中山市2021年中考数学试卷(I)卷

合集下载

2024年广东省中山市纪雅学校中考数学一模试卷+答案解析

2024年广东省中山市纪雅学校中考数学一模试卷+答案解析

2024年广东省中山市纪雅学校中考数学一模试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.与2024互为相反数是()A.2024B.C.D.2.据统计,2023年“五一”假期国内旅游出游约274000000人次这个数用科学记数法表示为()A.B.C.D.3.下列运算正确的是()A.B.C.D.4.下列因式分解正确的是()A. B.C.D.5.已知关于x 的方程的解是,则a 的值为() A.2B.1C.D.6.数据2,4,8,5,3,5,5,4的众数、中位数分别为()A.、5B.5、C.5、4D.5、57.如图,AB 是的直径,若,则的度数为() A. B. C. D.8.如图,的内切圆与AB ,BC ,AC 分别相切于点D ,E ,F ,连接OE ,OF ,若,,,则阴影部分的面积为()A. B.C.D.9.如图,在中,,M为BC的中点,H为AB上一点,过点C作,交HM的延长线于点G,若,,则四边形ACGH周长的最小值是()A.24B.22C.20D.1810.如图,一段抛物线,记为抛物线,它与x轴交于点O、;将抛物线绕点旋转得抛物线,交x轴于点;将抛物线绕点旋转得抛物线,交x轴于点…如此进行下去,得到一条“波浪线”,若点在此“波浪线”上,则m的值为()A. B.6 C. D.8二、填空题:本题共5小题,每小题4分,共20分。

11.函数中,自变量x的取值范围是______.12.已知点和关于y轴对称,则的值为______.13.如图,以点O为位似中心,将缩小后得到,已知,则与的面积比为______.14.关于x的一元二次方程有实数根、,且,则m的值是______.15.如图①,中,,于点H,点D在AH上,且,连结将绕点H旋转,得到点B,D分别与点E,F对应,连接如图②,当点F落在AC上时,不与C重合,若,,则______.三、计算题:本大题共1小题,共6分。

2021年数学中考试卷与答案

2021年数学中考试卷与答案

高中段招生统一考试 数学试卷卷 I一. 选择题(本题有10小题;每小题3分;共30分)1. 2的倒数是( ) A. 21 B.-21C. -2D. 0.22. 正方形是轴对称图形;它的对称轴共有( )A. 2条B. 3条C. 4条D. 6条3. 抛物线y=2(x-3)2的顶点在( )A. 第一象限B. 第二象限C. x 轴上D. y 轴上4. 圆柱的底面半径为5cm;高为12cm;则该圆柱的侧面积等于( )A. 60cm 2B. 60πcm 2C. 120cm 2D. 120πcm 25. 如图;在Rt △ABC 中;∠C=90°;CD ⊥AB;垂足为D;AD=8;DB=2;则CD 的长为( )A. 4B. 16C. 25D. 456. 已知⊙O 1与⊙O 2的半径分别为5cm 和3cm;圆心距O 1O 2=7cm;则⊙O 1与⊙O 2的位置关系为( )A. 外离B. 外切C. 内切D. 相交7. 已知一元二次方程x 2+3x-4=0的两个根为x 1;x 2;则x 1·x 2的值是( )A. 4B. -4C. 3D. –38. 方程组⎩⎨⎧=++=-03212y x y x 的解是( )⎩⎨⎧-==⎩⎨⎧==⎩⎨⎧-=-=⎩⎨⎧=-=12012121y x D y x C y x B y x A9. 已知抛物线和直线l 在同一直角坐标系中的图象如图所示;抛物线的对称轴为直线x=-1;P 1(x 1;y 1);P 2(x 2;y 2)是抛物线上的点;P 3(x 3;y 3)是直线l 上的点;且-1<x 1<x 2;x 3<-1;则y 1;y 2;y 3的大小关系为( )A. y 1<y 2<y 3B. y 3<y 1<y 2C. y 3<y 2<y 1D. y 2<y 1<y 310. 小强拿了一张正方形的纸如图(1);沿虚线对折一次得图(2);再对折一次得图(3);然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角;再打开后的形状应是( )卷 II二. 填空题(本题有10小题;每小题3分;共30分)11. -1的相反数是 。

2021年广东省中考数学试卷及答案解析

2021年广东省中考数学试卷及答案解析

2021年广东省中考数学试卷及答案解析2021年广东省中考数学试卷及答案解析一、选择题(本大题10小题,每小题3分,共30分)1.(3分)9的相反数是()A。

-9B。

9C。

1/9D。

-1/22.(3分)一组数据2,4,3,5,2的中位数是()A。

5B。

3.5C。

3D。

2.53.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A。

(-3,2)B。

(-2,3)C。

(2,-3)D。

(3,-2)4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A。

4B。

5C。

6D。

75.(3分)若式子√2x-4在实数范围内有意义,则x的取值范围是()A。

x≠2B。

x≥2C。

x≤2D。

x≠-26.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A。

8B。

2√2C。

16D。

4√27.(3分)把函数y=(x-1)²+2图象向右平移1个单位长度,平移后图象的的数解析式为()A。

y=x²+2B。

y=(x-1)²+1C。

y=(x-2)²+2D。

y=(x-1)²-38.(3分)不等式组{x-1≥-2(x+2)。

2-3x≥-1}的解集为()A。

无解B。

x≤1C。

x≥-1D。

-1≤x≤29.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A。

1B。

√2C。

√3D。

210.(3分)如图,抛物线y=ax²+bx+c的对称轴是x=1,下列结论:①abc>0;②b²-4ac>0;③8a+c0。

正确的有()A。

4个B。

3个C。

2个D。

1个二、填空题(本大题7小题,每小题4分,共28分)11.(4分)分解因式:xy-x= x(y-1)12.(4分)如果单项式3x^my与-5x^3yn是同类项,那么m+n= 313.(4分)若√(a-2)+|b+1|=3,则(a+b)^2020= 114.(4分)已知x=5-y,xy=2,计算3x+3y-4xy的值为:-115.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B,C,D为圆心画圆,相交于点E,F,G,H,求四边形EFGH的面积为。

2022年广东省中山市中考数学试卷(含答案)

2022年广东省中山市中考数学试卷(含答案)

2022年广东省中山市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•广东)|﹣2|=()A.﹣2B.2C.D.2.(3分)(2022•广东)计算22的结果是()A.1B.C.2D.43.(3分)(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形4.(3分)(2022•广东)如图,直线a∥b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°5.(3分)(2022•广东)如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.B.C.1D.26.(3分)(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)7.(3分)(2022•广东)书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.B.C.D.8.(3分)(2022•广东)如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC9.(3分)(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y1,y2,y3,y4中最小的是()A.y1B.y2C.y3D.y410.(3分)(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C 与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)(2022•广东)sin30°=.12.(3分)(2022•广东)单项式3xy的系数为.13.(3分)(2022•广东)菱形的边长为5,则它的周长是.14.(3分)(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a=.15.(3分)(2022•广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(8分)(2022•广东)解不等式组:.17.(8分)(2022•广东)先化简,再求值:a+,其中a=5.18.(8分)(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?20.(9分)(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x025y151925(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.21.(9分)(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少合适?五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.23.(12分)(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.2022年广东省中山市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•广东)|﹣2|=()A.﹣2B.2C.D.【分析】根据绝对值的意义解答即可.【解答】解:根据绝对值的意义:|﹣2|=2,故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的意义是解答本题的关键.2.(3分)(2022•广东)计算22的结果是()A.1B.C.2D.4【分析】应用有理数的乘方运算法则进行计算即可得出答案.【解答】解:22=4.故选:D.【点评】本题主要考查了有理数的乘方,熟练掌握有理数的乘方运算法则进行求解是解决本题的关键.3.(3分)(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形【分析】根据三角形具有稳定性,四边形不具有稳定性即可得出答案.【解答】解:三角形具有稳定性,四边形不具有稳定性,故选:A.【点评】本题考查了三角形的稳定性,掌握三角形具有稳定性是解题的关键.4.(3分)(2022•广东)如图,直线a∥b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°【分析】利用平行线的性质可得结论.【解答】解:∵a∥b,∴∠2=∠1=40°.故选:B.【点评】本题考查了平行线的性质,掌握“两直线平行,同位角角相等”是解决本题的关键.5.(3分)(2022•广东)如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.B.C.1D.2【分析】由题意可得DE是△ABC的中位线,再根据三角形中位线的性质即可求出DE 的长度.【解答】解:∵点D,E分别为AB,AC的中点,BC=4,∴DE是△ABC的中位线,∴DE=BC=×4=2,故选:D.【点评】本题考查了三角形中位线定理,熟练掌握三角形中位线的定义和性质是解决问题的关键.6.(3分)(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)【分析】根据平面直角坐标系中点的坐标的平移特点解答即可.【解答】解:将点(1,1)向右平移2个单位后,横坐标加2,所以平移后点的坐标为(3,1),故选:A.【点评】本题主要考查了平面直角坐标系中点的坐标,熟练掌握点的平移规律是解答本题的关键.7.(3分)(2022•广东)书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.B.C.D.【分析】应用简单随机事件概率计算方法进行计算即可得出答案.【解答】解:根据题意可得,P(从中任取1本书是物理书)=.故选:B.【点评】本题主要考查了概率公式,熟练掌握简单随机事件概率的计算方法进行求解是解决本题的关键.8.(3分)(2022•广东)如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC【分析】根据平行四边形的性质即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,故选:C.【点评】本题考查了平行四边形的性质,熟练掌握平行四边形对边相等的性质是解决问题的关键.9.(3分)(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y1,y2,y3,y4中最小的是()A.y1B.y2C.y3D.y4【分析】根据k>0可知增减性:在每一象限内,y随x的增大而减小,根据横坐标的大小关系可作判断.【解答】解:∵k=4>0,∴在第一象限内,y随x的增大而减小,∵(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,且1<2<3<4,故选:D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的图象的增减性是解答此题的关键.10.(3分)(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C 与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量【分析】根据变量与常量的定义进行求解即可得出答案.【解答】解:根据题意可得,在C=2πr中.2,π为常量,r是自变量,C是因变量.故选:C.【点评】本题主要考查了常量与变量,熟练掌握常量与变量的定义进行求解是解决本题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)(2022•广东)sin30°=.【分析】熟记特殊角的三角函数值进行求解即可得出答案.【解答】解:sin30°=.故答案为:.【点评】本题主要考查了特殊角三角函数值,熟练掌握特殊角三角函数值进行求解是解决本题的关键.12.(3分)(2022•广东)单项式3xy的系数为3.【分析】应用单项式的定义进行判定即可得出答案.【解答】解:单项式3xy的系数为3.故答案为:3.【点评】本题主要考查了单项式,熟练掌握单项式的定义进行求解是解决本题的关键.13.(3分)(2022•广东)菱形的边长为5,则它的周长是20.【分析】根据菱形的性质即可解决问题;【解答】解:∵菱形的四边相等,边长为5,∴菱形的周长为5×4=20,【点评】本题考查菱形的性质、解题的关键是记住菱形的四边相等,属于中考基础题.14.(3分)(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a=1.【分析】把x=1代入方程x2﹣2x+a=0中,计算即可得出答案.【解答】解:把x=1代入方程x2﹣2x+a=0中,得1﹣2+a=0,解得a=1.故答案为:1.【点评】本题主要考查了一元二次方程的解,应用一元二次方程的解的定义进行求解是解决本题的关键.15.(3分)(2022•广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为π.【分析】应用扇形面积计算公式进行计算即可得出答案.【解答】解:S===π.故答案为:π.【点评】本题主要考查了扇形面积的计算,熟练掌握扇形面积的计算方法进行求解即可得出答案.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(8分)(2022•广东)解不等式组:.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x>1,由②得:x<2,∴不等式组的解集为1<x<2.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.17.(8分)(2022•广东)先化简,再求值:a+,其中a=5.【分析】原式通分并利用同分母分式的加法法则计算,得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=====2a+1,当a=5时,原式=10+1=11.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(8分)(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.【分析】根据角平分线性质得出PD=PE,即可利用HL证明Rt△OPD≌Rt△OPE.【解答】证明:∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PD=PE,在Rt△OPD和Rt△OPE中,,∴Rt△OPD≌Rt△OPE(HL).【点评】此题考查全等三角形的判定与性质,熟记全等三角形的判定定理是解题的关键.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?【分析】设有x人,该书单价y元,根据“如果每人出8元,则多了3元;如果每人出7元,则少了4元钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设学生有x人,该书单价y元,根据题意得:,解得:.答:学生有7人,该书单价53元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(9分)(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x025y151925(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.【分析】(1)把x=2,y=19代入y=kx+15中,即可算出k的值,即可得出答案;(2)把y=20代入y=2x+15中,计算即可得出答案.【解答】解:(1)把x=2,y=19代入y=kx+15中,得19=2k+15,解得:k=2,所以y与x的函数关系式为y=2x+15;(2)把y=20代入y=2x+15中,得20=2x+15,解得:x=2.5.所挂物体的质量为2.5kg.【点评】本题主要考查了函数关系式及函数值,熟练掌握函数关系式及函数值的计算方法进行求解是解决本题的关键.21.(9分)(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少合适?【分析】(1)根据销售成绩统计,即可得出销售4万元和8万元的人数,即可补充完整图形;(2)根据众数,中位数,算术平均数的计算方法进行求解即可得出答案;(3)根据(2)中的结论进行分析即可得出答案.【解答】解:(1)补全统计图,如图,;(2)根据条形统计图可得,众数为:4,中位数为:5,平均数为:=7(3)应确定销售目标为7万元,要让一半以上的销售人员拿到奖励.【点评】本题主要考查了条形统计图,中位数,众数,算术平均数,熟练掌握条形统计图,中位数,众数,算术平均数的计算方法进行求解是解决本题的关键.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.【分析】(1)根据圆周角定理,等腰直角三角形的判定定理解答即可;(2)根据勾股定理解答即可.【解答】解:(1)△ABC是等腰直角三角形,证明过程如下:∵AC为⊙O的直径,∴∠ADC=∠ABC=90°,∵∠ADB=∠CDB,∴,∴AB=BC,又∵∠ABC=90°,∴△ABC是等腰直角三角形.(2)在Rt△ABC中,AB=BC=,∴AC=2,在Rt△ADC中,AD=1,AC=2,∴CD=.即CD的长为:.【点评】本题主要考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理,熟练掌握相关性质定理是解答本题的关键.23.(12分)(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.【分析】(1)根据A(1,0),AB=4求出B(﹣3,0),把A、B的坐标代入抛物线y=x2+bx+c,即可求解;(2)过Q作QE⊥x轴于E,设P(m,0),则P A=1﹣m,易证△PQA∽△BCA,利用相似三角形的性质即可求出QE的长,又因为S△CPQ=S△PCA﹣S△PQA,进而得到△CPQ 面积和m的二次函数关系式,利用二次函数的性质即可求出面积最大值.【解答】(1)∵抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,∴B(﹣3,0),∴,解得,∴抛物线的解析式为y=x2+2x﹣3;(2)过Q作QE⊥x轴于E,过C作CF⊥x轴于F,设P(m,0),则P A=1﹣m,∵y=x2+2x﹣3=(x+1)2﹣4,∴C(﹣1,﹣4),∴OB=3 AB=4,∵PQ∥BC,∴△PQA∽△BCA,∴,即,∴QE=1﹣m,∴S△CPQ=S△PCA﹣S△PQA=P A•CF﹣P A•QE=(1﹣m)×4﹣(1﹣m)(1﹣m)=﹣(m+1)2+2,∵﹣3≤m≤1,∴当m=﹣1时S△CPQ有最大值2,∴△CPQ面积的最大值为2,此时P点坐标为(﹣1,0).【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法求函数解析式,相似三角形的判定和性质,解题的关键是抓住图形中某些特殊的数量关系和位置关系.此题综合性较强,中等难度,是一道很好的试题.。

2022年广东省中山市中考数学试卷(解析版)

2022年广东省中山市中考数学试卷(解析版)

