最短路径数学建模案例及详解
最短路径问题数学建模分析
径上的边权之和称为该路径的权,记为w(P). 从u到v
的路径中权最小者 P*(u,v)称为u到v的最短路径.
2
8 177
33 54
5
6 1 12
9 62
5 10 11
8
8
3 99
7 2 10
2
5
最短路径算法
Dijkstra算法
使用范围:
2
8 177
8
8
3354
5
61 1
9 9
6 2 5 12 11
输入加权图的带权邻接矩阵w=[w(vi,vj)]nxm. 1) 初始化 令l(v0)=0,S=; vv0 ,l(v)=; 2) 更新l(v), f(v)
寻找不在S中的顶点u,使l(u)为最小.把u加入到S中, 然后对所有不在S中的顶点v,如l(v)>l(u)+w(u,v),则 更新l(v),f(v), 即 l(v)l(u)+w(u,v),f(v)u; 3) 重复步骤2), 直到所有顶点都在S中为止.
②
ins=0;
for j=1:length(s)
if i==s(j)
ins=1;
end, end
if ins==0
v=i;
if k>label(v)
k=label(v); v1=v;
end, end, end
s(length(s)+1)=v1;
u=v1;
end
最短路径算法
Dijkstra算法程序的使用说明:
廉价路线航费表。
0 50 40 25 10 50 0 15 20 25
15 0 10 20 40 20 10 0 10 25
最短路径问题的算法分析及建模案例
最短路径问题的算法分析及建模案例最短路径问题的算法分析及建模案例一.摘要 (3)二.网络最短路径问题的基础知识 (5)2.1有向图 (7)2.2连通性................... 错误!未定义书签。
2.3割集....................... 错误!未定义书签。
2.4最短路问题 (8)三.最短路径的算法研究.. 错误!未定义书签。
3.1最短路问题的提出 (9)3.2 Bellman最短路方程错误!未定义书签。
3.3 Bellman-Ford算法的基本思想错误!未定义书签3.4 Bellman-Ford算法的步骤错误!未定义书签。
3.5实例....................... 错误!未定义书签。
3.6 Bellman-FORD算法的建模应用举例错误!未定义3.7 Dijkstra算法的基本思想 (9)3.8 Dijkstra算法的理论依据 (9)3.9 Dijkstra算法的计算步骤 (9)3.10 Dijstre算法的建模应用举例 (10)3.11 两种算法的分析错误!未定义书签。
1.Diklstra算法和Bellman-Ford算法思想有很大的区别错误!未定义书签。
Bellman-Ford算法在求解过程中,每次循环都要修改所有顶点的权值,也就是说源点到各顶点最短路径长度一直要到Bellman-Ford算法结束才确定下来。
...................... 错误!未定义书签。
2.Diklstra算法和Bellman-Ford算法的限制.................. 错误!未定义书签。
3.Bellman-Ford算法的另外一种理解错误!未定4.Bellman-Ford算法的改进错误!未定义书签。
摘要近年来计算机发展迅猛,图论的研究也得到了很大程度的发展,而最短路径问题一直是图论中的一个典型问题,它已应用在地理信息科学,计算机科学等诸多领域。
而在交通路网中两个城市之间的最短行车路线就是最短路径问题的一个典型例子。
初中数学:最短路径求最值12个模型详解
初中数学:最短路径求最值12个模型详解姓名: __________指导: ___________日期: __________初二数学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由給点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:①确定起,点的最短路径问题・即已知起始结点,求嚴短路径的问题.②确定终点的最短路径问题-与确定起点的问题相反,该问题是已知终结结点,求锻短路径的问题.③确定起点终点的最短路径问题・即已知起点和终点,求两结点之间的最短路径.④全局嚴短路径问题・求图中所有的最短路径.【问题原型】''将军饮马”,“造桥选址“,''费马点'、.【涉及知识】“两点之间线段最短“,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移【岀题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折"转“直“,近两年出现“三折线”转“直"等变式问题考查.【例题及解析】例I 如图1,在直角梯形 A BCD 中,ZABC=90。
,AD〃BC, AD=4, AB=5, BC=6,点P是AB上一个动点.当PC + PD的和最小时,PB的收为( )(A)l (B)2 (C)2.5 (D)3DM D C图1分析此题首先要确定P点的位置,可以延长CB (或DA)的一倍,即CB=BM,再连接MD交AB于点P(大家可以思考一下P点的正确性与合理性一可运用两点之间,线段谥短这一性质〉.我们可以通过△MFBsADPA,从而求出FB的圮故选D.例2如图2, AABC中,AB = AC=I31 BC=10, AD是BC边上的中线,F为AD上的动点,E为AC边上的动点,则CE + EF的最小值为______ •分析显然,本题需要确定两个动点E和F,那么,怎样确定这两个点呢?我们可以过点B 作BE丄AC 交AD于点F,从而确定了E和卜点(大家可以用从直线外一点与直线上所有点的连线中,垂线段最短来加以说明).此时,CF + EF = BE.用S舛=• BC = -BE•祀■构逍方程■求出BE二罟.即CE七EF的艰小伉为罟.例3如图3,已知平面直角坐标系中,A (2, —3), B(4, —1)・(1) 若点卩仕,0)是x轴上的一个动点,当APAB的周长最短时,求x的值;(2) 若C、D是x轴上的两个动点,且D(a, 0), CD=3,当四边形ABCD的周长最短时, 求a的值;(3) 设M, N分别为x轴、y轴上的动点,问:是否存在这样的点M(m, 0)和N(0, n), 使得四边形ABMN的周长巌短?若存在,求岀n的值.若不徉在,请说明理由.分析与解(1)如图3,找岀A (或B)关于x轴的对称点Ai,连结AiB交x轴于点P・设直线AiB的解析式为y =kix+bi・将A】(2, 3)、B(4, -1)代入,得严:+ 6.仏+ 6, 解之码l k'=-2'16, =7. 故〉=-2x+7,(2)如图4,过A点作x轴的平行线,井戳取AA】=3・画点A,关于x轴的对称点A?,连结・dB交x紬于点C.再在x轴上截取「1) = 3,可得周长最短的四边形ABCD (大家也可以利用两点之间,线段最短,来证明最短周长的正确性).由题厳,町知4,(53).设A2B的直线解析式为y = k込4 by将人(5.3)出(4.・1)代人■得当时“殳八”3诗(3) 如图5t我们可以先分别找岀A、B关于y轴和x轴的对称点片和B b再连结AiB u分别交x袖和y轴于点M与N,此时,四边形ABMN的周长是最短的(同样, 可以用两点之间,线段最短来加以证明).设A I B I的直线解析式为y=bx + bs・将 4,(-2. -3) A(4.1)代入•得= 1 •1 ・ 2k 、+ by = - 3,2 5故 y = y * - y. 当 x = OHhy S -y,当y «0时/ •壬・ 所以・m.n 的值分别为手•■斗例4如图6,四边形ABCD 是正方形,M 是对角线BD 上的任意一点.(1)当点M 在何处时.AM+CM 的值最小?(2)当点M 在何处时,AM + BM + CM 的值最小?并说明理由.分析(1)(如图6,显然,连结AC 与BD 的交点即为M 点(可利用两点之间,线段最短来证明).⑵如图7,以AB 为边在正方形外画等边三角形ABE.连结EC 交BD 于点M ・此时, MA-I MB 4-MC-EC(M 中,A UMN 为等边三焦形,且 VEBN^ACBM,所以 MA I MB-EM). 若在BD 上(除N4点之外)任取一点卜1八过点Mi 作M1N1//MN 交BN 或延长线于点 连结ENi.可利用两点之间线段嚴短,证明MiA + M 】B+MK>EC,从而得岀MA+MB + Mca 短.解之得H s y-。
