数列的周期大合集,你需要的周期数列在这里

合集下载

斐波那契数列循环周期表

斐波那契数列循环周期表

2016/10/18 2017/3/11 2017/6/8 2017/8/2 2017/9/5 2017/9/26 2017/10/9 2017/10/17 2017/10/22 2017/10/25 2017/10/27 2017/10/28 2017/10/29
2016/10/19 2017/3/12 2017/6/9 2017/8/3 2017/9/6 2017/9/27 2017/10/10 2017/10/18 2017/10/23 2017/10/26 2017/10/28 2017/10/29 2017/10/30
2016/9/16 2017/2/7 2017/5/7 2017/7/1 2017/8/4 2017/8/25 2017/9/7 2017/9/15 2017/9/20 2017/9/23 2017/9/25 2017/9/26 2017/9/27
2016/9/17 2017/2/8 2017/5/8 2017/7/2 2017/8/5 2017/8/26 2017/9/8 2017/9/16 2017/9/21 2017/9/24 2017/9/26 2017/9/27 2017/9/28
2016/10/4 2017/2/25 2017/5/25 2017/7/19 2017/8/22 2017/9/12 2017/9/25 2017/10/3 2017/10/8 2017/10/11 2017/10/13 2017/10/14 2017/10/15
2016/10/5 2017/2/26 2017/5/26 2017/7/20 2017/8/23 2017/9/13 2017/9/26 2017/10/4 2017/10/9 2017/10/12 2017/10/14 2017/10/15 2017/10/16

斐波那契数列循环周期表

斐波那契数列循环周期表

2016/9/20 2017/2/11 2017/5/11 2017/7/5 2017/8/8 2017/8/29 2017/9/11 2017/9/19 2017/9/24 2017/9/27 2017/9/29 2017/9/30 2017/10/1
2016/9/21 2017/2/12 2017/5/12 2017/7/6 2017/8/9 2017/8/30 2017/9/12 2017/9/20 2017/9/25 2017/9/28 2017/9/30 2017/10/1 2017/10/2
2016/10/2 2017/2/23 2017/5/23 2017/7/17 2017/8/20 2017/9/10 2017/9/23 2017/10/1 2017/10/6 2017/10/9 2017/10/11 2017/10/12 2017/10/13
第1天 第2天 第3天 第4天 第5天 第6天 第7天 第8天 第9天 第10天 第11天 第12天 第13天 第14天 第15天 第16天 第17天 第18天
2016/10/6 2017/2/27 2017/5/27 2017/7/21 2017/8/24 2017/9/14 2017/9/27 2017/10/5 2017/10/10 2017/10/13 2017/10/15 2017/10/16 2017/10/17
2016/10/7 2017/2/28 2017/5/28 2017/7/22 2017/8/25 2017/9/15 2017/9/28 2017/10/6 2017/10/11 2017/10/14 2017/10/16 2017/10/17 2017/10/18
2016/9/16 2017/2/7 2017/5/7 2017/7/1 2017/8/4 2017/8/25 2017/9/7 2017/9/15 2017/9/20 2017/9/23 2017/9/25 2017/9/26 2017/9/27

周期数列参数(大全)

周期数列参数(大全)

周期数列参数(大全)这个是斐波那契数列,还有一个鲁卡斯数列我感觉到有时更好用!特别是7天线更神奇!用传统的5,10,有时破了5天线,还没到10天线就回头了呢,其实是7天线在起作用。

19世纪时法国一个数学家鲁卡斯(E.Lucas)在研究数论的素数分布问题时发现和斐波那契数有些关系,而他又发现一种新的数列:1,3,4,7,11,18,29,47,76,123,199,322,521等等。

这数列和斐波那契数列有相同的性质,第二项以后的项是前面二项的和组成。

数学家们称这数列为鲁卡斯数列。

斐波纳契数列与解鲁卡斯数列都与黄金分割比有密切的关系.鲁卡斯数列与费波纳茨数列的关系费波纳茨数列Fn:0、1、1、2、3、5、8、13、21、34、55、89、144、233……….鲁卡斯数列…L n:1、3、4、7、11、18、29、47、76、123、199、322……..鲁卡斯数列的构成为相邻两费波纳茨数之和的集合,即Ln=Fn-1+Fn+1。

1876年鲁卡斯在研究一元二次方程POW(X,2)-X-1=0的两个根X1=(1+SQRT(5))/2,X2=(1-SQRT(5))/2时{1/X=X/(1-X)}得出了两个重要的推论结果:Fn=(1/SQRT(5))*POW((1+SQRT(5))/2,n)-(1/SQRT(5))*POW((1-SQRT(5))/2,n)Ln=POW((1+SQRT(5))/2,n)+POW((1-SQRT(5))/2,n)方程1/X=X/(1-X)的正根,为无理数∮=(1+SQRT (5))/2≈1.618,即著名的黄金分割比。

由黄金分割比按0.38(∮平方分之一)的乘率递减求出的正方形,所作圆弧的连线,即黄金螺旋线。

螺旋线是宇宙构成的基本形态,也是股市起伏时间序的基本形态,而其本质的参数即是黄金分割比∮。

比较费波纳茨数列与鲁卡斯数列,对相邻两数的比值取n趋向无穷大的极限,比值趋向黄金分割比∮Fn+1/Fn------->?∮Ln+1/Ln------->?∮因此,结论是两数列的本质是一致的,都与黄金分割比有着密切的关系。

周期数列

周期数列

常见递归数列通项公式的求解策略数列是中学数学中重要的知识之一,而递归数列又是近年来高考和全国联赛的重要题型之一。

数列的递归式分线性递归式和非线性递归式两种,本文仅就高中生的接受程度和能力谈谈几种递归数列通项公式的求解方法和策略。

一、周期数列如果数列满足:存在正整数M、T,使得对一切大于M的自然数n,都有成立,则数列为周期数列。

例1、已知数列满足a1 =2,an+1 =1-,求an 。

解:an+1 =1-an+2 =1-=-, 从而an+3 = 1-=1+an-1=an ,即数列是以3为周期的周期数列。

又a1 =2,a2=1-=, a3 =-12 , n=3k+1所以an= ,n=3k+2 ( kN )-1 , n=3k+3二、线性递归数列1、一阶线性递归数列:由两个连续项的关系式an= f (an-1 )(n,n)及一个初始项a1所确定的数列,且递推式中,各an都是一次的,叫一阶线性递归数列,即数列满足an+1 =f (n) an+g(n),其中f (n)和g(n)可以是常数,也可以是关于n 的函数。

(一)当f (n) =p 时,g(n) =q(p、q为常数)时,数列是常系数一阶线性递归数列。

(1)当p =1时,是以q为公差的等差数列。

(2)当q=0,p0时,是以p为公比的等比数列。

(3)当p1且q0时,an+1 =p an+q可化为an+1-=p(an-),此时{an-}是以p为公比,a1-为首项的等比数列,从而可求an。

例2、已知:=且,求数列的通项公式。

解:=-=即数列是以为公比,为首项的等比数列。

(二)当f(n),g(n)至少有一个是关于n的非常数函数时,数列{an}是非常系数的一阶线性递归数列。

(1)当f(n) =1时,化成an+1=an+g(n),可用求和相消法求an。

例3、(2003年全国文科高考题)已知数列{an}满足a1=1,an=3n--1+an -1 (n2) , (1)求a2 ,a3 ; (2) 证明:an= .(1)解:a1 =1, a2=3+1=4 , a3=32+4=13 .(2)证明:an=3n--1+an-1 (n2) ,an-an-1=3n—1 ,an-1-an-2=3n—2 ,an-2-an-3=3n—3……,a4-a3=33 ,a3-a2=32 ,a2-a1=31将以上等式两边分别相加,并整理得:an-a1=3n—1+3n—2+3n—3+…+33+32+31 ,即an=3n—1+3n—2+3n—3+…+33+32+31+1= .(2)当g(n)=0时,化为a n+1=f(n) an ,可用求积相消法求an 。

数列全集

数列全集

1、256 ,269 ,286 ,302 ,()解析: 2+5+6=13 256+13=269 2+6+9=17 269+17=286 2+8+6=16 286+16=302 302+3+2=3072、72 , 36 , 24 , 18 , ( )解析:(方法一)相邻两项相除,72 36 24 18\ / \ / \ /2/1 3/2 4/3(分子与分母相差1且前一项的分子是后一项的分母)接下来貌似该轮到5/4,而18/=5/4. 选C(方法二)6×12=72, 6×6=36, 6×4=24, 6×3 =18, 6×X 现在转化为求X12,6,4,3,X12/6 ,6/4 , 4/3 ,3/X化简得2/1,3/2,4/3,3/X,注意前三项有规律,即分子比分母大一,则3/X=5/4 可解得:X=12/5 再用6×12/5=3、8 , 10 , 14 , 18 ,()A. 24B. 32C. 26D. 20分析:8,10,14,18分别相差2,4,4,?可考虑满足2/4=4/?则?=8所以,此题选18+8=264、3 , 11 , 13 , 29 , 31 ,()分析:奇偶项分别相差11-3=8,29-13=16=8×2,?-31=24=8×3则可得?=55,故此题选D5、-2/5,1/5,-8/750,()。

A 11/375B 9/375C 7/375D 8/375解析: -2/5,1/5,-8/750,11/375=> 4/(-10),1/5,8/(-750),11/375=>分子 4、1、8、11=>头尾相减=>7、7分母 -10、5、-750、375=>分2组(-10,5)、(-750,375)=>每组第二项除以第一项=>-1/2,-1/2 答案为A1. 16 , 8 , 8 , 12 , 24 , 60 , ( )分析:相邻两项的商为,1,,2,,3,所以选1802. 2 ,3 ,6 ,9 ,17 ,()分析:6+9=15=3×53+17=20=4×5 那么2+?=5×5=25 所以?=23 所以选B3. 3 ,2 ,5/3 ,3/2 ,()5 6 5 4分析:通分 3/1 4/2 5/3 6/4 ----7/5所以选A4. 20 ,22 ,25 ,30 ,37 ,()分析:它们相差的值分别为2,3,5,7。

《周期数列》专题

《周期数列》专题

《周期数列》专题2019年( )月( )日 班级 姓名1.数列的定义 按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.3.数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.2.[P33A 组T4]在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于() A.32 B.53 C.85 D.23答案 D解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12, a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23.数列的周期性典例 数列{a n }满足a n +1=11-a n,a 8=2,则a 1= .答案 12解析 ∵a n +1=11-a n,∴a n +1=11-a n =11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2,n ≥3,∴周期T =(n +1)-(n -2)=3.∴a 8=a 3×2+2=a 2=2.而a 2=11-a 1,∴a 1=12.跟踪训练 (1)数列{a n }满足a n +1=⎩⎨⎧ 2a n ,0≤a n ≤12,2a n -1,12<a n <1, a 1=35,则数列的第2 018项为 .答案 15解析 由已知可得,a 2=2×35-1=15, a 3=2×15=25, a 4=2×25=45, a 5=2×45-1=35, ∴{a n }为周期数列且T =4,∴a 2 018=a 504×4+2=a 2=15. (2)(2017·安徽名校联考)已知数列{a n }的首项为2,且数列{a n }满足a n +1=a n -1a n +1,数列{a n }的前n 项的和为S n ,则S 2 016等于( )A .504B .588C .-588D .-504 答案 C解析 ∵a 1=2,a n +1=a n -1a n +1,∴a 2=13,a 3=-12,a 4=-3,a 5=2,…,∴数列{a n }的周期为4,且a 1+a 2+a 3+a 4=-76,∵2 016÷4=504,∴S 2 016=504×⎝⎛⎭⎫-76=-588,故选C.4.若数列{a n }满足a 1=2,a 2=3,a n =a n -1a n -2(n ≥3且n ∈N *),则a 2 018等于( ) A .3B .2 C.12D.23答案 A解析 由已知a 3=a 2a 1=32,a 4=a 3a 2=12, a 5=a 4a 3=13,a 6=a 5a 4=23, a 7=a 6a 5=2,a 8=a 7a 6=3, ∴数列{a n }具有周期性,且T =6,∴a 2 018=a 336×6+2=a 2=3.解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.5.数列{a n }满足a 1=2,a n+1=,则a 2019= ( )A .B .-C .2D .-35.数列{a n }满足a 1=1,a n =1+(n >1),则a 2= ( )A .1B .2C .3D .45.数列{a n }满足a 1=2,a n +1=,则a 2019= ( ) A .1 B .2C .3D .4。

