化学实验报告 英文版

合集下载

化学实验报告全英

化学实验报告全英

Experiment Title: Synthesis of Silver Nitrate from Silver and Nitric AcidDate: March 10, 2022Objective: The objective of this experiment was to synthesize silver nitrate (AgNO3) by reacting silver (Ag) with nitric acid (HNO3) and to observe the formation of the product.Materials:1. Silver (Ag) - 0.5 g2. Nitric acid (HNO3) - 10 mL3. Beaker4. Test tube5. Funnel6. Pipette7. Distilled water8. Sodium chloride (NaCl) - 0.5 g9. Ethanol (C2H5OH) - 10 mL10. Sodium chloride (NaCl) - 0.5 g11. Ethanol (C2H5OH) - 10 mL12. SpectrophotometerProcedure:1. Weigh 0.5 g of silver (Ag) using a balance and transfer it into a test tube.2. Add 10 mL of nitric acid (HNO3) to the test tube containing the silver (Ag).3. Swirl the test tube gently to ensure that the silver (Ag) reacts completely with the nitric acid (HNO3).4. Observe the reaction and note any changes in color or appearance.5. Once the reaction is complete, allow the mixture to cool to room temperature.6. Filter the mixture using a funnel and filter paper to separate the silver nitrate (AgNO3) from the remaining solution.7. Collect the silver nitrate (AgNO3) on a filter paper and dry it in an oven at 100°C for 1 hour.8. Dissolve 0.5 g of sodium chloride (NaCl) in 10 mL of ethanol (C2H5OH) and transfer it to a test tube.9. Add 10 mL of distilled water to the test tube containing the sodium chloride (NaCl) solution.10. Add a few drops of the silver nitrate (AgNO3) solution to the sodium chloride (NaCl) solution.11. Observe the formation of a white precipitate and note its color and appearance.12. Measure the absorbance of the silver nitrate (AgNO3) solution usinga spectrophotometer at a wavelength of 590 nm.Results:1. The reaction between silver (Ag) and nitric acid (HNO3) resulted in the formation of a colorless solution, indicating the successful synthesis of silver nitrate (AgNO3).2. The silver nitrate (AgNO3) was successfully separated from the remaining solution using filtration.3. The precipitate formed when silver nitrate (AgNO3) was added to the sodium chloride (NaCl) solution was white, confirming the presence of silver nitrate (AgNO3) in the reaction mixture.4. The absorbance of the silver nitrate (AgNO3) solution was measured using a spectrophotometer at a wavelength of 590 nm, and the value obtained was 0.6.Discussion:The synthesis of silver nitrate (AgNO3) from silver (Ag) and nitric acid (HNO3) was successful in this experiment. The reaction between silver (Ag) and nitric acid (HNO3) resulted in the formation of a colorless solution, which was consistent with the expected color of silver nitrate (AgNO3) solution. The precipitate formed when silver nitrate (AgNO3) was added to the sodium chloride (NaCl) solution was white, indicating the presence of silver nitrate (AgNO3) in the reaction mixture. The absorbance value obtained using a spectrophotometer confirmed the presence of silver nitrate (AgNO3) in the solution.Conclusion:In conclusion, the synthesis of silver nitrate (AgNO3) from silver (Ag) and nitric acid (HNO3) was successfully achieved in this experiment. The reaction resulted in the formation of a colorless solution, and the presence of silver nitrate (AgNO3) was confirmed through the formation of a white precipitate and the absorbance measurement using a spectrophotometer.。

化学实验报告英语

化学实验报告英语

化学实验报告英语Chemical Experiment ReportIntroductionChemical experiments play a crucial role in the field of science and technology. They provide valuable insights into the properties and behavior of various substances. In this report, we will discuss a series of chemical experiments that were conducted in a laboratory setting. The experiments aimed to explore the effects of different variables on the reaction rate and product formation. Experiment 1: Reaction Rate and ConcentrationIn this experiment, we investigated the relationship between reaction rate and concentration. We prepared a solution of hydrochloric acid and sodium thiosulfate. By varying the concentration of sodium thiosulfate and keeping the concentration of hydrochloric acid constant, we observed the time taken for the solution to turn cloudy. As expected, we found that a higher concentration of sodium thiosulfate resulted in a faster reaction rate. This experiment demonstrated the importance of concentration in determining the rate of a chemical reaction.Experiment 2: Temperature and Reaction RateTemperature is another crucial factor that influences reaction rates. To study this, we heated a solution of potassium permanganate and oxalic acid to different temperatures. We then measured the time taken for the solution to change color. The results showed that an increase in temperature led to a significantincrease in the reaction rate. This can be attributed to the fact that higher temperatures provide more energy to the reacting particles, increasing their collision frequency and the likelihood of successful collisions.Experiment 3: Catalysts and Reaction RateCatalysts are substances that can speed up a chemical reaction without being consumed in the process. In this experiment, we examined the effect of a catalyst on the decomposition of hydrogen peroxide. We added a small amount of manganese dioxide to a solution of hydrogen peroxide and observed the release of oxygen gas. The presence of the catalyst facilitated the decomposition of hydrogen peroxide, leading to a faster reaction rate. This experiment highlighted the role of catalysts in enhancing reaction rates and their importance in various industrial processes.Experiment 4: pH and Product FormationThe pH of a solution can significantly influence the formation of products in a chemical reaction. To investigate this, we conducted an experiment involving the reaction between acetic acid and sodium bicarbonate. We varied the pH of the acetic acid solution by adding different amounts of sodium hydroxide. We then measured the volume of carbon dioxide gas produced. The results indicated that a higher pH resulted in a greater volume of carbon dioxide gas. This experiment emphasized the impact of pH on the formation of products in chemical reactions.ConclusionChemical experiments provide valuable insights into the behavior and properties of substances. Through the experiments discussed in this report, we explored the effects of concentration, temperature, catalysts, and pH on reaction rates and product formation. These experiments demonstrate the importance of understanding the factors that influence chemical reactions and their applications in various fields, including pharmaceuticals, materials science, and environmental studies. By furthering our knowledge in this area, we can continue to make advancements in the field of chemistry and contribute to the development of new technologies.。

化学实验报告 英文

化学实验报告 英文

化学实验报告英文Chemistry Experiment ReportIntroduction:In the field of science, experiments play a crucial role in deepening our understanding of various phenomena. This report aims to present the findings and observations from a recent chemistry experiment conducted in the laboratory. The experiment focused on the reaction between two chemicals and explored the effects of different variables on the reaction rate.Experimental Procedure:The experiment began by carefully measuring and preparing the required chemicals: sodium hydroxide (NaOH) and hydrochloric acid (HCl). These chemicals were chosen due to their well-known reaction, which produces salt and water. The experiment aimed to investigate how factors such as concentration, temperature, and catalysts influenced the reaction rate.To start the experiment, a fixed volume of NaOH solution was poured into a conical flask. The concentration of NaOH was varied in different trials, ranging from 0.1 M to 1.0 M. The flask was placed on a magnetic stirrer to ensure uniform mixing. Then, a burette was used to add a fixed volume of HCl solution to the flask. The reaction was monitored by observing the formation of a white precipitate, indicating the completion of the reaction.Results and Discussion:The experiment revealed several interesting findings. Firstly, it was observed thatas the concentration of NaOH increased, the reaction rate also increased. This can be attributed to the higher number of NaOH particles available to react with HCl, leading to more frequent collisions and faster reaction kinetics. Furthermore, the effect of temperature on the reaction rate was investigated. It was found that as the temperature increased, the reaction rate also increased. This can be explained by the kinetic theory of gases, which states that at higher temperatures, particles possess greater kinetic energy and move more rapidly. Consequently, more collisions occur, resulting in a faster reaction rate.The influence of catalysts on the reaction rate was also examined. A small amount of catalyst, in the form of manganese(IV) oxide (MnO2), was added to the reaction mixture. It was observed that the presence of the catalyst significantly increased the reaction rate. Catalysts provide an alternative reaction pathway with lower activation energy, allowing the reaction to proceed more rapidly.Conclusion:In conclusion, this experiment provided valuable insights into the factors affecting the reaction rate between NaOH and HCl. The concentration of the reactants, temperature, and the presence of catalysts were identified as key variables influencing the rate of the reaction. Understanding these factors is crucial in various industrial processes where reaction rates play a vital role.It is important to note that this experiment focused on a specific reaction and variables. Further research could explore the effects of other factors, such aspressure and surface area, on the reaction rate. Additionally, investigating the reaction kinetics using mathematical models could provide a more comprehensive understanding of the underlying mechanisms.Overall, this experiment highlights the significance of chemistry in unraveling the mysteries of the natural world. By conducting experiments and analyzing the results, scientists can uncover fundamental principles that govern chemical reactions, paving the way for advancements in various fields, including medicine, energy, and materials science.。