2022年广东省中山市中考数学试卷(真题)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•广东)|﹣2|=()A.﹣2 B.2 C.D.2.(3分)(2022•广东)计算22的结果是()A.1 B.C.2 D.43.(3分)(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形4.(3分)(2022•广东)如图,直线a∥b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°5.(3分)(2022•广东)如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.B.C.1 D.26.(3分)(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)7.(3分)(2022•广东)书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.B.C.D.8.(3分)(2022•广东)如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC 9.(3分)(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y,y2,y3,y4中最小的是()1A.y1B.y2C.y3D.y410.(3分)(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)(2022•广东)sin30°=.12.(3分)(2022•广东)单项式3xy的系数为.13.(3分)(2022•广东)菱形的边长为5,则它的周长是.14.(3分)(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a=.15.(3分)(2022•广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(8分)(2022•广东)解不等式组:.17.(8分)(2022•广东)先化简,再求值:a+,其中a=5.18.(8分)(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE ⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?20.(9分)(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x0 2 5y15 19 25 (1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.21.(9分)(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少合适?五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.23.(12分)(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.2022年广东省中山市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•广东)|﹣2|=()A.﹣2 B.2 C.D.【分析】根据绝对值的意义解答即可.【解答】解:根据绝对值的意义:|﹣2|=2,故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的意义是解答本题的关键.2.(3分)(2022•广东)计算22的结果是()A.1 B.C.2 D.4【分析】应用有理数的乘方运算法则进行计算即可得出答案.【解答】解:22=4.故选:D.【点评】本题主要考查了有理数的乘方,熟练掌握有理数的乘方运算法则进行求解是解决本题的关键.3.(3分)(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形【分析】根据三角形具有稳定性,四边形不具有稳定性即可得出答案.【解答】解:三角形具有稳定性,四边形不具有稳定性,故选:A.【点评】本题考查了三角形的稳定性,掌握三角形具有稳定性是解题的关键.4.(3分)(2022•广东)如图,直线a∥b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°【分析】利用平行线的性质可得结论.【解答】解:∵a∥b,∴∠2=∠1=40°.故选:B.【点评】本题考查了平行线的性质,掌握“两直线平行,同位角角相等”是解决本题的关键.5.(3分)(2022•广东)如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.B.C.1 D.2【分析】由题意可得DE是△ABC的中位线,再根据三角形中位线的性质即可求出DE的长度.【解答】解:∵点D,E分别为AB,AC的中点,BC=4,∴DE是△ABC的中位线,∴DE=BC=×4=2,故选:D.【点评】本题考查了三角形中位线定理,熟练掌握三角形中位线的定义和性质是解决问题的关键.6.(3分)(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)【分析】根据平面直角坐标系中点的坐标的平移特点解答即可.【解答】解:将点(1,1)向右平移2个单位后,横坐标加2,所以平移后点的坐标为(3,1),故选:A.【点评】本题主要考查了平面直角坐标系中点的坐标,熟练掌握点的平移规律是解答本题的关键.7.(3分)(2022•广东)书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.B.C.D.【分析】应用简单随机事件概率计算方法进行计算即可得出答案.【解答】解:根据题意可得,P(从中任取1本书是物理书)=.故选:B.【点评】本题主要考查了概率公式,熟练掌握简单随机事件概率的计算方法进行求解是解决本题的关键.8.(3分)(2022•广东)如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC【分析】根据平行四边形的性质即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,故选:C.【点评】本题考查了平行四边形的性质,熟练掌握平行四边形对边相等的性质是解决问题的关键.9.(3分)(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y,y2,y3,y4中最小的是()1A.y1B.y2C.y3D.y4【分析】根据k>0可知增减性:在每一象限内,y随x的增大而减小,根据横坐标的大小关系可作判断.【解答】解:∵k=4>0,∴在第一象限内,y随x的增大而减小,∵(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,且1<2<3<4,∴y4最小.故选:D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的图象的增减性是解答此题的关键.10.(3分)(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量【分析】根据变量与常量的定义进行求解即可得出答案.【解答】解:根据题意可得,在C=2πr中.2,π为常量,r是自变量,C是因变量.故选:C.【点评】本题主要考查了常量与变量,熟练掌握常量与变量的定义进行求解是解决本题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)(2022•广东)sin30°=.【分析】熟记特殊角的三角函数值进行求解即可得出答案.【解答】解:sin30°=.故答案为:.【点评】本题主要考查了特殊角三角函数值,熟练掌握特殊角三角函数值进行求解是解决本题的关键.12.(3分)(2022•广东)单项式3xy的系数为 3 .【分析】应用单项式的定义进行判定即可得出答案.【解答】解:单项式3xy的系数为3.故答案为:3.【点评】本题主要考查了单项式,熟练掌握单项式的定义进行求解是解决本题的关键.13.(3分)(2022•广东)菱形的边长为5,则它的周长是20 .【分析】根据菱形的性质即可解决问题;【解答】解:∵菱形的四边相等,边长为5,∴菱形的周长为5×4=20,故答案为20.【点评】本题考查菱形的性质、解题的关键是记住菱形的四边相等,属于中考基础题.14.(3分)(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a= 1 .【分析】把x=1代入方程x2﹣2x+a=0中,计算即可得出答案.【解答】解:把x=1代入方程x2﹣2x+a=0中,得1﹣2+a=0,解得a=1.故答案为:1.【点评】本题主要考查了一元二次方程的解,应用一元二次方程的解的定义进行求解是解决本题的关键.15.(3分)(2022•广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为π.【分析】应用扇形面积计算公式进行计算即可得出答案.【解答】解:S===π.故答案为:π.【点评】本题主要考查了扇形面积的计算,熟练掌握扇形面积的计算方法进行求解即可得出答案.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(8分)(2022•广东)解不等式组:.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x>1,由②得:x<2,∴不等式组的解集为1<x<2.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.17.(8分)(2022•广东)先化简,再求值:a+,其中a=5.【分析】原式通分并利用同分母分式的加法法则计算,得到最简结果,把a 的值代入计算即可求出值.【解答】解:原式=====2a+1,当a=5时,原式=10+1=11.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(8分)(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE ⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.【分析】根据角平分线性质得出PD=PE,即可利用HL证明Rt△OPD≌Rt△OPE.【解答】证明:∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PD=PE,在Rt△OPD和Rt△OPE中,,∴Rt△OPD≌Rt△OPE(HL).【点评】此题考查全等三角形的判定与性质,熟记全等三角形的判定定理是解题的关键.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?【分析】设有x人,该书单价y元,根据“如果每人出8元,则多了3元;如果每人出7元,则少了4元钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设学生有x人,该书单价y元,根据题意得:,解得:.答:学生有7人,该书单价53元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(9分)(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x0 2 5y15 19 25 (1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.【分析】(1)把x=2,y=19代入y=kx+15中,即可算出k的值,即可得出答案;(2)把y=20代入y=2x+15中,计算即可得出答案.【解答】解:(1)把x=2,y=19代入y=kx+15中,得19=2k+15,解得:k=2,所以y与x的函数关系式为y=2x+15;(2)把y=20代入y=2x+15中,得20=2x+15,解得:x=2.5.所挂物体的质量为2.5kg.【点评】本题主要考查了函数关系式及函数值,熟练掌握函数关系式及函数值的计算方法进行求解是解决本题的关键.21.(9分)(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少合适?【分析】(1)根据销售成绩统计,即可得出销售4万元和8万元的人数,即可补充完整图形;(2)根据众数,中位数,算术平均数的计算方法进行求解即可得出答案;(3)根据(2)中的结论进行分析即可得出答案.【解答】解:(1)补全统计图,如图,;(2)根据条形统计图可得,众数为:4,中位数为:5,平均数为:=7(3)应确定销售目标为7万元,要让一半以上的销售人员拿到奖励.【点评】本题主要考查了条形统计图,中位数,众数,算术平均数,熟练掌握条形统计图,中位数,众数,算术平均数的计算方法进行求解是解决本题的关键.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.【分析】(1)根据圆周角定理,等腰直角三角形的判定定理解答即可;(2)根据勾股定理解答即可.【解答】解:(1)△ABC是等腰直角三角形,证明过程如下:∵AC为⊙O的直径,∴∠ADC=∠ABC=90°,∵∠ADB=∠CDB,∴,∴AB=BC,又∵∠ABC=90°,∴△ABC是等腰直角三角形.(2)在Rt△ABC中,AB=BC=,∴AC=2,在Rt△ADC中,AD=1,AC=2,∴CD=.即CD的长为:.【点评】本题主要考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理,熟练掌握相关性质定理是解答本题的关键.23.(12分)(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.【分析】(1)根据A(1,0),AB=4求出B(﹣3,0),把A、B的坐标代入抛物线y=x2+bx+c,即可求解;(2)过Q作QE⊥x轴于E,设P(m,0),则PA=1﹣m,易证△PQA∽△BCA,利用相似三角形的性质即可求出QE的长,又因为S△CPQ=S△PCA﹣S△PQA,进而得到△CPQ面积和m的二次函数关系式,利用二次函数的性质即可求出面积最大值.【解答】(1)∵抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,∴B(﹣3,0),∴,解得,∴抛物线的解析式为y=x2+2x﹣3;(2)过Q作QE⊥x轴于E,过C作CF⊥x轴于F,设P(m,0),则PA=1﹣m,∵y=x2+2x﹣3=(x+1)2﹣4,∴C(﹣1,﹣4),∴OB=3 AB=4,∵PQ∥BC,∴△PQA∽△BCA,∴,即,∴QE=1﹣m,∴S△CPQ=S△PCA﹣S△PQA=PA•CF﹣PA•QE=(1﹣m)×4﹣(1﹣m)(1﹣m)=﹣(m+1)2+2,∵﹣3≤m≤1,∴当m=﹣1时S△CPQ有最大值2,∴△CPQ面积的最大值为2,此时P点坐标为(﹣1,0).【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法求函数解析式,相似三角形的判定和性质,解题的关键是抓住图形中某些特殊的数量关系和位置关系.此题综合性较强,中等难度,是一道很好的试题.。

2021年广东省中山市中考数学试卷(附答案详解)

2021年广东省中山市中考数学试卷(附答案详解)