探寻周期变化律,求项求和皆乐趣

探寻周期变化律,求项求和皆乐趣
(2) , ,2,2, , ,2,2,……
(1)的通项公式为 易得,(2)的通项只要求出 , , , , , , , ,……的通项便可以了,它与(2)相差一个系数( )。
以上数列的符号与正弦函数在四个象限的符号完全一致,它的通项:
(n∈N),
∴ , ,2,2, , ,2,2,……的通项为:
(n∈N),
所以: :1,2,3,1,2,3,1,2,3,……
(3)数列 :1,2,3,4,1,2,3,4,……的通项公式为:
(n∈N),
这是因为:我们先做以下变换:扩大2倍:
2,4,6,8,2,4,6,8,……
减去它们的平均数5:
, ,1,3, , ,1,3,……
分解成两个数列:
(1) ,1, ,1, ,1, ,1,……
(1)① : ,1, ,1,…,周期为2
② :1, ,1, ,…,周期为2
③ = : ,1, ,1,…,周期为2
(2) : ,0,1, ,0,1,……周期为3
2、四则运算构造式,折合分解显规律
(1)数列 :1,2,1,2,1,2,…可以由 :
, , , , , ,……,
构成,它的通项公式可以写成:
(n∈N),
=16( + + + + + )+ + + +
=16(1+2+1-1-2-1)+1+2+1-1
=3
方法二: , = - ,…, = - 这n-1个式子相加得: + +…+ = -
= + (n∈N且n≥2)
= + = + = + =1+2=3

2023年新高考数学大一轮复习专题23 数列的基本知识与概念 (解析版)

2023年新高考数学大一轮复习专题23 数列的基本知识与概念 (解析版)

