCDEF的顶点A,B,C,F在抛物线y2=2px(p>0)上,A(x1,1),F(x2,2),则即x2=4x1,又|AF|==2,即(x1-x2)2=(x1-4x1)2=3,所以=,x1=,则p===,则抛物线的方程是y2=x,则Q,设直线MN的方程为x=my+.将直线MN的方程与抛物线的方程联立,消去x得y2-my-=0.设M(x3,y3),N(x4,y4),所以y3+y4=m①,y3y4=-②,由于焦点Q是弦MN靠近点N的三等分点,所以=2,所以y3=-2y4③,联立①②③消去y3,y4,得m=±,所以直线MN的斜率k=±2.11.答案±解析设A(x1,y1),B(x2,y2),联立得消去x得y2-8my-16=0,则有y1+y2=8m,y1y2=-16.由∠ACB=90°,知·=0,即有(x1+1)(x2+1)+y1y2=0,则有(my1+3)(my2+3)+y1y2=0,即(m2+1)y1y2+3m(y1+y2)+9=0,则-16(m2+1)+24m2+9=0,解得m=±.12.答案2或8解析设N(0,n),当sin∠MNF的值最大时,有∠MNF=,从而有·=0,得ap+n2-4n=0.又2ap=16,所以n2-4n+4=0,所以n=2,所以N的坐标为(0,2)时,sin∠MNF的值最大.过M作MM'⊥y轴,垂足为M',则梯形OFMM'的面积为10,10=·4,又ap=8,得p=2或8.13.解析(1)直线AB的方程是y=2,由消去y得4x2-5px+p2=0,所以x1+x2=.由抛物线定义得|AB|=x1+x2+p=9,所以p=4,从而抛物线方程是y2=8x.(2)由p=4,4x2-5px+p2=0可得x2-5x+4=0,从而x1=1,x2=4,y1=-2,y2=4,从而A(1,-2),B(4,4).设=(x3,y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2), 由=8x3,得[2(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.14.解析(1)由抛物线的定义得|AF|=2+.由于|AF|=3,即2+=3,解得p=2,所以抛物线E的方程为y2=4x.(2)证法一:由于点A(2,m)在抛物线E:y2=4x上,所以m=±2,由抛物线的对称性,不妨设A(2,2).由A(2,2),F(1,0)可得直线AF的方程为y=2(x-1).由得2x2-5x+2=0,解得x=2或x=,从而B.又G(-1,0),所以k GA==,k GB==-,所以k GA+k GB=0,从而∠AGF=∠BGF,这表明点F到直线GA,GB的距离相等,故以F为圆心且与直线GA相切的圆必与直线GB相切.证法二:设以点F为圆心且与直线GA相切的圆的半径为r.由于点A(2,m)在抛物线E:y2=4x上,所以m=±2,由抛物线的对称性,不妨设A(2,2).由A(2,2),F(1,0)可得直线AF的方程为y=2(x-1).由得2x2-5x+2=0,解得x=2或x=,从而B.又G(-1,0),故直线GA的方程为2x-3y+2=0,从而r==.又直线GB的方程为2x+3y+2=0,所以点F到直线GB的距离d===r.这表明以点F为圆心且与直线GA相切的圆必与直线GB相切.15.解析(1)由题意可设抛物线C的方程为x2=2py(p>0),则=1,所以抛物线C的方程为x2=4y.(2)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1.由消去y,整理得x2-4kx-4=0,所以x1+x2=4k,x1x2=-4.从而|x1-x2|=4.由解得点M的横坐标x M===.同理,点N的横坐标x N=.所以|MN|=|x M-x N|==8=.令4k-3=t,t≠0,则k=.当t>0时,|MN|=2>2.当t<0时,|MN|=2≥.综上所述,当t=-,即k=-时,|MN|的最小值是.16.解析(1)设A(x1,y1),B(x2,y2),则x1>0,x2>0.又易知F(0,1),则由A,B,F三点共线得=,即x2=x1,得(x1+x2)x1x2=4(x1+x2),∵x1>0,x2>0,∴x1+x2>0,∴x1x2=4,故A,B两点的横坐标之积为4.(2)存在.明显直线l的斜率存在,且不为零,故可设直线l的方程为y=kx+1(k≠0).由得x2-4kx-4=0.设C(x3,y3),则有x1+x3=4k,且x1x3=-4.则k1+k3=+=+=+==k.由得x2+4kx-4=0.设D(x4,y4),则有x2+x4=-4k,且x2x4=-4.则k2+k4=+=+=+--=+k=+k=3k,∵k≠0,∴k1+k3=(k2+k4).故存在常数λ=,使得k1+k3=λ(k2+k4).B组提升题组1.B 抛物线y2=2px(p>0)的准线方程为x=-,由题设知-=-1,即=1,所以焦点坐标为(1,0).故选B.2.A 由y2=x得2p=1,即p=,因此焦点F,准线方程为l:x=-,设A点到准线的距离为d,由抛物线的定义可知d=|AF|,从而x0+=x0,解得x0=1,故选A.3.B 记A,B在抛物线准线x=-1的投影分别为A',B',故|AA'|+|BB'|=|AF|+|BF|=12,由中位线定理可得所求距离d=-1=5,故选B.4.C 由于抛物线y2=4x的焦点为N(1,0),所以|PM|+|PN|的最小值等于点M到抛物线的准线x=-1的距离的最小值.而点M在圆(x-3)2+(y-1)2=1上,则点M到准线x=-1的距离的最小值等于圆心(3,1)到准线的距离减去半径1,即(|PM|+|PN|)min=4-1=3,故选C.5.C 焦点F的坐标为,直线AB的斜率为,所以直线AB的方程为y=, 即y=x-,代入y2=3x,得x2-x+=0,设A(x1,y1),B(x2,y2),则x1+x2=,所以|AB|=x1+x2+=+=12,故选C.6.B 如图,设直线l,x轴分别与抛物线的准线交于C,D两点,由抛物线的定义知|PC|=|PF|,由圆的切线性质知|PA|=|PB|,于是|AC|=|BF|.又|AC|=|DO|,|BF|=|FQ|,所以|DO|=|FQ|,而|DO|=|FO|,得O,Q两点重合.故选B.7.D 明显0<r<5.当直线l的斜率不存在时,存在两条满足题意的直线,所以当直线l的斜率存在时,存在两条满足题意的直线,设直线l的斜率为k,由抛物线和圆的对称性知,k>0、k<0时各有一条满足题意的直线.设A(x1,y1),B(x2,y2),M(x0,y0),k====.记圆心为C(5,0).∵k CM=,k·k CM=-1,∴x0=3.∴r2=(3-5)2+>4(y0≠0),即r>2.另一方面,由AB的中点为M,知B(6-x1,2y0-y1),∴(2y0-y1)2=4(6-x1),又∵=4x1,∴-2y0y1+2-12=0.∴Δ=4-4(2-12)>0,即<12.∴r2=(3-5)2+=4+<16,∴r<4.综上,r∈(2,4).故选D.8.答案±解析由题意设l:x=ty+1,A(x1,y1),B(x2,y2).将x=ty+1代入y2=4x,得y2-4ty-4=0,∴y1+y2=4t,y1y2=-4.又=3,∴y1=-3y2,∴∴t2=,即k=±.9.答案3+2解析过抛物线C的焦点,斜率为1的直线方程为y=x-,代入抛物线C的方程,整理得4x2-12px+p2=0.又由题意可得x A>x B,解得x A=p,x B=p,所以====3+2.10.答案解析由题意知抛物线的准线方程为x=-=-,解得p=1,所以抛物线的方程为y2=2x.设直线MN的方程为x=ty+m,M(x1,y1),N(x2,y2),直线MN与x轴的交点为D(m,0),联立直线MN与抛物线的方程,得y2-2ty-2m=0,所以y1y2=-2m.由于·=3,所以x1x2+y1y2=3,即(y1y2)2+y1y2-3=0.由于M,N位于x轴的两侧,所以y1y2=-6,所以m=3,则直线MN恒过点D(3,0).当直线MN绕定点D(3,0)旋转时,旋转到AD⊥MN时,点A到动直线MN的距离最大,且为=.11.答案 4解析设A(x1,y1),B(x2,y2),直线AB的方程为y-3=kx(k<0),即y=kx+3,联立直线AB的方程与抛物线方程消去y,得k2x2+(6k-4)x+9=0,所以x1+x2=.又p=2,依据抛物线的定义有|AF|+|BF|=x1+x2+p=x1+x2+2=6,所以x1+x2==4,解得k=(舍)或k=-2,所以y1+y2=-2(x1+x2)+6=-2,所以线段AB的中点坐标为(2,-1),所以线段AB的垂直平分线的方程为y+1=(x-2),即x-2y-4=0,令y=0,得x=4,所以点D的横坐标为4.12.答案(1,0);6解析抛物线y2=4x的焦点为F(1,0).设A(x1,y1),B(x2,y2),由于线段AB的垂直平分线与x轴的交点为M(4,0),所以|MA|2=|MB|2,即(x1-4)2+=(x2-4)2+,又A,B是抛物线上两点,所以=4x1,=4x2,代入上式并化简得-=4x1-4x2,又x1≠x2,所以x1+x2=4,所以|AB|≤|AF|+|BF|=x1+1+x2+1=6(当且仅当A,B,F三点共线时取等号),所以|AB|的最大值为6.13.解析(1)证明:设以A(x1,)为切点的切线方程为y-=k(x-x1),与x2=y联立得x2-kx+kx1-=0,由Δ=k2-4kx1+4=(k-2x1)2=0得k=2x1,所以切线PA的方程为y=2x1x-.(2)设B(x2,y2),由(1)知点P的坐标为,设直线AB的方程为y=kx+m,与x2=y联立得x2-kx-m=0,所以P,由题意知k·k OP=k·=-2m=-1⇒m=,即R.|PQ|=,|QR|==,所以==|k|+≥2,当且仅当|k|=时,的最小值为2.14.解析(1)设直线AB的方程为x=my+3,与抛物线联立得:y2-2my-6=0,∴y1y2=-6.(2)证明:直线AC的斜率为=,∴直线AC的方程为y=(x-x1)+y1,∴点P的纵坐标为y P===,同理,点Q的纵坐标为y Q=,∴y P+y Q=0,又PQ⊥x轴,∴MP=MQ.15.解析(1)设A(x1,y1)(x1>0),则直线MA的方程为y=x-1,与x2=4y联立消去y,得x1x2-(+4)x+4x1=0,由Δ=-16=0,得=4,而x1>0,故x1=2,即有A(2,1).则直线MA的方程为y=x-1.(2)明显直线BC的斜率存在,设直线BC的方程为y=kx+n,与x2=4y联立消去y,得x2-4kx-4n=0.设B(x2,y2),C(x3,y3),则有x2+x3=4k,x2x3=-4n.由(1)知x1,x3是方程x1x2-(+4)x+4x1=0的两根,且x1≠2.则有x1x3=4,即x1=,从而y1==.由于N,A,B三点共线,所以===+,即有-1=+x2++,化简得x2+x3+x2x3+4=0,即有4k-4n+4=0,得n=k+1.从而直线BC的方程为y=kx+k+1=k(x+1)+1,故直线BC过定点,且定点坐标为(-1,1). 16.解析(1)由题意知焦点F(0,1),准线方程为y=-1.设P(x0,y0),由抛物线定义知|PF|=y0+1,得到y0=2,所以P(2,2)或P(-2,2).由=3,分别得M或M.(2)设直线AB的方程为y=kx+m,点A(x1,y1),B(x2,y2),P(x0,y0). 由得x2-4kx-4m=0,于是Δ=16k2+16m>0,x1+x2=4k,x1x2=-4m,所以AB中点M的坐标为(2k,2k2+m).由=3,得(-x0,1-y0)=3(2k,2k2+m-1),所以由=4y0得k2=-m+.由Δ>0,k2≥0,得-<m≤.又由于|AB|=4·,点F(0,1)到直线AB的距离为d=,所以S△ABP=4S△ABF=8|m-1|=.记f(m)=3m3-5m2+m+1.令f'(m)=9m2-10m+1=0,解得m1=,m2=1.可得f(m)在上是增函数,在上是减函数,在上是增函数.又f=>f,所以,当m=时,f(m)取到最大值,此时k=±.所以,△ABP面积的最大值为.。
2022人教A版高中数学选择性必修第三册同步培优第六章计数原理第2节排列与组合 习题课 排列数的应用
第六章 习题课A 组·素养自测一、选择题1.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( D ) A .24 B .48 C .60D .72[解析] 由题意,可知个位可以从1,3,5中任选一个,有A 13种方法,其他数位上的数可以从剩下的4个数字中任选,进行全排列,有A 44种方法,所以奇数的个数为A 13A 44=3×4×3×2×1=72.2.(2021·嘉兴一中月考)从2,3,4,5,6,7,8,9这8个数字中任取2个不同的数字分别作为一个对数的底数和真数,则可以组成不同对数值的个数为( D )A .56B .54C .53D .52[解析] 在8个数中任取2个不同的数可以组成A 28=56(个)对数值.但在这56个对数值中,log 24=log 39,log 42=log 93,log 23=log 49,log 32=log 94,即满足条件的对数值共有56-4=52(个).3.把语文、数学、物理、历史、外语这五门课程安排在一天的五节课里,如果数学必须比历史先上,那么不同的排法有( C )A .48种B .24种C .60种D .120种[解析] 五门课程随意安排有A 55种排法,数学课在历史课前和历史课在数学课前各占总排法数的一半,所以数学课排在历史课前的排法有12A 55=60(种).4.(多选)停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有( AD )A .A 99种B .A 99A 44种 C .8A 88种D .9A 88种 [解析] 将4个空车位视为一个元素,与8辆车共9个元素进行全排列,共有A 99=9A 88种.5.三位女生坐到二排四列的8个位置中,要求同列中最多只有一个女生,同排中任两个女生不相邻,则不同的排法数为(A)A.72 B.36C.48 D.96[解析]根据题意,完成这件事可分两步:第一步,先在8个位置中选取符合条件的3个位置,有2×2+2×4=12种情况;第二步,将三位女生全排列,安排到选出的3个位置,有A33=6种情况.根据分步乘法计数原理,共有12×6=72种排法.二、填空题6.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1,2相邻,这样的六位数的个数是__40__.[解析]可分为三步来完成这件事:第一步:先将3,5进行排列,共有A22种排法;第二步:再将4,6插空排列,共有2A22种排法;第三步:将1,2放入3,5,4,6形成的空中,共有A15种排法;由分步乘法计数原理得,共有2A22A22A15=40种不同的排法.7.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是__96__.[解析]先分组后用分配法求解,5张参观券分为4组,其中2个连号的有4种分法,每一种分法中的排列方法有A44种,因此共有不同的分法4A44=4×24=96(种).8.2020年某地举行博物展,某单位将展出5件艺术作品,其中不同书法作品2件、不同绘画作品2件、标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则该单位展出这5件作品不同的方案有__24__种.(用数字作答)[解析]将2件书法作品排列,方法数为2种,然后将其作为1件作品与标志性建筑设计作品共同排列有2种排法,对于其每一种排法,在其形成的3个空位中选2个插入2件绘画作品,故共有不同展出方案:2×2×A23=24种.三、解答题9.一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单.(1)3个舞蹈节目不排在开始和结尾,有多少种排法?(2)前四个节目要有舞蹈节目,有多少种排法?