英文版化学实验报告

英文版化学实验报告

Preparation of n -bromobutane一、Purpose1、Study the principle and method of preparing n-butyl bromide from n-butyl alcohol by treatment with sodium bromide and concentrated sulfuric acid2、Learn the technique of reflux with a gas trap apparatus and washing.二、Principlen-Butyl bromide can be easily prepared by allowing n-butyl alcohto react with sodium bromide and concentrated sulfuric acid. Main reactions :NaBr + H 2SO4 → HBr + NaHSO424H SO 322232222CH CH CH CH OH HBr CH CH CH CH Br H O +−−−→+Secondary reactions :24H SO 32223222CH CH CH CH OH CH CH CH=CH H O−−−→+; ()24H SO 32223222222CH CH CH CH OH CH CH CH CH O H O−−−→+24222H SO HBr Br SO H O+−−→++三、Materials n-butyl alcohol :4mL Sodium bromide :5gConcentrated sulfuric acid :2.5mL/6mL Anhydrous calcium chloride:0.5g 10% aqueous sodium hydroxide:5mL四、Primary reagent And Product physical constants五、Apparatus六、Procedure(1)50mLboiling flask+50mLwater+6mLconcentrated sulfuric acid Cool down(2)Assembling equipment(3) Stop and simple distill (4)(5)七、Experimental records(1) Sulfuric acid soluble in water gives off a lot of heat(2) The solution of the distillation flask become yellow and the sodium bromide dissolve(3)Solution is divided into two layers and liquid of the distillation become clear(4) Liquid layer, upper as the water phase, the lower is positive bromobutane and liquid for the milky haze(5) Liquid at 99 ℃ and stable distillation, after rising to 103 ℃, 103 ℃after fractions and the former part of the don't mix.八、Data recordingOutput:1.3g theoretical yield:5.8g productivity:21.7% Character: colorless and transparent liquid Refractive index:1.4372九、Experiment Discussion1、Turbidity is because it contains a variety of organic phase to organicimpurities2、Plus the bottle stopper of calcium chloride anhydrous dry battery inorder to prevent the water vapor in the air into the conical flask, at the same time prevent product turbidity。

英文版的化学实验报告

英文版的化学实验报告

英文版的化学实验报告英文版的化学实验报告Introduction:Chemical experiments are an essential part of scientific research and education. They provide valuable insights into various chemical reactions and help us understand the properties and behavior of different substances. In this report, we will discuss the process and findings of a chemical experiment conducted to investigate the reaction between hydrochloric acid and sodium hydroxide. Experimental Procedure:1. Materials: The materials used in the experiment included hydrochloric acid (HCl), sodium hydroxide (NaOH), distilled water, a burette, a conical flask, a pH meter, and a magnetic stirrer.2. Preparation: A solution of hydrochloric acid was prepared by diluting a given volume of concentrated hydrochloric acid with distilled water. Similarly, a sodium hydroxide solution was prepared by dissolving a specific amount of sodium hydroxide pellets in distilled water.3. Setup: The burette was filled with the sodium hydroxide solution, and the conical flask was placed on the magnetic stirrer. The pH meter was calibrated according to the manufacturer's instructions.4. Titration: The hydrochloric acid solution was slowly added to the conical flask while stirring continuously. The pH meter was used to monitor the change in pH during the titration process. The addition of hydrochloric acid was stopped whenthe pH reached neutrality, indicating that the reaction was complete.Results and Analysis:During the titration process, the pH of the solution gradually decreased as hydrochloric acid was added. Initially, the pH was high, indicating an alkaline solution due to the presence of sodium hydroxide. As the acid was added, the pH decreased until it reached neutrality at a pH of 7. This indicated that the reaction between hydrochloric acid and sodium hydroxide resulted in the formation of water and a salt, which did not affect the pH of the solution.The volume of hydrochloric acid required to reach neutrality was recorded, and the concentration of the sodium hydroxide solution was calculated using the equation:M1V1 = M2V2Where M1 is the concentration of hydrochloric acid, V1 is the volume used, M2 is the concentration of sodium hydroxide, and V2 is the volume of sodium hydroxide used.Discussion:The experiment demonstrated the concept of neutralization, where an acid and a base react to form a salt and water. The reaction between hydrochloric acid and sodium hydroxide is a classic example of neutralization and is widely used in various industries and laboratory settings.The accuracy of the experiment depends on several factors, such as the precision of measurements, the purity of chemicals used, and the propercalibration of instruments. Any deviation in these factors can lead to inaccurate results and affect the overall conclusions drawn from the experiment. Conclusion:In conclusion, the experiment successfully demonstrated the reaction between hydrochloric acid and sodium hydroxide, resulting in the formation of water and a salt. The process of titration allowed us to determine the concentration of the sodium hydroxide solution. This experiment highlights the importance of chemical experiments in understanding the behavior of substances and their reactions. By conducting such experiments, scientists and researchers can gain valuable insights into the world of chemistry and its applications in various fields.。

实验报告英文版

实验报告英文版

The determination of nitrogen content in the ammonium salt(Formaldehyde method)一、The experiment purpose1、To study the application of acid-base titration2、Master the formaldehyde method principle and the method for determination of nitrogen content in the ammonium salt3、The use of master the volumetric flask and pipet二、The experimental principleBecause NH4 acid is too weak to directly with NaOH standard solution titration, we usually using formaldehyde is transformed into titratable acid:4NH4++6HCOH=(CH2)6N4H++3H++6H2OProducts, hydrogen ions and (CH2)6N4H+ can be directly for accurate titration,titration product (CH2)6N4 is weak alkaline, so using phenolphthalein as indicator.According to the volume of the consumption of sodium hydroxide, may be calculated in proportion of nitrogen content in the ammonium salt:w(N)=C(NaOH)·V(NaOH)·M/m×100%三、Instruments and reagentsEquipment and materials:The alkali type buret(50ml),Conical flask(250ml),Volumetric flask(100ml),pipette(20ml),Measuring cylinder(10ml),A beaker(100ml),Analytical balance,Glass rodDrugs and reagents:Sodium hydroxide standard solution(0.1083mol/L),formaldehyde(40%),phenolphthalein(2g/L ethanol solution),Samples of ammonium sulfate(S).四、The experimental steps1、Accurately according to 0.60 ~ 0.85 g samples of ammonium sulfate in 50 ml beaker, add right amount water dissolves directly transferred to the 100 ml volumetric flask and constant volume, shake a backup.2、Assimilation in sodium hydroxide standard solution to Alkali type buret after wash and embellish it.3、Accurately move 20 ml of the solution into the clean conical flask, add 10 ml of neutral formaldehyde solution and 1 drop of phenolphthalein indicator,shake the solution and let stand for 1 minutes, to the solution with sodium hydroxide standard solution titration is not fade reddish and maintain half minutes,as it to the end.4、Observe and record the volume of consumption of sodium hydroxide5、Parallel determination of three times, calculate the nitrogen content in the sample and the relative average deviation dr(≤0.3%)W(N)=(20.99%+21.01%+21.01%)/3=21.00%d=(0.01%+0.01%+0.01%)/3=0.01%dr=d/w(N)=0.01%/21.00%×100%=0.05%.。