2021年广东省中山市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.(2021·广东省珠海市·历年真题)下列实数中,最大的数是()A. πB. √2C. |−2|D. 32.(2021·广东省珠海市·历年真题)据国家卫生健康委员会发布,截至2021年5月23日,31个省(区、市)及新疆生产建设兵团累计报告接种新冠病毒疫苗51085.8万剂次,将“51085.8万”用科学记数法表示为()A. 0.510858×109B. 51.0858×107C. 5.10858×104D. 5.10858×1083.(2021·广东省珠海市·历年真题)同时掷两枚质地均匀的骰子,则两枚骰子向上的点数之和为7的概率是()A. 112B. 16C. 13D. 124.(2021·广东省珠海市·历年真题)已知9m=3,27n=4,则32m+3n=()A. 1B. 6C. 7D. 125.(2021·广东省珠海市·历年真题)若|a−√3|+√9a2−12ab+4b2=0,则ab=()A. √3B. 92C. 4√3D. 96.(2021·广东省珠海市·历年真题)下列图形是正方体展开图的个数为()A. 1个B. 2个C. 3个D. 4个7.(2021·广东省珠海市·历年真题)如图,AB是⊙O的直径,点C为圆上一点,AC=3,∠ABC的平分线交AC于点D,CD=1,则⊙O的直径为()A. √3B. 2√3C. 1D. 28.(2021·广东省珠海市·历年真题)设6−√10的整数部分为a,小数部分为b,则(2a+√10)b的值是()A. 6B. 2√10C. 12D. 9√109. (2021·广东省珠海市·历年真题)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记p =a+b+c 2,则其面积S =√p(p −a)(p −b)(p −c).这个公式也被称为海伦−秦九韶公式.若p =5,c =4,则此三角形面积的最大值为( )A. √5B. 4C. 2√5D. 510. (2021·广东省珠海市·历年真题)设O 为坐标原点,点A 、B 为抛物线y =x 2上的两个动点,且OA ⊥OB.连接点A 、B ,过O 作OC ⊥AB 于点C ,则点C 到y 轴距离的最大值( )A. 12B. √22 C. √32D. 1二、填空题(本大题共7小题,共28.0分)11. (2021·广东省珠海市·历年真题)二元一次方程组{x +2y =−22x +y =2的解为______ .12. (2021·广东省珠海市·历年真题)把抛物线y =2x 2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为______ . 13. (2021·广东省珠海市·历年真题)如图,等腰直角三角形ABC 中,∠A =90°,BC =4.分别以点B 、点C 为圆心,线段BC 长的一半为半径作圆弧,交AB 、BC 、AC 于点D 、E 、F ,则图中阴影部分的面积为______ .14. (2021·广东省珠海市·历年真题)若一元二次方程x 2+bx +c =0(b,c 为常数)的两根x 1,x 2满足−3<x 1<−1,1<x 2<3,则符合条件的一个方程为______ . 15. (2021·广东省珠海市·历年真题)若x +1x =136且0<x <1,则x 2−1x2= ______ . 16. (2021·广东省珠海市·历年真题)如图,在▱ABCD 中,AD =5,AB =12,sinA =45.过点D 作DE ⊥AB ,垂足为E ,则sin∠BCE = ______ .17. (2021·广东省珠海市·历年真题)在△ABC 中,∠ABC =90°,AB =2,BC =3.点D为平面上一个动点,∠ADB =45°,则线段CD 长度的最小值为______ . 三、解答题(本大题共8小题,共62.0分)18.(2021·广东省珠海市·历年真题)解不等式组{2x−4>3(x−2) 4x>x−72.19.(2021·广东省珠海市·历年真题)某中学九年级举办中华优秀传统文化知识竞赛.用简单随机抽样的方法,从该年级全体600名学生中抽取20名,其竞赛成绩如图:(1)求这20名学生成绩的众数,中位数和平均数;(2)若规定成绩大于或等于90分为优秀等级,试估计该年级获优秀等级的学生人数.20.(2021·广东省珠海市·历年真题)如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB.(1)若AE=1,求△ABD的周长;(2)若AD=13BD,求tan∠ABC的值.21.(2021·广东省珠海市·历年真题)在平面直角坐标系xOy中,一次函数y=kx+b(k>0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=4图象的一个交点x为P(1,m).(1)求m的值;(2)若PA=2AB,求k的值.22.(2021·广东省珠海市·历年真题)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.23.(2021·广东省珠海市·历年真题)如图,边长为1的正方形ABCD中,点E为AD的中点.连接BE,将△ABE沿BE折叠得到△FBE,BF交AC于点G,求CG的长.24.(2021·广东省珠海市·历年真题)如图,在四边形ABCD中,AB//CD,AB≠CD,∠ABC=90°,点E、F分别在线段BC、AD上,且EF//CD,AB=AF,CD=DF.(1)求证:CF⊥FB;(2)求证:以AD为直径的圆与BC相切;(3)若EF=2,∠DFE=120°,求△ADE的面积.25.(2021·广东省珠海市·历年真题)已知二次函数y=ax2+bx+c的图象过点(−1,0),且对任意实数x,都有4x−12≤ax2+bx+c≤2x2−8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.答案和解析1.【答案】A【知识点】算术平方根、实数大小比较【解析】解:|−2|=2,∵2<4,∴√2<2,∴√2<2<3<π,∴最大的数是π,故选:A.C选项,−2的绝对值是2,所以这4个数都是正数,B选项,√2<2,即可得到最大的的数是π.本题考查了实数的比较大小,知道√2<2是解题的关键.2.【答案】D【知识点】科学记数法-绝对值较大的数【解析】解:51085.8万=510858000=5.10858×108,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,关键是确定a的值以及n的值.3.【答案】B【知识点】用列举法求概率(列表法与树状图法)【解析】解:画树状图为:共有36种等可能的结果数,其中两枚骰子向上的点数之和为7的结果有6种,∴两枚骰子向上的点数之和为7的概率为636=16,故选:B.画树状图,共有36种等可能的结果数,其中两枚骰子向上的点数之和为7的结果有6种,再由概率公式求解即可.本题考查了列表法与树状图法求随机事件的概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.4.【答案】D【知识点】同底数幂的乘法、幂的乘方与积的乘方【解析】解:∵9m=32m=3,27n=33n=4,∴32m+3n=32m×33n=3×4=12.故选:D.分别根据幂的乘方运算法则以及同底数幂的乘法法则解答即可.本题考查了同底数幂的乘法以及幂的乘方,掌握幂的运算法则是解答本题的关键.5.【答案】B【知识点】非负数的性质:绝对值、非负数的性质:偶次方、非负数的性质:算术平方根【解析】解:由题意得,a−√3=0,9a2−12ab+4b2=0,解得a=√3,b=3√32,所以,ab=√3×3√32=92.故选:B.根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.6.【答案】C【知识点】几何体的展开图【解析】解:由正方体的四个侧面和底面的特征可知,可以拼成正方体是下列三个图形:故这些图形是正方体展开图的个数为3个.故选:C.由平面图形的折叠及正方体的展开图的特征解答即可.本题考查了几何体的展开图.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.7.【答案】B【知识点】圆周角定理【解析】解:如图,过点D作DT⊥AB于T.∵AB是直径,∴∠ACB=90°,∴DC⊥BC,∵DB平分∠CBA,DC⊥BC,DT⊥BA,∴DC=DT=1,∵AC=3,∴AD=AC−CD=2,∴AD=2DT,∴∠A=30°,∴AB=ACcos30∘=√32=2√3,故选:B.如图,过点D作DT⊥AB于T.证明DT=DC=1,推出AD=2DT,推出∠A=30°,可得结论.本题考查圆周角定理,角平分线的性质定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,利用角平分线的性质定理解决问题.8.【答案】A【知识点】估算无理数的大小【解析】解:∵3<√10<4,∴2<6−√10<3,∵6−√10的整数部分为a,小数部分为b,∴a=2,b=6−√10−2=4−√10,∴(2a+√10)b=(2×2+√10)×(4−√10)=(4+√10)(4−√10)=6,故选:A.根据算术平方根得到3<√10<4,所以2<6−√10<3,于是可得到a=2,b=4−√10,然后把a与b的值代入(2a+√10)b中计算即可.本题考查了估算无理数的大小,解题的关键是利用完全平方数和算术平方根对无理数的大小进行估算.9.【答案】C【知识点】完全平方式、二次根式的化简求值,p=5,c=4,【解析】解:∵p=a+b+c2∴5=a+b+4,2∴a+b=6,∴a=6−b,∴S=√p(p−a)(p−b)(p−c)=√5(5−a)(5−b)(5−4)=√5(5−a)(5−b)=√5ab−25=√5b(6−b)−25=√−5b2+30b−25=√−5(b−3)2+20,当b=3时,S有最大值为√20=2√5.故选:C.根据公式算出a+b的值,代入公式即可求出解.本题考查二次根式的应用,解答本题的关键是明确题意,求出相应的三角形的面积.10.【答案】A【知识点】二次函数的最值、二次函数图象上点的坐标特征【解析】解:如图,分别作AE、BF垂直于x轴于点E、F,设OE=a,OF=b,由抛物线解析式为y=x2,则AE=a2,BF=b2,作AH⊥BH于H,交y轴于点G,连接AB交y轴于点D,设点D(0,m),∵DG//BH,∴△ADG~△ABH,∴DGBH =AGAH,即 m−a2b2−a2=aa+b.化简得:m=ab.∵∠AOB=90°,∴∠AOE+∠BOF=90°,又∠AOE+∠EAO=90°,∴∠BOF=∠EAO,又∠AEO=∠BFO=90°,∴△AEO~△OFB.∴AEOF =EOBF,即a2b =ab2,化简得ab=1.则m=ab=1,说明直线AB过定点D,D点坐标为(0,1).∵∠DCO=90°,DO=1,∴点C是在以DO为直径的圆上运动,∴当点C到y轴距离等于此圆半径12时,点C到y轴距离的最大.故选:A.分别作AE、BF垂直于x轴于点E、F,设OE=a,OF=b,由抛物线解析式可得AE=a2,BF=b2,作AH⊥BH于H,交y轴于点G,连接AB交y轴于点D,设点D(0,m),易证△ADG~△ABH,所以DGBH =AGAH,即 m−a2b2−a2=aa+b.可得m=ab.再证明△AEO~△OFB,所以AEOF =EOBF,即a2b=ab2,可得ab=1.即得点D为定点,坐标为(0,1),得DO=1.进而可推出点C是在以DO为直径的圆上运动,则当点C到y轴距离为此圆的半径12时最大.本题考查了二次函数结合动点问题背景下的最值求法,涉及相似三角形,圆周角定理,此题难度较大,关键是要找出点D 为定点,确定出点C 的轨迹为一个圆,再求最值. 11.【答案】【知识点】灵活选择解法解二元一次方程(组)【解析】解:{x +2y =−2①2x +y =2②, ①×2−②,得:3y =−6,即y =−2,将y =−2代入②,得:2x +(−2)=2,解得:x =2,所以方程组的解为{x =2y =−2. 故答案为{x =2y =−2. 直接利用加减消元法求解可得问题的答案.本题考查的是解二元一次方程组,利用加减消元法把方程组化为一元方程是解答此题的关键.12.【答案】y =2x 2+4x【知识点】二次函数图象与几何变换【解析】解:把抛物线y =2x 2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为:y =2(x +1)2+1−3,即y =2x 2+4x故答案为y =2x 2+4x .可根据二次函数图象左加右减,上加下减的平移规律进行解答.本题考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.13.【答案】4−π【知识点】等腰直角三角形、扇形面积的计算【解析】解:等腰直角三角形ABC 中,∠A =90°,BC =4,∴∠B =∠C =45°,∴AB =AC =√22BC =2√2 ∵BE =CE =12BC =2,∴阴影部分的面积S=S△ABC−S扇形BDE −S扇形CEF=12×2√2×2√2−45π×22360×2=4−π,故答案为4−π.阴影部分的面积等于△ABC的面积减去空白处的面积即可得出答案.本题考查了扇形的面积公式,正确熟记扇形的面积公式是解此题的关键,题目比较好,难度适中.14.【答案】x2−2=0(答案不唯一)【知识点】一元二次方程的概念【解析】解:∵若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足−3<x1<−1,1<x2<3,∴满足条件分方程可以为:x2−2=0(答案不唯一),故答案为:x2−2=0(答案不唯一).根据一元二次方程的定义解决问题即可,注意答案不唯一.本题考查一元二次方程的应用,解题的关键是理解题意,灵活运用所学知识解决问题.15.【答案】−6536【知识点】分式的化简求值【解析】解:∵0<x<1,∴x<1x,∴x−1x<0,∵x+1x =136,∴(x+1x )2=16936,即x2+2+1x2=16936,∴x2−2+1x2=16936−4,∴(x−1x )2=2536,∴x−1x =−56,∴x2−1x2=(x+1x)(x−1x)=136×(−56)=−6536,故答案为:−6536.根据题意得到x−1x <0,根据完全平方公式求出x−1x,根据平方差公式把原式变形,代入计算即可.本题考查的是分式的化简求值,掌握完全平方公式、平方差公式是解题的关键.16.【答案】【知识点】平行四边形的性质、解直角三角形【解析】解:如图,过点B作BF⊥EC于点F,∵DE⊥AB,AD=5,sinA=DEAD =45,∴DE=4,∴AE=√AD2−DE2=3,在▱ABCD中,AD=BC=5,AB=CD=12,∴BE=AB−AE=12−3=9,∵CD//AB,∴∠DEA=∠EDC=90°,∠CEB=∠DCE,∴tan∠CEB=tan∠DCE,∴BFEF =DECD=412=13,∴EF=3BF,在Rt△BEF中,根据勾股定理,得EF2+BF2=BE2,∴(3BF)2+BF2=92,解得,BF=9√1010,∴sin∠BCE=BFBC =9√10105=9√1050.故答案为:9√1050.过点B作BF⊥EC于点F,根据DE⊥AB,AD=5,sinA=DEAD =45,可得DE=4,根据勾股定理可得AE=3,再根据平行四边形的性质可得AD=BC=5,AB=CD=12,BE=AB−AE=12−3=9,根据tan∠CEB=tan∠DCE,可得EF=3BF,再根据勾股定理可得BF的长,进而可得结果.本题考查了相似三角形的判定和性质,平行四边形的性质,勾股定理等知识,得出EF= 3BF是解决本题的关键.17.【答案】√5−√2【知识点】勾股定理、圆周角定理、点与圆的位置关系【解析】解:如图所示.∵∠ADB=45°,AB=2,作△ABD的外接圆O,连接OC,当O、D、C三点共线时,CD的值最小.∵∠ADB=45°,∴∠AOB=90°,∴△AOB为等腰直角三角形,∴AO=BO=sin45°×AB=√2.∵∠OBA=45°,∠ABC=90°,∴∠OBE=45°,作OE⊥BC于点E,∴△OBE为等腰直角三角形.∴OE=BE=sin45°⋅OB=1,∴CE=BC−BE=3−1=2,在Rt△OCD中,OC=√OE2+CE2=√1+4=√5.当O、D、C三点共线时,CD最小为CD=OC−OD=√5−√2.故答案为:√5−√2.根据∠ADB=45°,AB=2,作△ABD的外接圆O,连接OC,当O、D、C三点共线时,CD的值最小.将问题转化为点圆最值.可证得△AOB为等腰直角三角形,OB=OA=√2,同样可证△OBE也为等腰直角三角形,OE=BE=1,由勾股定理可求得OC的长为√5,最后CD最小值为OC−OD=√5−√2.本题考查了动点与隐圆条件下的点圆最值,涉及到点与圆的位置关系、勾股定理、圆周角定理等基础知识点,难度较大,需要根据条件进行发散思维.解题关键在于确定出点D的运动轨迹为一个圆.18.【答案】解:解不等式2x−4>3(x−2),得:x<2,,得:x>−1,解不等式4x>x−72则不等式组的解集为−1<x<2.【知识点】一元一次不等式组的解法【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】解:(1)由列表中90分对应的人数最多,因此这组数据的众数应该是90,由于人数总和是20人为偶数,将数据从小到大排列后,第10个和第11个数据都是90分,因此这组数据的中位数应该是90,=90.5;平均数是:80×2+85×3+90×8+95×5+100×22+3+8+5+2(2)根据题意得:600×8+5+2=450(人),20答:估计该年级获优秀等级的学生人数是450人.【知识点】用样本估计总体、算术平均数、中位数、众数【解析】(1)根据条形统计图,计算众数、中位数和平均数;(2)利用样本估计总体思想求解可得.本题考查中位数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.20.【答案】解:(1)如图,连接BD,设BC垂直平分线交BC于点F,∴BD=CD,C△ABD=AB+AD+BD=AB+AD+DC=AB+AC,∵AB=CE,∴C△ABD=AC+CE=AE=1,故△ABD的周长为1.(2)设AD=x,∴BD=3x,又∵BD=CD,∴AC=AD+CD=4x,在Rt△ABD中,AB=√BD2−AD2=√(3x)2−x2=2√2x.∴tan∠ABC=ACAB =4x2√2x=√2.【知识点】线段垂直平分线的概念及其性质、解直角三角形【解析】(1)连接BD,设BC垂直平分线交BC于点F,再根据线段垂直平分线的性质求解即可;(2)设AD=x,则BD=CD=3x,AC=4x,由勾股定理可表示出AB=2√2x,从而可计算出tan∠ABC=ACAB =4x2√2x=√2.本题考查了线段垂直平分线的性质,解直角三角形、勾股定理等知识,抓住正切的定义是解题关键.21.【答案】解:(1)∵P(1,m)为反比例函数y=4x图象上一点,∴代入得m=41=4,∴m=4;(2)令y=0,即kx+b=0,∴x=−bk ,A(−bk,0),令x=0,y=b,∴B(0,b),∵PA=2AB,由图象得,可分为以下两种情况:①B在y轴正半轴时,b>0,∵PA=2AB,过P作PH⊥x轴交x轴于点H,又B1O⊥A1H,∠PA1O=∠B1A1O,∴△A1OB1∽△A1HP,∴A1B1A1P =A1OA1H=B1OPH=12,∴B1O=12PH=4×12=2,∴b=2,∴A1O=OH=1,∴|−bk|=1,∴k=2;②B在y轴负半轴时,b<0,过P作PQ⊥y轴,∵PQ⊥B2Q,A2O⊥B2Q,∠A2B2O=∠AB2Q,∴△A2OB2△PQB2,∴A2B2PB2=13=A2OPQ=B2OB2Q,∴AO=|−bk |=13PO=13,B2O=13B2Q=12OQ=|b|=2,∴b=−2,∴k=6,综上,k=2或k=6.【知识点】一次函数与反比例函数综合【解析】(1)把P(1,m)代入反比例函数解析式即可求得;(2)分两种情况,通过证得三角形相似,求得BO的长度,进而即可求得k的值.本题是反比例函数与一次函数的交点问题,考查了反比例函数图象上点的坐标特征,三角形相似的判定和性质,求得AO的长度的解题的关键.22.【答案】解:(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价(a−10)元,则8000a =6000a−10,解得:a=40,经检验a=40是方程的解,∴猪肉每盒进价40元,豆沙粽每盒进价30元,答:猪肉每盒进价40元,豆沙粽每盒进价30元;(2)由题意得,当x=50时,,每天可售出100盒,当猪肉粽每盒售价x元(50≤x≤65)时,每天可售[100−2(x−50)]盒,∴y=x[100−2(x−50)]−40x[100−2(x−50)]=−2x2+280x−8000,配方,得:y=−2(x−70)2+1800,∵x<70时,y随x的增大而增大,∴当x=65时,y取最大值,最大值为:−2(65−70)2+1800=1750(元).答:y关于x的函数解析式为y=−2x2+280x−8000(50≤x≤65),且最大利润为1750元.【知识点】分式方程的应用、二次函数的应用【解析】(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价(a−10)元,根据商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同列出方程,解方程即可;(2)由题意得,当x=50时,,每天可售出100盒,当猪肉粽每盒售价x元(50≤x≤65)时,每天可售[100−2(x−50)]盒,列出每天销售猪肉粽的利润y与猪肉粽每盒售价x 元的函数关系式,根据二次函数的性质及x的取值范围求利润的最大值.本题考查了二次函数的应用以及分式方程的解法,关键是根据题意列出每天销售猪肉粽的利润y与猪肉粽每盒售价x元的函数关系式.23.【答案】解:延长BF交CD于H,连接EH.∵四边形ABCD是正方形,∴AB//CD,∠D=∠DAB=90°,AD=CD=AB=1,∴AC=√AD2+CD2=√12+12=√2,由翻折的性质可知,AE=EF,∠EAB=∠EFB=90°,∠AEB=∠FEB,∵点E是AD的中点,∴AE=DE=EF,∵∠D=∠EFH=90°,在Rt△EHD和Rt△EHF中,{EH=EHED=EF,∴Rt△EHD≌Rt△EHF(HL),∴∠DEH=∠FEH,∴∠HEB=90°,∴∠DEH+∠AEB=90°,∵∠AEB+∠ABE=90°,∴∠DEH=∠ABE,∴△EDH∽△BAE,∴ED AB =DH EA =12, ∴DH =14,CH =34, ∵CH//AB ,∴CG GA =CH AB =34,∴CG =37AC =3√27.【知识点】翻折变换(折叠问题)、正方形的性质【解析】延长BF 交CD 于H ,连接EH.证明△EDH∽△BAE ,推出ED AB =DH EA =12,推出DH =14,CH =34,由CH//AB ,推出CG GA =CH AB =34,可得结论. 本题考查翻折变换,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是求出DH ,CH ,利用平行线分线段成比例定理解决问题即可. 24.【答案】(1)证明:∵CD =DF ,∴∠DCF =∠DFC ,∵EF//CD ,∴∠DCF =∠EFC ,∴∠DFC =∠EFC ,∴∠DFE =2∠EFC ,∵AB =AF ,∴∠ABF =∠AFB ,∵CD//EF ,CD//AB ,∴AB//EF ,∴∠EFB =∠AFB ,∴∠AFE =2∠BFE ,∵∠AFE +∠DFE =180°,∴2∠BFE +2∠EFC =180°,∴∠AEF +∠EFC =90°,∴∠BFC =90°,∴CF ⊥BF ;(2)证明:如图1,取AD 的中点O ,过点O 作OH ⊥BC 于H ,∴∠OHC=90°=∠ABC,∴OH//AB,∵AB//CD,∴OH//AB//CD,∵AB//CD,AB≠CD,∴四边形ABCD是梯形,∴点H是BC的中点,即OH是梯形ABCD的中位线,∴OH=12(AB+CD),∵AB=AF,CD=DF,∴OH=12(AF+DF)=12AD,∵OH⊥BC,∴以AD为直径的圆与BC相切;(3)如图2,由(1)知,∠DFE=2∠EFC,∵∠DFE=120°,∴∠CFE=60°,在Rt△CEF中,EF=2,∠ECF=90°−∠CFE=30°,∴CF=2EF=4,∴CE=√CF2−EF2=2√3,∵AB//EF//CD,∠ABC=90°,∴∠ECD=∠CEF=90°,过点D作DM⊥EF,交EF的延长线于M,∴∠M=90°,∴∠M=∠ECD=∠CEF=90°,∴四边形CEMD是矩形,∴DM=CE=2√3,过点A作AN⊥EF于N,∴四边形ABEN是矩形,∴AN=BE,由(1)知,∠CFB=90°,∵∠CFE =60°,∴∠BFE =30°,在Rt △BEF 中,EF =2,∴BE =EF ⋅tan30°=2√33, ∴AN =2√33, ∴S △ADE =S △AEF +S △DEF=12EF ⋅AN +12EF ⋅DM =12EF(AN +DM) =12×2×(2√33+2√3) =8√33.【知识点】圆的综合【解析】(1)先判断出∠DFE =2∠EFC ,同理判断出∠AFE =2∠BFE ,进而判断出2∠BFE +2∠EFC =180°,即可得出结论;(2)取AD 的中点O ,过点O 作OH ⊥BC 于H ,先判断出OH =12(AB +CD),进而判断出OH =12AD ,即可得出结论;(3)先求出∠CFE =60°,CE =2√3,再判断出四边形CEMD 是矩形,得出DM =2√3,过点A 作AN ⊥EF 于N ,同理求出AN =2√33,即可得出结论. 此题是圆的综合题,主要考查了平行线的性质,切线的判定,锐角三角函数,矩形的判定,作出辅助线求出DM 是解本题的关键.25.【答案】解:(1)不妨令4x −12=2x 2−8x +6,解得:x 1=x 2=3, 当x =3时,4x −12=2x 2−8x +6=0.∴y =ax 2+bx +c 必过(3,0),又∵y =ax 2+bx +c 过(−1,0),∴{a −b +c =09a +3b +c =0,解得:{b =−2a c =−3a, ∴y =ax 2−2ax −3a ,又∵ax 2−2ax −3a ≥4x −12,∴ax 2−2ax −3a −4x +12≥0,整理得:ax 2−2ax −4x +12−3a ≥0,∴a >0且△≤0,∴(2a +4)2−4a(12−3a)≤0,∴(a −1)2≤0,∴a =1,b =−2,c =−3.∴该二次函数解析式为y =x 2−2x −3.(2)令y =x 2−2x −3中y =0,得x =3,则A 点坐标为(3,0);令x =0,得y =−3,则点C 坐标为(0,−3).设点M 坐标为(m,m 2−2m −3),N(n,0),根据平行四边对角线性质以及中点坐标公式可得:①当AC 为对角线时,{x A +x C =x M +x N y A +y C =y M +y N, 即{3+0=m +n 0−3=m 2−2m −3+0,解得:m 1=0(舍去),m 2=2, ∴n =1,即N 1(1,0).②当AM 为对角线时,{x A +x M =x C +x N y A +y M =y C +y N, 即{3+m =0+n 0+m 2−2m −3=−3+0,解得:m 1=0(舍去),m 2=2, ∴n =5,即N 2(5,0).③当AN 为对角线时,{x A +x N =x C +x M y A +y N =y C +y M, 即{3+n =0+m 0+0=−3+m 2−2m −3,解得:m 1=1+√7,m 2=1−√7, ∴n =√7−2或−2−√7,∴N 3(√7−2,0),N 4(−2−√7,0).综上所述,N 点坐标为(1,0)或(5,0)或(√7−2,0)或(−2−√7,0).【知识点】二次函数综合【解析】(1)令4x −12=2x 2−8x +6,解之可得交点为(3,0),则二次函数必过(3,0),又过(−1,0),则把两点坐标代入解析式可得y =ax 2−2ax −3a ,又ax 2−2ax −3a ≥4x −12,整理可得ax 2−2ax −4x +12−3a ≥0,所以a >0且△≤0,则可得a =1,从而求得二次函数解析式;(2)由题意可得A(3,0),C(0,−3),设点M 坐标为(m,m 2−2m −3),N(n,0).根据对角线的不同可分三类情况建立方程组讨论求解即可:①AC 为对角线则有{x A +x C =x M +x N y A +y C =y M +y N;②AM 为对角线则有{x A +x M =x C +x N y A +y M =y C +y N ;③AN 为对角线则有{x A +x N =x C +x M y A +y N =y C +y M.本题考查了待定系数法求二次函数解析式,二次函数与坐标轴的交点坐标,平行四边形的判定与性质,二次函数与一元二次方程的的联系,根的判别式,对于平行四边形的存在性要注意分类讨论求解.。