专题23 数列的基本知识与概念【考点预测】1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. (2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N *(或它的有限子集{}12n ⋯,,,)为定义域的函数()n a f n =当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法. 2.数列的分类(1)按照项数有限和无限分:(2)按单调性来分:111()n n n nn n a a a a a a C +++≥⎧⎪≥⎪⎨==⎪⎪⎩递增数列:递减数列: ,常数列:常数摆动数列 3.数列的两种常用的表示方法(1)通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{}n a 的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 【方法技巧与总结】(1)若数列{}n a 的前n 项和为n S ,通项公式为n a ,则1112n n n S n a S S n n N *-=⎧⎪=⎨-≥∈⎪⎩ , , ,注意:根据n S 求n a 时,不要忽视对1n =的验证.(2)在数列{}n a 中,若n a 最大,则11n n n n a a a a -+≥⎧⎨≥⎩ , 若n a 最小,则11.n n nn a a a a -+≤⎧⎨≤⎩【题型归纳目录】 题型一:数列的周期性 题型二:数列的单调性 题型三:数列的最大(小)项 题型四:数列中的规律问题 题型五:数列的最值问题【典例例题】题型一:数列的周期性例1.已知无穷数列{}n a 满足()21N n n n a a a x *++=-∈,且11a =,2a x =()x ∈Z ,若数列{}n a 的前2020项中有100项是0,则下列哪个不能是x 的取值( ) A .1147 B .1148C .1142-D .1143-【答案】B 【分析】当0x ≥时,分别令1,2,3,x =,可求出数列{}n a 的前2020项中0的个数,进而得出规律,可求出满足题意的x 的取值;当0x <时,分别令1,2,3,x =---,可求出数列{}n a 的前2020项中0的个数,进而得出规律,可求出满足题意的x 的取值. 【详解】 ①当0x ≥时,若0x =,则数列{}n a 的各项为1,0,1,1,0,1,1,0,1,,此时数列{}n a 为周期数列,周期为3,由202036731=⨯+, 可知数列{}n a 的前2020项中有673项为0; 若1x =,则数列{}n a 的各项为1,1,0,1,1,0,1,1,0,,此时数列{}n a 为周期数列,周期为3,由202036731=⨯+, 可知数列{}n a 的前2020项中有673项为0; 若2x =,则数列{}n a 的各项为1,2,1,1,0,1,1,0,1,1,0,,此时数列{}n a 从第3项开始为周期数列,周期为3,由202022018236722=+=+⨯+,可知数列{}n a 的前2020项中有672项为0; 若3x =,则数列{}n a 的各项为1,3,2,1,1,0,1,1,0,1,1,0,,此时数列{}n a 从第4项开始为周期数列,周期为3,由202032017336721=+=+⨯+,可知数列{}n a 的前2020项中有672项为0; 若4x =,则数列{}n a 的各项为1,4,3,1,2,1,1,0,1,1,0,1,1,0,, 此时数列{}n a 从第6项开始为周期数列,周期为3,由202052015536712=+=+⨯+,可知数列{}n a 的前2020项中有671项为0;依次类推,可知当()26731001146x =-=,或1147x =时, 数列{}n a 的前2020项中有100项是0; ②当0x <时,若1x =-,则数列{}n a 的各项为1,1,2,3,1,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第7项开始为周期数列,周期为3,由202062014636711=+=+⨯+,可知数列{}n a 的前2020项中有671项为0; 若2x =-,则数列{}n a 的各项为1,2,3,5,2,3,1,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第9项开始为周期数列,周期为3,由202082012836702=+=+⨯+,可知数列{}n a 的前2020项中有670项为0; 若3x =-,则数列{}n a 的各项为1,3,4,7,3,4,1,3,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第10项开始为周期数列,周期为3,由202092011936701=+=+⨯+,可知数列{}n a 的前2020项中有670项为0; 若4x =-,则数列{}n a 的各项为1,4,5,9,4,5,1,4,3,1,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第12项开始为周期数列,周期为3,由20201120091136692=+=+⨯+,可知数列{}n a 的前2020项中有669项为0;依次类推,可知当()26711001142x =--=-,或1143x =-时, 数列{}n a 的前2020项中有100项是0.综上所述,若数列{}n a 的前2020项中有100项是0, 则x 可取的值有1146,1147,1142,1143--. 故选:B . 【点睛】本题考查无穷数列,解题的关键是通过条件()21N n n n a a a x *++=-∈探究数列{}n a 的性质,利用赋值法分别令1,2,3,x =和1,2,3,x =---,可分别求出数列{}n a 的前2020项中0的个数,进而得出规律.考查学生的推理能力与计算求解能力,属于难题.例2.若[]x 表示不超过x 的最大整数(如[]2.52=,[]44=,[]2.53-=-),已知2107n n a ⎡⎤=⨯⎢⎥⎣⎦,11b a =,()*110,2n n n b a a n n -=-∈≥N ,则2019b =( )A .2B .5C .7D .8【答案】B 【分析】求出1b ,2b ,3b ,4b ,5b ,6b ,判断出{}n b 是一个以周期为6的周期数列,求出即可. 【详解】解:2107n n a ⎡⎤=⨯⎢⎥⎣⎦.*111(102)n n n b a b a a n n --∈≥N =,=,,∴112027[]a b ===,2200[287]a ==, 2281028b -⨯==,同理可得:332855a b =,=;4428577a b =,=;55285711a b =,=.662857144a b =,=;72857142a =,72b =,……. ∴6n n b b +=.故{}n b 是一个以周期为6的周期数列, 则20196336335b b b ⨯+===. 故选:B . 【点睛】本题考查周期数列的判断和取整函数的应用. 例3.数列{}n a 满足12a =,111nn na a a ++=-,其前n 项积为n T ,则10T 等于( ) A .16B .16-C .6D .6-【答案】D 【分析】依次代入1,2,3,4n =可得{}n a 是以4为周期的周期数列,由1231n n n n a a a a +++=可推导得到结果. 【详解】 当1n =时,121131a a a +==--;当2n =时,2321112a a a +==--;当3n =时,3431113a a a +==-;当4n =时,454121a a a +==-;…,∴数列{}n a 是以4为周期的周期数列, ()()1231123123n n n n a a a a n N *+++⎛⎫∴=⨯-⨯-⨯=∈ ⎪⎝⎭,()10891012236T T a a a a ∴=⋅==⨯-=-. 故选:D .例4.若数列{}n a 满足1222a a ==,且21n n n a a a ++=-,则{}n a 的前100项和为( ) A .67 B .68C .134D .167【答案】B 【分析】由题意得122,1a a ==,根据21n n n a a a ++=-,列举数列的项,得到数列从第2项起,3项一个循环求解. 【详解】因为1222a a ==,所以122,1a a ==, 因为21n n n a a a ++=-,所以数列的项依次为2,1,1,0,1,1,0,…, 所以从第2项起,3项一个循环,所以{}n a 的前100项的和为233(110)68+⨯++=, 故选:B .例5.数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若125a =,则2021a 等于( )A .15B .25 C .35D .45【答案】B 【分析】根据数列定义求出数列的前几项后得出数列是周期数列,从而求值. 【详解】 因为12152a =<,所以23454312,,,5555a a a a ====,所以数列具有周期性,周期为4,所以2021125a a ==.故选:B . 【点睛】本题考查数列的周期性,此类问题的解法是由定义求出数列的前几项,然后归纳出周期性.例6.已知数列{}n a 满足,()()111122,32n n n n n a a a a a ----⎧-+>⎪=⎨-⎪⎩*(,1)n N n ∈>,若1(2,3)a ∈且记数列{}n a 的前n 项和为n S ,若2019=m S ,则2019S 的值为( ) A .60572B .3028C .60552D .3029【答案】C 【分析】根据递推公式可逐个代入计算,得出数列{}n a 的周期为4,再根据2019=m S 与前两项的范围可求得52a =,再分组求和求解2019S 即可. 【详解】设1(23)a a a =<<,由()()11112232n n n n n a a a a a ----⎧-+>⎪=⎨-⎪⎩,*(,1)n N n ∈>,得22(0,1)a a =-∈,3235(2,3)a a a =-=-∈,435423(0,1),3(2,3)a a a a a a =-=-∈=-=∈.故数列{}n a 的周期为4,即可得41234,6n n a a a a a a +=+++=. 12336632019m m S a a a =+++=⨯+=,又1(23)a a a =<<,22(0,1)a a =-∈.(2)3a a ∴+-=,即52a =. 12311201950443,32a a a a =⨯+++=+=, 2019116059504622S ∴=⨯+=. 故选:C . 【点睛】本题考查数列分组求和、分类讨论方法,考查推理能力与计算能力,考查逻辑推理与数学运算核心素养.属于中档题.例7.(2022·广东汕头·三模)已知数列{}n a 中,114a =-,当1n >时,111n n a a -=-,则2022a =( ) A .14-B .45C .5D .45-【答案】B【解析】由题意得:2341231141115,1,154a a a a a a =-==-==-=-,则数列{}n a 的周期为3,则20226743345a a a ⨯===. 故选:B .例8.(2022·河北·沧县中学高三阶段练习)已知数列{}n a 中,()1112n n n a a a n --=⋅+≥,12a =,则10a 等于( )A .12-B .12C .-1D .2【答案】D【解析】解:∵12a =,()1112n n n a a a n --=⋅+≥, ∴()1112n n a n a -=-≥, ∴211122a =-=,3121a =-=-,()4112a =--=,511122a =-=,…, ∴数列{}n a 是以3为周期的周期数列,10331=⨯+,∴101a a =, 故选:D .题型二:数列的单调性例9.(2022·四川达州·二模(理))已知单调递增数列{}n a 满足9,102121,109n n m n a m n n -⎧≥⎪=⎨⎛⎫+-< ⎪⎪⎝⎭⎩,则实数m 的取值范围是( ) A .[)12,+∞ B .()1,12C .()1,9D .[)9,+∞【答案】B【解析】{}n a 为单调递增数列,10912109m m a a >⎧⎪⎪∴+>⎨⎪>⎪⎩,即12109219219m m m m ⎧⎪>⎪⎪+>⎨⎪⎪⎛⎫>+⨯-⎪ ⎪⎝⎭⎩,解得:112m <<, 即实数m 的取值范围为()1,12. 故选:B .例10.(2022·河南·温县第一高级中学高三阶段练习(文))已知函数()()633,7,7x a x x f x a x -⎧--≤=⎨>⎩,若数列{}n a 满足()()*n a f n n N =∈且{}n a 是递增数列,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()2,3D .[)2,3【答案】C【解析】因为数列{}n a 是单调递增数列,则函数()6x f x a -=在()7,+∞上为增函数,可得1a >,函数()()33f x a x =--在[)1,7上为增函数,可得30a ->,可得3a <,且有78a a <,即()86733187a a a ---=-<,即27180a a +->,解得9a <-或2a >.综上所述,23a <<. 故选:C .例11.(2022·浙江·高三专题练习)已知数列{}n a 的首项为11a =,2a a =,且121(2,)n n a a n n n N *++=+≥∈,若数列{}n a 单调递增,则a 的取值范围为( ) A .12a << B .23a << C .3522a << D .1322a <<【答案】C【解析】当2,n n N *≥∈时,121(1)n n a a n ++=+,因此有2123(2)n n a a n +++=+,(2)(1)-得:22n n a a +-=,说明该数列从第2项起,偶数项和奇数项都成等差数列,且它们的公差都是2,由121n n a a n ++=+可得:345,2a a a a =-=+,因为数列{}n a 单调递增,所以有1234a a a a <<<,即152a a a <<-<+,解得:3522a <<,故选:C例12.(2022·全国·高三专题练习)已知等比数列{}n a 前n 项和n S 满足113n n S A +=-⋅(A R ∈),数列{}n b 是递增的,且2n b An Bn =+,则实数B 的取值范围为( )A .2,3⎡⎫-+∞⎪⎢⎣⎭B .[)1,-+∞C .()1,-+∞D .1,3⎛⎫-+∞ ⎪⎝⎭【答案】C【解析】解:因为等比数列{}n a 前n 项和n S 满足113n n S A +=-⋅(A R ∈),所以1119a S A ==-,221(127)(19)18a S S A A A =-=---=-, 332(181)(127)54a S S A A A =-=---=-,因为等比数列{}n a 中2213a a a ,所以2(18)(19)(54)A A A -=--,解得13A =或0A =(舍去), 所以213n b n Bn =+,因为数列{}n b 是递增的,所以22111(1)(1)033n n b b n B n n Bn +-=+++-->,所以2133B n >--,因为*n N ∈,所以1B >-, 故选:C例13.(2022·全国·高三专题练习(理))已知数列{}n a 满足()712,83,8n n a n n a n a n *-⎧⎛⎫-+>⎪ ⎪=∈⎝⎭⎨⎪≤⎩N ,若对于任意n *∈N 都有1n n a a +>,则实数a 的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭【答案】C 【解析】由条件可得011031923a a a a ⎧⎪<<⎪⎪-<⎨⎪⎪⎛⎫>-⨯+⎪ ⎪⎝⎭⎩,解出即可.【详解】因为对于任意n *∈N 都有1n n a a +>,所以011031923a a a a ⎧⎪<<⎪⎪-<⎨⎪⎪⎛⎫>-⨯+⎪ ⎪⎝⎭⎩,解得112a <<故选:C例14.(2022·全国·高三专题练习)设数列{}n a 的通项公式为2n a n bn =+,若数列{}n a 是单调递增数列, 则实数b 的取值范围为( ) A .(2,)-+∞ B .[2,)-+∞ C .(3,)-+∞ D .(,3)-∞-【答案】C 【解析】由数列{}n a 是单调递增数列,可得10n n a a +->,从而有21b n >--恒成立,由n ∈+N ,可求得b 的取值范围. 【详解】由数列{}n a 是单调递增数列,所以10n n a a +->,即22(1)(1)210n b n n bn n b +++--=++>,即21b n >--(n ∈+N )恒成立,又数列{}(21)n -+是单调递减数列,所以当1n =时,(21)n -+取得最大值3-,所以3b >-. 故选:C .【方法技巧与总结】解决数列的单调性问题的3种方法题型三:数列的最大(小)项例15.已知数列{}n a 的首项为1,且()()*111n n n a a n n ++=∈+N ,则na的最小值是( )A .12 B .1 C .2 D .3【答案】B 【分析】 根据()111n n n a a n ++=+得出()11n n n a n a n ++-=,然后通过累加法求出1122n n a n =+-,根据均值不等式及n N +∈,即可求出结果. 