英文实验报告化学

英文实验报告化学

Abstract:The synthesis of nanocrystalline copper phthalocyanine (CuPc) wascarried out using a solvothermal method. The reaction conditions, including the choice of solvent, temperature, and time, were optimized to achieve the highest yield and purity of CuPc. The synthesized CuPc was characterized using various techniques such as UV-Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicate that the solvothermal method is an efficient and effective approach for the synthesis of CuPc nanocrystals with high purity and excellent optical properties.1. Introduction:Copper phthalocyanine (CuPc) is a well-known blue pigment with significant applications in various fields, including optoelectronics, catalysis, and medicine. The unique optical and electronic properties of CuPc, such as its strong absorption in the visible region and high thermal stability, make it an attractive material for many applications. In recent years, the development of nanocrystalline CuPc has gained considerable attention due to its enhanced properties compared to its bulk counterpart. The solvothermal method has been widely used for the synthesis of various inorganic and organic nanomaterials due to its simplicity, cost-effectiveness, and environmentally friendly nature.2. Materials and Methods:2.1 Materials:- Copper(II) sulfate pentahydrate (CuSO4·5H2O)- Potassium phthalocyanine (K3Pc)- Sodium hydroxide (NaOH)- Ethanol (EtOH)- Deionized water2.2 Synthesis of CuPc Nanocrystals:The synthesis of CuPc nanocrystals was carried out using the solvothermal method. The detailed procedure is as follows:1. Dissolve 0.5 g of CuSO4·5H2O and 0.5 g of K3Pc in 10 mL of ethanol under magnetic stirring for 1 hour.2. Add 0.5 g of NaOH to the solution and continue stirring for another hour.3. Transfer the reaction mixture into a Teflon-lined autoclave and heat it at 180°C for 12 hours.4. Cool the autoclave to room temperature and centrifuge the reaction mixture at 5000 rpm for 30 minutes.5. Wash the precipitate with ethanol and deionized water several times to remove impurities.6. Dry the precipitate in an oven at 60°C for 12 hours to obtain the final product.2.3 Characterization Techniques:The synthesized CuPc nanocrystals were characterized using the following techniques:- UV-Vis spectroscopy (Shimadzu UV-2600)- X-ray diffraction (XRD) (Bruker D8 Advance)- Scanning electron microscopy (SEM) (Hitachi S-4800)- Transmission electron microscopy (TEM) (JEOL JEM-2100)3. Results and Discussion:3.1 UV-Vis Spectroscopy:The UV-Vis absorption spectrum of the synthesized CuPc nanocrystals is shown in Figure 1. The spectrum exhibits a strong absorption peak at 640 nm, which is characteristic of CuPc. The shoulder peak at 690 nm is attributed to the transition of π-π.Figure 1: UV-Vis absorption spectrum of CuPc nanocrystals3.2 XRD Analysis:The XRD pattern of the synthesized CuPc nanocrystals is shown in Figure 2. The diffraction peaks are well matched with the standard JCPDS card No. 12-0465, indicating the presence of CuPc in the crystalline form. The crystal size of the CuPc nanocrystals was calculated to be approximately 20 nm.Figure 2: XRD pattern of CuPc nanocrystals3.3 SEM Analysis:The SEM image of the synthesized CuPc nanocrystals is shown in Figure 3. The image reveals the spherical shape of the nanocrystals with an average diameter of 20 nm.Figure 3: SEM image of CuPc nanocrystals3.4 TEM Analysis:The TEM image of the synthesized CuPc nanocrystals is shown in Figure 4. The image confirms the spherical shape of the nanocrystals with a size of approximately 20 nm. The high-resolution image shows the crystalline structure of the CuPc nanocrystals.Figure 4: TEM image of CuPc nanocrystals4. Conclusion:In this study, the solvothermal method was employed for the synthesis of nanocrystalline CuPc. The optimized reaction conditions, including the choice of solvent, temperature, and time, resulted in the formation of CuPc nanocrystals with high purity and excellent optical properties. The synthesized CuPc nanocrystals were characterized using various techniques, including UV-Vis spectroscopy, XRD, SEM, and TEM. Theresults indicate that the solvothermal method is an efficient and effective approach for the synthesis of CuPc nanocrystals with high purity and excellent optical properties.5. Acknowledgments:The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 123456) and the China Scholarship Council (Grant No. 789012).References:1. A. G. Aliev, V. I. Gerasimchuk, A. A. Shevchenko, and A. V. Shevchenko, "Preparation and properties of CuPc/CdS core-shell quantum dots," Journal of Nanomaterials, vol. 2012, Article ID 682318, 2012.2. S. M. Y. Y. Ahamed, S. S. Al-Asfour, and A. A. Al-Asfour, "Synthesis and characterization of copper phthalocyanine thin films using chemical bath deposition method," Journal of Nanomaterials, vol. 2013, Article ID 982916, 2013.3. X. J. Wang, Z. Y. Chen, Y. J. Gao, Y. J. Li, and J. P. Zhang, "Preparation and characterization of CuPc nanocrystals using a microwave-assisted solvothermal method," Journal of Nanomaterials, vol. 2013, Article ID 916402, 2013.4. M. A. E. Al-Asfour, S. S. Al-Asfour, and A. G. Aliev, "Preparation and characterization of copper phthalocyanine/CdS core-shell quantum dots using a solvothermal method," Journal of Nanomaterials, vol. 2014, Article ID 382594, 2014.5. M. A. E. Al-Asfour, S. S. Al-Asfour, and A. G. Aliev, "Preparation and characterization of copper phthalocyanine nanocrystals using a microwave-assisted solvothermal method," Journal of Nanomaterials, vol. 2014, Article ID 382594, 2014.。

【优质文档】化学英语实验报告-实用word文档 (5页)

【优质文档】化学英语实验报告-实用word文档 (5页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==化学英语实验报告篇一:英文版化学实验报告Preparation of ethyl acetateFirst, the purpose of the experiment:1、 Learn from the general principles of organic synthetic esters and methods2、 Master distillation, extraction, drying and other experimental techniques and its application in aspecific experimentSecond, the experimental principle:Main reaction:CH3COOH+CH3CH2OH=CH3COOCH2CH3+H2OConditions: heating to 120 to 125 °C in concentratedsulfuric acid catalyzedSide effects:浓H2SO4CH3CH2OH--------->CH2=CH2+H2O170度浓H2SO4CH3CH2OH--------->CH3CH2OCH2CH3+H2O140度Third, the instruments and reagents:1、 Instruments and materials: Round-bottomed flask,Spherical condenser, Straight condenser,Distillationhead, a separatory funnel, measuring beakers, dropper, conical flask, thermometer, electric2、 drugs: Glacial acetic acid (AR), absolute ethanol (AR),concentrated sulfuric acid, saturated brine, a saturated sodium carbonate solution, a saturated calcium chloride solution, dried over anhydrous magnesium sulfate, litmusFourth,Reactor:Fifth,Experimental procedure:Adding 50ml round bottom flask 3ml 5ml ethanol and acetic acid, in shaking batch of concentrated sulfuric acid was added1.3ml mixed, and add a few grains of zeolite, and then install the instrument responseLow heat, slowly reflux for 30 minutes. Coolish, reflux device to the distillation apparatus, wetted with cold water to cool the bottle. Heating distillation until the distillate liquid volume is about half the volume of the reaction so far to give the crude product in ethyl acetateThe distillate was slowly saturated sodium carbonate solution was added portionwise, and oscillate until the evolution of carbondioxide gas without using litmus paper test acetate layer was neutral. The mixture was then transferred to a separatory funnel, andseparated aqueous layer was washed once with saturated aqueous saline solution 3ml The organic layer was washed with a saturated solutionof calcium chloride 3ml, washed with water and finally once. The organic layer in a dry Erlenmeyer flask filled with anhydrous magnesium sulfate. The crude ethyl acetate, dried on a water bath heated to distill, collecting fractions 73 to 78°C. Weigh or measure product volume, and calculate the yield point or refractive index measurement products。

关于英文版化学实验报告

关于英文版化学实验报告

报告编号:YT-FS-2077-52关于英文版化学实验报告After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas.互惠互利共同繁荣Mutual Benefit And Common Prosperity关于英文版化学实验报告备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。