2021年广东省广州市中考数学试卷(1)

2021年广东省广州市中考数学试卷(1)

2021年广东省广州市中考数学试卷一、选择题(本大题共10题,每小题3分,满分30分)1.(3分)下列四个选项中,为负整数的是()A.0B.﹣0.5C.﹣D.﹣22.(3分)如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.﹣3B.0C.3D.﹣63.(3分)方程=的解为()A.x=﹣6B.x=﹣2C.x=2D.x=64.(3分)下列运算正确的是()A.|﹣(﹣2)|=﹣2B.3+=3C.(a2b3)2=a4b6D.(a﹣2)2=a2﹣45.(3分)下列命题中,为真命题的是()(1)对角线互相平分的四边形是平行四边形(2)对角线互相垂直的四边形是菱形(3)对角线相等的平行四边形是菱形(4)有一个角是直角的平行四边形是矩形A.(1)(2)B.(1)(4)C.(2)(4)D.(3)(4)6.(3分)为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为()A.B.C.D.7.(3分)一根钢管放在V形架内,其横截面如图所示,钢管的半径是24cm,若∠ACB =60°,则劣弧AB的长是()A.8πcm B.16πcm C.32πcm D.192πcm8.(3分)抛物线y=ax2+bx+c经过点(﹣1,0)、(3,0),且与y轴交于点(0,﹣5),则当x=2时,y的值为()A.﹣5B.﹣3C.﹣1D.59.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,连结BB′,则sin∠BB′C′的值为()A.B.C.D.10.(3分)在平面直角坐标系xOy中,矩形OABC的顶点A在函数y=(x>0)的图象上,顶点C 在函数y=﹣(x<0)的图象上,若顶点B的横坐标为﹣,则点A的坐标为()A.(,2)B.(,)C.(2,)D.(,)二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)代数式在实数范围内有意义时,x应满足的条件是.12.(3分)方程x2﹣4x=0的实数解是.13.(3分)如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线分别交AC、AB于点D、E,连接BD.若CD=1,则AD的长为.14.(3分)一元二次方程x2﹣4x+m=0有两个相等的实数根,点A(x1,y1)、B(x2,y2)是反比例函数y=上的两个点,若x1<x2<0,则y1y2(填“<”或“>”或“=”).15.(3分)如图,在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD的对称点为B′,当B′D∥AC时,则∠BCD的度数为.16.(3分)如图,正方形ABCD的边长为4,点E是边BC上一点,且BE=3,以点A为圆心,3为半径的圆分别交AB、AD于点F、G,DF与AE交于点H.并与⊙A交于点K,连结HG、CH.给出下列四个结论.其中正确的结论有(填写所有正确结论的序号).(1)H是FK的中点(2)△HGD≌△HEC(3)S△AHG:S△DHC=9:16(4)DK=三、解答题(本大题共9小题,满分72分)17.(4分)解方程组.18.(4分)如图,点E、F在线段BC上,AB∥CD,∠A=∠D,BE=CF,证明:AE=DF.19.(6分)已知A=(﹣)•.(1)化简A;(2)若m+n﹣2=0,求A的值.20.(6分)某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4根据以上数据,得到如下不完整的频数分布表:次数123456人数12a6b2(1)表格中的a=,b=;(2)在这次调查中,参加志愿者活动的次数的众数为,中位数为;(3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.21.(8分)民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”“广东技工”“南粤家政”三项培训工程,今年计划新增加培训共100万人次.(1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?22.(10分)如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.23.(10分)如图,在平面直角坐标系xOy中,直线l:y=x+4分别与x轴,y轴相交于A、B两点,点P(x,y)为直线l在第二象限的点.(1)求A、B两点的坐标;(2)设△P AO的面积为S,求S关于x的函数解析式,并写出x的取值范围;(3)作△P AO的外接圆⊙C,延长PC交⊙C于点Q,当△POQ的面积最小时,求⊙C的半径.24.(12分)已知抛物线y=x2﹣(m+1)x+2m+3.(1)当m=0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E(﹣1,﹣1)、F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.25.(12分)如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G.(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2)当CG=2时,求AE的长;(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.2021年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10题,每小题3分,满分30分)1.(3分)下列四个选项中,为负整数的是()A.0B.﹣0.5C.﹣D.﹣2【分析】根据整数的概念可以解答本题.【解答】解:A、0是整数,但0既不是负数也不是正数,故此选项不符合题意;B、﹣0.5是负分数,不是整数,故此选项不符合题意;C、﹣是负无理数,不是整数,故此选项不符合题意;D、﹣2是负整数,故此选项符合题意.故选:D.【点评】本题主要考查了实数的分类.明确大于0的整数是正整数,小于0的整数是负整数是解题的关键.2.(3分)如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A表示的数为()A.﹣3B.0C.3D.﹣6【分析】根据相反数的性质,由a+b=0,AB=6得a<0,b>0,b=﹣a,故AB=b+(﹣a)=6.进而推断出a=﹣3.【解答】解:∵a+b=0,∴a=﹣b,即a与b互为相反数.又∵AB=6,∴b﹣a=6.∴2b=6.∴b=3.∴a=﹣3,即点A表示的数为﹣3.故选:A.【点评】本题主要考查相反数的性质,熟练掌握相反数的性质是解决本题的关键.3.(3分)方程=的解为()A.x=﹣6B.x=﹣2C.x=2D.x=6【分析】求解分式方程,根据方程的解得结论.【解答】解:去分母,得x=2x﹣6,∴x=6.经检验,x=6是原方程的解.故选:D.【点评】本题考查了解分式方程,掌握解分式方程的一般步骤是解决本题的关键.4.(3分)下列运算正确的是()A.|﹣(﹣2)|=﹣2B.3+=3C.(a2b3)2=a4b6D.(a﹣2)2=a2﹣4【分析】根据绝对值的定义、二次根式的运算法则、幂的乘方和积的乘方的运算法则,完全平方公式等知识进行计算即可.【解答】解:A、|﹣(﹣2)|=2,原计算错误,故本选项不符合题意;B、3与不是同类二次根式,不能合并,原计算错误,故本选项不符合题意;C、(a2b3)2=a4b6,原计算正确,故本选项符合题意;D、(a﹣2)2=a2﹣4a+4,原计算错误,故本选项不符合题意.故选:C.【点评】本题考查绝对值、二次根式、幂的乘方和积的乘方、完全平方公式,熟练掌握运算法则和公式是解题的关键.5.(3分)下列命题中,为真命题的是()(1)对角线互相平分的四边形是平行四边形(2)对角线互相垂直的四边形是菱形(3)对角线相等的平行四边形是菱形(4)有一个角是直角的平行四边形是矩形A.(1)(2)B.(1)(4)C.(2)(4)D.(3)(4)【分析】利用平行四边形、矩形及菱形的判定方法分别判断后即可确定正确的选项.【解答】解:(1)对角线互相平分的四边形是平行四边形,正确,为真命题,符合题意;(2)对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意;(3)对角线相等的平行四边形是矩形,故原命题错误,为假命题,不符合题意;(4)有一个角是直角的平行四边形是矩形,正确,是真命题,符合题意,真命题为(1)(4),故选:B.【点评】考查了命题与定理的知识,解题的关键是了解平行四边形、矩形及菱形的判定方法,难度不大.6.(3分)为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为()A.B.C.D.【分析】画树状图,共有12种等可能的结果,恰好抽到2名女学生的结果有6种,再由概率公式求解即可.【解答】解:画树状图如图:共有12种等可能的结果,恰好抽到2名女学生的结果有6种,∴恰好抽到2名女学生的概率为=,故选:B.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)一根钢管放在V形架内,其横截面如图所示,钢管的半径是24cm,若∠ACB=60°,则劣弧AB的长是()A.8πcm B.16πcm C.32πcm D.192πcm【分析】首先利用相切的定义得到∠OAC=∠OBC=90°,然后根据∠ACB=60°求得∠AOB=120°,从而利用弧长公式求得答案即可.【解答】解:由题意得:CA和CB分别与⊙O相切于点A和点B,∴OA⊥CA,OB⊥CB,∴∠OAC=∠OBC=90°,∵∠ACB=60°,∴∠AOB=120°,∴=16π(cm),故选:B.【点评】考查了弧长公式和切线的性质,解题时,熟记弧长公式和切线的性质即可解答,属于基础题.8.(3分)抛物线y=ax2+bx+c经过点(﹣1,0)、(3,0),且与y轴交于点(0,﹣5),则当x=2时,y的值为()A.﹣5B.﹣3C.﹣1D.5【分析】根据抛物线与x轴两交点,及与y轴交点可画出大致图象,根据抛物线的对称性可求y=﹣5.【解答】解:如图∵抛物线y=ax2+bx+c经过点(﹣1,0)、(3,0),且与y轴交于点(0,﹣5),∴可画出上图,∵抛物线对称轴x==1,∴点(0,﹣5)的对称点是(2,﹣5),∴当x=2时,y的值为﹣5.故选:A.【点评】本题考查了抛物线的图象与性质、二次函数图象上点的坐标特征等知识,画出图象利用对称性是解题的关键.9.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,连结BB′,则sin∠BB′C′的值为()A.B.C.D.【分析】在Rt△ABC中,利用勾股定理可求AB,由旋转的性质可得AC=AC'=6,BC=B'C'=8,∠C=∠AC'B'=90°,在Rt△BB'C'中,由勾股定理可求BB'的长,即可求解.【解答】解:∵∠C=90°,AC=6,BC=8,∴AB===10,∵将△ABC绕点A逆时针旋转得到△AB′C′,∴AC=AC'=6,BC=B'C'=8,∠C=∠AC'B'=90°,∴BC'=4,∴B'B===4,∴sin∠BB′C′===,故选:C.【点评】本题考查了旋转的性质,勾股定理,锐角三角函数等知识,利用勾股定理求出BB'长是解题的关键.10.(3分)在平面直角坐标系xOy中,矩形OABC的顶点A在函数y=(x>0)的图象上,顶点C 在函数y=﹣(x<0)的图象上,若顶点B的横坐标为﹣,则点A的坐标为()A.(,2)B.(,)C.(2,)D.(,)【分析】如图,作AD⊥x轴于点D,CE⊥x轴于点E,通过证得△COE∽△OAD得到=,则OE=2AD,CE=2OD,设A(m,)(m>0),则C(﹣,2m),由OE=0﹣(﹣)=得到m﹣(﹣)=,解分式方程即可求得A的坐标.【解答】解:如图,作AD⊥x轴于点D,CE⊥x轴于点E,∵四边形OABC是矩形,∴∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠COE=∠OAD,∵∠CEO=∠ODA,∴△COE∽△OAD,∴=()2,,∵S△COE=×|﹣4|=2,S△AOD==,∴=()2,∴=2,∴=,∴OE=2AD,CE=2OD,设A(m,)(m>0),∴C(﹣,2m),∴OE=0﹣(﹣)=,∵点B的横坐标为﹣,∴m﹣(﹣)=,整理得2m2+7m﹣4=0,∴m1=,m2=﹣4(不符合题意,舍去),经检验,m=是方程的解,∴A(,2),故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,矩形的性质,反比例函数系数k的几何意义,表示出点的坐标是解题的关键.二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)代数式在实数范围内有意义时,x应满足的条件是x≥6.【分析】二次根式中被开方数的取值范围为被开方数是非负数.【解答】解:代数式在实数范围内有意义时,x﹣6≥0,解得x≥6,∴x应满足的条件是x≥6.故答案为:x≥6.【点评】本题主要考查了二次根式有意义的条件,如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.12.(3分)方程x2﹣4x=0的实数解是x1=0,x2=4.【分析】方程利用因式分解法求出解即可.【解答】解:方程x2﹣4x=0,分解因式得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4.故答案为:x1=0,x2=4.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.13.(3分)如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线分别交AC、AB于点D、E,连接BD.若CD=1,则AD的长为2.【分析】由线段垂直平分线的性质可得AD=BD,利用含30°角的直角三角形的性质可求解BD的长,进而求解.【解答】解:∵DE垂直平分AB,∴AD=BD,∴∠A=∠ABD,∵∠A=30°,∴∠ABD=30°,∴∠BDC=∠A+∠ABD=30°+30°=60°,∵∠C=90°,∴∠CBD=30°,∵CD=1,∴BD=2CD=2,∴AD=2.故答案为2.【点评】本题主要考查线段的垂直平分线,含30°角的直角三角形的性质,求得AD=BD是解题的关键.14.(3分)一元二次方程x2﹣4x+m=0有两个相等的实数根,点A(x1,y1)、B(x2,y2)是反比例函数y=上的两个点,若x1<x2<0,则y1>y2(填“<”或“>”或“=”).【分析】由一元二次方程根的情况,求得m的值,确定反比例函数y=图象经过的象限,然后根据反比例函数的性质即可求得结论.【解答】解:∵一元二次方程x2﹣4x+m=0有两个相等的实数根,∴Δ=16﹣4m=0,解得m=4,∵m>0,∴反比例函数y=图象在一三象限,在每个象限y随x的增大而减少,∵x1<x2<0,∴y1>y2,故答案为>.【点评】本题考查了一元二次方程根的情况,反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.15.