[解析](1)先从5个演唱节目中选两个排在首尾两个位置有A25种排法,再将剩余的3个演唱节目,3个舞蹈节目排在中间6个位置上有A 66种排法,故共有不同排法A 25A 66=14 400种.(2)先不考虑排列要求,有A 88种排列,其中前四个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余四个节目排列在后四个位置,有A 45A 44种排法,所以前四个节目要有舞蹈节目的排法有A 88-A 45A 44=37 440种.10.从-3,-2,-1,0,1,2,3,4八个数字中任取3个不同的数字作为二次函数y =ax 2+bx +c 的系数a ,b ,c ,问:(1)共能组成多少个不同的二次函数?(2)在这些二次函数中,图象关于y 轴对称的有多少个? [解析] (1)方法一(直接法——优先考虑特殊位置)因为a ≠0,所以确定二次项系数有7种,确定一次项和常数项有A 27种,所以共有7A 27=294个不同的二次函数.方法二(直接法——优先考虑特殊元素)当a ,b ,c 中不含0时,有A 37个;当a ,b ,c 中含有0时,有2A 27个,故共有A 37+2A 27=294(个)不同的二次函数.方法三(间接法)共可构成A 38个函数,其中当a =0时,有A 27个均不符合要求,从而共有A 38-A 27=294(个)不同的二次函数.(2)依题意b =0,所以共有A 27=42(个)符合条件的二次函数.B 组·素养提升一、选择题1.(多选)用0,1,2,3,4,5组成没有重复数字的6位数,其中个位数字小于十位数字的六位数共有( AB )A .A 15A 35个 B .12A 15A 55个C .A 15A 55个D .2A 15A 44个 [解析] 解法一:确定最高位有A 15种不同方法.确定万位、千位、百位,从剩下的5个数字中取3个排列,共有A 35种不同的方法,剩下两个数字,把大的排在十位上即可,由分步乘法计数原理知,共有A 15·A 35=300(个).解法二:由于个位数字大于十位数字与个位数字小于十位数字的应各占一半,故有12 A15·A55=300(个).2.某地为了迎接运动会,在某大楼安装了5个彩灯,它们闪亮的顺序不固定.每个彩灯只能闪亮红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同,记这5个彩灯有序地各闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是(C)A.1 205秒B.1 200秒C.1 195秒D.1 190秒[解析]由题意每次闪烁共5秒,所有不同的闪烁为A55个,相邻两个闪烁的时间间隔为5秒,因此需要的时间至少是5A55+(A55-1)×5=1 195(秒).3.有4本不同的书A,B,C,D,要分给三个同学,每个同学至少分一本,书A,B 不能分给同一人,则这样的分法共有(C)A.18种B.24种C.30种D.36种[解析]4本不同的书分给三个同学,共有6A33=36,书A,B分给同一人有A33=6,所以共有36-6=30种,故选C.4.(北京高考题)把5件不同产品摆成一排.若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有(B)A.48 B.36C.30 D.24[解析]将A,B捆绑在一起,有A22种摆法,再将它们与其他3件产品全排列,有A44种摆法,共有A22A44种摆法,而A,B,C 3件产品在一起,且A,B相邻,A,C相邻时有2种情况,将这3件产品与剩下2件产品全排列,有2A33种摆法.故A,B相邻,A,C不相邻的摆法有A22A44-2A33=36(种).二、填空题5.6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为__576__.[解析]“不能都站在一起”与“都站在一起”是对立事件,由间接法可得A66-A33A44=576.6.如图是一个正方体纸盒的展开图,若把1,2,3,4,5,6分别填入小正方形后,按虚线折成正方体,则所得到的正方体相对面上的两个数的和都相等的概率是__115__.[解析] 6个数任意填入6个小正方形中有A 66=720种方法;将6个数分三组(1,6),(2,5),(3,4),每组中的两个数填入一对面中,共有不同填法A 33×2×2×2=48种,故所求概率P =48720=115. 三、解答题7.用0,1,2,3,4五个数字:(1)可组成多少个五位数;(2)可组成多少个无重复数字的五位数;(3)可组成多少个无重复数字的且是3的倍数的三位数;(4)可组成多少个无重复数字的五位奇数.[解析] (1)各个数位上的数字允许重复,故由分步乘法计数原理知,共有4×5×5×5×5=2 500(个).(2)解法一:先排万位,从1,2,3,4中任取一个有A 14种填法,其余四个位置四个数字共有A 44种,故共有A 14·A 44=96(个).解法二:先排0,从个、十、百、千位中任选一个位置将0填入有A 14种方法,其余四个数字全排有A 44种方法,故共有A 14·A 44=96(个).(3)构成3的倍数的三位数,各个位上数字之和是3的倍数,按取0和不取0分类:①取0,从1和4中取一个数,再取2进行排,先填百位A 12,其余任排有A 22,故有2A 12·A 22种.②不取0,则只能取3,从1或4中再任取一个,再取2然后进行全排为2A 33,所以共有2A 12A 22+2A 33=8+12=20(个).(4)考虑特殊位置个位和万位,先填个位,从1,3中选一个填入个位有A 12种填法,然后从剩余3个非0数中选一个填入万位,有A 13种填法,包含0在内还有3个数在中间三位置上全排列,排列数为A 33,故共有A 12·A 13·A 33=36(个).8.4名男同学和3名女同学站成一排.(1)7名同学中,甲、乙、丙排序一定(只考虑位置的前后顺序),有多少种不同的排法?(2)7名同学中,甲乙两名同学之间必须恰有3名同学,有多少种不同的排法?(3)7名同学中,甲、乙两名同学相邻,但都不与丙相邻,有多少种不同的排法?(4)女同学从左到右按从高到矮的顺序排,有多少种不同的排法?(3名女生身高互不相等)[解析](1)7名同学的所有排法有A77种,其中甲、乙、丙的排序有A33种,所以甲、乙、=840(种).丙排序一定的排法有A77A33(2)先排甲、乙两名同学,有A22种排法,再从余下5名同学中选3名同学排在甲、乙两名同学中间,有A35种排法,这时把已排好的5名同学视为一个整体,与最后剩下的2名同学进行全排列,有A33种排法,故不同的排法共有A22A35A33=720(种).(3)先排除甲、乙、丙3名同学以外的其他4名同学,有A44种排法,由于甲、乙要相邻,故再把甲、乙排好,有A22种排法,最后把排好的甲、乙看作一个整体与丙分别插入原先排好的4名同学形成的5个空位中,有A25种排法,故不同的排法共有A44A22A25=960(种).(4)从7个位置中选出4个位置把男生排好,有A47种排法,然后在余下的3个位置中排女生,由于要求女生从左到右按从高到矮的顺序排,故女生的排法只有1种,故不同的排法共有A47×1=840(种).。
2021版《3年高考2年模拟》高考数学(浙江版理)检测:1.2 命题与充要条件 Word版含答案
§1.2命题与充要条件A组基础题组1.(2021浙江延安中学段考)命题“若a2+b2=0,a,b∈R,则a=b=0”的逆否命题是( )A.若a≠b≠0,a,b∈R,则a2+b2=0B.若a=b≠0,a,b∈R,则a2+b2≠0C.若a≠0且b≠0,a,b∈R,则a2+b2≠0D.若a≠0或b≠0,a,b∈R,则a2+b2≠02.(2021湖南,2,5分)设A,B是两个集合,则“A∩B=A”是“A⊆B”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(2021四川文,4,5分)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.(2021浙江文,3,5分)设a,b是实数,则“a+b>0”是“ab>0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件 D .既不充分也不必要条件5.(2021杭州学军中学第五次月考,1,5分)>1的一个充分不必要条件是( )A.x>yB.x>y>0C.x<yD.y<x<06.(2021桐乡一中等四校联考,3,5分)设a,b为非零实数,命题甲:ab>b2,命题乙:<<0,则甲是乙的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(2022浙江新高考争辩联盟一联,2,5分)已知m>0且m≠1,则log m n>0是(1-m)(1-n)>0的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(2022广东文,7,5分)在△ABC中,角A,B,C所对的边分别为a,b,c,则“a≤b”是“sinA≤sinB”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件9.(2021青岛诊断)“0≤m≤1”是“函数f(x)=sinx+m-1有零点”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件B组提升题组1.(2021安徽,3,5分)设p:1<x<2,q:2x>1,则p是q成立的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(2021湖北文,5,5分)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线;q:l1,l2不相交,则( )A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件3.(2021浙江金华一中期中检测)在△ABC中,“·>0”是“△ABC为锐角三角形”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(2021四川,8,5分)设a,b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(2021金华十校一模,2,5分)若a,b∈R,则>的一个充要条件是( )A.a>bB.ab(a-b)<0C.a<b<0D.a<b6.(2021金华一中全真模拟考,1,5分)设a,b∈R,则“0<a<1且0<b<1”是“ab+1>a+b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(2021宁波一模,2,5分)在△ABC中,“A>”是“sinA>”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件8.(2022领航高考冲刺卷二,3,5分)已知p:x>k,q:≥1,若p是q的必要不充分条件,则实数k的取值范围是( )A.(2,+∞)B.[2,+∞)C.(-∞,-1)D.(-∞,-1]9.(2022领航高考冲刺卷六,3,5分)设x、y是两个实数,命题“x、y中至少有一个大于1”成立的充分不必要条件是( )A.x+y=2B.x+y>2C.x2+y2>2D.xy>110.(2021嘉兴一模,5,5分)已知p:x2-3x-4≤0,q:x2-6x+9-m2≤0.若p是q的充分不必要条件,则m的取值范围是( )A.[-1,1]B.[-4,4]C.(-∞,-4]∪[4,+∞)D.(-∞,-1]∪[4,+∞)11.(2022超级中学原创猜测卷六,3,5分)已知a,b∈R,则“a2+b2<1”是“ab+1>a+b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A组基础题组1.D “若p,则q”的逆否命题为“若¬q,则¬p”,又a=b=0的实质为a=0且b=0,故其否定为a≠0或b≠0.故选D.2.C 若A∩B=A,任取x∈A,则x∈A∩B,∴x∈B,故A⊆B;若A⊆B,任取x∈A,都有x∈B,∴x∈A∩B,∴A⊆(A∩B),又A∩B⊆A明显成立,∴A∩B=A.综上,“A∩B=A”是“A⊆B”的充要条件,故选C.3.A ∵y=log2x是增函数,∴当a>b>1时,有log2a>log2b>log21=0.另一方面,当log2a>log2b>0=log21时,有a>b>1.故选A.4.D 当a=2,b=-1时,a+b=1>0,但ab=-2<0,所以充分性不成立;当a=-1,b=-2时,ab=2>0,但a+b=-3<0,所以必要性不成立,故选D.5.B >1⇔x>y>0或x<y<0,知>1的一个充分不必要条件是x>y>0.6.B 命题甲等价于:若b>0,则a>b,若b<0,则a<b,命题乙等价于a<b<0,所以甲是乙的必要不充分条件,故选B.7.A log m n>0等价于m>1,且n>1,或0<m<1,且0<n<1,此时有(1-m)(1-n)>0,即充分性成立.当0<m<1,n≤0时,有(1-m)(1-n)>0,此时log m n无意义,即必要性不成立,故选A.8.A 设R为△ABC外接圆的半径.由正弦定理可知,若a≤b,则2RsinA≤2RsinB⇒sinA≤sinB,故“a≤b”是“sinA≤sinB”的充分条件;若sinA≤sinB,则≤⇒a≤b,故“a≤b”是“sinA≤sinB”的必要条件.综上所述,“a≤b”是“sinA≤sinB”的充要条件.故选A.9.A 函数f(x)=sinx+m-1有零点,则m-1=-sinx∈[-1,1],所以0≤m≤2,故选A.B组提升题组1.A 由2x>1,得x>0.∵{x|1<x<2}⫋{x|x>0},∴p是q成立的充分不必要条件.2.A 在空间中,两条直线的位置关系有平行、相交、异面.直线l1、l2是异面直线,肯定有l1与l2不相交,因此p是q的充分条件;若l1与l2不相交,那么l1与l2可能平行,也可能是异面直线,所以p不是q的必要条件.故选A.3.B ·>0只能说明△ABC中的角A是锐角,不能说明△ABC为锐角三角形;但反过来,若△ABC为锐角三角形,则角A肯定是锐角,从而·>0,故选B.4.B “3a>3b>3”等价于“a>b>1”,“log a3<log b3”等价于“a>b>1或0<a<1<b或0<b<a<1”,从而“3a>3b>3”是“log a3<log b3”的充分不必要条件.故选B.5.B >⇔->0⇔<0⇔ab(a-b)<0,故选B.6.A ab+1>a+b⇔(a-1)(b-1)>0,则a>1,且b>1,或a<1,且b<1,故选A.7.B △ABC中,由A>得不到sinA>.由sinA>可推出A>.故选B.8.D ∵≥1,∴≥0,∴-1<x≤2,又p是q的必要不充分条件,即q能推出p,但p不能推出q,∴k∈(-∞,-1],选D.9.B 命题“x、y中至少有一个大于1”等价于“x>1或y>1”,若x+y>2,则必有x>1或y>1,否则x+y≤2;而当x=2,y=-1时,2-1=1<2,所以由x>1或y>1不能推出x+y>2.当x=1,且y=1时,满足x+y=2,不能推出x>1或y>1,所以A错;对于x2+y2>2,当x<-1,y<-1时,满足x2+y2>2,不能推出x>1或y>1,故C错;对于xy>1,当x<-1,y<-1时,满足xy>1,不能推出x>1或y>1,故D错.综上知选B.10.C p:-1≤x≤4;在x2-6x+9-m2≤0中,当m>0时,解得3-m≤x≤3+m,要满足条件应满足且两个等号不能同时取到,解得m≥4.当m<0时,解得m≤-4.当m=0时,不满足条件.故m的取值范围是(-∞,-4]∪[4,+∞).11.A a2+b2<1⇒-1<a<1,-1<b<1⇒(a-1)·(b-1)>0⇒ab+1>a+b,反之,取a=2,b=2,满足ab+1>a+b,但不能得出a2+b2<1,故选A.。
【三模】高考数学测试题附答案解析
时间:120分钟 满分:150分
一、选择题(共12小题,每小题5分,共60分.)