文档可根据实际情况进行修改和使用。

篇一:英文版化学实验报告Title: Preparation of Fe scrap from waste(NH4) 2SO4.FeSO4.6H2OThe purpose of the experimentLearn the method used scrap iron preparation of ferrous ammonium sulfate.Familiar with the water bath, filtered, and evaporated under reduced pressure and crystallization basic working.The experimental principle, the iron and sulfuric acid to generate reactive ferrous sulfate, ferrous sulfate and ammonium sulfate in an aqueous solution of equal molarinteraction, becomes less soluble blue generate ferrous ammonium sulfate.Fe+H2SO4=FeSO4+H2 (gas)FeSO4+ (NH4)2SO4+6H2O=(NH4)2SO4.FeSO4.6H2O Usually ferrous rocks are easily oxidized in air, but after the formation of relatively stable perfunctory, not to be oxidized.Experiment to use instruments, scales, constant temperature water bath, pumps, basins, cups, 10ml graduated cylinder, asbestos mesh, glass, tripod, alcohol lamp, funnel.Iron pieces to a solid pharmaceutical use, use of acid ammonium sulfate and 3mol / l of sulfuric acid, concentrated sulfuric acid.The experiment was divided into four steps.The first step Said iron powder 4g into a beaker and then 50ml 10ml, 3mol / L H2SO4 was added to the same beaker. The second step willbe the beaker is heated to no more bubbles, and then filtered hot and the filtrate was then filled in 100ml beaker. The third step, called 4g (NH4)2SO4, and the resultingammonium sulfate and 5.3ml of water to form a saturated solution, and then add it to the ferrous sulfate solution, adjusted with concentrated sulfuric acid to PH = 1. A fourth step, the third step the solution was heated in a water bath to the surface until the film is crystallized, it was slowly cooled andthen filtered under reduced pressure to stand finally dried, weighed and the yield was calculated. The results obtained 8.1g bluish powderycrystals. Have this result we can calculate yield, starting with the first step we tried to know the amount of iron, should this we cancalculate the theoretical sulfate ferrous sulfate is 0.03mol, then ferrous sulfate obtained by the0.03molFeSO4 theoretical value of ammonium. FeSO4+(NH4)2SO4+6H2O=FeSO4.(NH4)2SO4.6H2O 0.03molX molX=0.03molm=XM=0.03molⅹ392g/mol=11.76gYield = the actual value of the formula is divided by the theoretical value by 100%.it will be calculated into the data obtained in a yield of 68.9%.篇二:英文版化学实验报告The preparation of alkali type copper carbonateThe first:the experiment purpose1.Master the methods of alkali type copper carbonate prepared and principle2.Through the design experiment to cultivate independent design ability and chemical research thinkingThe second:the experimental principleThe solubility of Cu(OH)2and CuCO3 are similar, With Cu2(OH)2CO3 solid precipitation in the solution.2CuSO4+2Na2CO3+H2O==Cu2(OH)2CO3↓+2Na2SO4+CO2↑The third:the experimental steps1.Solution preparationDisposes 0.5 mole of each litre acid sour coppers and sodium carbonate solution each 100 milliliters.2.The feeding order and raw material compare the explorationAccording to 2:1.6,2:2,2:2.4,2:2.8 allocated proportion, is accepted after passingan examination the surface disposition acid sour copper and the sodium carbonate solution, joins in separately 8 test tubes, joins rapidly the sulfuric acid copper solutions in the sodium carbonate solution, vibrates about other constant temperature ten minutes as for 75 degrees Celsius water baths in, the inversion feeding order recreates one time, the observation has the precipitation speed, quantity how many and the color,discovers the optimum condition.3.Temperature explorationAccording to the above optimum condition, takes the acid sour copper solutions and the sodium carbonate solution separately under 50, 75 and 100 degrees Celsius responded that, discovers the optimum temperature.4.According to 2, 3 step explorationoptimum condition prepares the final product, and with the distilled water lavation, finally dries and calls heavily.(Enlarges ten times with conical flask to do)The fourth:the experimental itemsInstrument and material: The balance, the beaker, the glass rod, the Volumetric flask, the test tube, the filter flask,the Buchner funnel, the Erlenmeyer flaskChemicals: Copper carbonate, sodium sulfate The fifth:the experimental result1.By the step 2, the observation phenomenon optimum condition is equal to for the cupric sulfate compared to the sodium carbonate 2:2.4, the feeding order for joins the sulfuric acid copper solutions to the sodium carbonate solution in.2.By the step 3, the observation phenomenonoptimum temperature is 75 degrees Celsius3.According to the copper sulfate solution than sodium carbonatesolution is 2:2. 4, ten times magnification, alkali type copper carbonate was zero point five grams, according to the reaction equation calculation yield.2CuSO4+2Na2CO3+H2O==Cu2(OH)2CO3↓+2Na2SO4+CO2↑2 10.5*0.02 X2/(0.5*0.02)=1/XX=0.005M[Cu2(OH)2CO3]=0.005*222=1.11gProductive rate:0.5/1.11*100%=45%The sixth : Questions1. Which cupric salt suit the system to take the cupric basic carbonate? Answer:Cu(NO)3or CuSO42. The reaction temperature has what influence to this experiment?.Answer:The temperature excessively is low, the response speed is slow; The hyperpyrexia, the Cu2(OH)2CO3 decomposition is CuO.3. Reaction is carried out at what temperature will appear Brown product? What is the brown substance?Answer: The temperature is equal to 100 degrees Celsius and this brown material is CuO.篇三:化学专业英语实验报告In the physiological saline the sodium chloride content determinationone, the experimental goal1、the study silver nitrate standard solution configuration and the demarcation method2、the grasping law raises Si Fa to determine the chloride ion the method principle two, the experimental principleWith AgNO3 standard solution titration Cl - Ag + + Cl - = = AgCl,At ph 7.0 -10.5 available fluorescent yellow do indicator (HFIn)HFIn = = FIn (yellow) + H +Sp before: excessive, AgCl precipitation adsorption of Cl - AgCl Cl - + FIn - (yellow-green)After Sp: Ag +, excessive AgCl precipitation Ag + adsorption, adsorption FIn - reprecipitation AgCl, Ag + + FIn - = = AgCl, Ag +, FIn - (pink) The finish color changes: from yellowish green to orange Three, instruments and reagentsEquipment and materials:Acid type buret (150 ml), taper bottle (250 ml), volumetricflask (100 ml), pipette (20 ml, 10 ml), measuring cylinder (100 ml, 10 ml), beaker (100 ml), brown reagent bottles (500 ml), analytical balance, platform scale. The reagent and drug: Analysis of AgNO3 (s, pure), NaCl (s,analysis of pure), physiological saline, fluorescent yellow - starch. Fourth, the experimental stepsAccurately moving 25 ml concentration is 0.7064 mol ╱L of silver nitrate standard solution in the middle of 250 ml volumetric flask, dilute to scale as a standard solution titration.Accurately moving saline 10.00 ml to 250 ml conical flask, add 50 ml water, 3 drops of fluorescent yellow indicator, 5% starch indicator 5 ml, under continuous agitation, using silver nitratestandard solution titration to solution from yellow to pink is the end point. Record the consumption volume of silver nitrate standard solution, parallel determination of 3, calculate the sodium chloride content in saline and relative mean deviation.Fifth, data recording and processingFormula: ρ = V×MrNaCl×CAgNO3 x 100The average deviation d=0.01300 dr=d/ρ×100%=0.13%这里填写您企业或者单位的信息Fill In The Information Of Your Enterprise Or Unit Here。

化学实验报告_英文

化学实验报告_英文

Experiment Title: Determination of the Molar Mass of a Volatile CompoundDate: October 1, 2021Objective:The objective of this experiment is to determine the molar mass of a volatile compound by using the ideal gas law and the known density of the compound.Introduction:The molar mass of a substance is the mass of one mole of that substance. It is an important property used to identify and characterize compounds. In this experiment, we will determine the molar mass of a volatile compound using the ideal gas law and the known density of the compound.Materials:1. Sample of volatile compound2. Graduated cylinder3. Balance4. Beaker5. Thermometer6. Ice bath7. Gas syringe8. Data tableProcedure:1. Measure the mass of the sample using a balance and record the value.2. Pour a known volume of water into a graduated cylinder and record the initial volume.3. Add the sample to the graduated cylinder and record the final volume.4. Calculate the volume of the sample by subtracting the initial volume from the final volume.5. Measure the temperature of the sample using a thermometer and record the value.6. Transfer the sample to a beaker and cool it in an ice bath until the temperature reaches 0°C.7. Use a gas syringe to measure the volume of the gas at 0°C and record the value.8. Calculate the density of the sample by dividing the mass of the sample by the volume of the sample.9. Use the ideal gas law to calculate the molar mass of the compound.Results:1. Mass of the sample: 1.23 g2. Volume of the sample: 2.45 mL3. Temperature of the sample: 25°C4. Volume of the gas at 0°C: 1.20 mL5. Density of the sample: 0.51 g/mLCalculation:1. Molar mass = (mass of the sample / volume of the gas) x (temperature of the gas / pressure of the gas) x (1 atm / 22.4 L/mol)2. Molar mass = (1.23 g / 1.20 mL) x (273.15 K / 298.15 K) x (1 atm / 1.20 mL) x (22.4 L/mol)3. Molar mass = 108.0 g/molDiscussion:In this experiment, we determined the molar mass of a volatile compound by using the ideal gas law and the known density of the compound. Thecalculated molar mass was 108.0 g/mol, which is in good agreement with the literature value of 106.0 g/mol. This indicates that the experimental method used in this experiment is reliable and accurate.Conclusion:The molar mass of the volatile compound was determined to be 108.0 g/mol using the ideal gas law and the known density of the compound. This experiment demonstrates the effectiveness of using the ideal gas law to determine the molar mass of volatile compounds.References:1. Silberberg, M. S. (2012). Chemistry: The Central Science (10th ed.). Boston, MA: McGraw-Hill.2. Atkins, P. W., & de Paula, J. (2014). Atkins' Physical Chemistry(11th ed.). New York, NY: Oxford University Press.。

【优质文档】化学英语实验报告-实用word文档 (5页)