(3分)如图,在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD的对称点为B′,当B′D∥AC时,则∠BCD的度数为33°.【分析】先根据等腰三角形的性质得到∠A=∠B=38°,再利用平行线的性质得∠ADB′=∠A=38°,接着根据轴对称的性质得到∠CDB′=∠CDB,则可出∠CDB的度数,然后利用三角形内角和计算出∠BCD的度数.【解答】解:∵AC=BC,∴∠A=∠B=38°,∵B′D∥AC,∴∠ADB′=∠A=38°,∵点B关于直线CD的对称点为B′,∴∠CDB′=∠CDB=(38°+180°)=109°,∴∠BCD=180°﹣∠B﹣∠CDB=180°﹣38°﹣109°=33°.故答案为33°.【点评】本题考查了轴对称的性质:轴对称的两个图形全等.也考查了平行线的性质和等腰三角形的性质.16.(3分)如图,正方形ABCD的边长为4,点E是边BC上一点,且BE=3,以点A为圆心,3为半径的圆分别交AB、AD于点F、G,DF与AE交于点H.并与⊙A交于点K,连结HG、CH.给出下列四个结论.其中正确的结论有(1)(3)(4)(填写所有正确结论的序号).(1)H是FK的中点(2)△HGD≌△HEC(3)S△AHG:S△DHC=9:16(4)DK=【分析】(1)先证明△ABE≌△DAF,得∠AFD+∠BAE=∠AEB+∠BAE=90°,AH⊥FK,由垂径定理,得:FH=HK,即H是FK的中点;(2)只要证明题干任意一组对应边不相等即可;(3)分别过H分别作HM⊥AD于M,HN⊥BC于N,由余弦三角函数和勾股定理算出了HM,HT,再算面积,即得S△AHG:S△DHC=9:16;(4)余弦三角函数和勾股定理算出了FK,即可得DK.【解答】解:(1)在△ABE与△DAF中,,∴△ABE≌△DAF(SAS),∴∠AFD=∠AEB,∴∠AFD+∠BAE=∠AEB+∠BAE=90°,∴AH⊥FK,由垂径定理,得:FH=HK,即H是FK的中点,故(1)正确;(2)如图,过H分别作HM⊥AD于M,HN⊥BC于N,∵AB=4,BE=3,∴AE==5,∵∠BAE=∠HAF=∠AHM,∴cos∠BAE=cos∠HAF=cos∠AHM,∴,∴AH=,HM=,∴HN=4﹣=,即HM≠HN,∵MN∥CD,∴MD=CN,∵HD=,HC=,∴HC≠HD,∴△HGD≌△HEC是错误的,故(2)不正确;(3)过H分别作HT⊥CD于T,由(2)知,AM==,∴DM=,∵MN∥CD,∴MD=HT=,∴==,故(3)正确;(4)由(2)知,HF==,∴,∴DK=DF﹣FK=,故(4)正确.【点评】本题是圆的综合题,考查了全等的性质和垂径定理,勾股定理和三角函数解直角三角形,熟练应用三角函数快速计算是本题关键.三、解答题(本大题共9小题,满分72分)17.(4分)解方程组.【分析】用代入消元法解二元一次方程组即可.【解答】解:,将①代入②得,x+(x﹣4)=6,∴x=5,将x=5代入①得,y=1,∴方程组的解为.【点评】本题考查二元一次方程组的解,熟练掌握代入消元法、加减消元法解二元一次方程组是解题的关键.18.(4分)如图,点E、F在线段BC上,AB∥CD,∠A=∠D,BE=CF,证明:AE=DF.【分析】欲证AE=DF,可证△ABE≌DCF.由AB∥CD,得∠B=∠C.又因为∠A=∠D,BE=CF,所以△ABE≌△DCF.【解答】证明:∵AB∥CD,∴∠B=∠C.在△ABE和△DCF中,∴△ABE≌△DCF(AAS).∴AE=DF.【点评】本题主要考查平行线的性质以及全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解决本题的关键.19.(6分)已知A=(﹣)•.(1)化简A;(2)若m+n﹣2=0,求A的值.【分析】(1)根据分式的减法和除法可以化简A;(2)根据m+n﹣2=0,可以得到m+n=2,然后代入(1)中化简后的A,即可求得A的值.【解答】解:(1)A=(﹣)•===(m+n)=m+n;(2)∵m+n﹣2=0,∴m+n=2,当m+n=2时,A=m+n=(m+n)=×2=6.【点评】本题主要考查了分式的化简求值,熟练运用分式运算法则化简是解题的关键,注意代入计算要仔细,属于常考题型.20.(6分)某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4根据以上数据,得到如下不完整的频数分布表:次数123456人数12a6b2(1)表格中的a=4,b=5;(2)在这次调查中,参加志愿者活动的次数的众数为4,中位数为4;(3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.【分析】(1)由题中的数据即可求解;(2)根据中位数、众数的定义,即可解答;(3)根据样本估计总体,即可解答.【解答】解:(1)由该20名学生参加志愿者活动的次数得:a=4,b=5,故答案为:4,5;(2)该20名学生参加志愿者活动的次数从小到大排列如下:1,2,2,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,6,6,∵4出现的最多,有6次,∴众数为4,中位数为第10,第11个数的平均数=4,故答案为:4,4;(3)300×=90(人).答:估计该校初三年级学生参加志愿者活动的次数为4次的人数有90人.【点评】此题考查了频数分布表,众数、中位数,样本估计总体,掌握众数、中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数.21.(8分)民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”“广东技工”“南粤家政”三项培训工程,今年计划新增加培训共100万人次.(1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?【分析】(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次,根据今年计划新增加培训共100万人次,即可得出关于x的一元一次方程,解之即可得出结论;(2)设李某的年工资收入增长率为m,利用李某今年的年工资收入=李某去年的年工资收入×(1+增长率),结合预计李某今年的年工资收入不低于12.48万元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最小值即可得出结论.【解答】解:(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次,依题意得:31+2x+x=100,解得:x=23.答:“南粤家政”今年计划新增加培训23万人次.(2)设李某的年工资收入增长率为m,依题意得:9.6(1+m)≥12.48,解得:m≥0.3=30%.答:李某的年工资收入增长率至少要达到30%.【点评】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.22.(10分)如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.【分析】(1)根据要求作出图形即可.(2)想办法证明EB=EF,∠BEF=60°,可得结论.【解答】(1)解:如图,图形如图所示.(2)证明:∵AC=AD,AF平分∠CAD,∴∠CAF=∠DAF,AF⊥CD,∵∠CAD=2∠BAC,∠BAD=45°,∴∠BAE=∠EAF=∠F AD=15°,∵∠ABC=∠AFC=90°,AE=EC,∴BE=AE=EC,EF=AE=EC,∴EB=EF,∠EAB=∠EBA=15°,∠EAF=∠EF A=15°,∴∠BEC=∠EAB+∠EBA=30°,∠CEF=∠EAF+∠EF A=30°,∴∠BEF=60°,∴△BEF是等边三角形.【点评】本题考查作图﹣基本作图,等边三角形的判定,直角三角形斜边中线的性质等知识,解题的关键是证明EB=EF,∠BEF=60°.23.(10分)如图,在平面直角坐标系xOy中,直线l:y=x+4分别与x轴,y轴相交于A、B两点,点P(x,y)为直线l在第二象限的点.(1)求A、B两点的坐标;(2)设△P AO的面积为S,求S关于x的函数解析式,并写出x的取值范围;(3)作△P AO的外接圆⊙C,延长PC交⊙C于点Q,当△POQ的面积最小时,求⊙C的半径.【分析】(1)根据直线y=x+4分别与x轴,y轴相交于A、B两点,令x=0,则y=4;令y=0,则x=﹣8,即得A,B的坐标;(2)设P(x,),根据三角形面积公式,表示出S关于x的函数解析式,根据P在线段AB上得出x的取值范围;(3)将S△POQ表示为OP2,从而当△POQ的面积最小时,此时OP最小,而OP⊥AB时,OP最小,借助三角函数求出此时的直径即可解决问题.【解答】解:(1)∵直线y=x+4分别与x轴,y轴相交于A、B两点,∴当x=0时,y=4;当y=0时,x=﹣8,∴A(﹣8,0),B(0,4);(2)∵点P(x,y)为直线l在第二象限的点,∴P(x,),∴S△APO==2x+16(﹣8<x<0);∴S=2x+16(﹣8<x<0);(3)∵A(﹣8,0),B(0,4),∴OA=8,OB=4,在Rt△AOB中,由勾股定理得:AB=,在⊙C中,∵PQ是直径,∴∠POQ=90°,∵∠BAO=∠Q,∴tan Q=tan∠BAO=,∴,∴OQ=2OP,∴S△POQ=,∴当S△POQ最小时,则OP最小,∵点P在线段AB上运动,∴当OP⊥AB时,OP最小,∴S△AOB=,∴,∵sin Q=sin∠BAO,∴,∴,∴PQ=8,∴⊙C半径为4.【点评】本题主要考查了一次函数图象上点的坐标的特征、圆的性质、以及三角函数的知识,将S△POQ表示为OP2是解决问题的关键.24.(12分)已知抛物线y=x2﹣(m+1)x+2m+3.(1)当m=0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E(﹣1,﹣1)、F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.【分析】(1)当m=0时,抛物线为y=x2﹣x+3,将x=2代入得y=5,故点(2,4)不在抛物线上;(2)抛物线y=x2﹣(m+1)x+2m+3的顶点为(,),而=﹣(m ﹣3)2+5,即得m=3时,纵坐标最大,此时顶点移动到了最高处,顶点坐标为:(2,5);(3)求出直线EF的解析式为y=2x+1,由得直线y=2x+1与抛物线y=x2﹣(m+1)x+2m+3的交点为:(2,5)和(m+1,2m+3),因(2,5)在线段EF上,由已知可得(m+1,2m+3)不在线段EF上,即是m+1<﹣1或m+1>3,或(2,5)与(m+1,2m+3)重合,可得抛物线顶点横坐标x顶点=<﹣或x顶点=>或x顶点=1.【解答】解:(1)当m=0时,抛物线为y=x2﹣x+3,将x=2代入得y=4﹣2+3=5,∴点(2,4)不在抛物线上;(2)抛物线y=x2﹣(m+1)x+2m+3的顶点为(,),化简得(,),顶点移动到最高处,即是顶点纵坐标最大,而=﹣(m﹣3)2+5,∴m=3时,纵坐标最大,即是顶点移动到了最高处,此时顶点坐标为:(2,5);(3)设直线EF解析式为y=kx+b,将E(﹣1,﹣1)、F(3,7)代入得:,解得,∴直线EF的解析式为y=2x+1,由得:或,∴直线y=2x+1与抛物线y=x2﹣(m+1)x+2m+3的交点为:(2,5)和(m+1,2m+3),而(2,5)在线段EF上,∴若该抛物线与线段EF只有一个交点,则(m+1,2m+3)不在线段EF上,或(2,5)与(m+1,2m+3)重合,∴m+1<﹣1或m+1>3或m+1=2(此时2m+3=5),∴此时抛物线顶点横坐标x顶点=<﹣或x顶点=>或x顶点===1.【点评】本题考查二次函数的综合应用,涉及图象上点坐标特征,顶点坐标,抛物线与线段交点等知识,解题的关键是用m的代数式表示抛物线与直线交点的坐标.25.(12分)如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G.(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2)当CG=2时,求AE的长;(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.【分析】(1)利用平行四边形的判定定理:两边平行且相等的四边形是平行四边形,(2)利用三角形相似,求出此时FG的长,再借助直角三角形勾股定理求解,(3)利用图形法,判断G点轨迹为一条线段,在对应点处求解.【解答】解:(1)证明:连接DF,CE,如图所示:,∵E为AB中点,∴AE=AF=AB,∴EF=AB=CD,∵四边形ABCD是菱形,∴EF∥AB∥CD,∴四边形DFEC是平行四边形.(2)作CH⊥BH,设AE=F A=m,如图所示,,∵四边形ABCD是菱形,∴CD∥EF,∴△CDG∽△FEG,∴,∴FG=2m,在Rt△CBH中,∠CBH=60°,BC=2,sin60°=,CH=,cos60°=,BH=1,在Rt△CFH中,CF=2+2m,CH=,FH=3+m,CF²=CH²+FH²,即(2+2m)²=()²+(3+m)²,整理得:3m²+2m﹣8=0,解得:m1=,m2=﹣2(舍去),∴.(3)G点轨迹为线段AG,证明:如图,(此图仅作为证明AG轨迹用),延长线段AG交CD于H,作HM⊥AB于M,作DN⊥AB于N,∵四边形ABCD是菱形,∴BF∥CD,∴△DHG∽△EGA,△HGC∽△AGF,∴,,∴,∵AE=AF,∴DH=CH=1,在Rt△ADN中,AD=2,∠DAB=60°.∴sin60°=,DN=.cos60°=,AN=1,在Rt△AHM中,HM=DN=,AM=AN+NM=AN+DH=2,tan∠HAM=,G点轨迹为线段AG.∴G点轨迹是线段AG.如图所示,作GH⊥AB,∵四边形ABCD为菱形,∠DAB=60°,AB=2,∴CD∥BF,BD=2,∴△CDG∽△FBG,∴,即BG=2DG,∵BG+DG=BD=2,∴BG=,在Rt△GHB中,BG=,∠DBA=60°,sin60°=,GH=,cos60°=,BH=,在Rt△AHG中,AH=2﹣=,GH=,AG²=()²+()²=,∴AG=.∴G 点路径长度为.解法二:如图,连接AG,延长AG交CD于点W.∵CD∥BF,∴=,=,∴=,∵AF=AE,∴DW=CW,∴点G在AW上运动.下面的解法同上.【点评】本题主要考查平行四边形的判定,菱形的性质,解题关键是借助锐角三角比和勾股定理求解.31。

中考数学临考题号押广东卷11~13题(因式分解,代数式求值,解方程,二次根式等)

中考数学临考题号押广东卷11~13题(因式分解,代数式求值,解方程,二次根式等)

押广东卷第11—13题因式分解,代数式求值,解方程,二次根式等近几年广东中考填空题共7题,传言说今年改为6题,有些地区模拟卷开始改为6题,但是没有官方的信息公布,存在不确定性。

按往年命题情况,第11~13题考查的内容偏向于基础知识的运用,难度较小。

主要考查了实数的相关概念与简单计算,因式分解,代数式相关概念与求值,二次根式及性质,解方程与不等式。

①掌握实数相关的概念与有关计算,科学计数法,因式分解常用方法等基础知识②熟练掌握二次根式,平方根,立方根有关的基础知识.注意考察平方根的概念,二次根式的概念与非负性的性质。