1.已知集合 ,且 ,则满足条件 集合P的个数是()
A.8B.9C.15D.16
2.复数 (其中i为虚数单位),则 ()
A. B. 5C. 7D. 25
3.已知 ,则 ()
A B. C. D.
4.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“< ”和“> ”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若 ,则下列结论错误的是()
A. 1B. C. D.不确定
10.已知函数 , 为奇函数,则下述四个结论中说法正确的是()
A.
B. 在 上存在零点,则a的最小值为
C. 在 上单调递增
D. 在 有且仅有一个极大值点
11.下列说法中,正确的有()个.
①各个面都是三角形的几何体是三棱锥;
②过球面上任意两点只能作球的一个大圆;
③三棱锥的四个面都可以是直角三角形;
故选:C.
【点睛】本题考查归纳推理,解题的关键是找出规律,是基础题.
10.已知函数 , 为奇函数,则下述四个结论中说法正确的是()
A.
B. 在 上存在零点,则a的最小值为
C. 在 上单调递增
D. 在 有且仅有一个极大值点
【答案】B
【解析】
【分析】对于A,由已知条件得 ,由于函数为奇函数,所以 ,从而可求出 的值;对于B,由 ,得 ,由于 在 上存在零点,所以可求出a的最小值为 ;对于C, ,然后可求出其单调增区间;对于D,求出 ,可知当 时, ,当 时, ,由此可判断出函数的极值
2023-2024学年浙里卷天下——高三百校联考3月测试数学试卷+答案解析
2023-2024学年浙里卷天下——高三百校联考3月测试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若复数,则()A. B. C.1 D.32.已知集合则()A. B.C. D.3.设向量均为单位向量,则“”是“”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件4.某企业为了响应并落实国家污水减排政策,加装了污水过滤排放设备,在过滤过程中,污染物含量单位:与时间单位:之间的关系为其中是正常数已知在处理过程中,经过1小时设备可以过滤池中残留污染物,则过滤一半的污染物需要的时间最接近参考数据:()A.6小时B.8小时C.10小时D.12小时5.设集合,且,,则下列说法正确的是A. B. C. D.6.对于集合,定义,且若,,将集合中的元素从小到大排列得到数列,则()A.55B.76C.110D.1137.已知抛物线的焦点为F,直线l过焦点F与C交于两点,以AB为直径的圆与y轴交于两点,且,则直线l的斜率为()A. B. C. D.8.已知,,且,则()A. B. C. D.二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.设是公差为d的等差数列,是其前n项的和,且,,则()A. B. C. D.10.设,且,则()A. B.C.的最小值为0D.的最小值为11.已知正方体的棱长为2,,,则下列说法正确的有()A.的最小值是B.当时,M为线段的中点C.当时,平面D.以B为球心,BD为半径的球面与该正方体的表面形成的交线长为12.已知函数及其导函数的定义域均为R.记,若为偶函数,为奇函数,则()A. B. C. D.三、填空题:本题共4小题,每小题5分,共20分。
13.展开式中的系数为__________.14.写出一个同时具有下列性质①②③的函数:__________.①的周期为2;②在上为减函数;③的值域为15.已知函数,若存在实数,使得曲线在点处的切线与直线垂直,则实数m的最大值是__________.16.在直角坐标系xOy中,矩形的四个顶点都在椭圆C:上,将该矩形绕y轴旋转一周,得到一个圆柱体,当该圆柱体的体积最大时,其侧面积为__________.四、解答题:本题共6小题,共70分。
【三模】数学高考试卷(附答案解析)
C. D.
6.宋元时期数学名著《算学启蒙》中有关于”松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的 , 分别为5,2,则输出的 等于()
A 2B. 3C. 4D. 5
7.已知抛物线 的焦点为 ,过点 且倾斜角为 的直线与抛物线 的准线交于点 ,则线段 的长为
C.点 是函数 图象的一个对称中心
D.函数 在区间 上为增函数
10.已知圆 : 与中心在原点、焦点在坐标轴上的双曲线 的一条渐近线相切,则双曲线 的离心率为()
A. 或4B. 或2C. D.2
11.已知某正三棱锥的侧棱长大于底边长,其外接球体积为 ,三视图如图所示,则其侧视图的面积为
A. B.2C.4D.6
由题意得 ,即 ,
所以 ,
所以 ,
当双曲线的焦点在y轴上时, ,
则 ,
故选:B
11.已知某正三棱锥的侧棱长大于底边长,其外接球体积为 ,三视图如图所示,则其侧视图的面积为
A. B.2C.4D.6
【答案】D
【解析】
【详解】分析:根据正三棱锥的性质可得球心在正三棱锥的高上,由正棱锥的性质可得顶点在底面的射影是正三角形的中心,列方程可解得棱锥的高,从而可得结果.
14.若实数 、 满足约束条件 ,则 的最小值是_______.
15.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里;驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马.问几何日相逢?其大意是:现有良马和劣马同时从长安出发去齐地,已知齐地离长安有3000里远,良马第一天可行193里,之后每天比前一天多行13里;劣马第一天可行97里,以后每天比前一天少行半里路.良马先到达齐地后,马上返回去迎接劣马,问:________天后两马可以相遇?(结果填写整数值)
2022年1月浙江省普通高中学业水平考试数学试题(学生版+解析版)
数学试题
一、选择题(本大题共18小题, 每小题3分, 共54分, 每小题列出的四个备选项中只有一个
是符合题目要求的, 不选、多选、错选均不得分)
I.己知|集合P={O, I. 2}, Q={ I. 2, 3}, 则PnQ= ( )
A (O}
B. {0, 3}
c. { 1, 2}
A.2
B.2.Ji百
c. 8
D. 4M
15.如阁,正方体 ABCD-A,B1C1D1 中,N是梭 DDI 的中点,则直线 CN 与平而 DBB1 D1 所成角的正强健 等于( )
D,
A,.
N 人 ·· L
/ D
B,
- - a
ve
p
t
A hL ,, B
A.
_!_ 2
Jw B.一一一
c. 一Ji一s一
D. '!:JJi
D. (-1, -2)
冯; · (x+1)2 +(y-2) 2 =4 的圆心坐标为( - l
故;i在:A.