最短路径问题例题与讲解
13.4 课题学习最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如下图,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如下图,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】在图中直线l上找到一点M,使它到A,B两点的距离和最小.分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.解:如下图:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不管题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【例2】如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)假设要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)假设要使厂部到A,B两村的水管最短,应建在什么地方?分析:(1)到A,B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB的垂直平分线,与EF的交点即为符合条件的点.(2)要使厂部到A村、B村的距离之和最短,可联想到“两点之间线段最短”,作A(或B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求.解:(1)如图1,取线段AB的中点G,过中点G画AB的垂线,交EF于P,则P到A,B的距离相等.也可分别以A、B为圆心,以大于12AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求.(2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短.【例3】 如图,从A 地到B 地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A 地到B 地的路程最短?思路导引:从A 到B 要走的路线是A →M →N →B ,如下图,而MN 是定值,于是要使路程最短,只要AM +BN 最短即可.此时两线段应在同一平行方向上,平移MN 到AC ,从C 到B 应是余下的路程,连接BC 的线段即为最短的,此时不难说明点N 即为建桥位置,MN 即为所建的桥.解:(1)如图2,过点A 作AC 垂直于河岸,且使AC 等于河宽.(2)连接BC与河岸的一边交于点N.(3)过点N作河岸的垂线交另一条河岸于点M.则MN为所建的桥的位置.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想方法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.【例4】(实际应用题)茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b解:如图b.(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D 的路线行走,所走的总路程最短.利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.【例5】如下图,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大.分析:此题的突破点是作点A(或B)关于直线l的对称点A′(或B′),作直线A′B(AB′)与直线l交于点C,把问题转化为三角形任意两边之差小于第三边来解决.解:如下图,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的连线交l于点C,则点C即为所求.理由:在直线l上任找一点C′(异于点C),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA -CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.在△A′BC′中,C′A-C′B=C′A′-C′B<A′B,所以C′A′-C′B<CA-CB.点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.。
最短路径的数学模型
最短路径的数学模型最短路径的数学模型:从A到B的最短路径问题引言:在现实生活中,我们常常需要找到两个地点之间的最短路径,比如从家里到公司的最短路线,或者从一个城市到另一个城市的最短航线。
这种最短路径问题在数学中有一种通用的数学模型,被广泛应用于计算机科学、运筹学以及交通规划等领域。
本文将介绍这个数学模型,并通过一个具体的例子来说明其应用。
一、问题描述:最短路径问题可以被定义为:给定一个图G,其中包含一些节点和连接这些节点的边,每条边都有一个权重(或距离)值,我们希望找到从节点A到节点B的最短路径。
二、数学模型:为了解决最短路径问题,我们需要构建一个数学模型。
这个模型可以使用图论中的图和路径的概念来描述。
1. 图的定义:在最短路径问题中,图G可以被定义为一个由节点和边组成的集合。
其中节点表示地点或位置,边表示连接这些地点的路径。
每条边都有一个权重值,表示从一个地点到另一个地点的距离或成本。
2. 路径的定义:路径是指从一个地点到另一个地点经过的一系列节点和边的组合。
在最短路径问题中,我们希望找到一条路径,使得路径上所有边的权重之和最小。
3. 最短路径的定义:最短路径是指从节点A到节点B的路径中,路径上所有边的权重之和最小的路径。
三、最短路径算法:为了解决最短路径问题,我们需要使用一种算法来计算最短路径。
下面介绍两种常用的最短路径算法:Dijkstra算法和Floyd-Warshall算法。
1. Dijkstra算法:Dijkstra算法是一种贪心算法,用于计算带权重的图中节点A到其他所有节点的最短路径。
该算法的基本思想是从起始节点开始,依次选择与当前节点距离最近的节点,并更新到达其他节点的最短路径。
这个过程不断重复,直到找到从节点A到所有其他节点的最短路径。
2. Floyd-Warshall算法:Floyd-Warshall算法是一种动态规划算法,用于计算带权重的图中任意两个节点之间的最短路径。
该算法通过一个二维数组来存储节点之间的最短路径长度,并不断更新这个数组,直到找到所有节点之间的最短路径。
军旅导航——最短路径问题的数学模型
军旅导航——最短路径问题的数学模型引言军队战斗中的导航问题十分重要,其中最短路径问题是一个常见且关键的挑战。
本文将介绍一种基于数学模型的军旅导航最短路径解决方案。
问题描述军队需要从起点A到达目标点B,但是在中间有多个地点需要经过。
军队希望找到一条最短的路径,以最小化时间和资源的消耗。
数学模型我们可以使用图论中的最短路径算法来解决这个问题。
以下是一个简单的数学模型:1. 将地点和道路表示为图中的节点和边。
2. 将起点A和目标点B分别设为图中的起始节点和目标节点。
3. 对于每个节点,计算其与相邻节点之间的距离或代价。
4. 使用最短路径算法(如Dijkstra算法或A*算法)计算从起点到目标点的最短路径。
5. 输出最短路径以及路径上的节点和边的信息。
算法流程以下是一个简单的算法流程:1. 初始化图中的节点和边的信息。
2. 将起点A设为当前节点。
3. 对于每个相邻节点,计算从起点A到该节点的距离或代价。