【详解】 由()111n n n a a n ++=+得()11n n n a n a n ++-=所以()()()1122111122n n n n n n a n a n a a a na n a a ---=--+---++-+则()()()()()111112111122n n n n n n na n +---=-+-+++=+=+所以()111112222n n n na n-=+=+-≥当且仅当n =n N +∈,故取1a 或2a 最小,又121a a ==,所以n a 的最小值为1 故选:B 【点睛】思路点睛:本题通过累加法求数列通项公式,根据均值不等式及n N +∈,求得最值. 例16.已知数列{}n a 满足110a = ,12n na a n+-=,则n a n 的最小值为( )A .-1B .11 2C .163D .27 4【答案】C 【分析】先根据累加法得210n a n n =-+,进而得101n a n n n =+-,再结合函数()101f x x x=+-的单调性即可得当3n =时,n a n 的最小值为163. 【详解】 解:由12n na a n+-=得12n n a a n +-=, 所以()121n n a a n --=-,()1222n n a a n ---=-,()2323n n a a n ---=-,,3222a a -=⨯,2121a a -=⨯,累加上述式子得:()()()()12123211n a a n n n n n -=-+-+-+++=-⎡⎤⎣⎦,所以210n a n n =-+,()2n ≥,检验已知1n =时,210n a n n =-+满足.故210n a n n =-+,101n a n n n=+-, 由于函数()101f x x x=+-在区间(上单调递减,在)+∞上单调递增,又因为*x ∈N ,当3n =时,10163133n a n =+-=,当4n =时,10114142n a n =+-=, 所以n a n 的最小值为163. 故选:C .例17.已知数列{}n a 的前n 项和n S ,且2(1)n n S a n -=-,22na nn b S =,则数列{}n b 的最小项为( )A .第3项B .第4项C .第5项D .第6项【答案】A 【分析】由n S 与n a 的关系1(1)n n n a S S n -=->化简即可求出n S 及n a ,可得n b ,分析单调性即可求解. 【详解】∵1(1)n n n a S S n -=->,∴1n n n S a S --=,则21(1)n S n -=-,即2*(N )n S n n =∈,∴22(1)21n a n n n =--=-.易知0n b >,∵212+1+14422+1n n n n b b n n -==,(),244142()(1)1n n b n b n n +∴==++1>时,1n >, ∴当13n ≤<时, 1n n b b +>, 当3n ≥时,1n n b b +<, 又23132,281b b ==,∴当3n =时, n b 有最小值. 故选:A例18.已知数列{}n a 的前n 项和2212,n S n n =-数列{||}n a 的前n 项和,n T 则nT n的最小值____ 【答案】5 【分析】由n S 和1n S -的关系求出数列{}n a 的通项公式,再根据正负表示出数列{||}n a 的通项公式为144,13414,4n n n a n n -≤≤⎧=⎨-≥⎩,求出n T ,并表示出n T n ,再分别求出13n ≤≤和4n ≥时的最小值,即可判断n T n 的最小值. 【详解】由题意,数列{}n a 的前n 项和2212n S n n =-()n N *∈,所以1121210a S ==-=-,当2n ≥时,()()12221221121414n n n n n n n S n a S -⎡⎤-----=-⎣⎦=-=, 当1n =时,1411410a ⨯-=-=, 所以414n a n =-,当13n ≤≤时,0n a <,当4n ≥时,0n a >,所以144,13414,4n n n a n n -≤≤⎧=⎨-≥⎩,数列{||}n a 的前n 项和n T ,所以22212,1321236,4n n n n T n n n ⎧-+≤≤=⎨-+≥⎩,当13n ≤≤时,212n T n n=-+,当3n =时,n Tn 的最小值为6;当4n ≥时,36212n n T n n=+-, 由对勾函数的性质,当4n =时,nT n有最小值5; 综上所述,nT n的最小值为5 故答案为:5 【点睛】本题主要考查由n S 求数列通项公式的求法、等差数列前n 项和公式、对勾函数的应用,是一道综合性很强的题目,考查学生分析转化能力和计算能力,属于难题. 例19.数列,1n =,2,,中的最小项的值为__________.【分析】 构造函数()ln xf x x=,利用函数单调性分析最大值,得出数列的最大项,即可得解. 【详解】 考虑函数()ln xf x x=,()21ln x f x x -'=,当0x e <<时,()21ln 0x f x x -'=>,当x e >时,()21ln 0x f x x -'=<, 所以()ln xf x x=在()0,e 单调递增,在(),e +∞单调递减, 即()1ln x f x x ==()0,e 单调递增,在(),e +∞单调递减,所以y e =()0,e 单调递增,在(),e +∞单调递减,116689,89<<所以数列.【点睛】此题考查求数列中的最小项,利用函数单调性讨论数列的最大项和最小项,涉及导函数处理单调性问题. 【方法技巧与总结】求数列的最大项与最小项的常用方法(1)将数列视为函数()f x 当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出()f x 的最值,进而求出数列的最大(小)项.(2)通过通项公式n a 研究数列的单调性,利用11()2n n n n a a a n a -+≥⎧⎨≥⎩≥,确定最大项,利用11()2n n nn a a a n a -+≤⎧⎨≤⎩≥,确定最小项.(3)比较法:若有1()()10n n a a f n f n -=+->+或0n a >时11n na a +>,则1n n a a +>,则数列{}n a 是递增数列,所以数列{}n a 的最小项为1(1)a f =;若有1()()10n n a a f n f n =-+-<+或0n a >时11n na a +<,则1n n a a <+,则数列{}n a 是递减数列,所以数列{}n a 的最大项为1(1)a f =. 题型四:数列中的规律问题例20.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以()f n 表示第n 幅图的蜂巢总数,则(4)f =( );()f n =( ).A .35 2331n n +-B .36 2331n n -+C .37 2331n n -+D .38 2331n n +- 【答案】C 【分析】结合图形中的规律直接求出(4)f 和(5)f ,进而总结出递推公式2n ≥时,()()(1)61f n f n n --=-,利用累加法即可求出结果. 【详解】由图中规律可知:(4)37f =, 所以(2)(1)716f f -=-=, (3)(2)19726f f -=-=⨯,(4)(3)371936f f -=-=⨯, (5)(4)613746f f -=-=⨯,因此当2n ≥时,()()(1)61f n f n n --=-, 所以[][][]()()(1)(1)(2)(2)(1)(1)f n f n f n f n f n f f f =--+---++-+()()612211n n ⎡⎤=⨯-+-++++⎣⎦()1612n n -=⨯+2331n n =-+,经检验当1n =时,符合()2331f n n n =-+,所以()2331f n n n =-+,故选:C .例21.由正整数组成的数对按规律排列如下:()1,1,1,2,()2,1,()1,3,()2,2,()3,1,()1,4,()2,3,()3,2,()4,1,()1,5,()2,4,⋅⋅⋅.若数对(),m n 满足()22222021m n -⋅-=,,m n N *∈,则数对(),m n 排在( )A .第386位B .第193位C .第348位D .第174位【答案】D 【分析】先求出,m n 的值,再根据数对的特点推出数对(),m n 的位置 【详解】解:按规律把正整数组成的数对分组:第1组为(1,1),数对中两数的和为2,共1个数对;第2组为(1,2),(2,1),数对中两数和为3,共2个数对;第3组为(1,3),(2,2),(3,1),数对中两数的和为4,共3个数;……,第n 组为(1,),(2,1),,(,1)n n n -⋅⋅⋅,数对中两数的和为1n +,共n 个数,由()22222021m n -⋅-=,得()2222023m n -⋅=,因为20237289=⨯,所以2227289m n ⎧-=⎪⎨=⎪⎩,解得317m n =⎧⎨=⎩,所以20m n +=,在所有数对中,两数之和不超过19的有1918123181712⨯+++⋅⋅⋅+==个, 所以在两数和为20的第1个数(1,19),第2个为(2,18),第3个为(3,17), 所以数对(3,17)排在第174位, 故选:D 【点睛】关键点点睛:此题考查简单的合情推理,考查等差数求和,解题的关键是由()22222021m n -⋅-=,得()2222023mn -⋅=,解出,m n 的值,考查计算能力,属于中档题例22.已知“整数对”按如下规律排列:()()()()()1,11,22,11,32,2,,,,,()()()3,11,42,3,,()3,2,,()4,1,…,则第68个“整数对”为( ) A .()1,12 B .()3,10C .()2,11D .()3,9【答案】C 【分析】设“整数对”为()()*m n m n N ∈,,,由已知可知点列的排列规律是m n +的和从2开始,依次是3,4,…,其中m 依次增大,可依次求得总对数,从而可得选项. 【详解】设“整数对”为()()*m n m n N ∈,,,由已知可知点列的排列规律是m n +的和从2开始,依次是3,4,…,其中m 依次增大.当2m n +=时只有1个()11,; 当3m n +=时有2个()()1221,,,; 当4m n +=时有3个()()()132231,,,,,; …;当12m n +=时有11个()()()111210111⋯,,,,,,;其上面共有11(111)12311662⨯+++++==个数对. 所以第67个“整数对”为()112,,第68个“整数对”为()211,, 故选:C . 【点睛】本题考查知识迁移运用:点列整数对,关键在于理解和探索其规律,属于中档题. 例23.将正整数排列如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ……则图中数2020出现在 A .第64行3列 B .第64行4列 C .第65行3列 D .第65行4列【答案】B 【分析】计算每行首个数字的通项公式,再判断2020出现在第几列,得到答案. 【详解】每行的首个数字为:1,2,4,7,11… 111,1n n a a a n -=-=-利用累加法:112211(1)()()...()121112n n n n n n n a a a a a a a a n n ----=-+-++-+=-+-++=+ 计算知:642017a = 数2020出现在第64行4列 故答案选B 【点睛】本题考查了数列的应用,计算首数字的通项公式是解题的关键. 题型五:数列的最值问题例24.(2022·北京市第十二中学高三期中)已知数列{}n a 满足32n a n n=+,则数列{}n a 的最小值为( )A .343B .575C .D .12【答案】A【解析】()32f x x x=+在(0,上单调递减,在()+∞上单调递增, ∴当()x n n N *=∈时,()()(){}min min 5,6f n f f =,又()32575555f =+=,()32346663f =+=,()min 343f n ∴=, 即32n a n n =+的最小值为343. 故选:A .例25.(2022·全国·高三专题练习)已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a【答案】B【解析】令10t n =-≥,则1n t =+,22,641411tty tt t t 当0=t 时,0y = 当0t >时,146y t t=++,由双勾函数的知识可得y 在()02,上单调递增,在()2,+∞上单调递减 所以当2t =即3n =时,y 取得最大值, 所以此数列的最大项是3a ,最小项为10a = 故选:B .例26.(2022·河南·高三阶段练习(理))在数列{}n a 中,11a =,1n n a a n --=(N n +∈,2n ≥),则11n a n ++的最小值是( ) A .12 B .34C .1D .32【答案】C【解析】由题意可得()()()()()211221121122n n n n n n n n na a a a a a a a ---+-+=-+-+⋅⋅⋅+-+=+=,当1n =时,11a =满足上式,则()()212121112121n a n n n n n n +++⎡⎤==++-⎢⎥+++⎣⎦. 因为n ∈+N , 所以12n +≥, 所以()2131n n ++≥+,则()21121n n ++-≥+, 故112112n a n +≥⨯=+,当且仅当1n =时,等号成立. 故选:C例27.(2022·辽宁·高三阶段练习)若数列{}n a 满足24122,n nn n n a T a a a -==⋅⋅⋅,则n T 的最小值为( )A .92-B .102-C .112-D .122-【答案】B 【解析】因为2420,nnn a -=>所以221222log log log log n n T a a a =++⋯+.设22log 4n n b a n n ==-.若n T 有最小值,则2log n T 有最小值, 令0n b ≤,则04,n ≤≤所以当3n =或4n =时﹐n T 的最小值为102-. 故选:B例28.(2022·全国·高三专题练习)若数列{}n a 满足113a =,1n n n a a +-=,则na n的最小值为( ) A .235B .143C 12D .13【答案】A【解析】由题意可知,()()121111312(1)13(1)2n n n a a a a a a n n n -=+-++-=++++-=+-,则113122n a n n n =+-,又113122y x x =+-在( 上递减,在)+∞上递增,且56<<,5n =时,11311131235222525n n +-=⨯+-=;6n =时,11311131142362226235n n +-=⨯+-=>,故选:A .例29.(2022·全国·高三专题练习)设221316n a n n =-+-,则数列{}n a 中最大项的值为( )A .134B .5C .6D .132【答案】B【解析】解:221316913412()162()4848n a n n =--+-=--+, n N +∈,∴当3n =时,n a 取到最大值5.故选:B .例30.(2022·浙江·高三专题练习)已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[]40,25-- B .[]40,0- C .[]25,25- D .[]25,0-【答案】D【解析】解:由题意可得21125555a a n n n -+≥-+, 整理得(5)(5)(6)5a n n n n---≥, 当4n ≤时,不等式化简为5(6)a n n ≥-恒成立,所以25a ≥-, 当6n ≥时,不等式化简为5(6)a n n ≤-恒成立,所以0a ≤, 综上,250a -≤≤,所以实数a 的取值范围是[]25,0-, 故选:D【过关测试】一、单选题 1.(2022·陕西·交大附中模拟预测(理))函数()f x 定义如下表,数列{}()N n x n ∈满足02x =,且对任意的自然数n 均有()1n n x f x +=,则2022x =( )【答案】B【解析】由已知可得()121x f ==,()215x f ==,()352x f ==,()421x f ==,,以此类推可知,对任意的N n *∈,3n n x x +=,202236733=⨯+,所以,202232x x ==.故选:B.2.(2022·内蒙古赤峰·模拟预测(理))大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中曾经经历过的两仪数量总和,其中一列数如下:0,2,4,8,12,18,24,32,40,50,…….按此规律得到的数列记为{}n a ,其前n 项和为n S ,给出以下结论:①22122n a n n -=-;②182是数列{}n a 中的项;③21210a =;④当n 为偶数时,()2122n n n S S S n n *++-+=+∈N .其中正确的序号是( )A .①②B .②③C .①④D .③④【答案】C【解析】数列{}n a 的偶数项分别为2,8,18,32,50,,通过观察可知222n a n =,同理可得22122n a n n -=-,所以22122n n n a n n ⎧-⎪⎪=⎨⎪⎪⎩,为奇数,为偶数, 因为2212112202a -==,所以①正确,③错误; 由211822n -=,解得n =21822n =,解得n = 又因为*n ∈N ,所以方程都无正整数解,所以182不是{}n a 中的项,故②错误. 当n 为偶数时,()()212112n n n n n n n S S S S S S S +++++-+=---()()2221211222n n n n a a n ++++-=-=-=+,故④正确. 