6.某几何体的三视图如 l到所示,则这个几何体可能是(
厂\厂\
。
A.棱校
B.回校
【答案】C
【j衍析】
【分析】根据几何体的特征可以直接求出结果
【详解】由三视图知, 从正面非II侧面看都是梯形,
C.四台
故地:B
� 12.为了得到函数y
=cosl
\
x
-
3
JI的|到象
,
可以将函数y = cosx的图象(
)
A向左 移二个单位长度 C时平时个单位长度 【答案】D
- B 向 右 平 移 3π 个 曲中 恍
2021年浙江省高中数学竞赛试题及详细解析答案
浙江省高中数学竞赛试题一、选取题(本大题共有10小题,每题只有一种对的答案,将对的答案序号填入题干后括号里,多选、不选、错选均不得分,每题5分,共50分) 1. 已知53[,]42ππθ∈) A .2sin θ B. 2sin θ- C. 2cos θ- D. 2cos θ 2.如果复数()()21a i i ++模为4,则实数a 值为( )A. 2B. C. 2±D. ±3. 设A ,B 为两个互不相似集合,命题P :x A B ∈⋂, 命题q :x A ∈或x B ∈,则p 是q ( )A. 充分且必要条件B. 充分非必要条件C. 必要非充分条件D. 非充分且非必要条件4. 过椭圆2212x y +=右焦点2F 作倾斜角为45弦AB ,则AB 为( ) A.B.C. 3D. 5. 函数150()51xxx f x x -⎧-≥=⎨-<⎩,则该函数为( ) A. 单调增长函数、奇函数 B. 单调递减函数、偶函数 C. 单调增长函数、偶函数 D. 单调递减函数、奇函数 6. 设有一立体三视图如下,则该立体体积为( A )正视图 侧视图 俯视图(圆和正方形)2231221A. 4+52π B. 4+32π C. 4+2π D. 4+π 7.某程序框图如右图所示,现将输出(,)x y 值依次记为:1122(,),(,),,(,),;n n x y x y x y 若程序运营中输出一种数组是 (,10),x -则数组中x =( ) A .64 B .32 C .16 D .88. 在平面区域{}(,)||1,||1x y x y ≤≤上恒有22ax by -≤,则动点(,)P a b 所形成平面区域面积为( )A. 4B.8C. 16D. 32 9. 已知函数()sin(2)6f x x m π=--在0,2π⎡⎤⎢⎥⎣⎦上有两个零点,则m 取值范畴为( )A. 1, 12⎛⎫⎪⎝⎭ B 1, 12⎡⎤⎢⎥⎣⎦C. 1, 12⎡⎫⎪⎢⎣⎭ D. 1, 12⎛⎤⎥⎝⎦10. 已知[1,1]a ∈-,则2(4)420x a x a +-+->解为( )A. 3x >或2x <B. 2x >或1x <C. 3x >或1x <D. 13x <<二、填空题(本大题共有7小题,将对的答案填入题干后横线上,每空7分,共49分) 11. 函数()2sin3cos 2xf x x =-最小正周期为__________。
浙江省嘉兴重点中学2022-2023学年中考数学全真模拟试卷含解析
2023年中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差2.下列各式属于最简二次根式的有( )A .8B .21x +C .3y D .123.已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是( )A .B .C .D .4.下列计算正确的是( )A .(﹣8)﹣8=0B .3+=3C .(﹣3b )2=9b2D .a6÷a2=a35.下列图形中,主视图为①的是( )A .B .C .D .6.如图,在ABC ∆中,10 , 8 , 6AB AC BC === ,以边AB 的中点O 为圆心,作半圆与AC 相切,点, P Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A .6B .2131+C .9D .3237.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的( )A .众数B .中位数C .平均数D .方差8.下列各类数中,与数轴上的点存在一一对应关系的是( )A .有理数B .实数C .分数D .整数9.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )A .4.995×1011B .49.95×1010C .0.4995×1011D .4.995×101010.下列计算正确的是A .224a a a +=B .624a a a ÷=C .352()a a =D .222)=a b a b --(二、填空题(本大题共6个小题,每小题3分,共18分)11.已知x1,x2是方程x2-3x-1=0的两根,则1211x x +=______. 12.如图,在平面直角坐标系xOy 中,A (-2,0),B (0,2),⊙O 的半径为1,点C 为⊙O 上一动点,过点B 作BP ⊥直线AC ,垂足为点P ,则P 点纵坐标的最大值为 cm .13.如图,在△ABC 和△EDB 中,∠C =∠EBD =90°,点E 在AB 上.若△ABC ≌△EDB ,AC =4,BC =3,则AE =_____.14.若一段弧的半径为24,所对圆心角为60°,则这段弧长为____.15.若关于x 的一元二次方程2210mx x --=无实数根,则一次函数y mx m =+的图象不经过第_________象限. 16.已知 x(x+1)=x+1,则x =________.三、解答题(共8题,共72分)17.(8分)如图,在Rt △ABC 中,∠C =90°,AC 5=,tanB 12=,半径为2的⊙C 分别交AC ,BC 于点D 、E ,得到DE 弧.求证:AB 为⊙C 的切线.求图中阴影部分的面积.18.(8分)如图,已知抛物线y=ax2+2x+8与x 轴交于A ,B 两点,与y 轴交于点C ,且B (4,0).(1)求抛物线的解析式及其顶点D 的坐标;(2)如果点P (p ,0)是x 轴上的一个动点,则当|PC ﹣PD|取得最大值时,求p 的值;(3)能否在抛物线第一象限的图象上找到一点Q ,使△QBC 的面积最大,若能,请求出点Q 的坐标;若不能,请说明理由.19.(8分)如图,把两个边长相等的等边△ABC 和△ACD 拼成菱形ABCD ,点E 、F 分别是CB 、DC 延长上的动点,且始终保持BE=CF ,连结AE 、AF 、EF .求证:AEF 是等边三角形.20.(8分)如图,在 Rt △ABC 中,∠C=90°,AC=3,BC=4,∠ABC 的平分线交边 AC 于点 D ,延长 BD 至点 E ,且BD=2DE ,连接 AE.(1)求线段 CD 的长;(2)求△ADE 的面积.21.(8分)今年 3 月 12 日植树节期间, 学校预购进 A 、B 两种树苗,若购进 A 种树苗 3 棵,B 种树苗 5 棵,需 2100 元,若购进 A 种树苗 4 棵,B 种树苗 10棵,需 3800 元.(1)求购进 A 、B 两种树苗的单价;(2)若该单位准备用不多于8000 元的钱购进这两种树苗共30 棵,求A 种树苗至少需购进多少棵?22.(10分)平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx+3与y轴相交于点C,与x轴正半轴相交于点A,OA=OC,与x轴的另一个交点为B,对称轴是直线x=1,顶点为P.(1)求这条抛物线的表达式和顶点P的坐标;(2)抛物线的对称轴与x轴相交于点M,求∠PMC的正切值;(3)点Q在y轴上,且△BCQ与△CMP相似,求点Q的坐标.23.(12分)如图:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°求证:(1)△PAC∽△BPD;(2)若AC=3,BD=1,求CD的长.24.如图①是一副创意卡通圆规,图②是其平面示意图,OA是支撑臂,OB是旋转臂.使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径(结果精确到0.01cm);(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度(结果精确到0.01cm,参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器).参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D.原来数据的方差=222 (12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222 (12)3(22)(32)5-+⨯-+-=25,故方差发生了变化.故选D.2、B【解析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.【详解】A选项:822=,故不是最简二次根式,故A选项错误;B选项:21x+是最简二次根式,故B选项正确;C选项:3y y y=,故不是最简二次根式,故本选项错误;D选项:11222=,故不是最简二次根式,故D选项错误;故选:B.【点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.3、D【解析】此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.【详解】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.4、C【解析】选项A,原式=-16;选项B,不能够合并;选项C,原式=;选项D,原式=.故选C.5、B【解析】分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.详解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选B.点睛:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.6、C【解析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.【详解】解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=12AC=4,∴P1Q1最小值为OP1-OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是1.故选:C.【点睛】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.7、B【解析】由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,只需知道中位数即可.【详解】由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,故应知道中位数是多少.故选B.【点睛】本题考查了统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键.8、B【解析】根据实数与数轴上的点存在一一对应关系解答.【详解】实数与数轴上的点存在一一对应关系,故选:B .【点睛】本题考查了实数与数轴上点的关系,每一个实数都可以用数轴上唯一的点来表示,反过来,数轴上的每个点都表示一个唯一的实数,也就是说实数与数轴上的点一一对应.9、D【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数.【详解】将499.5亿用科学记数法表示为:4.995×1.故选D .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10、B【解析】试题分析:根据合并同类项的法则,可知2222a a a +=,故A 不正确;根据同底数幂的除法,知624a a a ÷=,故B 正确;根据幂的乘方,知()326a a =,故C 不正确;根据完全平方公式,知()2222ab a b a b -=-+,故D 不正确.故选B.点睛:此题主要考查了整式的混合运算,解题关键是灵活应用合并同类项法则,同底数幂的乘除法法则,幂的乘方,乘法公式进行计算.二、填空题(本大题共6个小题,每小题3分,共18分)11、﹣1.【解析】试题解析:∵1x ,2x 是方程2310x x --=的两根,∴123x x +=、121x x =-,∴1211x x +=1212x x x x +=31- =﹣1.故答案为﹣1. 12、12【解析】当AC 与⊙O 相切于点C 时,P 点纵坐标的最大值,如图,直线AC 交y 轴于点D ,连结OC ,作CH ⊥x 轴于H ,PM ⊥x轴于M,DN⊥PM于N,∵AC为切线,∴OC⊥AC,在△AOC中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴OD=3OA=23,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=12BD=12(2-233)=1-33,在Rt△DPN中,∵∠PDN=30°,∴PN=12DP=12-36,而MN=OD=23,∴PM=PN+MN=1-3+33=132+,即P点纵坐标的最大值为132+.【点睛】本题是圆的综合题,先求出OD的长度,最后根据两点之间线段最短求出PN+MN的值.13、1【解析】试题分析:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌△EDB,∴BE=AC=4,∴AE=5﹣4=1.考点:全等三角形的性质;勾股定理14、8π【解析】试题分析:∵弧的半径为24,所对圆心角为60°,∴弧长为l==8π.故答案为8π.【考点】弧长的计算.15、一【解析】根据一元二次方程的定义和判别式的意义得到m≠0且△=(-2)2-4m×(-1)<0,所以m <-1,然后根据一次函数的性质判断一次函数y=mx+m 的图象所在的象限即可.【详解】∵关于x 的一元二次方程mx2-2x-1=0无实数根,∴m≠0且△=(-2)2-4m×(-1)<0,∴m <-1,∴一次函数y=mx+m 的图象经过第二、三、四象限,不经过第一象限.故答案为一.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一次函数的性质. 16、1或-1【解析】方程(1)1x x x +=+可化为:(1)(1)0x x +-=,∴10x +=或10x -=,∴1x =-或1x =.故答案为1或-1.三、解答题(共8题,共72分)17、 (1)证明见解析;(2)1-π.【解析】(1)解直角三角形求出BC ,根据勾股定理求出AB ,根据三角形面积公式求出CF ,根据切线的判定得出即可;(2)分别求出△ACB 的面积和扇形DCE 的面积,即可得出答案.【详解】(1)过C 作CF ⊥AB 于F .∵在Rt △ABC 中,∠C =90°,AC 5=tanB 12AC BC ==,∴BC =5,由勾股定理得:AB 22AC BC =+=1.∵△ACB 的面积S 1122AB CF AC BC =⨯⨯=⨯⨯,∴CF 525⨯==2,∴CF 为⊙C 的半径.∵CF⊥AB,∴AB为⊙C的切线;(2)图中阴影部分的面积=S△ACB﹣S扇形DCE219025252360π⨯==1﹣π.【点睛】本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.18、(1) y=﹣(x﹣1)2+9 ,D(1,9);(2)p=﹣1;(3)存在点Q(2,1)使△QBC的面积最大.【解析】分析:(1)把点B的坐标代入y=ax2+2x+1求得a的值,即可得到该抛物线的解析式,再把所得解析式配方化为顶点式,即可得到抛物线顶点D的坐标;(2)由题意可知点P在直线CD上时,|PC﹣PD|取得最大值,因此,求得点C的坐标,再求出直CD的解析式,即可求得符合条件的点P的坐标,从而得到p的值;(3)由(1)中所得抛物线的解析式设点Q的坐标为(m,﹣m2+2m+1)(0<m<4),然后用含m的代数式表达出△BCQ 的面积,并将所得表达式配方化为顶点式即可求得对应点Q的坐标.详解:(1)∵抛物线y=ax2+2x+1经过点B(4,0),∴16a+1+1=0,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2x+1=﹣(x﹣1)2+9,∴D(1,9);(2)∵当x=0时,y=1,∴C(0,1).设直线CD的解析式为y=kx+b.将点C、D的坐标代入得:89bk b=⎧⎨+=⎩,解得:k=1,b=1,∴直线CD的解析式为y=x+1.当y=0时,x+1=0,解得:x=﹣1,∴直线CD与x轴的交点坐标为(﹣1,0).∵当P在直线CD上时,|PC﹣PD|取得最大值,∴p=﹣1;(3)存在,理由:如图,由(2)知,C(0,1),∵B(4,0),∴直线BC的解析式为y=﹣2x+1,过点Q作QE∥y轴交BC于E,设Q(m,﹣m2+2m+1)(0<m<4),则点E的坐标为:(m,﹣2m+1),∴EQ=﹣m2+2m+1﹣(﹣2m+1)=﹣m2+4m,∴S△QBC=12(﹣m2+4m)×4=﹣2(m﹣2)2+1,∴m=2时,S△QBC最大,此时点Q的坐标为:(2,1).点睛:(1)解第2小题时,知道当点P在直线CD上时,|PC﹣PD|的值最大,是找到解题思路的关键;(2)解第3小题的关键是设出点Q的坐标(m,﹣m2+2m+1)(0<m<4),并结合点B、C的坐标把△BCQ的面积用含m的代数式表达出来.19、见解析【解析】分析:由等边三角形的性质即可得出∠ABE=∠ACF,由全等三角形的性质即可得出结论.详解:证明:∵△ABC和△ACD均为等边三角形∴AB=AC,∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°,∵BE=CF,∴△ABE ≌△ACF,∴AE=AF,∴∠EAB=∠FAC,∴∠EAF=∠BAC=60°,∴△AEF是等边三角形.点睛:此题是四边形综合题,主要考查了等边三角形的性质和全等三角形的判定和性质,直角三角形的性质,相似三角形的判定和性质,解题关键是判断出△ABE≌△ACF.20、(1);(2).【解析】分析:(1)过点D作DH⊥AB,根据角平分线的性质得到DH=DC根据正弦的定义列出方程,解方程即可;(2)根据三角形的面积公式计算.详解:(1)过点D作DH⊥AB,垂足为点H.∵BD 平分∠ABC,∠C=90°,∴DH=DC=x,则AD=3﹣x.∵∠C=90°,AC=3,BC=4,∴AB=1.∵,即CD=;(2).∵BD=2DE,∴.点睛:本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.21、(1)购进A 种树苗的单价为200 元/棵,购进B 种树苗的单价为300 元/棵(2)A 种树苗至少需购进1 棵【解析】(1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据“若购进A种树苗3棵,B种树苗5棵,需210元,若购进A种树苗4棵,B种树苗1棵,需3800元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设需购进A种树苗a棵,则购进B种树苗(30-a)棵,根据总价=单价×购买数量结合购买两种树苗的总费用不多于8000元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.【详解】设购进A 种树苗的单价为x 元/棵,购进B 种树苗的单价为y 元/棵,根据题意得:,解得:.答:购进A 种树苗的单价为200 元/棵,购进B 种树苗的单价为300 元/棵.(2)设需购进A 种树苗a 棵,则购进B 种树苗(30﹣a)棵,根据题意得:200a+300(30﹣a)≤8000,解得:a≥1.∴A种树苗至少需购进1 棵.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,正确列出一元一次不等式.22、(1)(1,4)(2)(0,12)或(0,-1)【解析】试题分析:(1)先求得点C的坐标,再由OA=OC得到点A的坐标,再根据抛物线的对称性得到点B的坐标,利用待定系数法求得解析式后再进行配方即可得到顶点坐标;(2)由OC//PM,可得∠PMC=∠MCO,求tan∠MCO即可;(3)分情况进行讨论即可得.试题解析:(1)当x=0时,抛物线y=ax2+bx+3=3,所以点C坐标为(0,3),∴OC=3,∵OA=OC,∴OA=3,∴A(3,0),∵A、B关于x=1对称,∴B(-1,0),∵A、B在抛物线y=ax2+bx+3上,∴933030a ba b++=⎧⎨-+=⎩,∴12ab=-⎧⎨=⎩,∴抛物线解析式为:y=-x2+2x+3=-(x-1)2+4,∴顶点P(1,4);(2)由(1)可知P(1,4),C(0,3),所以M(1,0),∴OC=3,OM=1,∵OC//PM,∴∠PMC=∠MCO,∴tan∠PMC=tan∠MCO=OMOC=13;(3)Q在C点的下方,∠BCQ=∠CMP,CM=10,PM=4,BC=10,∴BC CMCQ PM=或BC CMCQ PM=,∴CQ=52或4,∴Q1(0,12),Q2(0,-1).23、(1)见解析;(2).【解析】(1)由△PCD 是等腰直角三角形,∠DPC=90°,∠APB=135°,可得∠PAB=∠PBD,∠BPD=∠PAC,从而即可证明;(2)根据相似三角形对应边成比例即可求出PC=PD=,再由勾股定理即可求解.【详解】证明:(1)∵△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,∴∠APC+∠BPD=45°,又∠PAB+∠PBA=45°,∠PBA+∠PBD=45°,∴∠PAB=∠PBD,∠BPD=∠PAC,∵∠PCA=∠PDB,∴△PAC∽△BPD;(2)∵,PC=PD,AC=3,BD=1∴PC=PD=,∴CD=.【点睛】本题考查了相似三角形的判定与性质及等腰直角三角形,属于基础题,关键是掌握相似三角形的判定方法.24、(1)3.13cm(2)铅笔芯折断部分的长度约是0.98cm【解析】试题分析:(1)根据题意作辅助线OC⊥AB于点C,根据OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC 的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.试题解析:(1)作OC⊥AB于点C,如右图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°,∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13c m,即所作圆的半径约为3.13cm;(2)作AD⊥OB于点D,作AE=AB,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.考点:解直角三角形的应用;探究型.。
2021年浙江省新高考研究卷3月卷(数学1-5卷-答案)
23 + bn = 1+ q + q2 +
+
n qn−1
,
1 q
Tn
=
1 q
+
2 q2
+
3 q3
+ n −1+ n , qn−1 qn
则 (1 −
1 q )Tn
=1+
1 q
+
1 q2
+
1 q3
+
1
−
n
=
1−
1 qn
−
n
,
qn−1 qn 1 − 1 qn
q
故 Tn
=
q2 (q −1)2
−( q n+ q −1
h(e−4 )
=
2 e4
+
4
2+
ln
2e
,所以 x1x2
1 e4
x1
1 e4 x2
从而得证.