4. 选择距离或代价最小的节点作为下一个当前节点,并更新当前节点。
5. 重复步骤3和4,直到当前节点为目标节点B。
6. 输出最短路径以及路径上的节点和边的信息。
实例应用假设军队需要从基地出发,穿越多个村庄,最终到达敌方阵地。
每个村庄之间的距离和敌方阵地的位置已知。
我们可以使用上述数学模型来解决这个问题。
结论通过使用数学模型和最短路径算法,我们可以为军队提供一种有效的军旅导航最短路径解决方案。
这将有助于军队在战斗中更快地到达目标地点,以及更有效地利用资源。
专题09 勾股定理中的最短路径模型(解析版)
专题09.勾股定理中的的最短路径模型勾股定理中的最短路线问题通常是以“两点之间,线段最短”为基本原理推出的。
人们在生产、生活实践中,常常遇到带有某种限制条件的最近路线即最短路线问题。
对于数学中的最短路线问题可以分为两大类:第一类为在同一平面内;第二类为空间几何体中的最短路线问题,对于平面内的最短路线问题可先画出方案图,然后确定最短距离及路径图。
对于几何题内问题的关键是将立体图形转化为平面问题求解,然后构造直角三角形,利用勾股定理求解。
模型1.圆柱中的最短路径模型【模型解读】圆柱体中最短路径基本模型如下:计算跟圆柱有关的最短路径问题时,要注意圆柱的侧面展开图为矩形,利用两点之间线段最短结合勾股定理进行求解,注意展开后两个端点的位置,有时候需要用底面圆的周长进行计算,有时候需要用底面圆周长的一半进行计算。
注意:1)运用勾股定理计算最短路径时,按照展开—定点—连线—勾股定理的步骤进行计算;2)缠绕类题型可以求出一圈的最短长度后乘以圈数。
【最值原理】两点之间线段最短。
例1.(2023·陕西·八年级期中)如图,有一个圆柱形杯子,其底面圆周长为24cm,高AB为18cm,现在要以点A为起点环绕杯子表面缠彩色胶带,终点正好落在点A的正上方的点B处,则彩色胶带最短要()A.15cm B.20cm C.25cm D.30cm【答案】D【点睛】本题考查的是平面展开——最短路径问题,例2.(2023·广东·八年级期中)如图,一个底面圆周长为边缘4cm的点A沿侧面爬行到相对的底面上的点A.413cm【答案】D【分析】将圆柱体展开,利用勾股定理进行求解即可.【详解】解:将圆柱体的侧面展开,连接则12412cm2BD=⨯=,又因为即蚂蚁沿表面从点A到点B【点睛】本题考查勾股定理的应用均为2米,高均为3米,则每根柱子所用彩灯带的最短长度为______米.【答案】5【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,圆柱高3米,底面周长2米,2222 1.5 6.25AC ∴=+=, 2.5AC ∴=,∴每根柱子所用彩灯带的最短长度为5m .故答案为5.【点睛】本题考查了平面展开-最短路线问题,勾股定理的应用.圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.模型2.长方体中的最短路径模型【模型解读】长方体中最短路径基本模型如下:计算跟长方体有关的最短路径问题时,要熟悉长方体的侧面展开图,利用两点之间线段最短结合勾股定理进行求解,注意长方体展开图的多种情况和分类讨论。
最短路径数学建模案例
最短路径数学建模案例
最短路径数学建模案例
一、问题描述
假设从一座城市A出发,要到达另一座城市B,可以选择从A到B的6条路线中的一条,每条路线的里程数都不相同,试求出从A出发到B的最短路径。
二、数学模型
设A到B的6条路线里程数分别为m1,m2,m3,m4,m5,m6,目标为: min z=min(m1,m2,m3,m4,m5,m6)
s.t. {m1,m2,m3,m4,m5,m6>=0}
约束条件中:m1、m2、m3、m4、m5、m6>=0,表示每条路线的里程数都不小于0,即每条路线至少要有一定里程才能到达终点B。
三、求解方法
设A到B的6条路线里程数分别为m1,m2,m3,m4,m5,m6,可将求解最短路径的问题转换为求解极值问题,即求解最优解
z=min(m1,m2,m3,m4,m5,m6)的极小值问题,可采用贪心算法求解。
具体步骤如下:
(1)从6条路线中挑选出里程数最短的路径,记为m1;
(2)再从剩下的5条路线中挑选出里程数最短的路径,记为m2;
(3)依次类推,从剩余的4条路线中挑选出里程数最短的路径,记为m3;
(4)直到把所有的6条路线挑选完毕,最后求出最短路径,即
z=min(m1,m2,m3,m4,m5,m6)。
四、结论
根据以上步骤,可以求得从一座城市A出发,到另一座城市B的最短路径。
最短路径专题 含答案
最短路径专题含答案1. 某同学的茶杯是圆柱体,如图是茶杯的立体图,左边下方有一只蚂蚁,从A处爬行到对面的中点B处,如果蚂蚁爬行路线最短,请画出这条最短路线图.解:如图1,将圆柱的侧面展开成一个长方形,如图示,则A,B分别位于如图所示的位置,连接AB,即是这条最短路线图.问题:某正方形盒子,如图左边下方A处有一只蚂蚁,从A处爬行到侧棱GF上的中点M点处,如果蚂蚁爬行路线最短,请画出这条最短路线图.2. 如图,一圆柱体的底面周长为24cm,高AB为16cm,BC是上底面的直径.一只昆虫从点A出发,沿着圆柱的侧面爬行到点C,求昆虫爬行的最短路程.3. 如图一只蚂蚁要从正方体的一个顶点A爬一个顶点B,如果正方体棱是2,求最短的路线长.4. 如图,长方体的底面边长分别为2cm和4cm,高为5cm,若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,求蚂蚁爬行的最短路径长.5. 如图,有一半径为2cm,高为10cm的圆柱体,在棱AA1的P点上有一只蜘蛛,PA=3cm,在棱BB1的Q点上有一只苍蝇,QB2=2cm.蜘蛛沿圆柱爬到Q点吃苍蝇,请你算出蜘蛛爬行的最短路线长.(π取3.14;结果精确到0.01cm)6. 一只蜘蛛在一个正方体的顶点A处,一只蚊子在正方体的顶点B处,如图所示,假设蚊子不动,现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的,在图上画出来,这样的最短路线有几条?7. 如图,圆柱的高为8cm,底面直径4cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,它需要爬行的最短路程是多少厘米?(π≈3)8. 如图1,是一个长方体盒子,长AB=4,宽BC=2,高CG=1.(1)一只蚂蚁从盒子下底面的点A沿盒子表面爬到点G,求它所行走的最短路线的长.(2)这个长方体盒子内能容下的最长木棒的长度为多少?9. 如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45∘,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=√2,求AD的长.10. 如图,平行四边形ABCD中,AB=2,AD=1,∠ADC=60∘,将平行四边形ABCD沿过点A的直线l折叠,使点D落到AB边上的点Dʹ处,折痕交CD边于点E.(1)求证:四边形BCEDʹ是菱形;(2)若点P时直线l上的一个动点,请计算PDʹ+PB的最小值.11. 已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG与⊙O相切;(2)若AC=6,AB=8,BE=3,求线段OE的长.12. 已知抛物线C1的函数解析式为y=ax2−2x−3a,若抛物线C1经过点(0,−3).(参考公式:在平面直角坐标系中,若P(x1,y1),Q(x2,y2),则P,Q两点间的距离为√(x2−x1)2+(y2−y1)2)(1)求抛物线C1的顶点坐标.(2)已知实数x>0,请证明x+1x ≥2,并说明x为何值时才会有x+1x=2.(3)若将抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线C2,设A(m,y1),B(n,y2)是C2上的两个不同点,且满足:∠AOB=90∘,m>0,n<0.