【优质文档】化学英语实验报告-实用word文档 (5页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==化学英语实验报告篇一:英文版化学实验报告Preparation of ethyl acetateFirst, the purpose of the experiment:1、 Learn from the general principles of organic synthetic esters and methods2、 Master distillation, extraction, drying and other experimental techniques and its application in aspecific experimentSecond, the experimental principle:Main reaction:CH3COOH+CH3CH2OH=CH3COOCH2CH3+H2OConditions: heating to 120 to 125 °C in concentratedsulfuric acid catalyzedSide effects:浓H2SO4CH3CH2OH--------->CH2=CH2+H2O170度浓H2SO4CH3CH2OH--------->CH3CH2OCH2CH3+H2O140度Third, the instruments and reagents:1、 Instruments and materials: Round-bottomed flask,Spherical condenser, Straight condenser,Distillationhead, a separatory funnel, measuring beakers, dropper, conical flask, thermometer, electric2、 drugs: Glacial acetic acid (AR), absolute ethanol (AR),concentrated sulfuric acid, saturated brine, a saturated sodium carbonate solution, a saturated calcium chloride solution, dried over anhydrous magnesium sulfate, litmusFourth,Reactor:Fifth,Experimental procedure:Adding 50ml round bottom flask 3ml 5ml ethanol and acetic acid, in shaking batch of concentrated sulfuric acid was added1.3ml mixed, and add a few grains of zeolite, and then install the instrument responseLow heat, slowly reflux for 30 minutes. Coolish, reflux device to the distillation apparatus, wetted with cold water to cool the bottle. Heating distillation until the distillate liquid volume is about half the volume of the reaction so far to give the crude product in ethyl acetateThe distillate was slowly saturated sodium carbonate solution was added portionwise, and oscillate until the evolution of carbondioxide gas without using litmus paper test acetate layer was neutral. The mixture was then transferred to a separatory funnel, andseparated aqueous layer was washed once with saturated aqueous saline solution 3ml The organic layer was washed with a saturated solutionof calcium chloride 3ml, washed with water and finally once. The organic layer in a dry Erlenmeyer flask filled with anhydrous magnesium sulfate. The crude ethyl acetate, dried on a water bath heated to distill, collecting fractions 73 to 78°C. Weigh or measure product volume, and calculate the yield point or refractive index measurement productsSix, Discuss:1、 Able to use in place of a concentrated sodium hydroxide solution was washed with a saturated solution of sodium carbonate distillate?Can not. Because a strong base is sodium hydroxide, the product causes the hydrolysis of ethyl acetate, thereby reducing the yield of篇二:英文版化学实验报告Purpose Learning Silver nitrate standard solution preparation and calibration methods Master Fajans method for the determination of chloride ions principle Principle In the PH value of 7-10.5, with fluorescent yellow as indicator, titration with AgNO3 standardchloride solution. Fluorescent yellow first dissociation in solution HFIn ==== H++FIn? Before the end of excess chloride ions, chloride ions adsorbed silver chloride precipitation, the negatively charged surface, the equivalence point of excess silver ions to precipitate silver ions adsorbed positively charged surface. Precipitation of positively charged anion adsorption fluorescent yellow indicator dissociated, the configuration time change colors green and yellow to pink. AgCl ·Ag+ + FIn?=====AgCl ·Ag+· FIn?Determination of sodium chloride in salineLaboratory instruments and reagents Instruments and Materials: Acid burette(50ml), conical flask(250ml), volumetric flasks(100ml),pipettes25ml,10ml), graduated cylinders(100ml,10ml), beakers(100ml), brown reagent bottles(500ml), analytical balances, scales. Reagents and Drugs: Silver nitrate (analytical grade) sodium chloride (AR), saline, fluorescent yellow - starch indicator Experimental Procedure 1. Take 25.00ml silver nitrate(C=0.07064mol/L) standard solution in 250ml volumetric flask, diluted with water to volume, shake, spare 2. Take the test specimen 10.00ml saline solution plus water in aconical flask 50ml, fluorescent yellow indicator 3 drops of 5% starch solution 5ml, was diluted to the above standard solution of silver nitrate titration, yellow-green to orange as the end point, measured parallel Third, calculate the mass density of the brine solution of sodium chloride in the sample solution and the relative average error. Experimental data and processingρ1=C(AgNO3)V(AgNO3)M(NaCl)/10=0.07064×22.68×58.44/10=9.363g/Lρ2=9.371g/Lρ3=9.367g/L Averageρ=9.367g/Ldr=2.667×10-3 Average dr=0.028%Questions Why the preparation of silver nitrate solution to be stored in a brown bottle and placed in the dark to save? Explain: Silver nitrate precipitates metallic silver when exposed to light, so you need to save in a brown bottle.篇三:英文版化学实验报告Preparation of n-bromobutane一、Purpose1、Study the principle and method of preparing n-butyl bromide from n-butyl alcohol by treatment with sodium bromide and concentrated sulfuric acid2、Learn the technique of reflux with a gas trap apparatus and washing.二、Principlen-Butyl bromide can be easily prepared by allowing n-butyl alcohto react with sodium bromide and concentrated sulfuric acid. Main reactions :NaBr + H2SO4 → HBr + NaHSO4H2SO4CH3CH2CH2CH2OH?HBr????CH3CH2CH2CH2Br?H2OSecondary reactions:H2SO4CH3CH2CH2CH2OH????CH3CH2CH=CH2?H2O;H2SO42CH3CH2CH2CH2OH?????CH3CH2CH2CH2?2O?H2OH2SO4?HBr???Br2?SO2?H2O三、Materials n-butyl alcohol:4mL Sodium bromide:5gConcentrated sulfuric acid:2.5mL/6mL Anhydrous calcium chloride:0.5g 10% aqueous sodium hydroxide:5mL四、Primary reagent And Product physical constants五、Apparatus六、Procedure(150mLboiling flask+50mLwater+6mLconcentrated sulfuric acid Cool down(2Assembling equipment(3) Stop and simple distill (4)(5)七、Experimental records(1) Sulfuric acid soluble in water gives off a lot of heat(2) The solution of the distillation flask become yellow and the sodium bromide dissolve(3) Solution is divided into two layers and liquid of thedistillation become clear(4) Liquid layer, upper as the water phase, the lower is positive bromobutane and liquid for the milky haze(5) Liquid at 99 ℃ and stable distillation, after rising to 103 ℃, 103 ℃ after fractions and the former part of the don't mix.八、Data recordingOutput:1.3g theoretical yield:5.8g productivity:21.7% 九、Experiment Discussion1、Turbidity is because it contains a variety of organic phase to organicimpurities2、Plus the bottle stopper of calcium chloride anhydrous dry batteryin order to prevent the water vapor in the air into the conical flask, at the same time prevent product turbidity。

化学实验报告英语作文(3篇)

化学实验报告英语作文(3篇)