《浙江省新高考研究卷》数学参考答案(二)
一、选择题:
1
2
3
4
5
6
7
8
9
10
A
D
D
C
D
B
D
A
B
A
二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分。
11. lg 3
12. − 2 5
x
+
x2 + e x -1
2x
+
2
5
.
《浙江省新高考研究卷》2021 年 3 月卷 数学参考答案 第 2 页 共 20 页
2022年浙江省嘉兴、舟山十校联考最后数学试题含解析
2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.若二次函数22y x x m =-+的图像与x 轴有两个交点,则实数m 的取值范围是( ) A .m 1≥ B .1m C .1m D .1m <2.如图,在矩形ABCD 中,AB=2,AD=3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A→D→C→E运动,则△APE 的面积y 与点P 经过的路径长x 之间的函数关系用图象表示大致是( )A .B .C .D .3.下列说法中,正确的是( )A .两个全等三角形,一定是轴对称的B .两个轴对称的三角形,一定是全等的C .三角形的一条中线把三角形分成以中线为轴对称的两个图形D .三角形的一条高把三角形分成以高线为轴对称的两个图形4.如图,已知E ,F 分别为正方形ABCD 的边AB ,BC 的中点,AF 与DE 交于点M ,O 为BD 的中点,则下列结论:①∠AME =90°;②∠BAF =∠EDB ;③∠BMO =90°;④MD =2AM =4EM ;⑤23AM MF =.其中正确结论的是( )A.①③④B.②④⑤C.①③⑤D.①③④⑤5.如图是二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②1a ﹣b=0;③4a+1b+c<0;④若(﹣5,y1),(,y1)是抛物线上两点,则y1>y1.其中说法正确的是()A.①②B.②③C.①②④D.②③④6.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是() A.B.C.D.7.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180°D.∠3+∠4=180°8.如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:①ab>0;②a﹣b>﹣23;③sinα=21313;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正确的是()A.①②B.②③C.①④D.③④9.如图,在△ABC 中,∠AED=∠B ,DE=6,AB=10,AE=8,则BC 的长度为( )A .152B .154C .3D .8310.计算tan30°的值等于( )A .B .C .D .二、填空题(共7小题,每小题3分,满分21分)11.若方程x 2+2(1+a )x+3a 2+4ab+4b 2+2=0有实根,则b a =_____. 12.方程21x x =-的解是__________. 13.如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,…,则第2018个正方形的面积为_____.14.A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.15.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则∠AOB 等于 ______ 度.16.如图,在长方形ABCD 中,AF ⊥BD ,垂足为E ,AF 交BC 于点F ,连接DF .图中有全等三角形_____对,有面积相等但不全等的三角形_____对.17.如图,反比例函数y=k x (x >0)的图象与矩形AOBC 的两边AC ,BC 边相交于E ,F ,已知OA=3,OB=4,△ECF 的面积为83,则k 的值为_____.三、解答题(共7小题,满分69分)18.(10分)如图,沿AC 方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC 上的一点B 取∠ABD=120°,BD=520m ,∠D=30°.那么另一边开挖点E 离D 多远正好使A ,C ,E 三点在一直线上(3取1.732,结果取整数)?19.(5分)先化简,再求值:()()()2(2)5x y x y x y x x y ++-+--,其中21x =,21y =.20.(8分)为了进一步改善环境,郑州市今年增加了绿色自行车的数量,已知A 型号的自行车比B 型号的自行车的单价低30元,买8辆A 型号的自行车与买7辆B 型号的自行车所花费用相同.(1)A,B 两种型号的自行车的单价分别是多少?(2)若购买A,B 两种自行车共600辆,且A 型号自行车的数量不多于B 型号自行车的一半,请你给出一种最省钱的方案,并求出该方案所需要的费用.21.(10分)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.22.(10分)如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.求证:FC∥AB.23.(12分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.24.(14分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】由抛物线与x 轴有两个交点可得出△=b 2-4ac >0,进而可得出关于m 的一元一次不等式,解之即可得出m 的取值范围.【详解】∵抛物线y=x 2-2x+m 与x 轴有两个交点,∴△=b 2-4ac=(-2)2-4×1×m >0,即4-4m >0,解得:m <1.故选D .【点睛】本题考查了抛物线与x 轴的交点,牢记“当△=b 2-4ac >0时,抛物线与x 轴有2个交点”是解题的关键.2、B【解析】由题意可知,当03x ≤≤时,11222y AP AB x x =⋅=⨯=; 当35x <≤时, ABE ADP EPC ABCD y S S S S ∆∆∆=---矩形()()11123123325222x x =⨯-⨯⨯-⨯--⨯-1922x =-+; 当57x <≤时,()1127722y AB EP x x =⋅=⨯⨯-=-.∵3x =时,3y =;5x =时,2y =.∴结合函数解析式, 可知选项B 正确.【点睛】考点:1.动点问题的函数图象;2.三角形的面积.3、B【解析】根据轴对称图形的概念对各选项分析判断即可得解.解:A. 两个全等三角形,一定是轴对称的错误,三角形全等位置上不一定关于某一直线对称,故本选项错误;B. 两个轴对称的三角形,一定全等,正确;C. 三角形的一条中线把三角形分成以中线为轴对称的两个图形,错误;D. 三角形的一条高把三角形分成以高线为轴对称的两个图形,错误.故选B.4、D【解析】根据正方形的性质可得AB=BC=AD ,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF ,然后利用“边角边”证明△ABF和△DAE 全等,根据全等三角形对应角相等可得∠BAF=∠ADE ,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,从而判断①正确;根据中线的定义判断出∠ADE≠∠EDB ,然后求出∠BAF≠∠EDB ,判断出②错误;根据直角三角形的性质判断出△AED 、△MAD 、△MEA 三个三角形相似,利用相似三角形对应边成比例可得2AM MD AD EM AM AE===,然后求出MD=2AM=4EM ,判断出④正确,设正方形ABCD 的边长为2a ,利用勾股定理列式求出AF ,再根据相似三角形对应边成比例求出AM ,然后求出MF ,消掉a 即可得到AM=23MF ,判断出⑤正确;过点M 作MN ⊥AB 于N ,求出MN 、NB ,然后利用勾股定理列式求出BM ,过点M 作GH ∥AB ,过点O 作OK ⊥GH 于K ,然后求出OK 、MK ,再利用勾股定理列式求出MO ,根据正方形的性质求出BO ,然后利用勾股定理逆定理判断出∠BMO=90°,从而判断出③正确.【详解】在正方形ABCD 中,AB=BC=AD ,∠ABC=∠BAD=90°,∵E 、F 分别为边AB ,BC 的中点,∴AE=BF=12BC , 在△ABF 和△DAE 中,AE BF ABC BAD AB AD ⎧⎪∠∠⎨⎪⎩=== ,∴△ABF ≌△DAE (SAS ),∴∠BAF=∠ADE ,∵∠BAF+∠DAF=∠BAD=90°,∴∠ADE+∠DAF=∠BAD=90°,∴∠AMD=180°-(∠ADE+∠DAF )=180°-90°=90°,∴∠AME=180°-∠AMD=180°-90°=90°,故①正确;∵DE 是△ABD 的中线,∴∠ADE≠∠EDB ,∴∠BAF≠∠EDB ,故②错误;∵∠BAD=90°,AM ⊥DE ,∴△AED ∽△MAD ∽△MEA , ∴2AM MD AD EM AM AE === ∴AM=2EM ,MD=2AM , ∴MD=2AM=4EM ,故④正确;设正方形ABCD 的边长为2a ,则BF=a ,在Rt △ABF 中,AF=()222225AB BF a a a +=+=∵∠BAF=∠MAE ,∠ABC=∠AME=90°,∴△AME ∽△ABF ,∴AM AE AB AF= , 即25AM a a a=, 解得AM=255a ∴MF=AF-AM=25355=55a a a -,∴AM=23MF ,故⑤正确; 如图,过点M 作MN ⊥AB 于N ,则MN AN AM BF AB AF==即2MN AN a a == 解得MN=a 52,AN=45a , ∴NB=AB-AN=2a-45a =65a , 根据勾股定理,5== 过点M 作GH ∥AB ,过点O 作OK ⊥GH 于K ,则OK=a-a 52=a 53,MK=65a -a=15a , 在Rt △MKO 中,5== 根据正方形的性质,BO=2a×2=, ∵BM 2+MO 2=222255a a ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭)2222BO a ==∴BM 2+MO 2=BO 2,∴△BMO 是直角三角形,∠BMO=90°,故③正确;综上所述,正确的结论有①③④⑤共4个.故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键. 5、C【解析】∵二次函数的图象的开口向上,∴a >0。
2022年9月《浙江省新高考研究卷》(全国I卷)数学试题(三)
一、单选题二、多选题1. 已知三棱锥的体积为2,是边长为2的等边三角形,且三棱锥的外接球的球心恰好是中点,则球的表面积为( )A.B.C.D.2. 已知,,若,则实数的值为( )A.B.C.D.3. 设集合,,,则M 中元素的个数为( )A .3B .4C .5D .64. 定义域为的四个函数,,,中,奇函数的个数是A.B.C.D.5. 已知函数,.若函数恰有两个非负零点,则实数的取值范围是( )A.B.C.D.6. 已知函数与的图象关于轴对称,则的部分图象大致为( )A.B.C.D.7. 设全集为,若集合,集合,则A.B.C.D.8. 复数满足,则的虚部为( )A .1B .-1C .D.9. 已知函数和都是偶函数,当时,,则下列正确的结论是( )A .当时,B.若函数在区间上有两个零点、,则有C .函数在上的最小值为D.10. 已知点A 的坐标为,点B 的坐标为,直线AP 与BP 相交于点P ,且它们的斜率之积为非零常数m ,那么下列说法中正确的有2022年9月《浙江省新高考研究卷》(全国I卷)数学试题(三)三、填空题四、解答题( )A .当时,点P 的轨迹加上A ,B 两点所形成的曲线是焦点在x 轴上的椭圆B .当时,点P 的轨迹加上A ,B 两点所形成的曲线是圆心在原点的圆C .当时,点P 的轨迹加上A ,B 两点所形成的曲线是焦点在y 轴上的椭圆D .当时,点P 的轨迹加上A ,B 两点所形成的曲线是焦点在x 轴上的双曲线11. 已知,直线与曲线相切,则下列不等式成立的是( )A.B.C.D.12. 甲、乙、丙、丁、戊共5位志愿者被安排到,,,四所山区学校参加支教活动,要求每所学校至少安排一位志愿者,且每位志愿者只能到一所学校支教,则下列结论正确的是( )A .不同的安排方法共有240种B.甲志愿者被安排到学校的概率是C .若学校安排两名志愿者,则不同的安排方法共有120种D .在甲志愿者被安排到学校支教的前提下,学校有两名志愿者的概率是13.的展开式中的系数为__________(用数字作答).14. 已知椭圆的左、右焦点分别为,过且与轴垂直的直线交椭圆于两点,直线与椭圆的另一个交点为C ,若,则椭圆的离心率为_____ .15. 计算的值为______.16. 已知数列是公比的等比数列,前三项和为39,且成等差数列.(1)求数列的通项公式;(2)设,求的前项和.17. 在正四棱锥中,分别是的中点,过直线的平面分别与侧棱交于点.(1)求证:;(2)求证:.18. 2022年卡塔尔世界杯是第二十二届世界杯足球赛,是历史上首次在卡塔尔和中东国家境内举行,也是继2002年韩日世界杯之后时隔二十年第二次在亚洲举行的世界杯足球赛.开学后,某中学团委在高二年级(其中男生150名,女生150名)中,对是否喜欢观看该世界杯进行了问卷调查,各班男生喜欢观看的人数统计分别为6,7,8,8,6,5,14,14,12,10,各班女生喜欢观看的人数统计分别为4,4,4,5,5,6,7,7,8,10.喜欢观看不喜欢观看合计男生150女生150合计300(1)根据题意补全2×2列联表;(2)依据小概率值的独立性检验,能否认为该校学生喜欢观看世界杯与性别有关?参考临界值表:0.10.050.010.0050.0012.7063.841 6.6357.87910.828,.19. 在①,②,③这三个条件中任选一个,补充在下面的问题中,并作答.如果多选,则按第一个解答给分.已知的内角A,,的对边分别为,,,且______(1)求;(2)的最大值.20. 如图,在三棱锥中,.(1)证明:平面平面BCD;(2)若,当直线AB与平面ACD所成的角最大时,求三棱锥的体积.21. 如图,A、B、C三地在以O为圆心的圆形区域边界上,公里,公里,,D是圆形区域外一景点,,.(1)O、A相距多少公里?(精确到小数点后两位)(2)若一汽车从A处出发,以每小时50公里的速度沿公路AD行驶到D处.需要多少小时?(精确到小数点后两位)。
2024届浙江省嘉兴市重点中学高三第一次质量检测试题数学试题
2024届浙江省嘉兴市重点中学高三第一次质量检测试题数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设i 为虚数单位,z 为复数,若z i z+为实数m ,则m =( )A .1-B .0C .1D .22.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是18人,则该班的学生人数是( )A .45B .50C .55D .603.如图,长方体1111ABCD A B C D -中,1236AB AA ==,112A P PB =,点T 在棱1AA 上,若TP ⊥平面PBC .则1TP B B ⋅=( )A .1B .1-C .2D .2-4.已知函数2()35f x x x =-+,()ln g x ax x =-,若对(0,)x e ∀∈,12,(0,)x x e ∃∈且12x x ≠,使得()()(1,2)i f x g x i ==,则实数a 的取值范围是( )A .16,e e ⎛⎫ ⎪⎝⎭B .741,e e ⎡⎫⎪⎢⎣⎭C .74160,,e e e ⎡⎫⎛⎤⎪⎢ ⎥⎝⎦⎣⎭ D .746,e e ⎡⎫⎪⎢⎣⎭5.5(12)(1)x x ++的展开式中2x 的系数为( ) A .5B .10C .20D .306.已知向量()22cos ,3m x =,()1,sin2n x =,设函数()f x m n =⋅,则下列关于函数()y f x =的性质的描述正确的是( )A .关于直线12x π=对称B .关于点5,012π⎛⎫⎪⎝⎭对称 C .周期为2πD .()y f x =在,03π⎛⎫-⎪⎝⎭上是增函数 7.已知函数,其中04?,?04b c ≤≤≤≤,记函数满足条件:(2)12{(2)4f f ≤-≤为事件A ,则事件A发生的概率为 A .14B .58C .38D .12 8.已知a R ∈若(1-ai )( 3+2i )为纯虚数,则a 的值为 ( ) A .32-B .32C .23-D .239.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .10.甲乙两人有三个不同的学习小组A , B , C 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )A .13 B .14 C .15 D .1611.已知函数()222ln 02x x e f x e x x e ⎧<≤=⎨+->⎩,,,存在实数123x x x <<,使得()()()123f x f x f x ==,则()12f x x 的最大值为( ) A .1eB .1eC .12eD .21e 12.在101()2x x-的展开式中,4x 的系数为( ) A .-120B .120C .-15D .15二、填空题:本题共4小题,每小题5分,共20分。