请你用含m的表达式表示出△AOB的面积S,并求出S的最小值及S取最小值时一次函数OA的函数解析式.13. 如图,已知:四边形ABCD中,E为AB的中点,连接CE,DE,CD=CE=BE,DE∥BC.(1)求证:四边形ADCE是菱形;(2)若BC=6,CE=5,求四边形ADCE的面积.14. 如图,一个正方体木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你在正方体木柜的表面展开图中画出蚂蚁能够最快达到目的地的可能路径;(2)当正方体木柜的棱长为4时,求蚂蚁爬过的最短路径的长.15. 如图,四边形ABCD为矩形,E为BC边中点,连接AE,以AD为直径的⊙O交AE于点F,连接CF.(1)求证:CF与⊙O相切;(2)若AD=2,F为AE的中点,求AB的长.16. 已知圆锥的底面半径为r=20cm,高ℎ=20√15cm,现在有一只蚂蚁从底边上一点A出发.在侧面上爬行一周又回到A点,求蚂蚁爬行的最短距离.17. 已知,点P是Rt△ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系是;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.18. 已知四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,∠DAB=45∘.(1)如图①,判断CD与⊙O的位置关系,并说明理由;(2)如图②,E是⊙O上一点,且点E在AB的下方,若⊙O的半径为3cm,AE=5cm,求点E到AB的距离.19. 图①,图②为同一长方体房间的示意图,图③为该长方体的表面展开图.(1)已知蜘蛛在顶点Aʹ处;①苍蝇在顶点B处时,试在图①中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C处时,图②中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线AʹGC和往墙面BBʹCʹC爬行的最近路线AʹHC,试通过计算判断哪条路线更近;(2)在图③中,半径为10dm的⊙M与DʹCʹ相切,圆心M到边CCʹ的距离为15dm,蜘蛛P 在线段AB上,苍蝇Q在⊙M的圆周上,线段PQ为蜘蛛爬行路线.若PQ与⊙M相切,试求PQ的长度的范围.20. 如图所示,长方体的长为15cm,宽为10cm,高为20cm,点B与点C之间相距5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?21. 如图,平行四边形ABCD中,AB=3,BC=5,∠B=60∘,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F.(1)求证:四边形CEDF是平行四边形;(2)①当AE=时,四边形CEDF是矩形;②当AE=时,四边形CEDF是菱形.22. 葛藤是一种植物,它自己腰杆不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它还有一个绝招,就是它绕树盘升的路线,总是沿最短路线螺旋前进的.(1)如果树的周长为3m,绕一圈升高4m,则它爬行路程是多少?(2)如果树的周长为8m,绕一圈爬行10m,则爬行一圈升高多少m?如果爬行10圈到达树顶,则树干多高?23. 实践操作在矩形ABCD中,AB=8,AD=6,现将纸片折叠,点D的对应点记为点P,折痕为EF(点E,F是折痕与矩形的边的交点),再将纸片还原.(1)初步思考若点P落在矩形ABCD的边AB上(如图①).①当点P与点A重合时,∠DEF=∘,当点E与点A重合时,∠DEF=∘;②当点E在AB上,点F在DC上时(如图②),求证:四边形DEPF为菱形,并直接写出当AP=7时菱形EPFD的边长.(2)深入探究若点P落在矩形ABCD的内部(如图③),且点E,F分别在AD,DC边上,请直接写出AP的最小值.(3)拓展延伸若点F与点C重合,点E在AD上,射线BA与射线FP交于点M(如图④).在各种不同的折叠位置中,是否存在某一种情况,使得线段AM与线段DE的长度相等?若存在,请直接写出线段AE的长度;若不存在,请说明理由.24. 如图,已知抛物线y=−x2+bx+3与x轴相交于点A和点B(点A在点B的左侧),与y轴交于点C,且OB=OC,点D是抛物线的顶点,直线AC和BD交于点E.(1)求点D的坐标;(2)连接CD,BC,求∠DBC的余切值;(3)设点M在线段CA的延长线上,如果△EBM和△ABC相似,求点M的坐标.25. 如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x−2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.26. 阅读下面材料:小明遇到这样一个问题:如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45∘,连接EF,则EF=BE+DF,试说明理由.小明是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.他先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.他的方法是将△ABE绕着点A逆时针旋转90∘得到△ADG,再利用全等的知识解决了这个问题(如图2).参考小明同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,∠BAD=90∘,点E,F分别在边BC,CD上,∠EAF=45∘.若∠B,∠D都不是直角,则当∠B与∠D满足关系时,仍有EF= BE+DF;(2)如图4,在△ABC中,∠BAC=90∘,AB=AC,点D,E均在边BC上,且∠DAE=45∘,若BD=1,EC=2,求DE的长.27. 如图,在△MNQ中,MN=11,NQ=3√5,cosN=√5.在矩形ABCD中,BC=4,CD=3,5点A与点M重合,AD与MN重合,矩形ABCD沿着MQ方向平移,且平移速度为每秒5个单位,当点A与点Q重合时停止运动.(1)MQ的长度是;(2)运动秒,BC与MN重合;(3)设矩形ABCD与△MNQ重叠部分的面积为S,运动时间为t,求出S与t之间的函数关系式,并直接写出t的取值范围.的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为28. 如图1,对称轴为直线x=12A .(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.29. 如图,矩形ABCD中,AB=2,BC=2√3,将矩形沿对角线AC剪开,请解决以下问题:(1)将△ACD绕点C顺时针旋转90∘得到△AʹCDʹ,请在备用图中画出旋转后的△AʹCDʹ,连接AAʹ,并求线段AAʹ的长度;(2)在(1)的情况下,将△AʹCDʹ沿CB向左平移的长度为t(0<t<2√3),设平移后的图形与△ABC重叠部分的面积为S,求S与t的函数关系式,并直接写出t的取值范围.30. 如图甲,在△ABC中,∠ACB=90∘,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/ s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQPʹC,当四边形PQPʹC为菱形时,求t的值;(3)当t为何值时,△APQ是等腰三角形?31. 如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1,x2是方程x2−2x−8=0的两个根.(1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.32. 如图,在平面直角坐标系xOy中,抛物线y=x2+1与y轴相交于点A,点B与点O关于点A4对称.