③熟练掌握与单项式,多项式,同类项,代数式求值,整式的简单化简有关的基础知识.如:单项式的相关概念,代数式求值与整式运算。

④能熟练解三大方程与不等式(组)1.(2021广东)二元一次方程组2222x yx y+=-⎧⎨+=⎩的解为___.【分析】由加减消元法或代入消元法都可求解.【详解】解:2222x y x y +=-⎧⎨+=⎩①②, 由①式得:22x y =-- ,代入②式,得:2(22)2y y ,解得2y =- ,再将2y =-代入①式,222x , 解得2x = ,∴22x y =⎧⎨=-⎩ , 故填:22x y =⎧⎨=-⎩. 2.(2020广东)分解因式:xy ﹣x =____________.【分析】直接利用提公因式法分解因式即可【解答】解:原式=xy ﹣x =x (y -1)故答案为:x (y-1)3.(2020广东)若2-a +|b +1|=0,则(a +b )2020=_________.【分析】算术平方根、绝对值都是非负数。

【解答】∴a=2,b=-1,-1的偶数次幂为正故答案为:1.4.(2020广东)如果单项式3x m y 与﹣5x 3y n 是同类项,那么m +n =________.【分析】根据同类项的概念即可解答【解答】解:∵单项式3x m y 与﹣5x 3y n 是同类项∴m=3,n=1故答案为:45.(2020广东)已知x =5﹣y ,xy =2,计算3x +3y ﹣4xy 的值为___________.【分析】直接将已知变形进而代入原式求出答案【解答】x+y=5,原式=3(x+y )-4xy ,15-8=7故答案为:76.(2019广东)已知x =2y +3,则代数式4x ﹣8y +9的值是 .【分析】直接将已知变形进而代入原式求出答案.【解答】解:∵x =2y +3,∴x ﹣2y =3,则代数式4x ﹣8y +9=4(x ﹣2y )+9=4×3+9=21.故答案为:21.7.(2019广东)计算:20190+(31)﹣1= . 【分析】分别计算负整数指数幂、零指数幂,然后再进行实数的运算即可.【解答】解:原式=1+3=4.故答案为:4.8.(2019广东)分解因式:x 2﹣2x +1= .【分析】直接利用完全平方公式分解因式即可. 【解答】解:x 2﹣2x+1=(x ﹣1)2.故答案为:(x ﹣1)2.1.(2022年广东省佛山市禅城区中考一模)若a 、b 为实数,且满足|a 2b -=0,则b﹣a 的值为 _____. 【分析】根据绝对值和算数平方根的非负性求出a 和b 的值,再代入计算即可.【详解】解:∵|a 2b -=0,且50a +≥20b -≥, ∴50a +=20b -=.∴a =-5,b =2.∴()257b a -=--=.故答案为:7.2.(2022年广东省中山市九年级下学期第一次模拟)若x 2﹣3x =﹣3,则3x 2﹣9x +7的值是 _____.【分析】首先把3x 2-9x +7化成3(x 2-3x )+7,然后把x 2-3x =-3代入求解即可.【详解】解:∵x 2﹣3x =﹣3,∴3x 2﹣9x +7=3(x 2﹣3x )+7=3×(﹣3)+7=﹣9+7=-2.故答案为:-2.3.(2022年广东省梅州市中考数学模拟)若分式12x -有意义,则x 的取值范围是_____. 【分析】根据分式有意义的条件建立不等式,求解即可.【详解】解:由题意,得x ﹣2≠0.解得x ≠2,故答案为:x ≠2.4.(广东省韶关市南雄市第一次质检数学试题)若x =1是方程x 2﹣4x +m =0的根,则m 的值为____.【分析】根据一元二次方程的解,把x =1代入方程x 2﹣4x +m =0得到关于m 的一次方程,然后解此一次方程即可.【详解】解:把x =1代入x 2﹣4x +m =0得1﹣4+m =0,解得m =3.故答案为:3.5.(2021佛山市大沥镇一模)因式分解228x y y -=__________.【分析】先提取公因式2y ,再对余下的多项式利用平方差公式继续分解.【解答】解:228x y y -()224y x =- ()()222y x x =+-,故答案为:()()222y x x +-.6.(2021惠州市一模)因式分解:328a a -= .【分析】观察原式,找到公因式2a ,提出公因式后发现24a -符合平方差公式的形式,利用平方差公式继续分解即可得求得答案.【解答】解:328a a -,22(4)a a =-,2(2)(2)a a a =+-.故答案为:2(2)(2)a a a =+-7.(2021年佛山市禅城区一模)计算:(﹣6)÷(﹣31)= . 【分析】有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,依此即可求解.【解答】解:(﹣6)÷(﹣31)=18. 故答案为:18. 8.(2021惠州市一模)若|2|30a b -+-=,则22a b -= .【分析】首先根据非负数的性质,得|2|0a -=,30b -=,由此即可求出a 、b 的值,再代入所求代数式中解答即可.【解答】解:|2|30a b -+-=,20a ∴-=,30b -=,2a ∴=,3b =,222a b ∴-=-.故结果为:2-.9.(2021汕头市金平区一模)若式子12-x 在实数范围内有意义,则x 应满足的条件是 .【分析】根据二次根式有意义的条件得:2x ﹣1≥0,再解不等式即可.【解答】解:由题意得:2x ﹣1≥0,解得:x ≥,故答案为:x ≥.10.(2021佛山市大沥镇一模)已知31a b -=-,则263a b --的值为 .【分析】把已知等式变形,整体代入即可.【解答】解:由31a b -=-,得262a b -=-, 263235a b --=--=-,故答案为:-5.11.已知代数式2x -y 的值是-2,则代数式1-2x +y 的值是 .【分析】直接利用已知将原式变形求出答案.【解答】解:∵代数式2x-y 的值是-2,∴代数式1-2x+y=1-(2x-y )=1-(-2)=3.故答案为3.1.因式分解:2312x -=________.【分析】首先提取公因式x ,进而利用平方差公式进行分解即可;【详解】解:原式=23(4)3(2)(2)-=+-x x x ;故正确答案为:3(2)(2)x x +-2.若函数y 在实数范围内有意义,则自变量x 的取值范围是______.【分析】利用二次根式有意义的条件得到5﹣x ≥0,然后解不等式即可.【详解】根据题意得5﹣x ≥0,所以x ≤5.故答案为x ≤5.3.用科学记数法表示的近似数67.03010⨯精确到了______.【分析】由近似数67.03010⨯中最后一个0在原数中的数位为千位,从而可得答案.【详解】解:67.030107030000,⨯=近似数67.03010⨯中最后一个0在原数中的数位为千位,所以用科学记数法表示的近似数67.03010⨯精确到了千位,故答案为:千位4.(2022·广东·=______.【分析】先进行化简,然后作差求解即可.【详解】解:原式==故答案为:5.(2022·广东·江门市新会东方红中学模拟预测)已知x =﹣1是方程x 2+ax +4=0的一个根,则方程的另一个根为_____. 【分析】根据根与系数的关系:12c x x a=即可求出答案. 【详解】设另外一根为x ,由根与系数的关系可知:﹣x =4,∴x =﹣4,故答案为:﹣46.(2022·广东韶关·模拟预测)一元二次方程4x 2﹣9=0的根是_____.【分析】利用直接开平方解答,即可求解.【详解】解:4x 2-9=0,∴x 2=94, 解得:132x =,232x =-. 故答案为:132x =,232x =- 7.(2022·广东广州·一模)计算:(﹣3)﹣1+(﹣4)0=_____.【分析】根据负整数指数幂和零次幂求解即可【详解】 解:原式=13-+1=23, 故答案为:238.(2022·广东·模拟预测)不等式组51350x x -<⎧⎨-≥⎩的解集是__________. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式51x -<,得:6x <,解不等式350x -,得:53x , 则不等式组的解集为563x <, 故答案为:563x <. 8.(2022·广东广州·一模)如果232022x x +=,那么代数式2(21)(1)x x x +--的值为____________.【分析】根据整式的运算法则进行化简,然后将x 与y 的值代入原式即可求出答案.【详解】解:原式=2x 2+x -x 2+2x -1=x 2+3x -1,当x 2+3x =2022时,原式=2022-1=2021.故答案为:2021.。