高三上学期第三次月考数学试卷(附答案解析)
高三上学期第三次月考数学试卷(附答案解析)考试时间:120分钟;总分:150分学校:___________姓名:___________班级:___________第I卷(选择题)一、单选题(本大题共8小题,共40分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={−1,0,1,2,},B={x∈Z|x−2x≤0},则A∩B=( )A. {0,1}B. {1,2}C. {−1,1,2}D. {0,1,2}2. 若复数z=a+2i2−i(a∈R)为纯虚数,则a=( )A. −4B. −2C. −1D. 13. 已知向量a=(1,−1),b=(1,t),若〈a,b〉=π3,则t=( )A. 2−3B. 2+3C. 2+3或2−3D. −14. 若函数f(x)=1−cosxsinx(x∈[π3,π2]),则f(x)的值域为( )A. [3,+∞)B. [33,+∞)C. [1,3]D. [33,1]5. 正四面体S−ABC内接于一个半径为R的球,则该正四面体的棱长与这个球的半径的比值为( )A. 64B. 33C. 263D. 36. 在给某小区的花园绿化时,绿化工人需要将6棵高矮不同的小树在花园中栽成前后两排,每排3棵,则后排的每棵小树都对应比它前排每棵小树高的概率是( )A. 13B. 16C. 18D. 1127. 如图,圆内接四边形ABCD中,DA⊥AB,∠D=45°,AB=2,BC=22,AD=6.现将该四边形沿AD旋转一周,则旋转形成的几何体的体积为( )A. 84π3B. 30πC. 92π3D. 40π8. 函数f(x)的定义域为R,且f(x)−f(x+4)=0,当−2≤x<0时,f(x)=(x+1)2,当0≤x<2时,f(x)=1−x,则n=12022f(n)=( )A. 1010B. 1011C. 1012D. 1013二、多选题(本大题共4小题,共20分。
2022年高考真题—数学(浙江卷)【含答案及解析】
年普通⾼等学校招⽣全国统⼀考试(浙江卷)数学参考公式:如果事件A ,B 互斥,则柱体的体积公式()()()P A B P A P B +=+V Sh=如果事件A ,B 相互独立,则其中S 表示柱体的底面积,h 表示柱体的高()()()P AB P A P B =×锥体的体积公式若事件A 在一次试验中发生的概率是p ,则n 次13V Sh=独立重复试验中事件A 恰好发生k 次的概率其中S 表示锥体的底面积,h 表示锥体的高()(1)(0,1,2,,)k k n k n n P k C p p k n -=-=L 球的表面积公式台体的体积公式24S R p=()1213V S S h =++球的体积公式其中12,S S 表示台体的上、下底面积,343V R p =h 表示台体的高其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2},{2,4,6}A B ==,则A B È=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}2.已知,,3i (i)i a b a b Î+=+R (i 为虚数单位),则()A.1,3a b ==- B.1,3a b =-= C.1,3a b =-=- D.1,3a b ==3.若实数x ,y 满足约束条件20,270,20,x x y x y -³ìï+-£íï--£î则34z x y =+的最大值是()A 20B. 18C. 13D. 64.设x ÎR ,则“sin 1x =”是“cos 0x =”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是().A.22πB.8πC.22π3D.16π36.为了得到函数2sin 3y x =的图象,只要把函数π2sin 35y x æö=+ç÷èø图象上所有的点()A.向左平移π5个单位长度 B.向右平移π5个单位长度C.向左平移π15个单位长度 D.向右平移π15个单位长度7.已知825,log 3ab ==,则34a b -=()A.25B.5C.259 D.538.如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为a ,EF 与平面ABC 所成的角为b ,二面角F BC A --的平面角为g ,则()A.a b g££ B.b a g ££ C.b g a££ D.a g b££9.已知,a b ÎR ,若对任意,|||4||25|0x a x b x x Î-+---³R ,则()A.1,3a b £³ B.1,3a b ££ C.1,3a b ³³ D.1,3a b ³£10.已知数列{}n a 满足()21111,3n n n a a a a n *+==-ÎN ,则()A.100521002a <<B.100510032a << C.100731002a <<D.100710042a <<非选择题部分(共110分)二、填空题:本大题共7小题,单空题每题4分,多空题每空3分,共36分.11.我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S =,其中a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2a b c ===,则该三角形的面积S =___________.12已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =__________,12345a a a a a ++++=___________.13.若3sin sin 2pa b a b -=+=,则sin a =__________,cos 2b =_________.14.已知函数()22,1,11,1,x x f x x x x ì-+£ï=í+->ïî则12f f æöæö=ç÷ç÷èøèø________;若当[,]x a b Î时,1()3f x ££,则b a -的最大值是_________.15.现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为x ,则(2)P x ==__________,()E x =_________.16.已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.17.设点P 在单位圆的内接正八边形128A A A L 的边12A A 上,则222182PA PA PA +++u u u r u u L u r u u u r 的取值范围是_______.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C ==.(1)求sin A 的值;(2)若11b =,求ABC V 面积..的19.如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE Ð=Ð=°,二面角F DC B --的平面角为60°.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ^;(2)求直线BM 与平面ADE 所成角的正弦值.20.已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *ÎN .(1)若423260S a a -+=,求n S ;(2)若对于每个n *ÎN ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.21.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q æöç÷èø在线段AB上,直线,PA PB 分别交直线132y x =-+于C ,D 两点.(1)求点P 到椭圆上点距离的最大值;(2)求||CD 的最小值.22.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ÎR ,曲线()y f x =上不同三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a æö<-<-ç÷èø;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea a x x a --+<+<-.(注:e 2.71828=L是自然对数的底数)的的答案及解析选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2},{2,4,6}A B ==,则A B È=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}【答案】D 【解析】【分析】利用并集的定义可得正确的选项.【详解】{}1,2,4,6A B =U ,故选:D.2.已知,,3i (i)i a b a b Î+=+R (i 为虚数单位),则()A.1,3a b ==- B.1,3a b =-= C.1,3a b =-=- D.1,3a b ==【答案】B 【解析】【分析】利用复数相等的条件可求,a b .【详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=,故选:B.3.若实数x ,y 满足约束条件20,270,20,x x y x y -³ìï+-£íï--£î则34z x y =+的最大值是()A. 20B. 18C. 13D. 6【答案】B 【解析】【分析】在平面直角坐标系中画出可行域,平移动直线34z x y =+后可求最大值.【详解】不等式组对应的可行域如图所示:当动直线340x y z +-=过A 时z 有最大值.由2270x x y =ìí+-=î可得23x y =ìí=î,故()2,3A ,故max 324318z =´+´=,故选:B.4.设x ÎR ,则“sin 1x =”是“cos 0x =”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】由三角函数的性质结合充分条件、必要条件的定义即可得解.【详解】因为22sin cos 1x x +=可得:当sin 1x =时,cos 0x =,充分性成立;当cos 0x =时,sin 1x =±,必要性不成立;所以当x ÎR ,sin 1x =是cos 0x =的充分不必要条件.故选:A.5.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是()A.22πB.8πC.22π3D.16π3【答案】C 【解析】【分析】根据三视图还原几何体可知,原几何体是一个半球,一个圆柱,一个圆台组合成的几何体,即可根据球,圆柱,圆台的体积公式求出.【详解】由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为1cm ,圆台的下底面半径为2cm ,所以该几何体的体积(322214122ππ1π122π2π12333V =´´+´´+´´´+´+=3cm .故选:C .6.为了得到函数2sin 3y x =的图象,只要把函数π2sin 35y x æö=+ç÷èø图象上所有的点()A. 向左平移π5个单位长度 B.向右平移π5个单位长度C. 向左平移π15个单位长度 D. 向右平移π15个单位长度【答案】D【解析】【分析】根据三角函数图象的变换法则即可求出.【详解】因为ππ2sin 32sin 3155y x x éùæö==-+ç÷êúèøëû,所以把函数π2sin 35y x æö=+ç÷èø图象上的所有点向右平移π15个单位长度即可得到函数2sin 3y x =的图象.故选:D.7.已知825,log 3ab ==,则34a b -=()A. 25B. 5C.259D.53【答案】C 【解析】【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出.【详解】因为25a=,821log 3log 33b ==,即323b =,所以()()22323232452544392a aa bb b -====.故选:C.8.如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为a ,EF 与平面ABC 所成的角为b ,二面角F BC A --的平面角为g ,则()A.a b g££ B.b a g ££ C.b g a££ D.a g b££【答案】A 【解析】【分析】先用几何法表示出a b g ,,,再根据边长关系即可比较大小.【详解】如图所示,过点F 作FP AC ^于P ,过P 作PM BC ^于M ,连接PE ,则EFP a =Ð,FEP b =Ð,FMP g =,tan 1PE PE FP AB a ==£,tan 1FP AB PE PE b ==³,tan tan FP FPPM PEg b =³=,所以a b g ££,故选:A .9.已知,a b ÎR ,若对任意,|||4||25|0x a x b x x Î-+---³R ,则()A 1,3a b £³ B.1,3a b ££ C.1,3a b ³³ D.1,3a b ³£【答案】D 【解析】【分析】将问题转换为|||25||4|a x b x x -³---,再结合画图求解.【详解】由题意有:对任意的x ÎR ,有|||25||4|a x b x x -³---恒成立.设()||f x a x b =-,()51,2525439,421,4x x g x x x x x x x ì-£ïïï=---=-<<íï-³ïïî,即()f x 的图象恒在()g x 的上方(可重合),如下图所示:.由图可知,3a ³,13b ££,或13a £<,3143b a££-£,故选:D .10.已知数列{}n a 满足()21111,3n n n a a a a n *+==-ÎN ,则()A.100521002a <<B.100510032a << C.100731002a <<D.100710042a <<【答案】B 【解析】【分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +æö-=<=+ç÷-+èø-+,累加可求出()111111113323n n a n æö-<-++++ç÷èøL ,再次放缩可得出10051002a >.【详解】∵11a =,易得()220,13a =Î,依次类推可得()0,1n aÎ由题意,1113n n n a a a +æö=-ç÷èø,即()1131133n n n n n a a a a a +==+--,∴1111133n n n a a a +-=>-,即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->³,累加可得()11113n n a ->-,即11(2),(2)3n n n a >+³,∴()3,22n a n n <³+,即100134a <,100100100334a <<,又11111111,(2)333132n n n n a a a n n +æö-=<=+³ç÷-+èø-+,∴211111132a a æö-=+ç÷èø,321111133a a æö-<+ç÷èø,431111134a a æö-<+ç÷èø,…,111111,(3)3n n n a a n -æö-<+³ç÷èø,累加可得()11111111,(3)3323n n n a n æö-<-++++³ç÷èøL ,∴10011111111133334943932399326a æöæö-<++++<+´+´<ç÷ç÷èøèøL ,即100140a <,∴100140a >,即10051002a >;综上:100510032a <<.故选:B .【点睛】关键点点睛:解决本题的关键是利用递推关系进行合理变形放缩.非选择题部分(共110分)二、填空题:本大题共7小题,单空题每题4分,多空题每空3分,共36分.11.我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S =,其中a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2a b c ===,则该三角形的面积S =___________.【答案】4.【解析】【分析】根据题中所给的公式代值解出.【详解】因为S =,所以4S ==.故答案为:4.12.已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =__________,12345a a a a a ++++=___________.【答案】①.8②.2-【解析】【分析】第一空利用二项式定理直接求解即可,第二空赋值去求,令0x =求出0a ,再令1x =即可得出答案.【详解】含2x 项为:()()3232222244C 12C 14128x x x x x x ×××-+×××-=-+=,故28a =;令0x =,即02a =,令1x =,即0123450a a a a a a =+++++,∴123452a a a a a ++++=-,故答案为:8;2-.13.