(1)填空:点B的坐标是;(2)过点B的直线y=kx+b(其中k<0与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点Cʹ恰好落在该抛物线的对称轴上,求此时点P的坐标.33. 已知:如图①,在Rt△ACB中,∠C=90∘,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC ?(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时的值;若不存在,说明理由;(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQPʹC,那么是否存在某一时刻,使四边形PQPʹC为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.34. 如图,四边形ABCD,BEFG均为正方形,(1)如图1,连接AG,CE,试判断AG和CE的数量关系和位置关系并证明;(2)将正方形BEFG绕点B顺时针旋转β角(0∘<β<180∘),如图2,连接AG,CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB 的度数;若发生变化,请说明理由.(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM与BN的数量关系:.35. 如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴和y轴的正半轴上,顶点B的坐标为(2m,m),翻折矩形OABC,使点A与点C重合,得到折痕DE.设点B的对应点为F,折痕DE所在直线与y轴相交于点G,经过点C,F,D的抛物线为y=ax2+bx+c.(1)求点D的坐标(用含m的式子表示);(2)若点G的坐标为(0,−3),求该抛物线的解析式.(3)在(2)的条件下,设线段CD的中点为M,在线段CD上方的抛物线上是否存在点P,使EA ?若存在,直接写出P的坐标,若不存在,说明理由.PM=1236. 如图,在△ABC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180∘,∠AFE=∠BDE.(1)如图1,当DE=DF时,图1 中是否存在与AB相等的线段?若存在,请找出并加以证明.若不存在说明理由.(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90∘,AF=m,求BD的长(用含k,m的式子表示).37. 如图,顶点为C(−1,1)的抛物线经过点D(−5,−3),且与x轴交于A,B两点(点B在点A的右侧).(1)求抛物线的解析式;,求出点Q的坐标;(2)若抛物线上存在点Q,使得S△OAQ=32(3)点M在抛物线上,点N在x轴上,且∠MNA=∠OCD,是否存在点M,使得△AMN与△OCD相似?若存在,直接写出点M的坐标;若不存在,说明理由.38. 阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点 A 作 AF ⊥BC ,垂足为 F ,得到 ∠AFB =∠BEA ,从而可证 △ABF ≌△BAE (如图 2),使问题得到解决.(1)根据阅读材料回答:△ABF 与 △BAE 全等的条件是 (填" SSS "、 " SAS " 、" ASA" 、 " AAS “或”HL "中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC 中,AB =AC ,∠BAC =90∘,D 为 BC 的中点,E 为 DC 的中点,点 F 在AC 的延长线上,且 ∠CDF =∠EAC ,若 CF =2,求 AB 的长;(3)如图 4,△ABC 中,AB =AC ,∠BAC =120∘,点 D ,E 分别在 AB ,AC 边上,且 AD =kDB (其中 0<k <√33),∠AED =∠BCD ,求 AE EC 的值(用含 k 的式子表示).39. 如图,已知二次函数 y =−x 2+bx +c (b ,c 为常数)的图象经过点 A (3,1),点 C (0,4),顶点为点 M ,过点 A 作 AB ∥x 轴,交 y 轴于点 D ,交该二次函数图象于点 B ,连接 BC .(1)求该二次函数的解析式及点 M 的坐标;(2)若将该二次函数图象向下平移 m (m >0) 个单位,使平移后得到的二次函数图象的顶点落在 △ABC 的内部(不包括 △ABC 的边界),求 m 的取值范围;(3)点 P 是直线 AC 上的动点,若点 P ,点 C ,点 M 所构成的三角形与 △BCD 相似,请直接写出所有点 P 的坐标(直接写出结果,不必写解答过程).40. 在平面直角坐标系中,O为原点,四边形OABC是矩形,点A,C的坐标分别为(3,0),(0,1).点D是边BC上的动点(与端点B,C不重合),过点D作直线y=−1x+b交边OA2于点E.(1)如图(1),求点D和点E的坐标(用含b的式子表示);(2)如图(2),若矩形OABC关于直线DE的对称图形为矩形O1A1B1C1,试探究矩形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由;(3)矩形OABC绕着它的对称中心旋转,如果重叠部分的形状是菱形,请直接写出这个菱形的面积的最小值和最大值.41. 如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60∘得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=√3AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.(温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.)42. 如图,矩形纸片ABCD中,AB=6,BC=8.折叠纸片使点B落在AD上,落点为Bʹ.点Bʹ从点A开始沿AD移动,折痕所在直线l的位置也随之改变,当直线l经过点A时,点Bʹ停止移动,连接BBʹ.设直线l与AB相交于点E,与CD所在直线相交于点F,点Bʹ的移动距离为x,点F与点C的距离为y.(1)求证:∠BEF=∠ABʹB;(2)求y与x的函数关系式,并直接写出x的取值范围.43. 如图1,△ABC中,∠C=90∘,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S关于x的函数图象如图 2 所示(其中0<x≤m,1<x≤m,m<x≤3时,函数的解析式不同)(1)填空:BC的长是;(2)求S关于x的函数关系式,并写出x的取值范围.x2+bx−2与x轴交于A,B两点,与y轴交于C点,且A(−1,0).44. 如图,抛物线y=12(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.45. 定义:我们把三角形被一边中线分成的两个三角形叫做"友好三角形".性质:如果两个三角形是"友好三角形",那么这两个三角形的面积相等.理解:如图1,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.(1)应用:如图2,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.(i)求证:△AOB和△AOE是“友好三角形”;(ii)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.(2)探究:在△ABC中,∠A=30∘,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△AʹCD,若△AʹCD与△ABC 重合部分的面积等于△ABC面积的1,请直接写出△ABC的面积.446. 