2021年中考一模考试《数学卷》含答案解析

2021年中考一模考试《数学卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是( ) A. 14-B. -4C.14D. 42.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A. B. C. D.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( ) A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<6.下列图形,既是轴对称图形又是中心对称图形的是( ) A 正三角形B. 正五边形C. 等腰直角三角形D. 矩形7.化简()22x 的结果是( ) A. x 4B. 2x 2C. 4x 2D. 4x8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.239.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A.103B. 4C. 4.5D. 510.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c += C. 1bc a +=D. 以上都不是二、填空题(本题共6小题,每小题3分,共18分)11.如图,EABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.12.如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB 于C ,若EC =1,则OF =_____.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况: 捐书(本) 3 4 5 7 10 人数 5710117该班学生平均每人捐书______本.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:1332)182+18.化简: 2212(1)244x x xx x x +--÷--+ 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?22.如图,函数12y x=的图象与函数kyx=(x>0)的图象相交于点P(4,m).(1)求m,k的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.23.如图,△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,点E 为AC 延长线上一点,且DE 是⊙O 的切线.(1)求证:∠CDE =12∠BAC ; (2)若AB =3BD ,CE =4,求⊙O 的半径.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围. 25.阅读下面材料,完成()()13-题. 数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.” 小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE数量关系.”老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出ABCH的值.”(1)求证:CAD EAB ∠=∠; (2)求ADAE的值(用含k 的式子表示); (3)如图2,若,DH AH =则ABCH的值为 (用含k 的式子表示). 26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -). (1)b=__________(用含m 的代数式表示); (2)求△ABC 的面积; (3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是()A.14B. -4C.14D. 4【答案】B【解析】【分析】根据相反数的定义即可解答.【详解】∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是﹣4;故选B.【点睛】本题考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解决问题的关键.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】根据三视图的概念即可快速作答.【详解】解:立体图形的主视图,即正前方观察到的平面图,即选项A符合题意;故答案为A.【点睛】本题考查了三视图的概念及正确识别主视图,解题的关键在于良好的空间想象能力.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×106【答案】C 【解析】 【分析】对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.【详解】380000=3.8×105. 故选C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 【答案】A 【解析】【详解】点N 绕着点O 旋转180°,恰好关于原点对称,点(1,2)N --的中心对称点为(1,2),故选A .5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<【答案】C 【解析】 【分析】分别求出每一个不等式的解集,再确定出解集的公共部分即可得解. 【详解】解不等式12220x -<,得:4x >-, 解不等式360x -≤,得:2x ≤, 则不等式组的解集为42x -<≤, 故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.下列图形,既是轴对称图形又是中心对称图形的是( )A. 正三角形B. 正五边形C. 等腰直角三角形D. 矩形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念逐一进行分析判断即可得.【详解】A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.化简()22x的结果是()A. x4B. 2x2C. 4x2D. 4x【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. 16B.13C.12D.23【答案】A【解析】【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为16,故选A.【点睛】本题主要考查概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.9.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A. 103B. 4C. 4.5D. 5【答案】D【解析】【分析】设FC ′=x ,则FD=9-x ,根据矩形的性质结合BC=6、点C ′为AD 的中点,即可得出C ′D 的长度,在Rt △FC ′D 中,利用勾股定理即可找出关于x 的一元一次方程,解之即可得出结论.【详解】设FC′=x ,则FD=9﹣x ,∵BC=6,四边形ABCD 为矩形,点C′为AD 的中点,∴AD=BC=6,C′D=3,在Rt △FC′D 中,∠D=90°,FC′=x ,FD=9﹣x ,C′D=3,∴FC′2=FD 2+C′D 2,即x 2=(9﹣x )2+32,解得:x=5,故选D .【点睛】本题考查了矩形的性质以及勾股定理,在Rt △FC′D 中,利用勾股定理找出关于FC′的长度的一元二次方程是解题的关键.10.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c +=C. 1bc a +=D. 以上都不是【答案】A【解析】【分析】 根据题意可知,本题考察二次函数图像与系数的关系,根据图像与坐标轴的交点,运用两边相等求出交点坐标,代入坐标进行求解.【详解】∵OA OC =∴点A 、C 的坐标为(-c ,0),(0,c)∴把点A 的坐标代入2y ax bx c =++得∴2=0ac bc c -+∴()10c ac b -+=∵0c ≠∴10ac b -+=∴1ac b +=故选A【点睛】本题考察二次函数图像与系数关系,解题关键是根据图像得出系数取值范围,再代入点的坐标进行解决. 二、填空题(本题共6小题,每小题3分,共18分)11.如图,E 为ABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.【答案】60【解析】【分析】利用平行线的性质,即可得到∠CED=∠C=50°,再根据三角形内角和定理,即可得到∠B 的度数.【详解】解:∵ED ∥BC ,∴∠CED=∠C=50°,又∵∠BAC=70°,∴△ABC中,∠B=180°-50°-70°=60°,故答案为60.【点睛】本题主要考查了平行线的性质,解题时注意运用两直线平行,内错角相等.12.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=_____.【答案】2【解析】【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答即可.【详解】作EH⊥OA于H.∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°.∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2.故答案2.【点睛】本题考查了等腰三角形的判定、角平分线的性质、平行线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况:捐书(本) 3 4 5 7 10人数 5 7 10 11 7该班学生平均每人捐书______本.【答案】6【解析】【分析】利用加权平均数公式进行求解即可得. 【详解】该班学生平均每人捐书3547510711107640⨯+⨯+⨯+⨯+⨯=(本), 故答案为6.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.【答案】46483538x y x y +=⎧⎨+=⎩【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【详解】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: 46483538x y x y +=⎧⎨+=⎩ 故答案是:46483538x y x y +=⎧⎨+=⎩【点睛】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)【答案】262【解析】【分析】作AE BC ⊥于E ,根据正切的定义求出AE ,根据等腰直角三角形的性质求出BE ,结合图形计算即可.【详解】作AE BC ⊥于E ,则四边形ADCE 为矩形,62EC AD ∴==,在Rt AEC ∆中,tan EC EAC AE ∠=, 则62200tan 0.31EC AE EAC =≈=∠, 在Rt AEB ∆中,45BAE ∠=,200BE AE ∴==,20032262()BC m ∴=+=,则该建筑的高度BC 为262m ,故答案为262.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.【答案】175【解析】试题解析:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m 米/秒,则(m -2.5)×(180-30)=75,解得:m =3米/秒,则乙的速度为3米/秒, 乙到终点时所用的时间为:15003=500(秒), 此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500-1325=175(米).【点睛】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:2)+【答案】-1.【解析】【分析】先利用平方差公式简便运算乘法,同时化简二次根式,再合并同类二次根式即可.【详解】解:2)+=3-4+=-1.【点睛】本题考查的是二次根式的混合运算,二次根式的化简,掌握利用平方差公式进行简便运算是解题的关键.18.化简: 2212(1)244x x x x x x +--÷--+ 【答案】3x . 【解析】【分析】先通分,计算括号内的减法,把除法转化为乘法,约分后得到结论. 【详解】解:原式=212(2)122()22(2)2x x x x x x x x x x x x+--+-+--÷=•----323.2x x x x-=•=- 【点睛】本题考查的是分式的化简,考查了分式的加减法,分式的除法,掌握以上运算是解题的关键. 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .【答案】见解析.【解析】【分析】欲证明∠F =∠C ,只要证明△ABC ≌△DEF(SSS)即可.【详解】证明:DA BE =,DE AB ∴=,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ∴∆≅∆,C F ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质.20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.【答案】(1)①5,3;②65,70;(2)130人.【解析】【分析】(1)①根据数据统计出a、b;②根据中位数和众数的定义求出c,d即可;(2)先求出样本用样本达到平均水平及以上的学生的概率,然后用九年级学生数×样本达到平均水平及以上的学生的概率即可.【详解】解:()1①经统计:该组数据处于30≤t<60的数据有5个, 处于90≤t<120的数据有3个,∴a=5;b=3故答案为:5;3②将这组数据从小到大排序,位于第10个的数据是60,第11个的数据是70∴中位数为(60+70)÷2=65这组数据中出现次数最多的是70 ∴众数为70 ∴6570,c d==故答案为:65;70.()132********⨯=(人),答:估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数为130人.【点睛】本题考查中位数、众数、平均数、样本估计总体的思想等知识,掌握中位数、众数、平均数等基本知识是解答本题的关键.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?【答案】小路的宽应为1m .【解析】【分析】设小路的宽应为x 米,那么草坪的总长度和总宽度应该为(16-2x ),(9-x );那么根据题意得出方程,解方程即可.【详解】解:设小路的宽应为x 米,根据题意得:(162)(9)112x x --=,解得:11x =,216x =.∵169>,∴16x =不符合题意,舍去,∴1x =.答:小路的宽应为1米.【点睛】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键. 22.如图,函数12y x =的图象与函数k y x=(x >0)的图象相交于点P (4,m ). (1)求m ,k 的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.【答案】(1)m=2,k=8;(2)103.【解析】【分析】(1)将点P(4,m)代入y=x,求出m=2,再将点P(4,2)代入kyx=即可求出k的值;(2) 分别求出A、B两点的坐标,即可得到线段AB的长.【详解】(1)∵函数12y x=的图象过点P(4,m),∴m=2,∴P(4,2),∵函数kyx=(x>0)的图象过点P,∴k=4×2=8;(2)将y=3代入12y x=,得x=6,∴点A(6,3).将y=3代入8yx=,得x=83,∴点B(83,3).∴AB=6﹣83=103.【点睛】本题主要考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.23.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O 的切线.(1)求证:∠CDE=12∠BAC;(2)若AB=3BD,CE=4,求⊙O的半径.【答案】(1)见解析;(2)14.【解析】【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可得到答案;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【详解】(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,-∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=12∠BAC,∵DE是⊙O的切线;∴OD⊥DE∴∠ODE=90°∴∠ADC=∠ODE∴∠CDE=∠ADO ∵OA=OD,∴∠CAD=∠ADO,∴∠CDE=∠CAD,∠CAD=12∠BAC,∴∠CDE=12∠BAC.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD2222,AC DC x-=∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴CE DC DE DE AD AE∴==,即43422DE DE xx==+∴DE=82,,x=283,∴AC=3x=28,∴⊙O的半径为14.【点睛】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)55t BC =;(2)222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【解析】【分析】(1)先根据直线112y x =+求得点A 、B 的坐标,利用勾股定理求得AB 的长,进而可求得5555sin ABO cos ABO ∠=∠=,由翻折知DB DC t ==,12BH CH BC ==,最后根据255BH cos ABO BD ∠==求得55t BH =,即可求得BC 的长; (2)分类讨论:当203t <≤时,当2534t <≤时,当524t <≤时,分别画出相应图形,然后利用相似三角形的性质分别表示出对应的底和高,进而可得S 关于t 的函数解析式即可. 【详解】解:()1∵直线112y x =+与y 轴,x 轴分别相交于点A B 、, ∴点()()012,0A B -,,,∴由勾股定理得22125AB =+=∴在直角AOB 中,525,55sin ABO cos ABO ∠=∠=, 由翻折知:DB DC t ==,12BH CH BC ==, 255BH cos ABO BD∠==, 255t BH ∴=, 455t BC ∴=, ()2当203t <≤时, 过点C 做CG BO ⊥于点G ,45CG t ∴=, 55CG sin ABO BC∴∠==, 45GC t ∴=, 14225S t t ∴=⨯⨯ 245t = 当2534t <≤时, 设OA 交CE 于点F ,45CD BD t GC t ===,, ∴由勾股定理得35GD t =,37255GE t t t ∴=-=, 382255GO t t t =--=-, 78 23255OE EG OG t t t ∴=-=-+=-, //OF CG ,EOFCGE ∴, OF OE CG OG∴=, ()4327OF t ∴=-, 12OFE S OE OF =⋅ ()()14323227t t =⋅-⋅- 222(73)t -= , DCE OFE S S S =-∴2622483577t t =-+-, 当524t <≤时, 设CD 交OA 于点P ,//,OP CG,DOP DGC ∴OP OD CG DG∴=, 2OD t =-,()423OP OP t ∴==-,12S OD OP =⋅⋅∴ 2288333t t =-+, ∴综上所述,222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【点睛】本题考查了一次函数的图像与性质,解直角三角形、相似三角形的判定及性质,根据点D 的位置画出相应的图形然后运用分类讨论思想以及相似三角形的性质是解决本题的关键.25.阅读下面材料,完成()()13-题.数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.”小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE 的数量关系.” 老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出AB CH的值.”(1)求证:CAD EAB ∠=∠;(2)求AD AE的值(用含k 的式子表示); (3)如图2,若,DH AH =则AB CH 的值为 (用含k 的式子表示). 【答案】(1)证明见解析;(2)3AD AE k =;(3)2115AB k CH ++= 【解析】【分析】(1)由BA BC =可知BAC BCA ∠=∠,再通过180ACD DAE ∠+∠=以及平角为180°,可以得到CAD EAB ∠=∠;(2)方法一:过点C 做ACM ABE ∠=∠,交AD 于点M ,通过AEB AMC 可知AC AM CM AB AE BE ==,通过DCM AFE 可知DM CM AE EF =,通过比例关系可推导出AD AE的值;方法二:过点B 做//BN AC 交AE 延长线于点N ,通过AHC DHA 和ACD ABN 相似得到的比例关系即可可推导出AD AE的值; (3)同方法二辅助线,通过证明AHC DHA ,AFE NBE ,然后由对应边成比例即可推导出结论.【详解】()1BA BC =,BAC BCA ∴∠=∠180,ACD DAE ∠+∠=180,ACD ACB ∠+∠=∴∠=∠ADE ACB,∴∠=∠DAE BAC,∴∠=∠DAC BAE,()2方法一:∠=∠,交AD于点M 过点C做ACM ABE∠=∠,DAC BAE∴AEB AMCAC AM CM∴==AB AE BE=AB kAC1∴=AM AEk1=CM BEk=2BE EF2∴=CM FEk∠=∠+∠AEF EAB ABE∠=∠+∠DMC MAC ACM∴∠=∠DMC AEFACB D DAC∠=∠+∠∠=∠+∠DAE DAC FAEDAE ACB∠=∠∴∠=∠D FAE∴DCM AFEDM CM∴=AE EF2∴=DM AEk3∴=+=AD AM DM AEkAD3∴=AE k方法二:BN AC交AE延长线于点,N 过点B做//,∴∠=∠N FAE∠=∠,AFE EBN∴,AFE NBEAE EF∴=NE BE=BE EF2,∴=NE EA2,NA EA∴=3,∠=∠+∠ACB D DAC,DAE DAC FAE∠=∠+∠,DAE ACB∠=∠,∴∠=∠,D FAE,DAC BAE ∴∠=∠ ACD ABN ∴ AC AD AB AN ∴= ,AB kAC = ,AN kAD ∴= 3,AE kAC ∴= 3AD AE k ∴= ()3同方法二辅助线,D CAH ∠=∠ ,AHC DHA ∠=∠ AHC DHA ∴ 2AH HC DH ∴=⋅ 23AH AC DH AD == 23AD AC ∴= AB kAC = 32AD AB k ∴= 3AD AE k =12AE AB ∴= 设2AH a AB BC b ===,13,2DH a AE b ∴== 2NE AE =NE b ∴=EH AH AE EN NH =-=-322NH b a ∴=- 2AH HC DH =⋅43CH a ∴= 53CD a ∴= ∴由方法二相似得53BN ak = ADHNBH ' AD DH NB NH∴= 33253232b a k ak b a ∴=- 222912200b ab a k ∴--=(123a b -∴=(舍),(223ab +=12AB CH +∴= 【点睛】本题考查了相似三角形的判定和性质,正确作出辅助线是解题的关键.26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -).(1)b=__________(用含m 的代数式表示);(2)求△ABC 的面积;(3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.【答案】(1)b=-2m-2;(2)24;(3)m =. 【解析】【分析】(1)根据A(m-2,n), B (m+4,n )纵坐标一致,结合对称轴即可求解;(2)先用含m 的代数式表示c ,再带入A 点坐标即可求出n=3,最后利用铅锤法即可求出△ABC 的面积; (3)先用只含m 的代数式表示二次函数解析式,再结合带取值范围的二次函数最值求法分类讨论即可.【详解】(1)∵2y x bx c =++过点A(m-2,n), B (m+4,n ), ∴对称轴2422b m m x -++=-= ∴22b m =--(2)∵22b m =--∴2(22)y x m x c =-++把C (m ,53n -)代入2(22)y x m x c =-++ ∴2523c m m n =+-∴225(22)23y x m x m m n =-+++-把A(m-2,n)代入225(22)23y x m x m m n =-+++-得583n n =-∴n=3∴A(m-2,3), B (m+4,3),C (m ,5-)∴AB=6C 点到x 轴的距离为:3﹣(-5)=8,∴S △ABC=12×6×8=24 (3)∵n=3∴22(22)25y x m x m m =-+++-∴2(1)6y x m =---∴当1x m =+时-6y =最小∵6y m -≤≤ ∴由函数增减性知11222m m m ≤+≤+ 即1m ≥-∴当10m -≤<时 由函数增减性知12x m =时,y m =最大 ∴21(1)62m m m =---∴m =±当0m ≥时由函数增减性知22x m =+时,y m =最大∴2(221)6m m m =+---∴1m =(舍)2m =∴12m -+=【点睛】本题考查二次函数综合运用,当参数比较多时可以带入解析式,利用解方程消元法消去多余的参数,在最后一问中对于带取值范围的二次函数最值需要根据对称轴与取值范围的关系确定范围内的最值.。

2021年中考数学试卷(含答案)

2021年中考数学试卷(含答案)

2021年高中阶段学校招生考试数学试卷本试卷满分150分,考试时间120分钟。

注意事项:1.答题前,考生务必将自己的学校、姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡上,并检查条形码粘贴是否正确。

2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求.) 1. -2021的绝对值是A .-2021B .2021C .2021±D .120212.下列计算中,正确的是A .2239a a +=+() B . 842a a a ÷=C . 22a b a b -=-() D . 2222a a a += 3.如右图所示的几何体是由6个完全相同的小正方体搭成,其主视图是A .B .C .D .4. 国家统计局2021年5月11日公布了第七次全国人口普查结果,全国总人口约14.1亿人, 将14.1亿用科学记数法表示为A. 14.1×108 B . 1.41×108 C . 1.41×109D . 0.141×10105. 如右图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积是3cm 2,则四边形BDEC 的面积为A .12cm 2B .9cm 2C .6cm 2D .3cm 2 6. 下列说法正确的是A. 角平分线上的点到角两边的距离相等B. 平行四边形既是轴对称图形,又是中心对称图形C. 在代数式141298523x x b y a a π++,,,,,中,142x b a aπ+,,是分式D. 若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是47. 不等式组20112x x ->⎧⎪⎨-≥-⎪⎩的解集在数轴上表示正确的是 A. B .C .D .8. 如图,在矩形ABCD 中,AB =5,AD =3,点E 为BC 上一点,把△CDE 沿DE 翻折,点C 恰好落在AB 边上的F 处,则CE 的长是 A . 1 B .43C .32D . 539. 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D 作DF ⊥AC ,垂足为点F ,若⊙O 的半径为43,∠CDF =15°,则阴影部分的面积为 A .16123π- B .16243π- C .20123π- D .20243π-10.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列5个结论:①0abc >;②24b ac <;③23c b <;④2()a b m am b +>+(1m ≠);⑤若方程2ax bx c ++=1有四个根,则这四个根的和为2. 其中正确的结论有 A. 2个B . 3个 C .4个D . 5个二、填空题(本大题共5个小题,每小题4分,共20分) 11. 若20a a b -++=,则ab =▲.12. 如右图,在△ABC 中,AB =5,AC =7,直线DE 垂直平分BC ,垂足为E ,交AC 于点D ,则△ABD 的周长是▲.13. 已知关于x ,y 的二元一次方程组235423x y ax y a +=⎧⎨+=+⎩满足x -y >0,则a 的取值范围是▲. 14. 下面图形都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第▲个图形共有210个小球.15. 如图,正方形ABCD 中,点E 是CD 边上一点,连结BE ,以BE 为对角线作正方形BGEF ,边EF 与正方形ABCD 的对角线BD 相交于点H ,连结AF ,有以下五个结论:①ABF=DBE ∠∠②ABF DBE ∽③AF BD ⊥④22BG BH BD = ⑤若CE:DE=1:3,则BH:DH=17:16 你认为其中正确是▲(填写序号)三、计算或解答题(本大题共10个小题,共90分) 16.(7分)计算:11tan 60233122-⎛⎫-+︒--+-- ⎪⎝⎭(π)▲17.(7分)先化简,再求值:⎪⎭⎫ ⎝⎛++-÷+--339442223m m m m m m ,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数.▲18.(8分)如图,在□ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F . (1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE 是菱形, 并说明理由.▲19.(9分)我市于2021年5月22-23日在遂宁观音湖举行了“龙舟赛”,吸引了全国各地选手参加。

2021年广东省中考真题数学试卷(原卷+解析版)

2021年广东省中考真题数学试卷(原卷+解析版)
2
∴ ab 3 3 3 9 22
故选:B. 【点睛】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为 零. 6. 下列图形是正方体展开图的个数为( )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
【答案】C
【解析】
【分析】根据正方体的展开图的特征,11 种不同情况进行判断即可.
D. 12
A. 3
9
B.
2
C. 4 3
D. 9
6. 下列图形是正方体展开图的个数为( )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
7. 如图, AB 是⊙ O 的直径,点 C 为圆上一点, AC 3, ABC 的平分线交 AC 于点 D, CD 1,则⊙ O
的直径为( )
A. 3
B. 2 3
本大题共10小题在每小题给出的四个选项中只有一项是符合题目要求的月23日31个省区市及新疆生产建设兵团累计报告接种新冠病毒疫苗510858万剂次将510858万用科学记数法表示为同时掷两枚质地均匀的骰子则两枚骰子向上的点数之和为7的概率是051085810510858105108581051085810acabc2021年广东省中考数学试卷原卷解析我国南宋时期数学家秦九韶曾提出利用三角形三边求面积的公式此公式与古希腊几何学家海伦提出的公式如出一辙即三角形的三边长分别为abc记则其面积
D. 5.10858 108
3. 同时掷两枚质地均匀的骰子,则两枚骰子向上的点数之和为 7 的概率是(
1
A.
12
1
B.
6
1
C.
3
4. 已知 9m 3, 27n 4 ,则 32m3n ( )

2022年广东省中山市中考数学试卷(含答案)

2022年广东省中山市中考数学试卷(含答案)