若3sin sin 2pa b a b -=+=,则sin a =__________,cos 2b =_________.【答案】①.10②.45【解析】【分析】先通过诱导公式变形,得到a 的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出a ,接下来再求b .【详解】2pa b +=,∴sin cos b a =,即3sin cos a a -=的sin cos1010a aö-=÷÷øsin10q=,cos10q=,()a q-=,∴22k k Zpa q p-=+Î,,即22kpa q p=++,∴sin sin2cos210kpa q p qæö=++==ç÷èø,则224cos22cos12sin15b b a=-=-=.故答案为:10;45.14.已知函数()22,1,11,1,x xf xx xxì-+£ï=í+->ïî则12f fæöæö=ç÷ç÷èøèø________;若当[,]x a bÎ时,1()3f x££,则b a-的最大值是_________.【答案】①.3728②.3【解析】【分析】结合分段函数的解析式求函数值,由条件求出a的最小值,b的最大值即可.【详解】由已知2117()2224fæö=-+=ç÷èø,77437()144728f=+-=,所以137()228f féù=êúëû,当1x£时,由1()3f x££可得2123x£-+£,所以11x-££,当1x>时,由1()3f x££可得1113xx£+-£,所以12x<£1()3f x££等价于12x-££+,所以[,][1,2a bÍ-+,所以b a-的最大值为3.故答案为:3728,315.现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为x,则(2)P x==__________,()E x=_________.【答案】①.1635,②.127##517【解析】【分析】利用古典概型概率公式求(2)P x =,由条件求x 分布列,再由期望公式求其期望.【详解】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有37C 种取法,其中所抽取的卡片上的数字的最小值为2的取法有112424C C C +种,所以11242437C C C 16(2)C 35P x +===,由已知可得x 的取值有1,2,3,4,2637C 15(1)C 35P x ===,16(2)35P x ==,,()()233377C 31134C 35C 35P P x x ======,所以15163112()1234353535357E x =´+´+´+´=,故答案为:1635,127.16.已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.【答案】4【解析】【分析】联立直线AB 和渐近线2:bl y x a=方程,可求出点B ,再根据||3||FB FA =可求得点A ,最后根据点A 在双曲线上,即可解出离心率.【详解】过F 且斜率为4b a 的直线:()4b AB y x c a=+,渐近线2:bl y x a =,联立()4b y x c ab y xa ì=+ïïíï=ïî,得,33c bc B a æöç÷èø,由||3||FB FA =,得5,,99c bc A a æö-ç÷èø而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a =,所以离心率e 4=.故答案为:4.17.设点P 在单位圆的内接正八边形128A A A L 的边12A A 上,则222182PA PA PA +++u u u r u u L u r u u u r 的取值范围是_______.【答案】[12+【解析】【分析】根据正八边形的结构特征,分别以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y 轴建立平面直角坐标系,即可求出各顶点的坐标,设(,)P x y ,再根据平面向量模的坐标计算公式即可得到()2222212888PA PA PA x y +++=++u u u r u u u r u u u r L ,然后利用cos 22.5||1OP ££o 即可解出.【详解】以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y 轴建立平面直角坐标系,如图所示:则1345726(0,1),,,(1,0),,,(0,1),,,(1,0)222222A A A A A A A æöææ-----ç÷ççç÷ç÷ç÷èøèøèø,822A æö-ç÷ç÷èø,设(,)P x y ,于是()2222212888PA PA PA x y +++=++u u u r u u u r u u u r L ,因为cos 22.5||1OP ££o,所以221cos 4512x y +£+£o ,故222128PA PA PA +++u u u r u u u r u u u r L 的取值范围是[12+.故答案为:[12+.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C ==.(1)求sin A 的值;(2)若11b =,求ABC V 的面积.【答案】(1;(2)22.【解析】【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab+-=以及4a =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积.【小问1详解】由于3cos 5C =,0πC <<,则4sin 5C =.因为4a =,由正弦定理知4sin A C =,则sin sin 45A C ==.【小问2详解】因为4a =,由余弦定理,得2222221612111355cos 22225a a a abc C ab a a +--+-====,即26550a a +-=,解得5a =,而4sin 5C =,11b =,所以ABC V 的面积114sin 51122225S ab C ==´´´=.19.如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE Ð=Ð=°,二面角F DC B --的平面角为60°.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ^;(2)求直线BM 与平面ADE 所成角的正弦值.【答案】(1)证明见解析;(2)14.【解析】【分析】(1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点G 、H ,由平面知识易得FC BC =,再根据二面角的定义可知,60BCF Ð=o ,由此可知,FN BC ^,FN CD ^,从而可证得FN ^平面ABCD ,即得FN AD ^;(2)由(1)可知FN ^平面ABCD ,过点N 做AB 平行线NK ,所以可以以点N 为原点,NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N xyz -,求出平面ADE 的一个法向量,以及BM uuu u r,即可利用线面角的向量公式解出.【小问1详解】过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点交于点G 、H .∵四边形ABCD 和EFCD 都是直角梯形,//,//,5,3,1AB DC CD EF AB DC EF ===,60BAD CDE Ð=Ð=°,由平面几何知识易知,2,90DG AH EFC DCF DCB ABC ==Ð=Ð=Ð=Ð=°,则四边形EFCG 和四边形DCBH 是矩形,∴在Rt EGD V 和Rt DHA V ,EG DH ==∵,DC CF DC CB ^^,且CF CB C Ç=,∴DC ^平面,BCF BCF Ð是二面角F DC B --的平面角,则60BCF Ð=o ,∴BCF △是正三角形,由DC Ì平面ABCD ,得平面ABCD ^平面BCF ,∵N 是BC 的中点,\FN BC ^,又DC ^平面BCF ,FN Ì平面BCF ,可得FN CD ^,而BC CD C Ç=,∴FN ^平面ABCD ,而AD Ì平面ABCD FN AD \^.【小问2详解】因为FN ^平面ABCD ,过点N 做AB 平行线NK ,所以以点N 为原点,NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N xyz -,设(3,(1,0,3)A B D E,则33,,22M æöç÷ç÷èø,33,,,(2,(22BM AD DE æö\=-=--=-ç÷ç÷èøu u u u r u u ur u u u r 设平面ADE 的法向量为(,,)n x y z =r由00n AD n DE ì×=í×=îu u u v r u u u v r,得20230x x z ì--=ïí-++=ïî,取n =-r ,设直线BM 与平面ADE 所成角为q ,∴||sin cos ,14|||n BM n BM n BM q ×=áñ====×u uu u r r u uu u r r uu u u r r .20.已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *ÎN .(1)若423260S a a -+=,求n S ;(2)若对于每个n *ÎN ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 取值范围.【答案】(1)235(N )2n n nS n *-=Î(2)12d <£【解析】【分析】(1)利用等差数列通项公式及前n 项和公式化简条件,求出d ,再求n S;的(2)由等比数列定义列方程,结合一元二次方程有解的条件求d 的范围.【小问1详解】因为42312601S a a a -+==-,,所以()()46211260d d d -+--+-++=,所以230d d -=,又1d >,所以3d =,所以34n a n =-,所以()213522n na a n n n S +-==,【小问2详解】因为n n a c +,14n n a c ++,215n n a c ++成等比数列,所以()()()212415n n n n n n a c a c a c +++=++,()()()2141115n n n nd c nd d c nd d c -+=-+-+-+++,22(1488)0n n c d nd c d +-++=,由已知方程22(1488)0n n c d nd c d +-++=的判别式大于等于0,所以()22148840d nd d D =-+-³,所以()()168812880d nd d nd -+-+³对于任意的n *ÎN 恒成立,所以()()212320n d n d ----³éùéùëûëû对于任意的n *ÎN 恒成立,当1n =时,()()()()21232120n d n d d d ----=++³éùéùëûëû,当2n =时,由()()2214320d d d d ----³,可得2£d 当3n ³时,()()21232(3)(25)0n d n d n n ---->--³éùéùëûëû,又1d >所以12d <£21.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q æöç÷èø在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.【答案】(1)11;(2)5.【解析】【分析】(1)设,sin )Q q q 是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2AB y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可得231CD k =×+,由柯西不等式即可求出最小值.【小问1详解】设,sin )Q q q 是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ q q q q q æö=+-=--=-+£ø+ç÷è,当且仅当1sin 11q =-时取等号,故||PQ 的最大值是11.【小问2详解】设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx æö++-=ç÷èø,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ì+=-ï+ïïíï=-æöï+ç÷ïèøî,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则||CD ====231555k =×=³=+,当且仅当316k =时取等号,故CD的最小值为5.【点睛】本题主要考查最值计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.22.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ÎR ,曲线()y f x =上不同三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a æö<-<-ç÷èø;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea a x x a --+<+<-.(注:e 2.71828=L 是自然对数的底数)【答案】(1)()f x 的减区间为e 02æöç÷èø,,增区间为e ,2æö+¥ç÷èø.的的(2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1eam =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.【小问1详解】()22e 12e 22xf x x x x -¢=-+=,当e 02x <<,()0f x ¢<;当e2x >,()0f x ¢>,故()f x 的减区间为e 02æöç÷èø,,()f x 的增区间为e ,2æö+¥ç÷èø.【小问2详解】(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a ¢-=-,故方程()()()f x b f x x a ¢-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x æö----+=ç÷èø,设()()21e e ln 22g x x a x b x x x æö=----+ç÷èø,则()()22321e 1e 1e22g x x a x x x x x xæö¢=-+-+--+ç÷èø()()31e x x a x=---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +¥上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b æö----+<ç÷èø且()21e e ln 022a a a b a a a æö----+>ç÷èø,整理得到:12e a b <+且()eln 2b a f a a>+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a aæöæö---<+-+-+=--ç÷ç÷èøèø,设()3e ln 22u a a a =--,则()2e-202au a a ¢=<,故()u a 为()e,+¥上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a æö<-<-ç÷èø.