如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B的坐标为(60,0),OA=AB,∠OAB=90∘,OC=50.点P是线段OB上的一个动点(点P不与点O、B重合),过点P与y轴平行的直线l交边OA或边AB于点Q,交边OC或边BC于点R,设点P横坐标为t,线段QR的长度为m.已知t=40时,直线l恰好经过点C.(1)求点A和点C的坐标;(2)当0<t<30时,求m关于t的函数关系式;(3)当m=35时,请直接写出t的值;(4)直线l上有一点M,当∠PMB+∠POC=90∘,且△PMB的周长为60时,请直接写出满足条件的点M的坐标.47. 如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.48. 在四边形ABCD中,对角线AC,BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0∘<θ<90∘),连接AC1,BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1与BD1的位置关系.(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1= kBD1.请直接写出k的值和AC12+(kDD1)2的值.49. 如图,四边形ABCD为一个矩形纸片.AB=3,BC=2,动点P自D点出发沿DC方向运动至C点后停止.△ADP以直线AP为轴翻折,点D落到点D1的位置.设DP=x,△AD1P与原纸片重叠部分的面积为y.(1)当x为何值时,直线AD1过点C?(2)当x为何值时,直线AD1过BC的中点E?(3)求出y与x的函数表达式.50. 如图,以点P(−1,0)为圆心的圆,交x轴于B,C两点(B在C的左侧),交y轴于A,D两点(A在D的下方),AD=2√3,将△ABC绕点P旋转180∘,得到△MCB.(1)求B,C两点的坐标;(2)请在图中画出线段MB,MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ,QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.51. 定义:当点P在射线OA上时,把OPOA的值叫做点P在射线OA上的射影值;当点P不在射线OA上时,把射线OA上与点P最近点的射影值,叫做点P在射线OA上的射影值.例如:如图1,△OAB三个顶点均在格点上,BP是OA边上的高,则点P和点B在射线OA上的射影值均为OPOA =13.(1)在△OAB中,①点B在射线OA上的射影值小于1时,则△OAB是锐角三角形;②点B在射线OA上的射影值等于1时,则△OAB是直角三角形;③点B在射线OA上的射影值大于1时,则△OAB是钝角三角形;其中真命题有.A.①②B.②③C.①③D.①②③(2)已知:点C是射线OA上一点,CA=OA=1,以O为圆心,OA长为半径画圆,点B是⊙O上任意一点.①如图2,若点B在射线OA上的射影值为12,求证:直线BC是⊙O的切线.②如图3,已知D为线段BC的中点,设点D在射线OA上的射影值为x,点D在射线OB上的射影值为y,直接写出y与x之间的函数关系式.x2交于A,B两点,其中点A的横坐标是−2.52. 如图,已知一条直线过点(0,4),且与抛物线y=14(1)求这条直线的函数关系式及点B的坐标;(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标;若不存在,请说明理由;(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?53. 已知:如图,AB是半圆O的直径,弦CD∥AB,动点P,Q分别在线段OC,CD上,且DQ=OP,AP的延长线与射线OQ相交于点E、与弦CD相交于点F(点F与点C,D不重合),AB=20,cos∠AOC=4.设OP=x,△CPF的面积为y.5(1)求证:AP=OQ;(2)求y关于x的函数关系式,并写出它的自变量x的取值范围;(3)当△OPE是直角三角形时,求线段OP的长.x2+bx+c与x轴分别相交于点A(−2,0),B(4,0),与y轴交于点C,顶54. 如图,抛物线y=−12点为点P.(1)求抛物线的解析式;(2)动点M,N从点O同时出发,都以每秒1个单位长度的速度分别在线段OB,OC上向点B,C方向运动,过点M作x轴的垂线交BC于点F,交抛物线于点H.(i)当四边形OMHN为矩形时,求点H的坐标;(ii)是否存在这样的点F,使△PFB为直角三角形?若存在,求出点F的坐标;若不存在,请说明理由.55. 如图,在Rt△ABC中,∠ACB=90∘,AC=5cm,∠BAC=60∘,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒√3cm 的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.56. 爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图1,图2,图3中,AM,BN是△ABC的中线,AN⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.(1)【特例探究】如图1,当tan∠PAB=1,c=4√2时,a=,b=;如图2,当∠PAB=30∘,c=2时,a=,b=;(2)【归纳证明】请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.(3)【拓展证明】如图4,平行四边形ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC= 3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3√5,AB=3,求AF的长.57. 在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O,B,C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r 的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?(2)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A位于北偏东60∘方向上,同时军舰C测得A位于南偏东30∘方向上,求此时敌舰A离△OBC海域的最短距离为多少海里?(3)若敌舰A沿最短距离的路线以20√2海里/小时的速度靠近△OBC海域,我军军舰B沿北偏东15∘的方向行进拦截,问B军舰速度至少为多少才能在此方向上拦截到敌舰A?58. 如图,在坐标系xOy中,已知D(−5,4),B(−3,0),过D点分别作DA,DC垂直于x轴、y轴,垂足分别为A,C两点.动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴59. 如图,抛物线y=−12交x轴于点D,已知A(−1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.60. 如图1,在Rt△ABC中,∠ACB=90∘,AB=10,BC=6,扇形纸片DOE的顶点O与边AB的中点重合,OD交BC于点F,OE经过点C,且∠DOE=∠B.(1)证明△COF是等腰三角形,并求出CF的长;(2)将扇形纸片DOE绕点O逆时针旋转,OD,OE与边AC分别交于点M,N(如图2),当CM的长是多少时,△OMN与△BCO相似?61. 如图,在每个小正方形的边长为1的网格中,A,B为小正方形边的中点,C,D为格点,E为BA,CD的延长线的交点.(1)CD的长等于;(2)若点N在线段BE上,点M在线段CE上,且满足AN=NM=MC,请在如图所示的网格中,用无刻度的直尺,画出线段MN,并简要说明点M,N的位置是如何找到的(不要求证明).62. 如图,二次函数y=ax2+bx+2的图象与x轴相交于点A(−1,0),B(4,0),与y轴相交于点C.(1)求该函数的表达式;(2)点P为该函数在第一象限内的图象上一点,过点P作PQ⊥BC,垂足为点Q,连接PC.①求线段PQ的最大值;②若以点P,C,Q为顶点的三角形与△ABC相似,求点P的坐标.63. 如图,在平面直角坐标系中,直线y=−2x+10与x轴,y轴相交于A,B两点.点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.64. 将矩形纸片OABC放在平面直角坐标系中,O为坐标原点,点A在y轴上,点C在x轴上,点B的坐标是(8,6),点P是边AB上的一个动点,将△OAP沿OP折叠,使点A落在点Q处.(1)如图①,当点Q恰好落在OB上时,求点P的坐标.。