第1篇Experiment Name: Preparation of Sodium Chloride from SaltwaterDate: [Date]Objective: The objective of this experiment was to prepare sodium chloride from saltwater by the process of evaporation and crystallization.Introduction:Saltwater is a mixture of water and sodium chloride (NaCl), which is commonly found in oceans, seas, and lakes. The concentration of sodium chloride in saltwater can vary, but it is typically around 3.5% by weight. The process of evaporation and crystallization is used to separate sodium chloride from saltwater and obtain pure sodium chloride crystals.Materials:- Saltwater- Evaporating dish- Bunsen burner- Glass stirring rod- Weighing balance- Filter paper- Funnel- Beaker- Test tube- Microscope- Sodium chloride crystals (for comparison)Procedure:1. Measure 100 mL of saltwater using a graduated cylinder and transfer it to an evaporating dish.2. Place the evaporating dish on a hot plate and heat it using a Bunsen burner. Stir the saltwater continuously with a glass stirring rod to prevent localized boiling and ensure even evaporation.3. Observe the evaporation process until the saltwater is reduced to a small volume, approximately 20 mL. At this point, the concentration of sodium chloride has increased significantly.4. Remove the evaporating dish from the hot plate and allow it to cool down to room temperature.5. Once the evaporating dish is cool, observe the crystallization process. Sodium chloride crystals will start to form as the solution cools down.6. Use a filter paper and funnel to collect the sodium chloride crystals from the evaporating dish. Wash the crystals with distilled water to remove any impurities.7. Transfer the sodium chloride crystals to a beaker and dry them usinga Bunsen burner. Allow the crystals to cool down to room temperature before weighing them.8. Compare the weight of the sodium chloride crystals obtained from the experiment with the known weight of sodium chloride crystals (for comparison).Results:- Initial weight of the sodium chloride crystals: [Weight]- Weight of the sodium chloride crystals obtained from the experiment: [Weight]- Known weight of sodium chloride crystals (for comparison): [Weight]Discussion:In this experiment, we successfully prepared sodium chloride from saltwater using the process of evaporation and crystallization. As the saltwater was heated, the water evaporated, leaving behind the sodium chloride crystals. The concentration of sodium chloride in the saltwater increased as the water evaporated, leading to the formation of crystals. The purity of the sodium chloride crystals was determined by comparing the weight of the obtained crystals with the known weight of sodium chloride crystals.The experiment demonstrated the effectiveness of the evaporation and crystallization process in separating sodium chloride from saltwater. However, it is important to note that the purity of the obtained sodium chloride crystals can be affected by various factors such as impurities in the saltwater and the conditions of evaporation and crystallization.Conclusion:The objective of this experiment was achieved by successfully preparing sodium chloride from saltwater using the process of evaporation and crystallization. The obtained sodium chloride crystals were compared with the known weight of sodium chloride crystals, and the experiment was found to be successful in obtaining pure sodium chloride. Further optimization of the experimental conditions could potentially improve the purity of the obtained sodium chloride crystals.第2篇Experiment Title: Synthesis of Ethanol from EtheneDate: October 15, 2023Objective: The objective of this experiment was to synthesize ethanol from ethene using the hydration reaction. The experiment aimed to demonstrate the principles of chemical reactions, the use of laboratory equipment, and the application of safety protocols.Materials:- Ethene (C2H4)- Concentrated sulfuric acid (H2SO4)- Water (H2O)- Sodium chloride (NaCl) solution- Potassium dichromate (K2Cr2O7) solution- Iron (III) chloride (FeCl3) solution- Ethanol (C2H5OH) standard solution- Chloroform (CHCl3)- Distillation apparatus- Gas burner- Test tubes- Beakers- Pipettes- Thermometer- Stirring rod- Safety goggles- Lab coat- GlovesProcedure:1. Preparation of Ethene Solution:- Ethene was passed through a column filled with sodium chloride solution to remove impurities.- The purified ethene was collected in a test tube.2. Hydration Reaction:- A beaker containing concentrated sulfuric acid was heated gently.- The ethene was then passed through the hot sulfuric acid, where it underwent hydration to form ethanol.- The resulting solution was allowed to cool.3. Purification of Ethanol:- The mixture was separated using a separating funnel to remove unreacted ethene and sulfuric acid.- The organic layer, containing ethanol, was collected in a clean beaker.4. Confirmation of Ethanol Formation:- A small amount of the organic layer was mixed with potassium dichromate and iron (III) chloride solutions.- A color change indicated the presence of alcohol, confirming the formation of ethanol.5. Distillation:- The organic layer was transferred to a distillation apparatus.- Ethanol, with a boiling point of 78.37°C, was distilled off a nd collected in a receiver.6. Analysis:- The purity of the distilled ethanol was determined using a gas chromatograph.- The yield of ethanol was calculated based on the initial amount of ethene used.Results:- Ethanol Formation:- The reaction mixture turned yellow upon addition of potassium dichromate and iron (III) chloride, indicating the presence of alcohol.- Distillation:- The distillation process yielded approximately 50 mL of ethanol, corresponding to a yield of 40%.- Gas Chromatography:- The gas chromatography analysis confirmed the purity of the ethanol to be 95%.Discussion:The experiment successfully synthesized ethanol from ethene through the hydration reaction. The use of concentrated sulfuric acid as a catalyst facilitated the reaction, and the distillation process allowed for the separation of pure ethanol. The yield of 40% was reasonable, considering the limitations of the experimental setup and the potential for side reactions. The purity of the ethanol, as determined by gas chromatography, was satisfactory, indicating a successful synthesis.Conclusion:This experiment provided a practical demonstration of the hydration reaction and the synthesis of ethanol from ethene. The use of laboratory techniques and safety protocols was crucial in ensuring the success of the experiment. The results indicate that the synthesis of ethanol is a feasible process, and further optimization could potentially increase the yield and purity of the product.Safety Precautions:- All chemicals were handled with care, and appropriate personal protective equipment, including safety goggles, lab coat, and gloves, was worn at all times.- Concentrated sulfuric acid and other hazardous chemicals were handled using proper techniques to avoid spills and inhalation of vapors.- The gas burner was used with caution, and the distillation apparatus was securely fastened to prevent any accidents.References:- Smith, J. M. (2020). Introduction to Organic Chemistry. New York: Oxford University Press.- Johnson, R. L. (2019). Principles of Chemical Engineering. Boston: McGraw-Hill Education.第3篇Experiment Title: Synthesis of Silver NitrateDate: [Date]Time: [Time]Lab Section: [Lab Section]Lab Partner: [Partner's Name]Abstract:The objective of this experiment was to synthesize silver nitrate by reacting silver with concentrated nitric acid. The experiment aimed to understand the chemical reaction involved, the properties of the products, and the safety precautions associated with the use of hazardous chemicals.Introduction:Silver nitrate is a compound with the chemical formula AgNO3. It is a white crystalline solid that is highly soluble in water. Silver nitrate is used in various applications, including photography, medicine, and the preparation of other silver compounds. In this experiment, we synthesized silver nitrate by reacting silver with concentrated nitric acid.Materials:- Silver metal (shiny silver coins or pellets)- Concentrated nitric acid (HNO3)- Distilled water- Test tubes- Beakers- Glass rods- Safety goggles- Lab coat- Gloves- Bunsen burner- Heat sourceProcedure:1. Wear safety goggles, lab coat, and gloves to ensure personal safety.2. Measure 2-3 silver coins or pellets and place them in a test tube.3. Add 2-3 mL of concentrated nitric acid to the test tube containing the silver.4. Observe the reaction. The silver will react with the nitric acid to form a brown gas (NO2) and a white precipitate (silver nitrate).5. Continue adding concentrated nitric acid to the reaction mixture until the precipitate stops forming.6. Allow the reaction mixture to cool to room temperature.7. Once cooled, carefully add 10 mL of distilled water to the test tube.8. Stir the solution with a glass rod to dissolve the silver nitrate.9. Transfer the solution to a beaker and heat it gently over a Bunsen burner to remove any remaining nitric acid fumes.10. Once the fumes have dissipated, allow the solution to cool to room temperature.11. Transfer the solution to a clean, labeled container for storage.Results:The reaction between silver and concentrated nitric acid produced a white precipitate, which was identified as silver nitrate. The solution turned light brown due to the formation of nitrogen dioxide gas (NO2). The precipitate was observed to be insoluble in water.Discussion:In this experiment, the reaction between silver and concentrated nitric acid was a single displacement reaction. The silver atoms replaced the hydrogen atoms in the nitric acid, forming silver nitrate and nitrogen dioxide gas. The balanced chemical equation for the reaction is:2Ag(s) + 4HNO3(aq) → 2AgNO3(aq) + 2NO2(g) + 2H2O(l)The white precipitate observed was silver nitrate, which is a sparingly soluble salt. The light brown color of the solution was due to the formation of nitrogen dioxide gas, which is a colorless gas under normal conditions but turns brown when dissolved in water.Conclusion:The experiment successfully synthesized silver nitrate by reactingsilver with concentrated nitric acid. The reaction produced a white precipitate, which was identified as silver nitrate. The experiment demonstrated the principles of single displacement reactions and the properties of silver nitrate. It also emphasized the importance of safety precautions when handling hazardous chemicals.References:1. Chang, R. (2016). Chemistry. 13th ed. New York, NY: McGraw-Hill Education.2. Silberberg, M. S. (2016). Chemistry: The Central Science. 14th ed. New York, NY: McGraw-Hill Education.。

英文版化学实验报告(最新整理)

英文版化学实验报告(最新整理)

Preparation of n -bromobutane一、Purpose1、Study the principle and method of preparing n-butyl bromide from n-butyl alcohol by treatment with sodium bromide and concentrated sulfuric acid2、Learn the technique of reflux with a gas trap apparatus and washing.二、Principlen-Butyl bromide can be easily prepared by allowing n-butyl alcohto react with sodium bromide and concentrated sulfuric acid.Main reactions :NaBr + H 2SO4 → HBr + NaHSO424H SO 322232222CH CH CH CH OH HBr CH CH CH CH Br H O+−−−→+Secondary reactions :;24H SO 32223222CH CH CH CH OH CH CH CH=CH H O−−−→+()24H SO 32223222222CH CH CH CH OH CH CH CH CH O H O−−−→+24222H SO HBr Br SO H O+−−→++三、Materials n-butyl alcohol :4mL Sodium bromide :5gConcentrated sulfuric acid :2.5mL/6mL Anhydrous calcium chloride:0.5g 10% aqueous sodium hydroxide:5mL四、Primary reagent And Product physical constantsNameRelativemolecularmassCharacter RelativedensityMeltingpointBoilingpointRefractiveindexn-bromobutane137.03colorless andtransparentliquid1.299-122.4101.6 1.4399n-butyl alcohol74.12colorless andtransparentliquid0.8098-89.2117.7 1.3993五、Apparatus六、Procedure(1)50mLboiling flask+50mLwater+6mLconcentrated sulfuric acid Cool down(2)Assembling equipment(3) Stop and simple distill(4)(5)七、Experimental records(1) Sulfuric acid soluble in water gives off a lot of heat(2) The solution of the distillation flask become yellow and the sodium bromide dissolve(3)Solution is divided into two layers and liquid of the distillation become clear(4) Liquid layer, upper as the water phase, the lower is positive bromobutane and liquid for the milky haze(5) Liquid at 99 ℃ and stable distillation, after rising to 103 ℃, 103 ℃after fractions and the former part of the don't mix.八、Data recordingOutput:1.3g theoretical yield:5.8g productivity:21.7% Character: colorless and transparent liquid Refractive index:1.4372九、Experiment Discussion1、Turbidity is because it contains a variety of organic phase to organicimpurities2、Plus the bottle stopper of calcium chloride anhydrous dry battery inorder to prevent the water vapor in the air into the conical flask, at the same time prevent product turbidity。

化学实验报告英文版

化学实验报告英文版

化学实验报告英文版Chemical Experiment ReportIntroduction:In this experiment, the aim was to investigate the effects of different concentrations of a reactant on the rate of a chemical reaction. The reaction between hydrochloric acid (HCl) and sodium thiosulfate (Na2S2O3) was chosen as the model system. The rate of this reaction can be determined by measuring the time taken for the solution to become opaque due to the formation of a precipitate of sulfur.Materials and Methods:1. Chemicals:- Hydrochloric acid (HCl)- Sodium thiosulfate (Na2S2O3)- Distilled water2. Apparatus:- Beakers- Stopwatch- Measuring cylinder- Glass rod- Pipette3. Procedure:1. Prepare five different solutions of sodium thiosulfate with concentrationsranging from 0.1 M to 1.0 M.2. Label five beakers accordingly.3. Measure 50 mL of each sodium thiosulfate solution using a measuring cylinder and pour into the respective beakers.4. Add 10 mL of hydrochloric acid to each beaker simultaneously.5. Start the stopwatch immediately after adding the acid and record the time taken for the solution to turn opaque.6. Repeat the experiment three times for each concentration to ensure accuracy.Results:The following table presents the average time taken for the solutions to turn opaque at different concentrations of sodium thiosulfate:Concentration (M) | Time taken (s)-----------------|---------------0.1 | 1200.3 | 600.5 | 400.7 | 301.0 | 20Discussion:From the results, it is evident that as the concentration of sodium thiosulfate increases, the time taken for the solution to turn opaque decreases. Thisindicates that the rate of the reaction between HCl and Na2S2O3 increases with increasing concentration of the reactant.The reaction between HCl and Na2S2O3 is a precipitation reaction that produces sulfur as a product. The rate of this reaction depends on the frequency of collisions between reactant particles. Increasing the concentration of sodium thiosulfate increases the number of particles available for collision, thereby increasing the likelihood of successful collisions and faster reaction rates. Furthermore, the reaction is known to be first-order with respect to both HCl and Na2S2O3. This means that doubling the concentration of either reactant will result in a doubling of the reaction rate. This relationship is consistent with the observed decrease in reaction time with increasing concentration. Conclusion:In conclusion, this experiment demonstrated the relationship between the concentration of a reactant and the rate of a chemical reaction. The results clearly showed that increasing the concentration of sodium thiosulfate led to a decrease in the time taken for the solution to turn opaque, indicating a faster reaction rate. This experiment highlights the importance of reactant concentration in controlling the rate of chemical reactions and provides a practical example of how reaction rates can be manipulated by altering reactant concentrations.。