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +¥上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b æö----+>ç÷èø且()21e e ln 022a a a b a a a æö----+<ç÷èø,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =Î,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2e a a t t t b +-+++=即为()21ln 02mm t t t b -++++=,记123123e e e,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6e a a t t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --æöæö+-+-+<ç÷ç÷èøèø,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02mm t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-´-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--´<-+,即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k j +=>-,则()()2112ln 01k k k k k j æö¢=-->ç÷èø-,设()12ln u k k k k =--,则()2122210u k k k k k¢=+->-=即()0k j ¢>,故()k j 在()1,+¥上为增函数,故()()k m j j >,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m w ---+=+<<+,则()()()()()()()2232322132049721330721721m mm m m mm m m m m w ---+-+¢=>>++,所以()m w 在()0,1为增函数,故()()10m w w <=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m mm m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021-2022高考数学模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( ) A .760B .16C .1360D .142.已知函数e 1()e 1x x f x -=+,()0.32a f =,()0.30.2b f =,()0.3log 2c f =,则a ,b ,c 的大小关系为( )A .b a c <<B .c b a <<C .b c a <<D .c a b <<3.已知排球发球考试规则:每位考生最多可发球三次,若发球成功,则停止发球,否则一直发到3次结束为止.某考生一次发球成功的概率为()01p p <<,发球次数为X ,若X 的数学期望() 1.75E X >,则p 的取值范围为( ) A .10,2⎛⎫ ⎪⎝⎭B .70,12⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .7,112⎛⎫ ⎪⎝⎭4.相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.如图的程序是与“三分损益”结合的计算过程,若输入的x 的值为1,输出的x 的值为( )A .6481B .3227C .89D .16275.已知函数31()sin ln 1x f x x x x +⎛⎫=++ ⎪-⎝⎭,若(21)(0)f a f ->,则a 的取值范围为( )A .1,2⎛⎫+∞⎪⎝⎭B .()0,1C .1,12⎛⎫⎪⎝⎭D .10,2⎛⎫ ⎪⎝⎭6.已知集合2{|1}M x x ==.N 为自然数集,则下列表示不正确的是( ) A .1M ∈B .{1,1}M =-C .M ∅⊆D .M N ⊆7.已知向量(3sin ,2)a x =-,(1,cos )b x =,当a b ⊥时,cos 22x π⎛⎫+= ⎪⎝⎭( ) A .1213-B .1213C .613-D .6138.已知,m n 为两条不重合直线,,αβ为两个不重合平面,下列条件中,αβ⊥的充分条件是( ) A .m ∥n m n ,,αβ⊂⊂ B .m ∥n m n ,,αβ⊥⊥ C .m n m ,⊥∥,n α∥βD .m n m ,⊥n ,αβ⊥⊥9.波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k (k >0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆2222x y a b+=1(a >b >0),A ,B 为椭圆的长轴端点,C ,D 为椭圆的短轴端点,动点M 满足MA MB=2,△MAB 面积的最大值为8,△MCD 面积的最小值为1,则椭圆的离心率为( ) A .23B .33C .22D .3210.已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是( ) A .该超市2018年的12个月中的7月份的收益最高 B .该超市2018年的12个月中的4月份的收益最低C .该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D .该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元11.若两个非零向量a 、b 满足()()0a b a b +⋅-=,且2a b a b +=-,则a 与b 夹角的余弦值为( ) A .35B .35±C .12D .12±12.把函数2()sin f x x =的图象向右平移12π个单位,得到函数()g x 的图象.给出下列四个命题①()g x 的值域为(0,1] ②()g x 的一个对称轴是12x π=③()g x 的一个对称中心是1,32π⎛⎫⎪⎝⎭ ④()g x 存在两条互相垂直的切线 其中正确的命题个数是( ) A .1B .2C .3D .4二、填空题:本题共4小题,每小题5分,共20分。
13.等边ABC ∆的边长为2,则AB 在BC 方向上的投影为________.14.函数22()|1|9f x x x kx =-+++在区间(0,3)内有且仅有两个零点,则实数k 的取值范围是_____.15.已知抛物线2:4C y x =的焦点为F ,过点F 且斜率为1的直线与抛物线C 交于点,A B ,以线段AB 为直径的圆E 上存在点,P Q ,使得以PQ 为直径的圆过点(2,)D t -,则实数t 的取值范围为________.16.正四面体A BCD -的各个点在平面M 同侧,各点到平面M 的距离分别为1,2,3,4,则正四面体的棱长为__________.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
17.(12分)等差数列{}n a 的公差为2, 248,,a a a 分别等于等比数列{}n b 的第2项,第3项,第4项. (1)求数列{}n a 和{}n b 的通项公式; (2)若数列{}n c 满足12112nn nc c c b a a a ++++=,求数列{}n c 的前2020项的和. 18.(12分)在三棱柱111ABC A B C -中,2AB =,14BC BB ==,125AC AB ==,且160BCC ∠=︒.(1)求证:平面1ABC ⊥平面11BCC B ;(2)设二面角1C AC B --的大小为θ,求sin θ的值.19.(12分)设n S 为等差数列{}n a 的前n 项和,且25a =,654235S S S +=+. (1)求数列{}n a 的通项公式; (2)若满足不等式()1210nn n S λ-⋅+-<的正整数n 恰有3个,求正实数λ的取值范围.20.(12分)已知函数22()1e x f x ax ax =++-.(1)若函数()()g x f x '=,试讨论()g x 的单调性; (2)若(0,)x ∀∈+∞,()0f x <,求a 的取值范围.21.(12分)对于很多人来说,提前消费的认识首先是源于信用卡,在那个工资不高的年代,信用卡绝对是神器,稍微大件的东西都是可以选择用信用卡来买,甚至于分期买,然后慢慢还!现在银行贷款也是很风靡的,从房贷到车贷到一般的现金贷.信用卡“忽如一夜春风来”,遍布了各大小城市的大街小巷.为了解信用卡在A 市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了100人进行抽样分析,得到如下22⨯列联表(单位:人)(1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为A 市使用信用卡情况与年龄有关?(2)①现从所抽取的40岁及以下的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出4人赠送积分,求选出的4人中至少有3人偶尔或不用信用卡的概率;②将频率视为概率,从A 市所有参与调查的40岁以上的网民中随机抽取3人赠送礼品,记其中经常使用信用卡的人数为X ,求随机变量X 的分布列、数学期望和方差.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:)20k22.(10分)如图,在平面直角坐标系xOy 中,已知圆C :()2231x y -+=,椭圆E :22221x y a b+=(0a b >>)的右顶点A 在圆C 上,右准线与圆C 相切.(1)求椭圆E 的方程;(2)设过点A 的直线l 与圆C 相交于另一点M ,与椭圆E 相交于另一点N .当127AN AM =时,求直线l 的方程. 参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C 【解析】分情况讨论,由间接法得到“数”必须排在前两节,“礼”和“乐”必须分开的事件个数,不考虑限制因素,总数有66A 种,进而得到结果. 【详解】当“数”位于第一位时,礼和乐相邻有4种情况,礼和乐顺序有2种,其它剩下的有33A 种情况,由间接法得到满足条件的情况有51235423A C A A -当“数”在第二位时,礼和乐相邻有3种情况,礼和乐顺序有2种,其它剩下的有33A 种,由间接法得到满足条件的情况有51235323A C A A -共有:5123512353235423A C A A A C A A -+-种情况,不考虑限制因素,总数有66A 种,故满足条件的事件的概率为:5123512353235423661360A C A A A C A A A -+-= 故答案为:C. 【点睛】解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置). 2、B 【解析】可判断函数()f x 在R 上单调递增,且0.30.30.3210.20log 2>>>>,所以c b a <<.【详解】12()111e e x x xf x e -==-++在R 上单调递增,且0.30.30.3210.20log 2>>>>, 所以c b a <<. 故选:B 【点睛】本题主要考查了函数单调性的判定,指数函数与对数函数的性质,利用单调性比大小等知识,考查了学生的运算求解能力. 3、A 【解析】根据题意,分别求出()()()123P X P X P X ===,,,再根据离散型随机变量期望公式进行求解即可 【详解】由题可知()1P X p ==,()()21P X p p ==-,()()()()2323111P X p p p p ==-+-=-,则()()()()()()21232131 1.75E X P X P X P X p p p p =====+-+->+2+3 解得5122p p ><或,由()0,1p ∈可得10,2p ⎛∈⎫⎪⎝⎭,答案选A 【点睛】本题考查离散型随机变量期望的求解,易错点为第三次发球分为两种情况:三次都不成功、第三次成功 4、B 【解析】根据循环语句,输入1x =,执行循环语句即可计算出结果. 【详解】输入1x =,由题意执行循环结构程序框图,可得: 第1次循环:23x =,24i =<,不满足判断条件;第2次循环:89x =,34i =<,不满足判断条件; 第4次循环:3227x =,44i =≥,满足判断条件;输出结果3227x =. 故选:B 【点睛】本题考查了循环语句的程序框图,求输出的结果,解答此类题目时结合循环的条件进行计算,需要注意跳出循环的判定语句,本题较为基础. 5、C 【解析】求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式. 【详解】 由101xx+>-得11x -<<, 在(1,1)x ∈-时,3y x =是增函数,sin y x =是增函数,12lnln(1)11x y x x+==-+--是增函数,∴31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭是增函数, ∴由(21)(0)f a f ->得0211a <-<,解得112a <<. 故选:C. 【点睛】本题考查函数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题时可先确定函数定义域,在定义域内求解. 6、D 【解析】集合{}2{|1}1,1M x x ===-.N 为自然数集,由此能求出结果. 【详解】解:集合{}2{|1}1,1M x x ===-.N 为自然数集, 在A 中,1M ∈,正确; 在B 中,{}1,1M =-,正确; 在C 中,M ∅⊆,正确;在D 中,M 不是N 的子集,故D 错误. 故选:D . 【点睛】本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题. 7、A 【解析】根据向量的坐标运算,求出tan x ,22tan cos 22tan 1x x x π⎛⎫+=- ⎪+⎝⎭,即可求解. 【详解】a b ⊥,23sin 2cos 0,tan 3a b x x x ⋅=-=∴=222sin cos cos 2sin 22sin cos x x x x x x π⎛⎫∴+=-=- ⎪+⎝⎭22tan 12tan 113x x =-=-+. 故选:A. 【点睛】本题考查向量的坐标运算、诱导公式、二倍角公式、同角间的三角函数关系,属于中档题. 8、D 【解析】根据面面垂直的判定定理,对选项中的命题进行分析、判断正误即可. 【详解】对于A ,当//m n ,m α⊂,n β⊂时,则平面α与平面β可能相交,αβ⊥,//αβ,故不能作为αβ⊥的充分条件,故A 错误;对于B ,当//m n ,m α⊥,n β⊥时,则//αβ,故不能作为αβ⊥的充分条件,故B 错误;对于C ,当m n ⊥,//m α,//n β时,则平面α与平面β相交,αβ⊥,//αβ,故不能作为αβ⊥的充分条件,故C 错误;对于D ,当m n ⊥,m α⊥,n β⊥,则一定能得到αβ⊥,故D 正确. 故选:D. 【点睛】本题考查了面面垂直的判断问题,属于基础题.9、D 【解析】求得定点M 的轨迹方程22251639a a x y ⎛⎫-+= ⎪⎝⎭可得141128,212323a a b a ⨯⨯=⨯⨯=,解得a ,b 即可. 【详解】设A (-a ,0),B (a ,0),M (x ,y ).∵动点M 满足MA MB=2,==2,化简得222516(x )y 39a a -+=. ∵△MAB 面积的最大值为8,△MCD 面积的最小值为1,∴141128,212323a a b a ⨯⨯=⨯⨯= ,解得a b ==,=. 故选D . 【点睛】本题考查了椭圆离心率,动点轨迹,属于中档题. 10、D 【解析】用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项. 【详解】用收入减去支出,求得每月收益(万元),如下表所示:所以7月收益最高,A 选项说法正确;4月收益最低,B 选项说法正确;16-月总收益140万元,712-月总收益240万元,所以前6个月收益低于后六个月收益,C 选项说法正确,后6个月收益比前6个月收益增长240140100-=万元,所以D 选项说法错误.故选D. 【点睛】本小题主要考查图表分析,考查收益的计算方法,属于基础题. 11、A设平面向量a 与b 的夹角为θ,由已知条件得出a b =,在等式2a b a b +=-两边平方,利用平面向量数量积的运算律可求得cos θ的值,即为所求. 【详解】设平面向量a 与b 的夹角为θ,()()22220a b a b ab a b +⋅-=-=-=,可得a b =,在等式2a b a b +=-两边平方得22222484a a b b a a b b +⋅+=-⋅+,化简得3cos 5θ=. 故选:A. 【点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题. 12、C 【解析】由图象变换的原则可得11()cos 2262g x x π⎛⎫=--+ ⎪⎝⎭,由cos 2[1,1]6x π⎛⎫-∈- ⎪⎝⎭可求得值域;利用代入检验法判断②③;对()g x 求导,并得到导函数的值域,即可判断④. 【详解】由题,21cos 2()sin 2x f x x -==, 则向右平移12π个单位可得,1cos 21112()cos 22262x g x x ππ⎛⎫-- ⎪⎛⎫⎝⎭==--+ ⎪⎝⎭ cos 2[1,1]6x π⎛⎫-∈- ⎪⎝⎭,()g x ∴的值域为[0,1],①错误;当12x π=时,206x π-=,所以12x π=是函数()g x 的一条对称轴,②正确;当3x π=时,226x ππ-=,所以()g x 的一个对称中心是1,32π⎛⎫⎪⎝⎭,③正确;()sin 2[1,1]6g x x π⎛⎫'=-∈- ⎪⎝⎭,则1212,,()1,()1x x R g x g x ''∃∈=-=,使得12()()1g x g x ''⋅=-,则()g x 在1x x =和2x x =处的切线互相垂直,④正确.即②③④正确,共3个.本题考查三角函数的图像变换,考查代入检验法判断余弦型函数的对称轴和对称中心,考查导函数的几何意义的应用.二、填空题:本题共4小题,每小题5分,共20分。