故选:C.3.(2022·河南·模拟预测(理))观察数组()2,2,()3,4,()4,8,()5,16,()6,32,…,根据规律,可得第8个数组为( ) A .()9,128 B .()10,128 C .()9,256 D .()10,256【答案】C【解析】由题可知数组的第一个数成等差数列,且首项为2,公差为1; 数组的第二个数成等比数列,且首项为2,公比为2. 因此第8个数组为()827,2+,即()9,256.故选:C.4.(2022·吉林长春·模拟预测(理))已知数列{}n a 满足()()11120n n a a +-++=,112a =,则数列{}n a 的前2022项积为( ) A .16-B .23C .6-D .32【答案】A【解析】由题意,112a =,()()21112a a -+=- ,213a =- ,()()32112a a -+=- ,32a=- ,43a = ,512a =, ∴{}n a 是周期为4的循环数列,在一个周期内的积为:12341a a a a = ,202245052=⨯+ ,前2022项之积为505个周期之积12a a ⨯⨯ ,即50520221111236T ⎛⎫=⨯⨯-=- ⎪⎝⎭ ;故选:A.5.(2022·江西·临川一中模拟预测(理))已知数列{}n a 满足()1112,21*+-==∈-n n n a a a n N a ,则2022=a ( )A .13B .1C .2D .52【答案】A【解析】因为()1112,21*+-==∈-n n n a a a n N a , 所以12111213a a a -==-,2321221a a a -==-, 所以数列{}n a 是以周期为2的数列,即2022213a a ==.故选:A6.(2022·全国·高三专题练习)已知数列{}n a 的通项公式为n aa n n=+,则“21a a >”是“数列{}n a 单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【解析】解:数列{}n a 单调递增1n n a a +⇔>,可得:11a an n n n++>++,化为:2a n n <+. ∴2a <.由“21a a >”可得:212aa +>+,可得:2a <. ∴“21a a >”是“数列{}n a 单调递增”的充要条件, 故选:C.7.(2022·全国·高三专题练习)已知数列{}n a 满足()2**2,5,,1,5,.n n tn n n a t n n n ⎧-+≤∈⎪=⎨->∈⎪⎩N N 且数列{}n a 是单调递增数列,则t 的取值范围是( ) A .919,24⎛⎫⎪⎝⎭B .9,2⎛⎫+∞ ⎪⎝⎭C .()5,+∞D .(]1,4【答案】A【解析】由题意可得()210,9,261525,t t t t ->⎧⎪⎪>⎨⎪->-+⨯⎪⎩解得91924t <<.故选:A.8.(2022·全国·高三专题练习)若数列{an }的前n 项和Sn =n 2-10n (n ∈N *),则数列{nan }中数值最小的项是( ) A .第2项 B .第3项 C .第4项 D .第5项【答案】B【解析】∵Sn =n 2-10n ,∴当n ≥2时,an =Sn -Sn -1=2n -11; 当n =1时,a 1=S 1=-9也适合上式. ∴an =2n -11(n ∈N *).记f (n )=nan =n (2n -11)=2n 2-11n , 此函数图象的对称轴为直线n =114,但n ∈N *, ∴当n =3时,f (n )取最小值.∴数列{nan }中数值最小的项是第3项. 故选:B9.(2022·上海普陀·二模)数列{}n a 的前n 项的和n S 满足*1(N )n n S S n n ++=∈,则下列选项中正确的是( )A .数列{}1n n a a ++是常数列B .若113a <,则{}n a 是递增数列C .若11a =-,则20221013S =D .若11a =,则{}n a 的最小项的值为1- 【答案】D【解析】当1n =时,211221S S a a +=+=, 当2n ≥时,11n n S S n -+=-,则11n n a a ++=,而121a a +=不一定成立,故{}1n n a a ++不一定是常数列,A 错误;由1132...1n n n n a a a a a a +-+=+==+=,显然113...n n n a a a +--===且24...n n n a a a --===,即{}n a 不单调,B 错误;若11a =-,则23a =,32a =-,故2n ≥,{}n a 偶数项为3,奇数项为2-,而202212345202020212022()()...()1101031012S a a a a a a a a =++++++++=-++=,C 错误;若11a =,则21a =-,32a =,故2n ≥,{}n a 偶数项为1-,奇数项为2,故{}n a 的最小项的值为1-,D 正确. 故选:D10.(2022·北京四中三模)已知数列{n a }的通项为22n a n n λ=-,则“0λ<”是“*n ∀∈N ,1n n a a +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由题意,数列{}n a 的通项为22n a n n λ=-,则221(1)2(1)22120n n a a n n n n n λλλ+=+-+-+=+->-,即21122n n λ+<=+,对n *∀∈N 恒成立, 当1n =时,1n 2+取得最小值32,所以32λ<,所以“0λ<”是“*n ∀∈N ,1n n a a +>”的充分不必要条件. 故选:A. 二、多选题11.(2022·河北·衡水第一中学高三阶段练习)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则下列说法正确的是( ) A .此数列的第20项是200B .此数列的第19项是180C .此数列偶数项的通项公式为222n a n =D .此数列的前n 项和为(1)n S n n =⋅-【答案】ABC【解析】观察此数列,偶数项通项公式为222n a n =,奇数项是后一项减去后一项的项数,2122n n a a n -=-,故C 正确;由此可得220210200a =⨯=,故A 正确;192020180a a =-=,故B 正确;2(1)n S n n n n =-=-是一个等差数列的前n 项,而题中数列不是等差数列,不可能有(1)n S n n =⋅-,故D 错误. 故选:ABC .12.(2022·全国·高三专题练习)若数列{}n a 满足1112,012,1321,12n n n n n a a a a a a +⎧⎪⎪==⎨⎪-<<⎪⎩,则数列{}n a 中的项的值可能为( ) A .13B .2C .23D .45【答案】AC【解析】由题意可得21223a a ==, 321213a a =-=, 43223a a ==, ⋯⋯所以数列{}n a 是周期为2的数列, 所以数列{}n a 中的项的值可能为13,23.故选:AC .13.(2022·全国·高三专题练习)下列四个选项中,不正确的是( ) A .数列2345,,,3456,⋯的一个通项公式是1n n a n =+ B .数列的图象是一群孤立的点C .数列1,1-,1,1-,⋯与数列1-,1,1-,1,⋯是同一数列D .数列11,24,⋯,12n是递增数列【答案】ACD【解析】对于A ,当通项公式为1n n a n =+时,11223a =≠,不符合题意,故选项A 错误;对于B ,由数列的通项公式以及*n N ∈可知,数列的图象是一群孤立的点,故选项B 正确; 对于C ,由于两个数列中的数排列的次序不同,因此不是同一数列,故选项C 错误;对于D ,数列11,24,⋯,12n是递减数列,故选项D 错误.故选:ACD .14.(2022·全国·高三专题练习)已知n S 是{}n a 的前n 项和,12a =,()1112n n a n a -=-≥,则下列选项错误的是( ) A .20212a = B .20211012S =C .331321n n n a a a ++⋅⋅=D .{}n a 是以3为周期的周期数列【答案】AC【解析】因为12a =,()1112n n a n a -=-≥,则211112a a =-=,32111a a =-=-,413112a a a =-==, 以此类推可知,对任意的n *∈N ,3n n a a +=,D 选项正确;202136732212a a a ⨯+===,A 选项错误;()202112312316736732101222S a a a a a =++++=⨯++=,B 选项正确;331323211n n n a a a a a a ++⋅⋅==-,C 选项错误.故选:AC.15.(2022·全国·高三专题练习)若数列{an }满足112,2712,62n n n n n a a a a a +⎧≤⎪⎪=⎨⎪->⎪⎩,123a =,则数列{an }中的项的值可能为( ) A .19B .16C .13D .43【答案】BC【解析】数列{}n a 满足112271262n n n nn a a a a a +⎧≤⎪⎪=⎨⎪->⎪⎩,,,,123a =,依次取1,2,3n =代入计算得,2162617a a =-=,32123a a ==,431223a a a ===,因此继续下去会循环;数列{}n a 是周期为3的周期数列,所有可能取值为161233,,,故选:BC.16.(2022·全国·高三专题练习)已知数列{}n a 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( ) A .2- B .23C .32D .3【答案】BD【解析】因为数列{}n a 满足112a =-,111n n a a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3;故选:BD .17.(2022·全国·高三专题练习(文))南宋杨辉在他1261年所著的《详解九章算术》一书中记录了一种三角形数表,称之为“开方作法本源”图,即现在著名的“杨辉三角”.如图是一种变异的杨辉三角,它是将数列{}n a 各项按照上小下大,左小右大的原则写成的,其中{}n a 是集合{}220,,s ts t s t Z +≤<∈且中所有的数从小到大排列的数列,即13a =,25a =,36a =,49a =,510a =,…,则下列结论正确的是( )A .第四行的数是17,18,20,24B .()11232-+=⋅n n n aC .()11221n n a n ++=+ D .10016640a =【答案】ABD【解析】利用(),s t 来表示每一项,由题可知: 第一行:3(0,1);第二行:5(0,2),6(1,2);第三行:9(0,3),10(1,3),12(2,3);第四行:17(0,4),18(1,4),20(2,4),24(3,4), 故A 正确.()12n n a +表示第n 行的第n 项,则()11122232n n n n n a -+-=+=⋅,故B 正确.由()112n n a ++表示第n 行的第1项,则()01122212n nn n a ++=+=+,故C 错误.又100a 表示第14行的第9项,所以1100842216640=+=a ,故D 正确.故选:ABD18.(2022·全国·高三专题练习)如图所示的数表中,第1行是从1开始的正奇数,从第2行开始每个数是它肩上两个数之和.则下列说法正确的是( )A .第6行第1个数为192B .第10行的数从左到右构成公差为102的等差数列C .第10行前10个数的和为9952⨯D .数表中第2021行第2021个数为202060612⨯ 【答案】ABD【解析】数表中,每行是等差数列,且第一行的首项是1,公差为2,第二行的首项是4,公差为4,第三行的首项是12,公差为8,每行的第一个数满足数列12n n a n -=⨯,每行的公差构成一个以2为首项,公比为2的等比数列,公差满足数列2nn d =.对于选项A :由题可知,每行第一个数满足下列关系:12n n a n -=⨯,所以第6行第1个数为61662192a -=⨯=,故A 正确;对于选项B :每行的公差构成一个以2为首项,公比为2的等比数列,故第10行的数从左到右构成公差为102的等差数列,选项B 正确;对于选项C :第10行的第一个数为101910102102a -=⨯=⨯,公差为102,所以前10个数的和为:910910910102219022⨯⨯⨯+⨯=⨯,故C 错误; 对于选项D :数表中第2021行中第一个数为20211202020212021220212a -=⨯=⨯,第2021行的公差为20212,故数表中第2021行第2021个数为()2202020202102021202116226021+-⨯⨯⨯=,选项D 正确.故选:ABD .19.(2022·河北·石家庄实验中学高三开学考试)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则下列说法正确的是( ) A .此数列的第20项是200B .此数列的第19项是182C .此数列偶数项的通项公式为222n a n =D .此数列的前n 项和为(1)n S n n =⋅-【答案】AC【解析】观察此数列,偶数项通项公式为222n a n =,奇数项是后一项减去后一项的项数,2122n n a a n -=-,由此可得220210200a =⨯=,A 正确;192020180a a =-=,B 错误;C 正确;2(1)n S n n n n =-=-是一个等差数列的前n 项,而题中数列不是等差数列,不可能有(1)n S n n =⋅-,D 错. 故选:AC .20.(2022·福建漳州·三模)已知数列{n a }的前n 项和为211n S n n =-,则下列说法正确的是( ).A .{}n a 是递增数列B .{}n a 是递减数列C .122n a nD .数列{}n S 的最大项为5S 和6S【答案】BCD【解析】解:因为22111211124n S n n n ⎛⎫=-=--+ ⎪⎝⎭,所以数列{}n S 的最大项为5S 和6S ,故D 正确;当1n =时,110a =,当2n ≥时,由211n S n n =-,得()()211111n S n n -=---,两式相减得:212n a n =-+, 又110a =,适合上式, 所以212n a n =-+,故C 正确;因为120n n a a --=-<,所以{}n a 是递减数列,故A 错误,B 正确; 故选:BCD21.(2022·湖南·长沙一中高三阶段练习)对于正整数n ,()n ϕ是小于或等于n 的正整数中与n 互质的数的数目.函数()n ϕ以其首名研究者欧拉命名,称为欧拉函数,例如()96ϕ=(1,2,4,5,7,8与9互质),则( )A .若n 为质数,则()1n n ϕ=-B .数列(){}n ϕ单调递增C .数列()2nn ϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前5项和等于72 D .数列(){}3nϕ为等比数列【答案】AD【解析】因为n 为质数,故小于或等于n 的正整数中与n 互质的数的数目为1n -, 故此时()1n n ϕ=-,故A 正确.因为()()61,54ϕϕ==,所以()()65ϕϕ<, 故数列(){}n ϕ不是单调递增,故B 错误. 小于等于2n 的正整数中与2n 互质的数为1,3,5,,21n -,数目为11222n n n ---=,所以()122n n n n ϕ-=,前5项和为213141512345315257111=2+22224216162----++++=++++>, 故C 错误.小于等于3n 的正整数中与3n 互质的数的数为1,2,4,5,,32,31n n --,其数目为113323n n n ---=⋅, 故()1323nn ϕ-=⋅,而()()1333n n ϕϕ-=,故数列(){}3n ϕ为等比数列,故D 正确. 故选:AD. 三、填空题22.(2022·北京·人大附中模拟预测)能说明命题“若无穷数列{}n a 满足()111,2,3,n na n a +>=,则{}n a 为递增数列”为假命题的数列{}n a 的通项公式可以为n a =__________. 【答案】n -【解析】因无穷数列{}n a 满足()111,2,3,n na n a +>=,当10a >时,1n n a a +>,数列{}n a 为递增数列,给定命题是真命题,当10a <时,1n n a a +<,数列{}n a 为递减数列,给定命题是假命题, 因此,取n a n =-,显然有1(1)11n n a n n a n n+-++==>-,1(1)n n a n n a +=-+<-=, 所以n a n =-. 故答案为:n -23.(2022·陕西·宝鸡中学模拟预测)写出一个符合下列要求的数列{}n a 的通项公式:①{}n a 是无穷数列;②{}n a 是单调递减数列;③20n a -<<.这个数列的通项可以是__________. 【答案】12n a n=-+,答案不唯一. 【解析】因为函数12n a n =-+的定义域为*N ,且12n a n =-+在*N 上单调递减,1220n-<-+<,所以满足3个条件的数列的通项公式可以是:12n a n=-+. 故答案为:12n a n=-+,答案不唯一. 24.(2022·海南·模拟预测)写出一个同时具有下列性质①②③的数列{}n a 的通项公式:n a =__________.①10n n a a +<;②数列{}n a 是单调递减数列;③数列{}2nn a 是一个等比数列.。