数学建模实验报告第十一章最短路问题
实验名称:第十一章最短路问题一、实验内容与要求掌握Dijkstra 算法和Floyd 算法,并运用这两种算法求一些最短路径的问题。
二、实验软件MATLAB7.0三、实验内容1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1 到v8的最短时间路径。
V1 1 V2 3 V3 1 V5 6 V6V4 2 V7 4 V8程序:function y=bijiaodaxiao(f1,f2,f3,f4)v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4;turn=3; f1=v12+v23+v35+v56+turn+v68;f2=v12+v23+v35+turn+v57+turn+v78;f3=v12+turn+v24+turn+v47+v78;f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68;min=f1;if f2<minmin=f2;endif f3<minmin=f3;endif f4<minmin=f4;endminf1f2f3 f4V 110V 3V 59 V 6实验结果:v 1 到 v 8的最短时间路径为 15,路径为 1-2-4-7-8.2、求如图所示中每一结点到其他结点的最短路。
floy.m 中的程序:function[D,R]=floyd(a)n=size(a,1);D=afor i=1:nfor j=1:nR(i,j)=j;endendRfor k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j); V8V2 5 V4 10 V7 6R(i,j)=R(i,k);endendendkDRend程序:>> a=[0 3 10 inf inf inf inf inf;3 0 inf 5 inf inf inf inf;10 inf 0 6 inf inf inf inf;inf 5 6 0 4 inf 10 inf ;inf inf inf 4 0 9 5 inf ;inf inf inf inf 9 0 3 4;inf inf inf 10 5 3 0 6;inf inf inf inf inf 4 6 0;];[D,R]=floyd(a)实验结果:00 00 00 00 00 00 00 00M—M—M—U 七_c _c _c ——。
数学模型最短路径问题(物流问题)
东北大学秦皇岛分校数学模型结课报告最短路径问题(物流路线设计)学院数学与统计学院小组成员513210 喻翔5133107赖巧明5133117楚文玉教师评语:指导教师签字:2015年12月14日1摘要现今社会网络越来越普及,网购已成为一种常见的消费方式,随之物流行业也渐渐兴盛,每个工厂为了自身的发展需要以最快的速度及时将产品送达所需单位,即高质量高速度的完成送货任务,针对本案例,我们采用了大量的科学分析方法,并进行了反复验证,得出如下结果:问题1:根据所给问题与数据,我们将题目中给出的城市,及其之间的线路可看成一个赋权连通简单无向图,采用了求这个图最小生成树的办法,求出最优线路.在此基础上,我们通过观察分析计算对上述结果进行修正,然后我们再采用穷举法对问题结果进行验证,结果相吻合。
最终得到如下路线:(下横线不停靠)北京→香港→湖南→海南→广西→重庆→河南→云南→西藏→新疆→青海→甘肃→宁夏→江苏→福建→上海→台湾→上海→黑龙江→内蒙古→黑龙江→吉林→北京。
(最短时间为61小时)问题2:要求问题1的花费最少,只需对前面模型做进一步优化即可,经过优化计算我们得到如下结果:最少花费为584250(元),路线如下:北京→香港→湖南→海南→广西→重庆→河南→云南→西藏→新疆→青海→甘肃→宁夏→江苏→福建→上海→台湾→上海→黑龙江→内蒙古→黑龙江→吉林→北京关键词:关键字:最短路径送货线路优化赋权连通简单无向图最小生成树2问题重述2.1 问题的背景现今社会网络越来越普及,网购已成为一种常见的消费方式,随之物流行业也渐渐兴盛,每个工厂为了自身的发展需要以最快的速度及时将产品送达所需单位,现有实业公司,该实业公司专业生产某专用设备产品,专用设备产品每件重达5吨(其长5米,宽4米,高6米),该实业公司库房设在北京,所有货物均由一货机送货,该机种飞机翼展88.40米(机身可用宽20米),机长84米(可用长50米),机高18.2米(可用14米),最多可装载250吨货物,起飞全重达600吨,平均速度为900公里/小时,将货物送至全国各个省辖市(图1所示红色圆点,除北京之外共19个省辖市),假定货机只能沿这些连通线路飞行,而不能走其它任何路线.但由于受重量和体积限制,货机可中途返回取货.经过的各个省市都要一定的停靠费用和停靠时间(停靠时间为常量2小时),假设经过某个省市的停靠费用为:停靠费用=5000元×该省市的消费指数.2.2相关数据1.各城市之间的通路和权数图11.1上图1描述了中国各个省市之间的航班以及权重以图中标注为准;1.2有些省市之间是没有航班,需要中转.2.城市消费指数表表11.若图示中19个省辖市每个省辖市只要一件产品,请设计送货方案,使所用时间最少,标出送货线路。
数学建模案例分析-- 图与网络方法建模5最短投递路线的设计
§5 最短投递路线的设计一、最优环游邮递员从邮局中取出邮件,递送到不同地点,然后再返回邮局。
假设要求他至少一次走过他投递范围内的每一条街道,我们希望选择一条尽可能短的路线。
在一个网络),,(W E V N =中,经过它的每条边的链称为欧拉链,经过N 中每一边至少一次的闭链称为N 的环游,经过N 中每一边恰好一次的环游称为欧拉环游。
一个图能一笔画就是该图有欧拉环游。
显然上述问题就是在具有非负权的网络中找出一条权最小的环游,这种环游称为最优环游。
若N 有欧拉环游,则它的每一条欧拉环游具有相同的权,它也必然是最优环游。
对有欧拉环游的网络,我们可以采用弗莱里(Fleury )算法求得N 的最优环游。
弗莱里算法 计算步骤如下:1、任意选取N 的一个顶点0v ,置0v Z =;2、假设链i i v e v e v Z 110=已选定,从},,,{\21i e e e E 中按下述方法选取1+i e : (1)1+i e 和i v 相关联;(2)1+i e 尽量不选i G (是G 中去掉边i e e e ,,,21 而得到的图)的割边(即去掉此边后,图i G 变为不连通),除非没有非割边可选择。
3、设1+i e 另一关联点为1+i v 。
若φ≠+},,,{\121i e e e E ,重复步骤2;否则11211++i i v e v e v 即为N 的一条欧拉环游。
若网络N 没有欧拉环游,此时最优环游通过的某些边将超过一次。
下面是一种有关引进重复边的算法。
将边e 的两个端点再用一条权为)(e W 的新边连接时,称为边e 的重复边。
因此,问题可以重新叙述如下:给定一个具有非负权的网络N ,(1)用添重复边的方法求得N 的一个欧拉赋权母图*N ,使得下式尽可能小;∑∈)(}\{*)(N E N e e W(2)求*N 的欧拉环游。
当点数较少时,可用奇偶点图上作业法求解,为此我们不加证明介绍下述两个结论。