化学英语实验报告

化学英语实验报告

化学英语实验报告Title: Experiment Report: Investigating the Effects of pH on Enzyme Activity Introduction:Enzymes are biological catalysts that play a crucial role in the chemical reactions occurring within living organisms. The activity of enzymes is influenced by various factors, including pH. In this experiment, we aimed to investigate the effects of pH on enzyme activity using the enzyme catalase and hydrogen peroxide as the substrate.Materials and Methods:1. Catalase solution2. Hydrogen peroxide solution3. Test tubes4. pH buffer solutions (pH 4, 7, and 10)5. Graduated cylinder6. Stopwatch7. Water bath8. PipettesThe experiment was carried out by preparing three sets of test tubes, each containing catalase solution and hydrogen peroxide solution. To each set, a different pH buffer solution (pH 4, 7, or 10) was added to create the desired pH environment. The reactions were then initiated by adding the hydrogen peroxide solution to the catalase solution, and the time taken for thedisappearance of bubbles (indicating the breakdown of hydrogen peroxide by catalase) was recorded using a stopwatch. This process was repeated for each pH condition.Results:The results of the experiment showed that the rate of enzyme activity varied with pH. The fastest reaction occurred at pH 7, while the reaction rates at pH 4 and pH 10 were slower.Discussion:The findings of this experiment demonstrate the significant impact of pH on enzyme activity. Enzymes have an optimal pH at which they exhibit maximum activity, and deviations from this pH can lead to a decrease in enzyme efficiency. In the case of catalase, the optimal pH is around 7, which is close to the physiological pH of most living organisms.Conclusion:In conclusion, this experiment highlights the importance of pH in regulating enzyme activity. Understanding the effects of pH on enzyme function is essential for various fields, including medicine, biochemistry, and biotechnology. Further research in this area could lead to the development of novel enzyme-based technologies and therapies.。

化学专业英语实验报告

化学专业英语实验报告

In the physiological saline the sodium chloride content determinationone, the experimental goal1、 the study silver nitrate standard solution configuration and the demarcation method2、 the grasping law raises Si Fa to determine the chloride ion the method principletwo, the experimental principleWith AgNO3 standard solution titration Cl - Ag + + Cl - = = AgCl,At ph 7.0 -10.5 available fluorescent yellow do indicator (HFIn)HFIn = = FIn (yellow) + H +Sp before: excessive, AgCl precipitation adsorption of Cl -AgCl Cl - + FIn - (yellow-green)After Sp: Ag +, excessive AgCl precipitation Ag + adsorption, adsorption FIn - reprecipitationAgCl, Ag + + FIn - = = AgCl, Ag +, FIn - (pink)The finish color changes: from yellowish green to orange Three, instruments and reagentsEquipment and materials:Acid type buret (150 ml), taper bottle (250 ml), volumetric flask (100 ml), pipette (20 ml, 10 ml), measuring cylinder (100 ml, 10 ml), beaker (100 ml), brown reagent bottles (500 ml), analytical balance, platform scale.The reagent and drug: Analysis of AgNO3 (s, pure), NaCl (s, analysis of pure), physiological saline, fluorescent yellow - starch. Fourth, the experimental stepsAccurately moving 25 ml concentration is 0.7064 mol ╱ L of silver nitrate standard solution in the middle of 250 ml volumetric flask, dilute to scale as a standard solution titration.Accurately moving saline 10.00 ml to 250 ml conical flask, add 50 ml water, 3 drops of fluorescent yellow indicator, 5% starch indicator 5 ml, under continuous agitation, using silver nitratestandard solution titration to solution from yellow to pink is the end point. Record the consumption volume of silver nitrate standard solution, parallel determination of 3, calculate the sodium chloride content in saline and relative mean deviation.Fifth, data recording and processingFormula: ρ = V×Mr NaCl×C AgNO3 x 100The average deviation d=0.01300 d r=d/ρ×100%=0.13%。

关于英文版化学实验报告

 关于英文版化学实验报告

关于英文版化学实验报告篇一:英文版化学实验报告Title: Preparation of Fe scrap from waste(NH4) 2SO4.FeSO4.6H2OThe purpose of the experimentLearn the method used scrap iron preparation of ferrous ammonium sulfate.Familiar with the water bath, filtered, and evaporated under reduced pressure and crystallization basic working.The experimental principle, the iron and sulfuric acid to generate reactive ferrous sulfate, ferrous sulfate and ammonium sulfate in an aqueous solution of equal molar interaction, becomes less soluble blue generate ferrous ammonium sulfate.Fe+H2SO4=FeSO4+H2 (gas)FeSO4+ (NH4)2SO4+6H2O=(NH4)2SO4.FeSO4.6H2O Usually ferrous rocks are easily oxidized in air, but after the formation of relatively stable perfunctory, not to be oxidized.Experiment to use instruments, scales, constant temperature water bath, pumps, basins, cups, 10ml graduated cylinder, asbestos mesh, glass, tripod, alcohol lamp, funnel.Iron pieces to a solid pharmaceutical use, use of acid ammonium sulfate and 3mol / l of sulfuric acid, concentrated sulfuric acid.The experiment was divided into four steps.The first step Said iron powder 4g into a beaker and then 50ml 10ml, 3mol / L H2SO4 was added to the same beaker. The second step will be the beaker is heated to no more bubbles, and then filtered hot and the filtrate was then filled in 100ml beaker. The third step, called 4g (NH4)2SO4, and the resultingammonium sulfate and 5.3ml of water to form a saturated solution, and then add it to the ferrous sulfate solution, adjusted with concentrated sulfuric acid to PH = 1. A fourth step, the third step the solution was heated in a water bath to the surface until the film is crystallized, it was slowly cooled andthen filtered under reduced pressure to stand finally dried, weighed and the yield was calculated. The results obtained 8.1g bluish powdery crystals. Have this result we can calculate yield, starting with the first step we tried to know the amount of iron, should this we can calculate the theoretical sulfate ferrous sulfate is 0.03mol, then ferrous sulfate obtained by the0.03molFeSO4 theoretical value of ammonium. FeSO4+(NH4)2SO4+6H2O=FeSO4.(NH4)2SO4.6H2O 0.03molX molX=0.03molm=XM=0.03molⅹ392g/mol=11.76gYield = the actual value of the formula is divided by the theoreticalvalue by 100%.it will be calculated into the data obtained in a yield of 68.9%.篇二:英文版化学实验报告The preparation of alkali type copper carbonateThe first:the experiment purpose1.Master the methods of alkali type copper carbonate prepared and principle2.Through the design experiment to cultivate independent design ability and chemical research thinkingThe second:the experimental principleThe solubility of Cu(OH)2and CuCO3 are similar, With Cu2(OH)2CO3 solid precipitation in the solution.2CuSO4+2Na2CO3+H2O==Cu2(OH)2CO3↓+2Na2SO4+CO2↑The third:the experimental steps1.Solution preparationDisposes 0.5 mole of each litre acid sour coppers and sodium carbonate solution each 100 milliliters.2.The feeding order and raw material compare the explorationAccording to 2:1.6,2:2,2:2.4,2:2.8 allocated proportion, is accepted after passing an examination the surface disposition acid sour copper and the sodium carbonate solution, joins in separately 8 test tubes, joins rapidly the sulfuric acid copper solutions in the sodium carbonatesolution, vibrates about other constant temperature ten minutes as for 75 degrees Celsius water baths in, the inversion feeding order recreates one time, the observation has the precipitation speed, quantity how many and the color,discovers the optimum condition.3.Temperature explorationAccording to the above optimum condition, takes the acid sour copper solutions and the sodium carbonate solution separately under 50, 75 and 100 degrees Celsius responded that, discovers the optimum temperature.4.According to 2, 3 step exploration optimum condition prepares the final product, and with the distilled water lavation, finally dries and calls heavily.(Enlarges ten times with conical flask to do)The fourth:the experimental itemsInstrument and material: The balance, the beaker, the glass rod, the Volumetric flask, the test tube, the filter flask,the Buchner funnel, the Erlenmeyer flaskChemicals: Copper carbonate, sodium sulfateThe fifth:the experimental result1.By the step 2, the observation phenomenon optimum condition is equal to for the cupric sulfate compared to the sodium carbonate 2:2.4, the feeding order for joins the sulfuric acid copper solutions to thesodium carbonate solution in.2.By the step 3, the observation phenomenon optimum temperature is 75 degrees Celsius3.According to the copper sulfate solution than sodium carbonatesolution is 2:2. 4, ten times magnification, alkali type copper carbonate was zero point five grams, according to the reaction equation calculation yield.2CuSO4+2Na2CO3+H2O==Cu2(OH)2CO3↓+2Na2SO4+CO2↑2 10.5*0.02 X2/(0.5*0.02)=1/XX=0.005M[Cu2(OH)2CO3]=0.005*222=1.11gProductive rate:0.5/1.11*100%=45%The sixth : Questions1. Which cupric salt suit the system to take the cupric basic carbonate? Answer:Cu(NO)3 or CuSO42. The reaction temperature has what influence to this experiment?.Answer:The temperature excessively is low, the response speed is slow; The hyperpyrexia, the Cu2(OH)2CO3 decomposition is CuO.3. Reaction is carried out at what temperature will appear Brownproduct? What is the brown substance?Answer: The temperature is equal to 100 degrees Celsius and this brown material is CuO.篇三:化学专业英语实验报告In the physiological saline the sodium chloride content determinationone, the experimental goal1、the study silver nitrate standard solution configuration and the demarcation method2、the grasping law raises Si Fa to determine the chloride ion the method principle two, the experimental principleWith AgNO3 standard solution titration Cl - Ag + + Cl - = = AgCl,At ph 7.0 -10.5 available fluorescent yellow do indicator (HFIn)HFIn = = FIn (yellow) + H +Sp before: excessive, AgCl precipitation adsorption of Cl - AgCl Cl - + FIn - (yellow-green)After Sp: Ag +, excessive AgCl precipitation Ag + adsorption, adsorption FIn - reprecipitation AgCl, Ag + + FIn - = = AgCl, Ag +, FIn - (pink) The finish color changes: from yellowish green to orange Three, instruments and reagentsEquipment and materials:Acid type buret (150 ml), taper bottle (250 ml), volumetric flask (100 ml), pipette (20 ml, 10 ml), measuringcylinder (100 ml, 10 ml), beaker (100 ml), brown reagent bottles (500 ml), analytical balance, platform scale. The reagent and drug: Analysis of AgNO3 (s, pure), NaCl (s,analysis of pure), physiological saline, fluorescent yellow - starch. Fourth, the experimental stepsAccurately moving 25 ml concentration is 0.7064 mol ╱L of silver nitrate standard solution in the middle of 250 ml volumetric flask, dilute to scale as a standard solution titration.Accurately moving saline 10.00 ml to 250 ml conical flask, add 50 ml water, 3 drops of fluorescent yellow indicator, 5% starch indicator 5 ml, under continuous agitation, using silver nitratestandard solution titration to solution from yellow to pink is the end point. Record the consumption volume of silver nitratestandard solution, parallel determination of 3, calculate the sodium chloride content in saline and relative mean deviation.Fifth, data recording and processingFormula: ρ = V×MrNaCl×CAgNO3 x 100The average deviation d=0.01300 dr=d/ρ×100%=0.13%。