周期函数与周期数列

周期函数与周期数列

周期函数与周期数列TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】第14讲周期函数与周期数列本节主要内容有周期;周期数列、周期函数.周期性是自然规律的重要体现之一,例如地球公转的最小正周期就体现为年的单位.在数学中,我们就经常遇见各种三角函数,这类特殊的周期函数,特别是正弦、余弦函数与音乐有着密切的联系:19世纪法国数学家傅立叶证明了所有的乐声──不管是器乐还是声乐都能用数学表达式来描述,它们一定是一些简单的正弦周期函数的和.作为认识自然规律的主要手段,数学在本学科中严格地引进了“周期”这个重要概念.在中学数学中,我们仅仅讨论定义域是整个实数轴的实值映射的周期性,尽管形式十分简单,但与之相关的问题仍有待研究.中学数学里称函数的周期,没有特殊说明是指其最小正周期.如果函数y=f(x)对于定义域内任意的x,存在一个不等于0的常数T,使得f(x+T)=f(x)恒成立,则称函数f(x)是周期函数,T是它的一个周期.一般情况下,如果T是函数f(x)的周期,则kT(k∈N+)也是f(x)的周期.1.若f(x+T)=-f(x),则2T是f(x)的周期,即f(x+2T)=f(x)证明:f(x+2T)=f(x+T+T)=-f(x+T)=f(x),由周期函数的性质可得f(x+2n T)=f(x),(n∈Z)2.若f (x +T )=±,则2T 是f (x )的周期,即f (x +2T )=f (x ).仅以f (x +T )=证明如下:f (x +2T )=f (x +T +T )==f (x ).由周期函数的性质可得f (x +2n T )=f (x ),(n ∈Z ) 3.在数列{}n a 中,如果存在非零常数T ,使得m T m a a +=对于任意的非零自然数m 均成立,那么就称数列{}n a 为周期数列,其中T 叫数列{}n a 的周期. A 类例题例1(2001年上海春季卷)若数列}{n a 前8项的值各异,且n 8n a a =+对任意的N n ∈都成立,则下列数列中可取遍}{n a 前8项值的数列为()A .}{12+k aB .}{13+k aC .}{14+k aD .}{16+k a解析由数列{a n }前8项的值各异,n 8n a a =+对任意n ∈N +都成立,得数列{a n }的周期T=8,则问题转化为2k +1,3k +1,4k +1,6k +1中k=1,2,3,…代入被8除若余数能取到0,1,2,3,4,5,6,7即为答案.经检验3k +1可以,故}{13+k a 可取遍{a n }的前8项值.答案为B .说明本题还可以奇偶性的角度考虑,在2k +1,3k +1,4k +1,6k +1中,2k +1,4k +1,6k +1都是奇数,除8后仍都是奇数,只有3k +1除8后余数能取到0,1,2,3,4,5,6,7.例2定义在R 上的奇函数且f (x +2)=f (x -2),且f (1)=2则f (2)+f (7)=.解因为f (x +2)=f (x -2),知f (x +2T )=f (x ).即f (x +4)=f (x ).所以f (7)=f (3+4)=f (-1+4)=f (-1)=-f (1)=-2.f (-2)=f (-2+4)=f (2)所以f (2)=0.从而f (2)+f (7)=-2.情景再现1.已知函数f(x)对任意实数x ,都有f(a +x)=f(a -x)且f(b +x)=f(b -x),求证:2|a -b|是f(x)的一个周期.(a≠b)2.已知数列{n x }满足x 1=1,x 2=6,11-+-=n n n x x x (n ≥2),求x 2006及S 2006.B 类例题例3定义在R 上的奇数满足f (1+x )=f (1-x ),当(]5,4∈x 时,f (x )=2x -4,则)0,1[-∈x 时f (x )=因为f (1+x )=f (1-x ),f (x )=f (-x ),知f (x +4)=f (x ), 故当]1,0(∈x 时,x +4(]5,4∈,f (x )=f (x +4)=2x +4-4=2x .又)0,1[-∈x 时,即-]1,0(∈x ,所以f (x )=-f (-x )=-2-x ()0,1[-∈x )例4设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1、x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),且f (1)=a >0.(1)求f (21)、f (41);(2)证明f (x )是周期函数;(3)记a n =f (2n +n21),求).(ln lim n n a ∞→(2001年全国高考题)分析本题主要考查函数概念,图象函数的奇偶性和周期性以及数列极限等知识,还考查运算能力和逻辑思维能力.认真分析处理好各知识的相互联系,抓住条件f (x 1+x 2)=f (x 1)·f (x 2)找到问题的突破口.由f (x 1+x 2)=f (x 1)·f (x 2)变形为)2()2()2()22()(xf x f x f x x f x f ⋅⋅=+=是解决问题的关键.解(1)因为对x 1,x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),所以f (x )=)2()22(x f x x f =+≥0,x ∈[0,1]又因为f (1)=f (21+21)=f (21)·f (21)=[f (21)]2f (21)=f (41+41)=f (41)·f (41)=[f (41)]2又f (1)=a >0∴f (21)=a 21,f (41)=a 41(2)证明:依题意设y =f (x )关于直线x =1对称,故f (x )=f (1+1-x ),即f (x )=f (2-x ),x ∈R .又由f (x )是偶函数知f (-x )=f (x ),x ∈R ,∴f (-x )=f (2-x ),x ∈R .将上式中-x 以x 代换得f (x )=f (x +2),这表明f (x )是R 上的周期函数,且2是它的一个周期.(3)解:由(1)知f (x )≥0,x ∈[0,1]∵f (21)=f (n ·n 21)=f (n 21+(n -1)n 21)=f (n 21)·f ((n -1)·n21) =……=f (n 21)·f (n 21)·……·f (n 21)=[f (n21)]n =a 21∴f (n21)=a n 21.又∵f (x )的一个周期是2∴f (2n +n 21)=f (n21),因此a n =a n 21∴.0)ln 21(lim )(ln lim ==∞→∞→a na n n n 例5(1997年全国高中数学联赛)已知数列{n x }满足11-+-=n n n x x x (n ≥2),x 1=a ,x 2=b ,记S n =x 1+x 2+?+x n ,则下列结论正确的是()A .x 100??a ,S 100=2b ?aB .x 100??b ,S 100?2b ?aCx 100??b ,S 100=b ?aD .x 100??a ,S 100?b ?a解因为11-+-=n n n x x x ==-----121)(n n n x x x 2--n x ,于是得n n n x x x =-=++36所以数列{n x }是周期数列,其周期为6k(k∈Z),且x1+x2+?+x6=0,x100=x4=-x1=-a.故S100 16(x1+x2+?+x6)+x97+x98+?+x99+x100=x1+x2+x3+x4=x2+x3=2b-a.例6设数列a1,a2,a3,…,a n,满足a1=a2=1,a3=2,且对任意自然数n都有a n·a n+1·a n+≠1,a n·a n+1·a n+2a n+3=a n+a n+1+a n+2+a n+3,求a1+a2+a3+…+a100.2解由a n·a n+1·a n+2a n+3=a n+a n+1+a n+2+a n+3,①得a n+1·a n+2·a n+3a n+4=a n+1+a n+2+a n+3+a n+4,②两式相减得:(a n-a n+4)·(a n+1+a n+2a n+3-1)=0,由于a n+1+a n+2a n+3≠1,所以a n+4=a n.又a1=a2=1,a3=2,由①得2a4=4+a4,所以a4=4.故a1+a2+a3+a4=8,于是a1+a2+a3+…+a100=25(a1+a2+a3+a4)=200.情景再现3.设f(x)是定义在区间(-∞,+∞)上以2为周期的函数,对k∈Z,用I表示区间(2k-k时f(x)=x2.1,2k+1],已知当x∈I(Ⅰ)求f(x)在I上的解析表达式;k(Ⅱ)对自然数k,求集合Mk={a│使方程f(x)=ax在I k上有两个不相等的实根}.4.(2005年上海理科卷)在直角坐标平面中,已知点1(1,2)P ,22(2,2)P,33(3,2)P ,…,(,2)n n P n ,其中n 是正整数.对平面上任一点0A ,记1A 为0A 关于点1P 的对称点,2A 为1A 关于点2P 的对称点,……,n A 为1n A -关于点n P 的对称点.(1)求向量02A A 的坐标;(2)当点0A 在曲线C 上移动时,点2A 的轨迹是函数()y f x =的图象,其中()f x 是以3为周期的周期函数,且当(]0,3x ∈时,()lg f x x =,求以曲线C 为图象的函数在(]1,4的解析式;对任意偶数n ,用n 表示向量0n A A 的坐标C 类例题例7.(2005年广东卷19)设函数()(,)(2)(2),(7)(7)f x f x f x f x f x -∞+∞-=+-=+在上满足,且在闭区间[0,7]上,只有.0)3()1(==f f(Ⅰ)试判断函数)(x f y =的奇偶性;(Ⅱ)试求方程0)(=x f 在闭区间[-2005,2005]上的根的个数,并证明你的结论.解(Ⅰ)由(2)(2)()(4)(4)(14)(7)(7)()(14)f x f x f x f x f x f x f x f x f x f x -=+=-⎧⎧⇒⇒-=-⎨⎨-=+=-⎩⎩)10()(+=⇒x f x f ,从而知函数)(x f y =的周期为10=T又(3)(1)0,(7)0f f f ==≠而,(3)(310)(7)0f f f -=-+=≠,所以(3)(3)f f -≠±故函数)(x f y =是非奇非偶函数;(II)又(3)(1)0,(11)(13)(7)(9)0f f f f f f ====-=-=故f(x)在[0,10]和[-10,0]上均有有两个解,从而可知函数)(x f y =在[0,2005]上有402个解,在[-2005.0]上有400个解,所以函数)(x f y =在[-2005,2005]上有802个解.例8数列{a n}满足a n=a n-1-a n-2(n≥3).如果它的前1492项之和是1985,而它的前1985项之和是1492.那么前2001项的和是多少(1985年中美数学邀请赛复赛试题)解因为a n=a n-1-a n-2=(a n-2-a n-3)-a n-2=-a n-3同理a n-3=-a n-6所以a n=a n-6故数列{a n}是周期数列.其周期为6.且f(n)=f(6k+n),(k∈N).=a n+a n-1+a n-2+L+a1,且a n=a n-1-a n-2(n≥3)Sn=(a n-1-a n-2)+(a n-2-a n-3)+(a n-3-a n-4)+…+(a2–a1)+a2+a1所以Sn=a n-1+a2(n≥3)=a1491+a2=a248×6+3+a2=a3+a2=1985,因此S1492=a1984+a2=a330×6+4+a2=a4+a2=a3=1492.S1985由以上两式得a2=493,=a2000+a2=a333×6+2+a2=a2+a2=986.所以S2001情景再现5.已知f (x )是定义在R 上的函数f (10+x)=f (10-x),f (20+x)=f (20-x).则f (x )是().A .周期为20的奇函数B .周期为20的偶函数C .周期为40的奇函数D .周期为40的偶函数6.在数列{a n }中.a n =13,a n =56.对所有的正整数n 都有a n +1=a n +a n +2,求a 1994.(1994年第5届希望杯”竞赛题)习题14A 类习题1.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{}a n 是等和数列,且a 12=,公和为5,那么(1)a 18的值为_______,(2)这个数列的前n 项和S n 的计算公式为________________(2004年北京理工卷).2.若存在常数0>p ,使得函数=)()(px f x f 满足)(),)(2(x f R x p px f 则∈-的一个正周期为.(2003年春季北京卷)3.对任意整数x ,函数)(x f 满足)(1)(1)1(x f x f x f -+=+,若2)1(=f ,则=)2003(f .4.已知函数f(x)的定义域为N ,且对任意正整数x ,都有f(x)=f(x -1)+f(x +1).若f(0)=2004,求f(2004).5.已知对于任意a ,b∈R,有f(a +b)+f(a -b)=2f(a)f(b),且f(x)≠0⑴求证:f(x)是偶函数;⑵若存在正整数m 使得f(m)=0,求满足f(x +T)=f(x)的一个T 值(T≠0)6.记f (n)为自然数n 的个位数字,a n =f (n 2)-f (n).求a 1+a 2+a 3+L +a 2006的值.B 类习题7.函数f 定义在整数集上.满足:()f n =()310005n n f n -≥⎧⎪⎨+⎡⎤⎪⎣⎦⎩若若n<1000,求()84f 的值.8.已知数列{a n }满足a 1=1,a 2=2,a n a n +1a n +2=a n +a n +1+a n +2,且a n +1a n +2≠1,求20061ii a=∑的值.9.设函数f (x )的定义域关于原点对称且满足:(i)f (x 1-x 2)=)()(1)()(1221x f x f x f x f -+⋅;(ii)存在正常数a 使f (a )=1.求证:(1)f (x )是奇函数.(2)f (x )是周期函数,且有一个周期是4a .10.已知集合M 是满足下列性质的函数f (x )的全体:存在非零常数T ,对任意x ∈R ,有f (x +T )=T f (x )成立.(1)函数f (x )=x 是否属于集合M ?说明理由;(2)设函数f (x )=a x (a >0,且a ≠1)的图象与y=x 的图象有公共点,证明:f (x )=a x ∈M ;(3)若函数f (x )=sin kx ∈M ,求实数k 的取值范围.(2003年上海卷)C 类习题11.整数数列}{n a ,时对于每个n ≥3都有a n =a n -1-a n -2,若前2003项的和为a ,(a ≠0)则S 5=()A .aB .C .D .5a(2003年希望杯)12.设f(x)是一个从实数集R 到R 的一个映射,对于任意的实数x ,都有|f(x)|≤1,并且f (x)+)71+(+)61+(=)4213+(x f x f x f ,求证:f(x)是周期函数.本节“情景再现”解答:1.不妨设a >b ,于是f(x +2(a -b))=f(a +(x +a -2b))=f(a -(x +a -2b))=f(2b -x)=f(b -(x -b))=f(b +(x -b))=f(x)∴2(a -b)是f(x)的一个周期当a <b 时同理可得.所以,2|a -b|是f(x)的周期2.解法一:由x 1=1,x 2=6,及11-+-=n n n x x x 得x 3=5,x 4=-1,x 5=-6,x 6=-5,x 7=1,x 8=6,所以数列{n x }是周期数列,其周期为6k(k ∈Z ),且x 1+x 2+?+x 6=0,所以x 2006=x 6×334+2=x 2=6.S 2006=7解法二:因为11-+-=n n n x x x ==-----121)(n n n x x x 2--n x ,于是得n n n x x x =-=++36所以数列{n x }是周期数列,其周期为6k(k ∈Z ),且x 1+x 2+?+x 6=0,所以x 2006=x 6×334+2=x 2=6.S 2006=73.⑴证明:令a =b =0得,f(0)=1(f(0)=0舍去)又令a =0,得f(b)=f(-b),即f(x)=f(-x),所以,f(x)为偶函数⑵令a =x +m ,b =m 得f(x +2m)+f(x)=2f(x +m)f(m)=0所以f(x +2m)=-f(x)于是f(x +4m)=f[(x +2m)+2m]=-f(x +2m)=f(x)即T =4m(周期函数)4.(Ⅰ):∵f (x)是以2为周期的函数,∴ 当k ∈Z 时,2k 是f(x)的周期.又∵ 当x∈I k 时,(x -2k)∈I 0,∴ f(x)=f(x -2k)=(x -2k)2.即对 k ∈Z ,当x ∈I k 时,f(x)=(x -2k)2.(Ⅱ)解:当k ∈N 且x ∈I k 时,利用(Ⅰ)的结论可得方程(x -2k)2=ax ,整理得 x 2-(4k +a)x +4k 2=0.它的判别式是△=(4k +a)2-16k 2=a(a +8k).上述方程在区间Ik 上恰有两个不相等的实根的充要条件是a 满足⎪⎪⎪⎩⎪⎪⎪⎨⎧+++≥++-+<->+])8(4[2112])8(4[21120)(k a a a k k k a a a k k k a a ,化简⎪⎪⎩⎪⎪⎨⎧-≤++>+>+ak a a a k a a k a a 2)8(2)8(0)8(③②①由①知a >0,或a <-8k .当a >0时:因2+a>2-a ,故从②,③可得≤2-a ,即.即所以1210+≤<k a 当a <-8k 时:2+a<2-8k<0,易知<2+a 无解.综上所述,a 应满足1k 21a 0+≤<,故所求集合(1)K>0时}1210{+≤<=k a a M K(2)K=0,{a |-1<a <0,或0<a <1}4.(1)设点),(0y x A ,A 0关于点P 1的对称点A 1的坐标为),4,2(1y x A --A 1关于点P 2的对称点A 2的坐标为)4,2(2y x A ++,所以,}.4,2{20=A A(2)[解法一])(},4,2{20x f A A ∴= 的图象由曲线C 向右平移2个单位,再向上平移 4个单位得到.因此,基线C 是函数)(x g y =的图象,其中)(x g 是以3为周期的周期函数,且当[解法二]设⎩⎨⎧=-=-42),,(),,(222220y y x x y x A y x A 于是若).3lg()3()(,330,6322222-=-=≤-<≤<x x f x f x x 于是则当),1lg(4.63,412-=+≤<≤<x y x x 则时.4)1lg()(,]4,1{--=∈∴x x g x 时当(3)n n n A A A A A A A A 242200-+++=由于)(2,2143210212222n n n k k k k P P P P P P A A P P A A ---+++== 得,5.解析:f (20+x)=f [10+(10+x)]=f (10-(10+x))=f (-x ),类似地f (20-x)=f (x ),所以f (x )=-f (-x ),故f (x )是奇函数且f (x )的周期为40.故选C .6.解因为a n +1=a n +a n +2,所以a n +2=a n +1+a n +3,以上两式相减得a n +3=-a n ,所以a n +6=a n所以数列{a n }是以6周期的周期数列.所以a 1994=a 332×6+2=a 2=56.本节“习题14”解答:1.答案:(1)3解:(1)由题可得5=a 1+a 2=a 2+a 3=a 3+a 4=…=a 2n -1+a 2n =a 2n +a 2n +1得a 2n +1=a 2n +3,a 2n =a 2n +2,故得为周期数列T=2,a 18=a 2,又因为a 1=2,所以a 2=3,故a 18=a 2=3.(2)当n为偶数时,S n n =52;当n 为奇数时,S n n =-5212. 2.答案:2p 注:填2p的正整数倍中的任何一个都正确.解:设u=px -·所以px=u +则f (u)=f (u +)对于任意的实数u 都成立,根据周期函数的定义,f(x)的一个正周期为,所以f (x)的一个正周期为. 3.解由)(1)(1)1(x f x f x f -+=+得)(1)2(x f x f -=+,故)()4(x f x f =+,21)3()3504()2003(-==+⨯=f f f .4.解因为f(x)=f(x -1)+f(x +1)所以f(x +1)=f(x)+f(x +2),两式相加得0=f(x -1)+f(x +2)即:f(x +3)=-f(x)∴f(x +6)=f(x),f(x)是以6为周期的周期函数,2004=6×334,∴f(2004)=f(0)=2004.5.⑴证明:令a =b =0得,f(0)=1(f(0)=0舍去)又令a =0,得f(b)=f(-b),即f(x)=f(-x),所以,f(x)为偶函数⑵令a =x +m ,b =m 得f(x +2m)+f(x)=2f(x +m)f(m)=0所以f(x +2m)=-f(x)于是f(x +4m)=f[(x +2m)+2m]=-f(x +2m)=f(x),即T =4m(周期函数)6.解易知f (n +10)=f (n),f [(n +10)2]=f (n 2)所以a n +10=a n 即a n 是以10为周期的数列又易知a 1=0,a 2=2,a 3=6,a 4=2,a 5=0,a 6=0,a 7=2,a 8=-4,a 9=-8,a 10=0.所以a 1+a 2+a 3+L +a 10=0.故a 1+a 2+a 3+L +a 2005=a 1+a 2+a 3+L +a 6=10.7.解先考虑n=999(近1000时)情况:()999ffff =()1004ffff f ⎡⎤⎣⎦=()1001ffff =()998fff =()1003fff f ⎡⎤⎣⎦ =()1000fff =()997ff =()1002ff f ⎡⎤⎣⎦=()999ff .(有规律()999ffff =()999ff ).∴()84f =()845f f +⎡⎤⎣⎦=()8425ff f +⨯⎡⎤⎣⎦=()8435fff f +⨯⎡⎤⎣⎦ =()184841835fff +⨯=()184999fff =()182999fff =……=()999ff =()1004fff =()1001ff =()998f =()1003ff=()1000f =997.8.解易知a 3=3,a 4=1,a 5=2,由a n a n +1a n +2=a n +a n +1+a n +2,①得a n +1a n +2a n +3=a n +1+a n +2+a n +3,②②-①得:(a n +3-a n )(a n +1a n +2-1)=0,又a n +1a n +2≠1,所以a n +3-a n =0,即a n 是以3为周期的数列,又a 1+a 2+a 3=6,所以20061ii a=∑=6×668+1+2=4011.9.证明:(1)不妨令x =x 1-x 2,则f (-x )=f (x 2-x 1)=)()(1)()()()(1)()(12212112x f x f x f x f x f x f x f x f -+-=-+=-f (x 1-x 2)=-f (x ).∴f (x )是奇函数.(2)要证f (x +4a )=f (x ),可先计算f (x +a ),f (x +2a ).∵f (x +a )=f [x -(-a )]=)1)((1)(1)()()(1)()()()(1)()(=+-=--+-=---+-a f x f x f x f a f x f a f x f a f x f a f .∴f (x +4a )=f [(x +2a )+2a ]=)2(1a x f +-=f (x ),故f (x )是以4a 为周期的周期函数.10.解(1)对于非零常数T ,f (x +T)=x +T ,T f (x )=T x .因为对任意x ∈R ,x +T=T x 不能恒成立,所以f (x )=.M x ∉(2)因为函数f (x )=a x(a >0且a ≠1)的图象与函数y=x 的图象有公共点,所以方程组:⎩⎨⎧==xy a y x有解,消去y 得a x =x ,显然x =0不是方程a x =x 的解,所以存在非零常数T ,使a T =T .于是对于f (x )=a x 有)()(x Tf a T a a a T x f x x T T x =⋅=⋅==++故f (x )=a x ∈M .(3)当k=0时,f (x )=0,显然f (x )=0∈M .当k ≠0时,因为f (x )=sin kx ∈M ,所以存在非零常数T ,对任意x ∈R ,有f (x +T)=T f (x )成立,即sin(kx +k T)=Tsin kx .因为k ≠0,且x ∈R ,所以kx ∈R ,kx +k T ∈R ,于是sin kx ∈[-1,1],sin(kx +k T)∈[-1,1],故要使sin(kx +k T)=Tsin kx .成立,只有T=1±,当T=1时,sin(kx +k )=sin kx 成立,则k =2m π,m ∈Z .当T=-1时,sin(kx -k )=-sin kx 成立,即sin(kx -k +π)=sin kx 成立,则-k +π=2m π,m ∈Z ,即k =-2(m -1)π,m ∈Z .综合得,实数k 的取值范围是{k |k =m π,m ∈Z}11.解因为a n =a n -1-a n -2=(a n -2-a n -3)-a n -2=-a n -3,同理a n -3=-a n -6所以a n =a n -6,故数列{a n }是周期数列.其周期为6.因此S n =a n +a n -1+a n -2+L +a 1,且a n =a n -1-a n -2(n ≥3).所以S n =(a n -1-a n -2)+(a n -2-a n -3)+(a n -3-a n -4)+…+(a 2–a 1)+a 2+a 1=a n -1+a 2(n ≥3).因此S 2003=a 2002+a 2=a 333×6+4+a 2=a 4+a 2=S 5,故选A .12.证明:由已知f(x)+)4216x (f )427x (f )4213x (f +++=+所以)426x (f )4213x (f )x (f )427x (f +-+=-+19124942()()......()()42424242f x f x f x f x =+-+==+-+ 即)427x (f )4249x (f )x (f )4242x (f +-+=-+①同理有)4243x (f )4249x (f )421x (f )427x (f +-+=+-+即)421x (f )4243x (f )427x (f )4249x (f +-+=+-+② 由①②)427x (f )4249x (f )x (f )4242x (f +-+=-+ 4314428442()()()()......()()424242424242f x f x f x f x f x f x =+-+=+-+==+-+ 于是f(x +1)-f(x)=f(x +2)-f(x +1),记这个差为d同理f(x +3)-f(x +2)=f(x +2)-f(x +1)=d……f(x +n +1)-f(x +n)=f(x +n)-f(x +n -1)=……=f(x +1)-f(x)=d即是说数列{f(x +n)}是一个以f(x)为首项,d 为公差的等差数列因此f(x +n)=f(x)+nd =f(x)+n[f(x +1)-f(x)]对所有的自然数n 成立,而对于x ∈R ,|f(x)|≤1,即f(x)有界,故只有f(x +1)-f(x)=0即f(x +1)=f(x)x ∈R 所以f(x)是周期为1的周期函数.。