【初中数学】最短路径模型及例题解析
【初中数学】最短路径模型及例题解析一、最短路径模型简介在日常生活中,我们常常会遇到寻找从一个地点到另一个地点的最短路径问题。
例如,从家到学校、从甲地到乙地等。
在数学领域,最短路径问题属于图论的研究范畴,是图论中的一个基本问题。
最短路径模型就是用来解决这类问题的一种数学方法。
最短路径模型主要包括以下几个要素:1. 图:由顶点(地点)和边(路径)组成的集合。
2. 距离:表示两个顶点之间的距离或权重。
3. 路径:从一个顶点到另一个顶点经过的边的序列。
4. 最短路径:在所有路径中,长度最小的路径。
二、最短路径模型的求解方法1. 枚举法:枚举所有可能的路径,然后从中选择长度最小的路径。
这种方法适用于顶点数量较少的简单图。
2. Dijkstra算法:适用于带权重的有向图,通过逐步求解,找到从源点到其他所有顶点的最短路径。
3. Floyd算法:适用于求解任意两个顶点之间的最短路径,通过动态规划的方法,求解所有顶点对之间的最短路径。
三、例题解析【例题1】某城市有6个主要交通枢纽,分别用A、B、C、D、E、F表示。
下面是这6个交通枢纽之间的距离表(单位:千米):```A B C D E FA 0 5 7 8 9 10B 5 0 6 7 8 9C 7 6 0 4 5 6D 8 7 4 0 3 4E 9 8 5 3 0 2F 10 9 6 4 2 0```求从A到F的最短路径。
【解析】这是一个典型的最短路径问题,我们可以使用Dijkstra算法求解。
1. 初始化:将所有顶点的距离设置为无穷大,源点A的距离设置为0。
2. 选取距离最小的顶点,标记为已访问。
此时,A为已访问顶点。
3. 更新相邻顶点的距离:从A出发,更新B、C、D、E、F的距离。
此时,B、C、D、E、F的距离分别为5、7、8、9、10。
4. 重复步骤2和3,直到所有顶点都被访问。
最后得到的最短路径为A→B→E→F,长度为14千米。
【例题2】某城市有5个公园,分别用P1、P2、P3、P4、P5表示。
最短路径数学建模案例及详解
最短路径数学建模案例及详解最短路径问题是数学建模中一个经典的问题,它在实际生活中有很多应用,例如网络传输、交通规划、物流配送等等。
下面我们以交通规划为例,来详细解析最短路径问题的数学建模过程。
问题描述:假设有一座城市,城市中有多个地点(称为节点),这些节点之间有道路相连。
我们希望找到两个节点之间的最短路径,即耗费时间最短的路径。
数学建模:1. 数据准备:a. 用图的方式表示这座城市和道路连接关系。
我们可以用一个有向图来表示,其中各个节点代表不同的地点,边表示道路,边的权重表示通过该道路所需的时间。
b. 节点间道路的时间数据。
这是一个关键的数据,可以通过实地调研或者其他数据收集手段获取,或者通过模拟生成。
2. 建立数学模型:a. 定义问题中的主要变量和约束条件。
- 变量:选择经过的边,即路径(也可以看作是边的集合)。
- 约束条件:路径必须是从起始节点到目标节点的有向路径,不允许重复经过节点。
b. 建立目标函数。
我们的目标是最小化路径上的时间,所以目标函数可以定义为路径上各边的权重之和。
c. 建立约束条件。
- 定义起始节点和目标节点。
- 定义路径必须从起始节点出发,到目标节点结束。
- 定义路径不能重复经过同一节点。
3. 解决模型:a. 利用最短路径算法求解,比如在有向图中,可以用Dijkstra 算法或者 Bellman-Ford 算法等。
4. 结果分析和验证:找到了最短路径后,我们可以对结果进行分析,比如查看路径上的具体节点和道路,以及路径的耗时。
我们还可以按照实际情况进行验证,比如通过实地考察或者其他数据对比来验证求解得到的路径是否合理。
总结:最短路径问题是一个常见的数学建模问题,在实际应用中有着广泛的应用。
通过数学建模,我们可以准确刻画问题,用数学方法求解,得到最优的结果。
在实际解决问题过程中,还需要对结果进行分析和验证,以保证结果的合理性和可行性。
最短路径数学建模
最短路径问题是一个非常能联系实际的问题,下面我们以具体例题来看看这类问题的解法例1、假设A、B、C、D、E各个城市之间旅费如下图所示。
某人想从城市A出发游览各城市一遍,而所用费用最少。
试编程序输出结果。
解这类题时同学们往往不得要领,不少同学采用穷举法把所有可能的情况全部列出,再找出其中最短的那条路径;或是采用递归或深度搜索,找出所有路径,再找出最短的那条。
这两种方法可见都是费时非常多的解法,如果城市数目多的话则很可能要超时了。
实际上我们知道,递归、深度搜索等算法一般用于求所有解问题(例如求A出发每个城市走一遍一共有哪几种走法),而这几种算法对于求最短路径这类最优解问题显然是不合适的,以下介绍的几种算法就要优越很多。
首先,对于这类图我们都应该先建立一个邻接矩阵来存放任意两点间的距离数据,以便在程序中方便调用,如下:const dis:array[1..5,1..5] of integer =( ( 0, 7, 3,10,15),( 7, 0, 5,13,12),( 3, 5, 0, 5,10),(10,13, 5, 0,11),(15,12,10,11, 0));以下是几种解法:一、宽度优先搜索宽度优先搜索并不是一种很优秀的算法,只里只是简单介绍一下它的算法。
具体方法是:1、从A点开始依次展开得到AB、AC、AD、AE四个新结点(第二层结点),当然每个新结点要记录下其距离;2、再次以AB展开得到ABC、ABD、ABE三个新结点(第三层结点),而由AC结点可展开得到ACB、ACD、ACE三个新结点,自然AD可以展开得到ADB、ADC、ADE,AE可以展开得到AEB、AEC、AED等新结点,对于每个结点也须记录下其距离;3、再把第三层结点全部展开,得到所有的第四层结点:ABCD、ABCE、ABDC、ABDE、BEC、ABED……AEDB、AEDC,每个结点也需记录下其距离;4、再把第四层结点全部展开,得到所有的第五层结点:ABCDE、ABCED、……、AEDBC、AEDCB,每个结点也需记录下其距离;5、到此,所有可能的结点均已展开,而第五层结点中最小的那个就是题目的解了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最短路径数学建模案例及详解
最短路径问题是指给定一个有向图,找到其中两个节点之间的最短路径。
这个问题可以通过数学建模来解决。
以下是一个关于最短路径的案例及详解:
案例:某个城市有多个地点,这些地点之间有高速公路相连。
现在需要找出两个地点之间的最短路径,以便安排货物的运输。
假设已知这个城市的高速公路网络以及每个道路的长度。
解决方案:
1. 定义变量和参数:
- 变量:设定一个变量x[i, j],表示从节点i到节点j的路径
长度。
这个变量需要求解。
- 参数:给出每个节点之间的长度,可以用一个矩阵表示。
设长度矩阵为A。
2. 建立数学模型:
- 目标函数:最小化总路径长度。
可以定义目标函数为:min x[i, j]。
- 约束条件:
- 对于任意两个节点i和j来说,路径长度x[i, j]必须是非负的:x[i, j] ≥ 0。
- 对于任意两个节点i和j来说,路径长度x[i, j]等于路径长
度x[j, i]:x[i, j] = x[j, i]。
- 对于任意两个节点i和j来说,路径长度x[i, j]需要满足下
面的约束条件:x[i, j] ≤ x[i, k] + x[k, j],其中k是任意的节点。
这个约束条件保证了路径长度的传递性。
即,如果从i到j的
路径经过节点k,那么整条路径的长度应该不小于x[i, k] + x[k, j]。
3. 求解:
- 编写数学建模的代码,并使用求解器(如线性规划求解器)求解最优解。
- 分析优化结果,并得到最短路径的长度以及具体的路径。
总结:
通过定义变量和参数,建立数学模型的方式来解决最短路径问题,可以帮助我们找到两个节点之间的最短路径。
数学建模可以提供一个系统化的框架,帮助我们理解问题,并找到最优解。
这种方法在物流、交通规划等领域都有广泛的应用。