2022年广东省中山市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•广东)|﹣2|=()A.﹣2B.2C.D.2.(3分)(2022•广东)计算22的结果是()A.1B.C.2D.43.(3分)(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形4.(3分)(2022•广东)如图,直线a∥b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°5.(3分)(2022•广东)如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.B.C.1D.26.(3分)(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)7.(3分)(2022•广东)书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.B.C.D.8.(3分)(2022•广东)如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC9.(3分)(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y1,y2,y3,y4中最小的是()A.y1B.y2C.y3D.y410.(3分)(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C 与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)(2022•广东)sin30°=.12.(3分)(2022•广东)单项式3xy的系数为.13.(3分)(2022•广东)菱形的边长为5,则它的周长是.14.(3分)(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a=.15.(3分)(2022•广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(8分)(2022•广东)解不等式组:.17.(8分)(2022•广东)先化简,再求值:a+,其中a=5.18.(8分)(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?20.(9分)(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x025y151925(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.21.(9分)(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少合适?五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.23.(12分)(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.2022年广东省中山市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•广东)|﹣2|=()A.﹣2B.2C.D.【分析】根据绝对值的意义解答即可.【解答】解:根据绝对值的意义:|﹣2|=2,故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的意义是解答本题的关键.2.(3分)(2022•广东)计算22的结果是()A.1B.C.2D.4【分析】应用有理数的乘方运算法则进行计算即可得出答案.【解答】解:22=4.故选:D.【点评】本题主要考查了有理数的乘方,熟练掌握有理数的乘方运算法则进行求解是解决本题的关键.3.(3分)(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形【分析】根据三角形具有稳定性,四边形不具有稳定性即可得出答案.【解答】解:三角形具有稳定性,四边形不具有稳定性,故选:A.【点评】本题考查了三角形的稳定性,掌握三角形具有稳定性是解题的关键.4.(3分)(2022•广东)如图,直线a∥b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°【分析】利用平行线的性质可得结论.【解答】解:∵a∥b,∴∠2=∠1=40°.故选:B.【点评】本题考查了平行线的性质,掌握“两直线平行,同位角角相等”是解决本题的关键.5.(3分)(2022•广东)如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.B.C.1D.2【分析】由题意可得DE是△ABC的中位线,再根据三角形中位线的性质即可求出DE 的长度.【解答】解:∵点D,E分别为AB,AC的中点,BC=4,∴DE是△ABC的中位线,∴DE=BC=×4=2,故选:D.【点评】本题考查了三角形中位线定理,熟练掌握三角形中位线的定义和性质是解决问题的关键.6.(3分)(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)【分析】根据平面直角坐标系中点的坐标的平移特点解答即可.【解答】解:将点(1,1)向右平移2个单位后,横坐标加2,所以平移后点的坐标为(3,1),故选:A.【点评】本题主要考查了平面直角坐标系中点的坐标,熟练掌握点的平移规律是解答本题的关键.7.(3分)(2022•广东)书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.B.C.D.【分析】应用简单随机事件概率计算方法进行计算即可得出答案.【解答】解:根据题意可得,P(从中任取1本书是物理书)=.故选:B.【点评】本题主要考查了概率公式,熟练掌握简单随机事件概率的计算方法进行求解是解决本题的关键.8.(3分)(2022•广东)如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC【分析】根据平行四边形的性质即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,故选:C.【点评】本题考查了平行四边形的性质,熟练掌握平行四边形对边相等的性质是解决问题的关键.9.(3分)(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y1,y2,y3,y4中最小的是()A.y1B.y2C.y3D.y4【分析】根据k>0可知增减性:在每一象限内,y随x的增大而减小,根据横坐标的大小关系可作判断.【解答】解:∵k=4>0,∴在第一象限内,y随x的增大而减小,∵(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,且1<2<3<4,故选:D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的图象的增减性是解答此题的关键.10.(3分)(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C 与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量【分析】根据变量与常量的定义进行求解即可得出答案.【解答】解:根据题意可得,在C=2πr中.2,π为常量,r是自变量,C是因变量.故选:C.【点评】本题主要考查了常量与变量,熟练掌握常量与变量的定义进行求解是解决本题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)(2022•广东)sin30°=.【分析】熟记特殊角的三角函数值进行求解即可得出答案.【解答】解:sin30°=.故答案为:.【点评】本题主要考查了特殊角三角函数值,熟练掌握特殊角三角函数值进行求解是解决本题的关键.12.(3分)(2022•广东)单项式3xy的系数为3.【分析】应用单项式的定义进行判定即可得出答案.【解答】解:单项式3xy的系数为3.故答案为:3.【点评】本题主要考查了单项式,熟练掌握单项式的定义进行求解是解决本题的关键.13.(3分)(2022•广东)菱形的边长为5,则它的周长是20.【分析】根据菱形的性质即可解决问题;【解答】解:∵菱形的四边相等,边长为5,∴菱形的周长为5×4=20,【点评】本题考查菱形的性质、解题的关键是记住菱形的四边相等,属于中考基础题.14.(3分)(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a=1.【分析】把x=1代入方程x2﹣2x+a=0中,计算即可得出答案.【解答】解:把x=1代入方程x2﹣2x+a=0中,得1﹣2+a=0,解得a=1.故答案为:1.【点评】本题主要考查了一元二次方程的解,应用一元二次方程的解的定义进行求解是解决本题的关键.15.(3分)(2022•广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为π.【分析】应用扇形面积计算公式进行计算即可得出答案.【解答】解:S===π.故答案为:π.【点评】本题主要考查了扇形面积的计算,熟练掌握扇形面积的计算方法进行求解即可得出答案.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(8分)(2022•广东)解不等式组:.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x>1,由②得:x<2,∴不等式组的解集为1<x<2.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.17.(8分)(2022•广东)先化简,再求值:a+,其中a=5.【分析】原式通分并利用同分母分式的加法法则计算,得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=====2a+1,当a=5时,原式=10+1=11.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(8分)(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.【分析】根据角平分线性质得出PD=PE,即可利用HL证明Rt△OPD≌Rt△OPE.【解答】证明:∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PD=PE,在Rt△OPD和Rt△OPE中,,∴Rt△OPD≌Rt△OPE(HL).【点评】此题考查全等三角形的判定与性质,熟记全等三角形的判定定理是解题的关键.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?【分析】设有x人,该书单价y元,根据“如果每人出8元,则多了3元;如果每人出7元,则少了4元钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设学生有x人,该书单价y元,根据题意得:,解得:.答:学生有7人,该书单价53元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(9分)(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x025y151925(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.【分析】(1)把x=2,y=19代入y=kx+15中,即可算出k的值,即可得出答案;(2)把y=20代入y=2x+15中,计算即可得出答案.【解答】解:(1)把x=2,y=19代入y=kx+15中,得19=2k+15,解得:k=2,所以y与x的函数关系式为y=2x+15;(2)把y=20代入y=2x+15中,得20=2x+15,解得:x=2.5.所挂物体的质量为2.5kg.【点评】本题主要考查了函数关系式及函数值,熟练掌握函数关系式及函数值的计算方法进行求解是解决本题的关键.21.(9分)(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少合适?【分析】(1)根据销售成绩统计,即可得出销售4万元和8万元的人数,即可补充完整图形;(2)根据众数,中位数,算术平均数的计算方法进行求解即可得出答案;(3)根据(2)中的结论进行分析即可得出答案.【解答】解:(1)补全统计图,如图,;(2)根据条形统计图可得,众数为:4,中位数为:5,平均数为:=7(3)应确定销售目标为7万元,要让一半以上的销售人员拿到奖励.【点评】本题主要考查了条形统计图,中位数,众数,算术平均数,熟练掌握条形统计图,中位数,众数,算术平均数的计算方法进行求解是解决本题的关键.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.【分析】(1)根据圆周角定理,等腰直角三角形的判定定理解答即可;(2)根据勾股定理解答即可.【解答】解:(1)△ABC是等腰直角三角形,证明过程如下:∵AC为⊙O的直径,∴∠ADC=∠ABC=90°,∵∠ADB=∠CDB,∴,∴AB=BC,又∵∠ABC=90°,∴△ABC是等腰直角三角形.(2)在Rt△ABC中,AB=BC=,∴AC=2,在Rt△ADC中,AD=1,AC=2,∴CD=.即CD的长为:.【点评】本题主要考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理,熟练掌握相关性质定理是解答本题的关键.23.(12分)(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.【分析】(1)根据A(1,0),AB=4求出B(﹣3,0),把A、B的坐标代入抛物线y=x2+bx+c,即可求解;(2)过Q作QE⊥x轴于E,设P(m,0),则P A=1﹣m,易证△PQA∽△BCA,利用相似三角形的性质即可求出QE的长,又因为S△CPQ=S△PCA﹣S△PQA,进而得到△CPQ 面积和m的二次函数关系式,利用二次函数的性质即可求出面积最大值.【解答】(1)∵抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,∴B(﹣3,0),∴,解得,∴抛物线的解析式为y=x2+2x﹣3;(2)过Q作QE⊥x轴于E,过C作CF⊥x轴于F,设P(m,0),则P A=1﹣m,∵y=x2+2x﹣3=(x+1)2﹣4,∴C(﹣1,﹣4),∴OB=3 AB=4,∵PQ∥BC,∴△PQA∽△BCA,∴,即,∴QE=1﹣m,∴S△CPQ=S△PCA﹣S△PQA=P A•CF﹣P A•QE=(1﹣m)×4﹣(1﹣m)(1﹣m)=﹣(m+1)2+2,∵﹣3≤m≤1,∴当m=﹣1时S△CPQ有最大值2,∴△CPQ面积的最大值为2,此时P点坐标为(﹣1,0).【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法求函数解析式,相似三角形的判定和性质,解题的关键是抓住图形中某些特殊的数量关系和位置关系.此题综合性较强,中等难度,是一道很好的试题.。

2021年广东省中考数学试卷(解析版)

2021年广东省中考数学试卷(解析版)

2021年广东省中考数学试卷一.选择题〔共5小题〕1.〔2021河南〕﹣5的绝对值是〔〕A. 5 B.﹣5 C.D.﹣考点:绝对值。

解答:解:根据负数的绝对值等于它的相反数,得|﹣5|=5.应选A.2.〔2021广东〕地球半径约为6400000米,用科学记数法表示为〔〕A. 0.64×107B. 6.4×106C. 64×105D.640×104考点:科学记数法—表示较大的数。

解答:解:6400000=6.4×106.应选B.3.〔2021广东〕数据8、8、6、5、6、1、6的众数是〔〕A. 1 B. 5 C. 6 D.8考点:众数。

解答:解:6出现的次数最多,故众数是6.应选C.4.〔2021广东〕如下图几何体的主视图是〔〕A.B.C.D.考点:简单组合体的三视图。

解答:解:从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:1,3,1.应选:B.5.〔2021广东〕三角形两边的长分别是4和10,那么此三角形第三边的长可能是〔〕 A. 5 B. 6 C. 11 D.16考点:三角形三边关系。

解答:解:设此三角形第三边的长为x,那么10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.应选C.二.填空题〔共5小题〕6.〔2021广东〕分解因式:2x2﹣10x=2x〔x﹣5〕.考点:因式分解-提公因式法。

解答:解:原式=2x〔x﹣5〕.故答案是:2x〔x﹣5〕.7.〔2021广东〕不等式3x﹣9>0的解集是x>3.考点:解一元一次不等式。

解答:解:移项得,3x>9,系数化为1得,x>3.故答案为:x>3.8.〔2021广东〕如图,A、B、C是⊙O上的三个点,∠ABC=25°,那么∠AOC的度数是50.考点:圆周角定理。

解答:解:∵圆心角∠AOC与圆周角∠ABC都对,∴∠AOC=2∠ABC,又∠ABC=25°,那么∠AOC=50°.故答案为:509.〔2021广东〕假设x,y为实数,且满足|x﹣3|+=0,那么〔〕2021的值是1.考点:非负数的性质:算术平方根;非负数的性质:绝对值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中山市2021年中考数学试卷(I)卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分)(2016·深圳模拟) ﹣2的相反数是()
A .
B . ﹣
C . 2
D . ﹣2
2. (2分)(2019·杭州模拟) 清明小长假是广大游客走出家门放松心情、感受祖国大好河山的好时机,为丰富游客出行体验,小长假前夕,遵义市启动了2018年“醉美遵义,四季主题游”之春季踏青赏花游。

三天假期,遵义市共接待游客230.11万人次,实现旅游综合收入12.66亿元,把12.66亿用科学计数法表示为()
A .
B .
C .
D .
3. (2分) (2018七上·南山期末) 有理数a在数轴上的位置如图所示,下列各数中,可能在0到1之间的是()
A . ∣a∣-1
B . ∣a∣
C . 一a
D . a+1
4. (2分)函数y=x-2的图象不经过()
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
5. (2分)△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()
A . ∠A:∠B:∠C=l:2:3
B . 三边长为a,b,c的值为1,2,
C . 三边长为a,b,c的值为, 2,4
D . a2=(c+b)(c﹣b)
6. (2分)(2017·临沭模拟) 如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是()
A . 0
B .
C .
D . 1
7. (2分)在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将这堆货箱的三视图画了出来,如图.请你根据三视图帮他清点出箱子的个数是()
A . 6
B . 7
C . 8
D . 9
8. (2分) (2020八上·柳州期末) 如图,在中,,,点为的中点,点、分别在、上,且,下列结论:① 是等腰直角三角形;② ;③ ;④ .其中正确的是()
A . ①②④
B . ②③④
C . ①②③
D . ①②③④
9. (2分) (2015七下·威远期中) 使不等式x﹣5>4x﹣1成立的值中的最大整数是()
A . 2
B . ﹣1
C . ﹣2
D . 0
10. (2分) (2019八上·仙居月考) 如图,锐角△ABC中,BC>AB>AC,若想找一点P,使得∠BPC与∠A互补,甲、乙、丙三人作法分别如下:
甲:以B为圆心,AB长为半径画弧交AC于P点,则P即为所求;
乙:分别以B,C为圆心,AB,AC长为半径画弧交于P点,则P即为所求;
丙:作BC的垂直平分线和∠BAC的平分线,两线交于P点,则P即为所求.
对于甲、乙、丙三人的作法,下列叙述正确的是()
A . 甲、丙正确,乙错误
B . 甲正确,乙、丙错误
C . 三人皆正确
D . 甲错误,乙、丙正确
二、填空题 (共8题;共8分)
11. (1分) (2018九上·拱墅期末) 计算:cos245°-tan30°sin60°=________.
12. (1分) (2019八上·椒江期末) 因式分解: ________.
13. (1分) (2020八下·曹县月考) 数据-1,-2,0,3,5的方差是________。

14. (1分) (2019九上·海淀期中) 如图,在中,
⑴作AB和BC的垂直平分线交于点O;
⑵以点O为圆心,OA长为半径作圆;
⑶⊙O分别与AB和BC的垂直平分线交于点M,N;
⑷连接AM,AN,CM,其中AN与CM交于点P.
根据以上作图过程及所作图形,下列四个结论中,
① ;② ;
③点O是的外心;④点P是的内心.
所有正确结论的序号是________.
15. (1分)(2019·云梦模拟) 点与点关于原点对称,则 ________.
16. (1分) (2016八上·宜兴期中) 如图,在△ABC中,AB=AC=10,BC=12,若点P在边AC上移动,则BP 的最小值是________.
17. (1分) (2018九下·江都月考) 用一个半径为 30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为________cm
18. (1分) (2018八上·无锡期中) 如图,已知CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m.图中阴影部分的面积=________m2 .
三、解答题 (共10题;共101分)
19. (10分) (2019九下·江苏月考) 计算:
(1);
(2)
20. (5分) (2016九上·盐城开学考) 解方程:
21. (5分)代数证明
分式+的值能为零吗?为什么?
22. (11分)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1 , y2(千米)与行驶时间x(小时)之间的函数关系图象.
(1)填空:A,B两地相距________千米;
(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;
(3)当客车行驶多长时间,客、货两车相距150千米.
23. (5分)武汉二中广雅中学为了了解全校学生的课外阅读的情况,随机抽取了部分学生进行阅读时间调查,现将学生每学期的阅读时间m分成A、B、C、D四个等级(A等:90≤m≤100,B等:80≤m<90,C等:60≤m<80,D等:m<60;单位:小时),并绘制出了如图的两幅不完整的统计图,根据以上信息,回答下列问题:
(1) C组的人数是________人,并补全条形统计图________.
(2)本次调查的众数是________等,中位数落在________等.
(3)国家规定:“中小学每学期的课外阅读时间不低于60小时”,如果该校今年有3500名学生,达到国家规定的阅读时间的人数约有________人.
24. (15分)(2017·港南模拟) △ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.
(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.
(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.
(3)在图(2)中,若AB=AC=10,BC=12,当S△DEF= S△ABC时,求线段EF的长.
25. (10分)(2016·资阳) 如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,
3),双曲线y= (k≠0,x>0)过点D.
(1)求双曲线的解析式;
(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.
26. (15分)(2017·北京模拟) 已知二次函数y=x2﹣2mx+m2+3(m是常数).
(1)求证:不论m为何值,该函数的图象与x轴没有公共点;
(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?
(3)将抛物线y=x2﹣2mx+m2+3(m是常数)图象在对称轴左侧部分沿直线y=3翻折得到新图象为G,若与直线y=x+2有三个交点,请直接写出m的取值范围.
27. (10分)(2020·武汉模拟) 如图,四边形 ABCD 为正方形,取 AB 中点O ,以 AB 为直径, O 圆心作圆.
(1)如图 1,取CD 的中点 P ,连接 BP 交⊙ O 于Q ,连接 DQ 并延长交 AB 的延长线于 E ,求证: QE2 = BE × AE ;
(2)如图 2,连接 CO 并延长交⊙ O 于 M 点,求tanM 的值.
28. (15分)(2020·江阴模拟) 如图,抛物线交x轴于A、B两点(点A在点B的左侧),
.
(1)求抛物线的函数表达式;
(2)如图①,连接BC,点P在抛物线上,且∠BCO= ∠PBA.求点P的坐标
(3)如图②,M是抛物线上一点,N为射线CB上的一点,且M、N两点均在第一象限内,B、N是位于直线AM 同侧的不同两点,,点M到轴的距离为2L,△AMN的面积为5L,且∠ANB=∠MBN,请问MN的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共8题;共8分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共10题;共101分)
19-1、
19-2、20-1、
21-1、22-1、
22-2、22-3、
23-1、23-2、23-3、
24-1、
24-2、
24-3、25-1、
25-2、
26-1、
26-2、26-3、
27-1、
27-2、28-1、
28-2、
28-3、。

相关文档
最新文档