高三复习经典专题6:周期数列问题

高三复习经典专题6:周期数列问题

周期数列的性质及应用我们在学习函数时,通常会围绕着函数的单调性、奇偶性和周期性进行研究;那么,数列作为一种特殊的函数,它是否有周期性呢?有周期性的数列又有哪些特点呢?下面是我在教学中总结出的几点认识,仅供大家参考. 1、周期数列的概念及主要性质类比周期函数的概念,我们可定义:对于数列}{n a ,如果存在一个常数T )(+∈N T ,使得对任意的正整数0n n >恒有n T n a a =+成立,则称数列}{n a 是从第0n 项起的周期为T 的周期数列.若10=n ,则称数列}{n a 为纯周期数列,若20≥n ,则称数列}{n a 为混周期 数列,T 的最小值称为最小正周期,简称周期.通过周期数列的定义以及所学过的周期函数的性质,发现周期数列满足以下性质: (1)如果T 是数列}{n a 的周期,则对于任意的+∈N k ,kT 也是数列}{n a 的周期. (2)若数列}{n a 满足21---=n n n a a a (+∈N n ,且2>n ),则6是数列的一个周期.(3)已知数列}{n a 满足n t n a a =+(+∈N t n ,,且t 为常数),n S 分别为}{n a 的前n 项的和,若r qt n +=(t r <≤0,+∈N r ),则r n a a =,r t n S qS S +=.特别地:数列}{n a 的周期为6,(即:n n a a =+6)则262012335S S S +=(4)若数列}{n a 满足s a a k n n =+-),(+∈>N n k n ,则数列}{n a 是周期数列; 若数列}{n a 满足s a a a k n n n =+++-- 1),(+∈>N n k n ,则数列}{n a 是周期数列. 若数列}{n a 满足s a a a k n n n =⋅⋅⋅-- 1)0,,(≠∈>+s N n k n ,则数列}{n a 是周期数列.特别地:数列}{n a 满足s a a n n =+-1),(+∈>N n k n ,则数列}{n a 周期T=2;数列}{n a 满足s a a a n n n =++--21),(+∈>N n k n ,则数列}{n a 周期T=3 数列}{n a 满足s a a n n =-1),(+∈>N n k n ,则数列}{n a 周期T=2;数列}{n a 满足s a a a n n n =--21),(+∈>N n k n ,则数列}{n a 周期T=3(5)若数列}{n a 满足,11dca baa a n n n --=--a+d=0,则数列}{n a 是周期T=2;例:数列}{n a 满足,37311--=--n n n a a a 则数列}{n a 是周期T=2;;2、周期数列性质的简单应用 (1)求周期数列的通项公式例1(04山东数学竞赛)、已知数列}{n a 满足21=a ,nn a a 111-=+,求n a . 分析:周期数列的通项公式通常都可以分段表示,所以只需求出它的一个最小正周期即可. 解:∵n n a a 111-=+,∴111112--=-=++n n n a a a ,从而n n n n a a a a =-+=-=++111123; 即数列}{n a 是以3为周期的周期数列.又21=a ,211112=-=a a ,11123-=-=a a ,所以 332313,1,21,2+=+=+=⎪⎩⎪⎨⎧-=k n k n k n a n .例2、若数列}{n a 满足⎪⎪⎩⎪⎪⎨⎧<≤-<≤=+)121( ,12)210( ,21n n n n n a a a a a ;若761=a ,则20a 的值为( ).A .76 B .75 C .73 D .71. 解析:紧扣分段函数的定义,代入a 1=76求得a 2=75,并依次求出 ,76,7343==a a .故此数列是周期为3的周期性数列,故75220==a a .故选B .(2)求周期数列中的项例3(由第十四届希望杯改编)、已知数列}{n a 中,5,321==a a 且对于大于2的正整数,总有21---=n n n a a a ,则2009a 等于( ).A .-5B .-2C .2D .3.解析:由性质(2)知,数列}{n a 是以6为周期的周期数列,而533462009+⨯=,再由性质(3)可得5)(3233452009-=--=-==a a a a a a a ,故选A .例4(上海中学数学杂志2000年的第1期)、已知实数列}{n a 满足a a =1(a 为实数),11313---+=n n n a a a (+∈N n ),求2000a .解:11313---+=n n n a a a (+∈N n )可变形为1133133---+=n n n a a a .我们发现1133133---+=n n na a a 与三角式6tantan 16tan tan )6tan(πππx x x -+=+十分相似,因此可把此三角式认为是原递推关系的原型.通过运算,发现本题中可取n a =6tanπn ,6)1(tan 1π-=-n a n .显然此数列的周期是6.而263332000+⨯=,再由性质(3),得aa a a -+==31322000.注:此类问题也可采用不动点法求解,有兴趣的朋友不妨试一下.(3)求周期数列的前n 项和例5、设数列}{n a 中,21321===a a a ,,且对N n ∈,有321+++n n n n a a a a = 321++++++n n n n a a a a (121≠++n n n a a a )成立,试求该数列前100项和100S .解:由已知条件,对任何自然数+N ,有321+++n n n n a a a a = 321++++++n n n n a a a a ,把式中的n 换成1+n ,得4321++++n n n n a a a a = 4321+++++++n n n n a a a a .两式相减得,44321)(+++++-=-n n n n n n n a a a a a a a .因为1321≠+++n n n a a a ,所以n n a a =+4)(+∈N n .所以}{n a 是以4为周期的周期数列,而254100⨯=,再由性质(3),得200)4211(25254100=+++⨯==S S .例6(上海08质检题)、若数列}{n a 满足n n n a a a -=++12)(+∈N n ,n S 为}{n a 的前n 项和,且20082=S ,20103=S ,求2008S .解析:由n n n a a a -=++12及性质(2),可知所以数列}{n a 是以6为周期的周期数列.由20082=S ,20103=S ,知200821=+a a ,2010321=++a a a ,再结合123a a a -=,可求得10031=a ,10052=a ,23=a ;由递推关系式可进一步求得10034-=a ,10055-=a ,26-=a .因为433462008+⨯=,由性质(3),得100710070334334462008=+⨯=+=S S S .(4)求周期数列的极限例7、(06北京)在数列}{n a 中,1a ,2a 是正整数,且21---=n n n a a a , 5,4,3=n ,则称}{n a 为“绝对差数列”.若“绝对差数列”}{n a 中,320=a ,021=a ,数列}{n b 满足21++++=n n n n a a a b , 3,2,1=n ,分别判断当n →∞时,数列}{n a 和}{n b 的极限是否存在,如果存在,求出其极限值.解析:因为在绝对差数列}{n a 中320=a ,021=a .所以自第20项开始,该数列是320=a ,021=a ,322=a ,323=a ,024=a ,325=a ,326=a ,027=a ….即自第 20 项开始,每三个相邻的项周期地取值3,0,3.所以当n →∞时,n a 的极限不存在.当20n ≥时,126n n n n b a a a ++=++=,所以lim 6n n b →∞=.周期数列练习1、已知数列}{n a 满足,,11=a ,22=a ,21--=n n n a a a ),3(*∈≥N n n .则=17a ( ) A.1 B.2 C.21D.9872-2、n 个连续自然数按规律排成下表:( ) 0 3 → 4 7 → 8 11 … ↓ ↑ ↓ ↑ ↓ ↑ 1 → 2 5 → 6 9 → 10根据规律,从2011到2012的箭头方向依次为( )。

数列周期性

数列周期性

1. 已知数列{a n}中,a1=3,a2=6,a n+2=a n+1-a n,则a2010=由题中的递推公式可以求出数列的各项,通过归纳,猜想,得出正确结果.解答:解:在数列a n中,a1=3,a2=6,a n+2=a n+1-a n;分析可得:a3=a2-a1=6-3=3,a4=a3-a2=3-6=-3,a5=a4-a3=-3-3=-6,a6=a5-a4=-6-(-3)=-3,a7=a6-a5=-3-(-6)=3,a8=a7-a6=3-(-3)=6,…由以上知:数列每六项后会出现相同的循环,所以a2010=a6=-3.故答案为:-3.2. 数列{a n}满足a1=2,a n+1=-,则a2010等于()A.2 B.-13C.-32D.13.数列{a n}满足:a1=2,a n+1= ,则a2010的值为4. 若数列{a n}满足:a n+1=1- 且a1=2,则a2010=1a n+11+a n1-a n1a n相信并不放弃就会有奇迹n12n+2n n+12010A.1 B.3 C.7 D.9考点:数列递推式.专题:计算题.分析:由题意可得,数列的项分别为:3,7,1,7,7,9;3,7,1,7,7,9;3,7,1,7,7,9…,故可知数列{a n}是周期为6 的周期数列,从而可求解答:解:由题意可得,数列的项分别为:3,7,1,7,7,9;3,7,1,7,7,9;3,7,1,7,7,9…故可知数列{a n}是周期为6 的周期数列∴a2010=a6=9故选D.数列{a n}中,a n+1•a n=a n+1-1,且a2010=2,则前2010项的和等于()A.1005 B.2010 C.1 D.0考点:数列的求和;数列递推式.答案:A过去不等于未来。