化学实验报告常见英文

化学实验报告常见英文

Experiment Title: Synthesis of Ethanol from EthanolamineDate: [Date]Objective:The objective of this experiment was to synthesize ethanol from ethanolamine using the dehydration reaction. Ethanolamine is a compound with the molecular formula NH2CH2CH2OH, and it can be dehydrated to produce ethanol (CH3CH2OH) and ammonia (NH3).Materials:- Ethanolamine (NH2CH2CH2OH)- Sulfuric acid (H2SO4)- Concentrated sulfuric acid- Ethanol- Sodium chloride (NaCl)- Distilled water- Sodium hydroxide (NaOH)- Sodium sulfate (Na2SO4)- Potassium permanganate (KMnO4)- Barium chloride (BaCl2)- Distillation apparatus- Reaction vessel- Round-bottom flask- Condenser- Thermometer- Test tubes- Pipettes- Weighing scale- Stirring rod- Safety goggles- Gloves- Lab coatProcedure:1. Measure 5 g of ethanolamine using a weighing scale and transfer it toa round-bottom flask.2. Add 5 mL of concentrated sulfuric acid to the flask and stir the mixture thoroughly.3. Place the flask in a water bath and heat it to 60°C for 2 hours. This will facilitate the dehydration reaction.4. After 2 hours, remove the flask from the water bath and allow it to cool to room temperature.5. Transfer the reaction mixture to a distillation apparatus. The distillation apparatus consists of a round-bottom flask, a condenser, and a receiving flask.6. Heat the mixture to approximately 78°C, which is the boiling point of ethanol. Ethanol will vaporize and be collected in the receiving flask.7. Collect the distillate and transfer it to a test tube. Add 5 mL of water to the test tube and observe the appearance of the liquid.8. To identify the presence of ammonia, add a few drops of potassium permanganate to the test tube. If the solution turns brown, it indicates the presence of ammonia.9. To confirm the purity of the ethanol, add a few drops of barium chloride to the test tube. If a white precipitate forms, it indicates the presence of sodium chloride, which was used as a catalyst in the reaction.10. Dispose of the waste products and clean the equipment.Results:- The reaction mixture was heated to 60°C for 2 hours, and the distillation was performed at approximately 78°C.- Ethanol was collected in the receiving flask, and the distillate was observed to be a clear liquid.- A brown color was observed in the test tube when potassium permanganate was added, indicating the presence of ammonia.- A white precipitate formed when barium chloride was added, indicating the presence of sodium chloride.Discussion:The dehydration reaction of ethanolamine to produce ethanol was successfully achieved in this experiment. The reaction mixture was heated to 60°C for 2 hours to facilitate the dehydration process. Ethanol was collected in the receiving flask, and the distillate was observed to be a clear liquid, indicating the successful synthesis of ethanol.The presence of ammonia was confirmed by the brown color observed when potassium permanganate was added. This suggests that the dehydration reaction also produced ammonia as a byproduct.The formation of a white precipitate when barium chloride was added confirms the presence of sodium chloride, which was used as a catalyst in the reaction. The sodium chloride did not affect the purity of the ethanol product.Conclusion:The objective of synthesizing ethanol from ethanolamine using the dehydration reaction was successfully achieved in this experiment. Ethanol was produced, and the purity of the product was confirmed by observing the color changes and precipitate formation. This experiment provided a practical approach to understanding the dehydration reaction and its application in the synthesis of organic compounds.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学实验报告英文版
Chemical Experiment Report
Abstract:
This report presents the findings and analysis of a chemical experiment conducted to investigate the effects of temperature on the rate of reaction between hydrochloric acid (HCl) and sodium thiosulfate (Na2S2O3). The experiment involved varying the temperature of the reactants and measuring the time taken for the reaction to occur. The results indicate a clear correlation between temperature and reaction rate, with higher temperatures leading to faster reactions.
Introduction:
Chemical reactions are influenced by various factors, including temperature, concentration, and catalysts. The purpose of this experiment was to examine the impact of temperature on the rate of a chemical reaction. The reaction between hydrochloric acid and sodium thiosulfate was chosen due to its well-documented reaction kinetics.
Methodology:
The experiment was conducted using a simple setup consisting of a conical flask, a stopwatch, and a thermometer. Initially, 50 mL of 1 M hydrochloric acid was poured into the flask, followed by the addition of 10 mL of 0.1 M sodium thiosulfate. The stopwatch was started as soon as the sodium thiosulfate was added, and the time was recorded when the solution turned opaque due to the
formation of a yellow precipitate. The experiment was repeated at different temperatures by immersing the flask in water baths maintained at specific temperatures.
Results and Discussion:
The experiment was carried out at four different temperatures: 20°C, 30°C, 40°C, and 50°C. The average reaction times at each temperature were recorded and are presented in Table 1 below:
Temperature (°C) Reaction Time (s)
20 120
30 90
40 70
50 50
Table 1: Average reaction times at different temperatures
From the results, it is evident that as the temperature increased, the reaction time decreased. This indicates that higher temperatures accelerate the rate of the reaction between hydrochloric acid and sodium thiosulfate. The relationship between temperature and reaction rate can be explained by the collision theory. According to this theory, particles must collide with sufficient energy to overcome the activation energy barrier for a reaction to occur. As temperature increases, the average kinetic energy of the particles also increases, leading to more frequent and energetic collisions.
Furthermore, the reaction between hydrochloric acid and sodium thiosulfate is
exothermic, meaning it releases heat. As the reaction progresses, the released heat raises the temperature of the solution, further increasing the reaction rate. This positive feedback mechanism contributes to the observed trend of faster reactions at higher temperatures.
Conclusion:
In conclusion, this experiment demonstrates the significant influence of temperature on the rate of the reaction between hydrochloric acid and sodium thiosulfate. As temperature increases, the reaction time decreases due to more energetic collisions and the exothermic nature of the reaction. These findings have practical implications in various fields, such as industrial chemistry and environmental science, where controlling reaction rates is crucial.
Further research could explore the effect of temperature on other chemical reactions and investigate the specific activation energy values for different reactants. Additionally, studying the impact of other factors, such as concentration and catalysts, on reaction rates would provide a comprehensive understanding of chemical kinetics.。

相关文档
最新文档