七年级数学《绝对值》教案【优秀6篇】

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学《绝对值》教案【优秀6篇】

数学《绝对值》教案篇一

●教学内容

七年级上册课本11----12页1.2.4绝对值

●教学目标

1、知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。

2、过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。

3、情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

●教学重点与难点

教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。

●教学准备

多媒体课件

●教学过程

一、创设问题情境

1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作­__________,B处记作__________。

以O为原点,取适当的单位长度画数轴,并标出A、B的位置。

(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。

2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。

3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?

小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念­———绝对值。

二、建立数学模型

1、绝对值的概念

(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)

绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5.

注意:①与原点的关系②是个距离的概念

2、。练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用+5表示的话,那么下降了5度,就用-5 表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。]

(通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)

三、应用深化知识

1、例题求解

例1、求下列各数的绝对值

-1.6 ,,0, -10, +10

2、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)

特点:1、一个正数的绝对值是它本身

2、一个负数的绝对值是它的相反数

3、零的绝对值是零

4、互为相反数的两个数的绝对值相等

3、出示题目

(1)-3的符号是_______,绝对值是______;

(2)+3的符号是_______,绝对值是______;

(3)-6.5的符号是_______,绝对值是______;

(4)+6.5的符号是_______,绝对值是______;

学生口答。

师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗?

5、练习3:回答下列问题

①一个数的绝对值是它本身,这个数是什么数?

②一个数的绝对值是它的相反数,这个数是什么数?

③一个数的绝对值一定是正数吗?

④一个数的绝对值不可能是负数,对吗?

⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗?

(由学生口答完成,进一步巩固绝对值的概念)

6、例2.求绝对值等于4的数

(让学生考虑这样的数有几个,是怎样得出这个结果的呢?对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)

分析:

①从数字上分析

∵|+4|=4,|-4|=4 ∵绝对值等于4的数是+4和-4画一个数轴(如下图)

②从几何意义上分析,画一个数轴(如下图)

因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M

所以绝对值等于4的数是+4和-4.

6、练习:做书上12页课内练习1、2两题。

四、归纳小结

1、本节课我们学习了什么知识?

2、你觉得本节课有什么收获?

3、由学生自行总结在自主探究,合作学习中的体会。

五、课后作业

1、让学生去寻找一些生活中只考虑绝对值的实际例子。

2、课本15页的作业题。

绝对值教案篇二

1、教学目标

(一)知识与能力

1、助数轴初步理解绝对值的概念及表示方法;

2、体会绝对值的作用与意义;

3、能熟练掌握有理数绝对值的求法和有关的简单计算。

(二)过程与方法

通过观察,分析,思考,归纳,探索绝对值的几何意义,代数意义和性质,渗透数形结合和分类的数学思想,培养学生分析问题和解决问题的能力。

(三)情感态度与价值观

让学生在探索活动中产生对数学的好奇心,体验探索的乐趣和成功的快乐,增强学好数学的兴趣与信心。

二、教学重难点

(一)教学重点

正确理解绝对值的概念,能求一个数的绝对值。

(二)教学难点

正确理解绝对值的几何意义和代数意义。

三、教学准备

多媒体、刻度尺

四、教学方法

创设情境法、讲述法

五、教学过程

(一)提出问题,创设情境

甲乙两辆车从城站火车站同时开出,甲车向东行驶5千米到达一候车亭,乙车向西行驶5千米到达另一候车亭。问:

(1)如何用有理数表示他们的行驶情况

(2)这两个有理数有什么关系?

(3)在数轴上把这两个有理数表示出来。

设计意图:通过提问,复习用有理数表示具有相反意义的量,相反数的意义,在数轴上表示有理数等有关内容,为学习新知识做准备。

(二)交流对话,探究新知

1、引入:

(1)若每辆车行驶每千米耗油0.2升,则甲乙两辆车各耗多少升油?

(2)计算汽车耗油量的过程中,只与什么有关?而与什么无关?

耗油量的计算只与汽车行驶的路程有关,而与方向无关,在实际生活中不注重方向的量还有很多,本节我们将学习一个新的不注重方向的量——绝对值。

2、引导学生从数轴上认识绝对值的几何意义。

师:+6和-6是相反数,它们只有符号不同,它们什么相同呢?

生:思考讨论

师:在数轴上标出到原点距离是6个单位长度的点。

引导学生观察:数轴上表示+6和-6两点,虽然分居在原点的两旁,符号不同,但与原点之间都是相隔6个单位长度。

指出:

在数轴上表示+6和-6的点与原点的距离都是6,我们就说+6的绝对值是6,-6的绝对值也是6.

归纳:

相关文档
最新文档