高中数学数列中的周期数列

高中数学数列中的周期数列

高中数学数列中的周期数列在高中数学的知识体系中,数列是一个重要且富有魅力的部分,而周期数列更是其中独具特色的一类。

对于许多同学来说,理解和掌握周期数列可能会有一定的难度,但一旦攻克,便能在解题中如鱼得水。

什么是周期数列呢?简单来说,就是数列中的项按照一定的规律周期性地重复出现。

打个比方,就像我们日常生活中的星期,从周一到周日不断循环,这就是一种周期现象。

在数学中,如果存在一个正整数 T,使得对于任意的正整数 n,都有 a(n + T) = a(n),那么这个数列{a(n)}就是周期数列,T 被称为这个数列的周期。

周期数列有着各种各样的表现形式。

比如,有些周期数列的规律非常明显直观。

例如数列 1,2,1,2,1,2,它的周期就是 2,每两项一重复。

再比如数列 5,-5,5,-5,5,-5,周期同样为 2。

而有些周期数列的规律则相对隐晦,需要我们通过一定的计算和观察才能发现。

例如数列 1,2,3,1,2,3,这个数列的周期就是 3。

还有像数列 1,1,2,2,3,3,1,1,2,2,3,3,其周期则为 6。

那么,如何判断一个数列是否为周期数列呢?这就需要我们敏锐的观察力和一定的计算能力。

首先,我们可以通过对数列前若干项的观察,尝试寻找是否存在重复出现的片段。

如果能找到,再通过进一步的计算验证这种重复性是否具有周期性。

对于周期数列,求其通项公式是一个重要的问题。

如果一个周期数列的周期为 T,我们可以将数列按照周期进行分段,然后分别对每一段进行研究。

例如,对于周期为 3 的数列 1,2,3,1,2,3,我们可以设 n = 3k + r(其中 k 为整数,r = 0,1,2),当 r = 0 时,a(n)= 1;当 r = 1 时,a(n) = 2;当 r = 2 时,a(n) = 3。

这样就得到了这个周期数列的通项公式。

周期数列在解题中有着广泛的应用。

比如在求数列的前 n 项和时,如果是周期数列,我们可以先求出一个周期内各项的和,然后再根据 n 与周期的关系,计算出前 n 项的和。

周期数列详解

周期数列详解

周期数列一、周期数列的定义:类比周期函数的概念,我们可定义:对于数列}{n a ,如果存在一个常数T )(+∈N T ,使得对任意的正整数0n n >恒有n T n a a =+成立,则称数列}{n a 是从第0n 项起的周期为T 的周期数列。

若10=n ,则称数列}{n a 为纯周期数列,若20≥n ,则称数列}{n a 为混周期数列,T 的最小值称为最小正周期,简称周期。

设{An}是整数,m 是某个取定的大于1的正整数,若Bn 是An 除以m 后的余数,即Bn=An(mod m),且Bn 在{0,1,2,...,m-1},则称数列{Bn}是{An}关于m 的模数列,记作{An(mod m)}。

若模数列{An(mod m)}是周期的,则称{An}是关于模m 的周期数列。

二、 周期数列的性质1、周期数列是无穷数列,其值域是有限集;2、如果T 是数列}{n a 的周期,则对于任意的+∈N k ,kT 也是数列}{n a 的周期。

3、若数列}{n a 满足21---=n n n a a a (+∈N n ,且2>n ),则6是数列的一个周期。

4、已知数列}{n a 满足n t n a a =+(+∈N t n ,,且t 为常数),n S 分别为}{n a 的前n 项的和,若r qt n +=(t r <≤0,+∈N r ),则r n a a =,r t n S qS S +=。

特别地:数列}{n a 的周期为6,(即:n n a a =+6)则262012335S S S += 5、若数列}{n a 满足s a a k n n =+-),(+∈>N n k n ,则数列}{n a 是周期数列; 若数列}{n a 满足s a a a k n n n =+++-- 1),(+∈>N n k n ,则数列}{n a 是周期数列。

若数列}{n a 满足s a a a k n n n =⋅⋅⋅-- 1)0,,(≠∈>+s N n k n ,则数列}{n a 是周期数列。

微专题 数列的单调性、最值和周期性

微专题 数列的单调性、最值和周期性

反思 感悟
要判断一个数列是否具有周期性或求一个数列的周期,主要方法便是 求出该数列的前几项,通过观察得到,或者由递推公式发现规律.
分析通项(或递推)公式,多求出几项,找到规律.
一、数列单调性的判断
1-2x 例 1 已知函数 f(x)= x+1 (x≥1),构造数列 an=f(n)(n∈N*).试判断数列的单 调性.
解 f(x)=1x-+21x=-2+x+3 1. 方法一 ∵an=-2+n+3 1(n∈N*),an+1=-2+n+3 2, ∴an+1-an=n+3 2-n+3 1=3nn++11-nn+-22=n+1-3n+2<0. ∴an+1<an. ∴数列{an}是递减数列. 方法二 设x1>x2≥1,则 f(x1)-f(x2)=-2+x1+3 1--2+x2+3 1 =x1+3 1-x2+3 1
例 3 已知数列{an}的通项公式为 an=n97n+1,n∈N*,则该数列是否有最大 项,若有,求出最大项的项数;若无,说明理由.
解 方法一 ∵an+1-an=(n+1)·97n+2-n·79n+1=79n+1·7-92n,且 n∈N*, ∴当n>3,n∈N*时,an+1-an<0; 当1≤n≤3,n∈N*时,an+1-an>0. 综上,可知{an}在n∈{1,2,3}时,单调递增; 在n∈{4,5,6,7,…}时,单调递减. ∴存在最大项.
又 a3=3×793+1<a4=4×794+1,∴第 4 项为最大项. 方法二 假设an是数列中的最大项, 则有aann≥ ≥aann+ -11, , n≥2.
即n·79n+1≥n+1·79n+2, n79n+1≥n-179n,
∴nn≥≤7292,,
又∵n∈N*,故 n=4.

对“周期数列”的探究

对“周期数列”的探究

对“周期数列”的探究浙江省绍兴县柯桥中学(312030) 陈冬良一般在数列中等差数列与等比数列考查较多,笔者在教学过程中感到一类特殊的数列也时常在各类高考或竞赛卷中出现,我们把它命名为“周期数列”,数列作为一类特殊的函数,函数性质在数列中的考查显得尤为自然,“周期数列”较好的渗透函数周期性的考查,笔者对 “周期数列”的考查作了以下一些探讨,仅供参考.周期数列定义:对一数列{a n },若存在一确定的正整数T 及n 0,对任一n ≥ n 0 恒有a n+T =a n 成立 ,则数列{a n }为周期数列,T 为数列{a n }的周期.周期数列性质:1)周期数列是无穷数列,其值域是有限集;2)若T 是{a n }的周期,则对任何k *∈N ,kT 也是{a n }的周期;3)周期数列必有最小正周期;一.直接定义考查例1.① (2001上海春季)若数列{a n }前8项的值各异,且a n+8=a n 对任意n *∈N 都成立,则下列数列中可取遍{a n }的前8项值的数列为( )A.{a 2k+1}B.{a 3k+1}C.{a 4k+1}D.{a 6k+1} 解:由数列{a n }前8项的值各异,且a n+8=a n 对任意n *∈N 都成立得数列{a n }的周期T=8,则问题转化为2k+1,3k+1,4k+1,6k+1中k=1,2,3,…代入被8除,若余数能取到0,1,2,3,4,5,6,7即为答案,经检验,3k+1可以,故{a 3k+1}可取遍{a n }的前8项值,答案为B.评注:若在给定数列{a n }中有a n+T =a n 出现,往往需考虑数列周期.②(04北京高考)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5,那么a 18的值为_____. 解:由题可得5=a 1+a 2=a 2+a 3=a 3+a 4=…=a 2n-1+a 2n = a 2n +a 2n+1=…,得a 2n+1=a 2n+3,a 2n =a 2(n+1),得{a n }为周期数列,T=2,故a 18=a 2 ,又a 1=2,得a 2=3,所以a 18=3评注:上例考查是近年来较新的一种考查形式,通过自定义得一新数列,由新信息解题,上例作者定义为等和数列,其实质也是一周期数列.二.等价转化考查例2. (03高一“希望杯)整数数列{a n },对于每个n ≥3都有a n =a n-1-a n-2,若前2003项的和为a (a ≠0),则S 5= ( ) A.a B.5a C.a5 D.5a 探究1:由题得 213212341232211------=-=-=-===n n n n n n a a a a a a a a a a a a a a a a,n 个等式相加得S n =a n-1+a 2 ,则S 2003=a 2002+a 2=a,求S 5=a 4+a 2 ?由S n =a n-1+a 2 ,由于{S n }中都出现a 2,猜想a 2为常数,由S 2003=a 2002+a 2=a 猜想a 2=a,特例法,取a 1=0, a 2=a,则 a 3=a,a 4=0,a 5=-a,a 6=-a,a 7=0,a 8=a,…;由列举容易得{a n }满足 S 2003=a 2002+a 2=a,又{a n }周期T=6,则S 2003=a 2002+a 2=243336a a ++⨯=a 4+a 2=S 5=a,故答案选A.探究2:由探究1的特例探究可知{a n }是周期数列,下列我们进行一般探究.由题得 213212341232211------=-=-=-===n n n n n n a a a a a a a a a a a a a a a a,n 个等式相加得S n =a n-1+a 2 ,则S 2003=a 2002+a 2=a,求S 5=a 4+a 2 ?又a n =a n-1-a n-2可得a n-1=a n-2-a n-3 ,两式相加得a n = -a n-3 ,进一步可得a n = -a n-3= -(-a n-6)=a n-6,等同于n n a a =+6,由周期数列定义得{a n }的周期T=6,下面与探究1相同。

函数周期性公式大全

函数周期性公式大全

函数周期性公式大全一、周期定义一般地,如果存在一个非零常数T,使得对于函数f(x)的定义域中的任意一个x和x+T,都有f(x+T)=f(x)。

那么,函数f(x)就叫做周期函数,并且把非零常数T叫作这个函数的一个周期。

【注】一般情况下,如果一个周期函数有最小正周期的话,“周期”通常指的都是这个周期函数的“最小正周期”。

二、中学数学常用到的周期函数的公式1、设周期函数y=f(x)的周期(最小正周期)为T,则f(x+nT)=f(x),f(x-nT)=f(x)。

这里的n可以是任意整数。

2、设周期函数y=f(x)的周期(最小正周期)为T,则y=f(x)+b、y=Af(x)、y=Af(x)+b,(注:A不等于0),都是最小正周期为T的周期函数。

3、设周期函数y=f(x)的周期(最小正周期)为T,则y=f(wx)+b、y=Af(wx)、y=Af(wx)+b都是周期函数,并且最小正周期为“T/|w|”。

(注:A、w都不为0)三、高中数学常见的周期函数的周期1、(1)y=sinx ,最小正周期T=2π;(2)y=|sinx|,最小正周期T= π。

2、(1)y=cosx,最小正周期T=2π;(2)y=|cosx|,最小正周期T= π。

3、(1)y=tanx,最小正周期T=π;(2)y=cotx,最小正周期T=π。

4、y=Asin(wx+φ)+b,最小正周期T=2π/|w|。

(注:“A”、“w”为非0常数,下同。

)5、y=Acos(wx+φ)+b,最小正周期T=2π/|w|。

6、y=Atan(wx+φ)+b,最小正周期T=π/|w|。

7、常函数“y=c(c为常数)”,是以任意非零常数为周期的周期函数。

【注】常函数没有最小正周期。

正弦函数图象及性质圆周率π的小数点后有多少位?高考打铃后多写了几秒会被处理吗?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的周期大合集,你需要的周期数列在这里
之所以做今天的周期合集,因为在前面的系列递推式分析过程中,时不时冒出个周期数列出来,所以就有了今天的内容,将周期数列类型进行归纳,免得相逢不相识。

首先将前面已经总结过的周期数列做一期专题,用来比较辨析。

类型一:在文章“分式递推式”中的周期数列
巩固练习:
类型二:在文章“和、积递推式”中的周期数列
类型三:在文章“连续三项递推式”中的周期数列
这一期,主要将前面文章中涉及到的周期数列,作了个合集,并加了一些新的题目,如果要弄清楚每一种周期数列的来龙去脉,可以回翻我前几天的文章,里面有详细解读分析。

在数列当中,有没有其他的周期数列呢?又有怎样的形式呢?请关注明天内容。

能通过这两期的内容,可以完爆数列的周期性问题。

相关文档
最新文档