第06讲 三角形中角平分线模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第06讲 三角形中角平分线模型
【应对方法与策略】
一、角平分线垂两边
角平分线+外垂直
当已知条件中出现OP 为OAB ∠的角平分线、PM OA ⊥于点M 时,辅助线的作法大都为过点P 作PN OB ⊥即可.即有PM PN =、OMP ∆≌ONP ∆等,利用相关结论解决问题. 二、角平分线垂中间 角平分线+内垂直
当已知条件中出现OP 为AOB ∠的角平分线,PM OP ⊥于点P 时,辅助线的作法大都为延长MP 交OB 于点N 即可.即有OMN ∆是等腰三角形、OP 是三线等,利用相关结论解决问题.
三、角平分线构造轴对称
角平分线+截线段等
当已知条件中出现OP 为AOB ∠的角平分线、PM 不具备特殊位置时,辅助线的作法大都为在OB 上截取ON OM =,连结PN 即可.即有OMP ∆≌ONP ∆,利用相关结论解决问题.
四、角平分线加平行线等腰现
角平分线+平行线
∠的角平分线,点P角平分线上任一点时,辅助线的作法大都为过点当已知条件中出现OP为AOB
∆是等腰三角形,利用相关结论解决问题.
P作PM//OB或PM//OA即可.即有OMP
【多题一解】
一.选择题(共2小题)
1.(2022秋•辉县市校级期末)如图,在Rt△ABC中,∠C=90°,以△ABC的三边为边向外做正方形ACDE,正方形CBGF,正方形AHIB,连结EC,CG,作CP⊥CG交HI于点P,记正方形ACDE和正方形AHIB的面积分别为S1,S2,若S1=4,S2=7,则S△ACP:S△BCP等于()
A.2:B.4:3C.:D.7:4
2.(2023•惠阳区校级开学)如图,△ABC中,AB=6,AC=8,∠ABC、∠ACB的平分线BD、CD交于点D.过点D作EF∥BC,分别交AB、AC于点E、F,则△AEF的周长为()
A.12B.13C.14D.15
二.填空题(共5小题)
3.(2022秋•汤阴县期中)如图,AD平分∠CAB,若S△ACD:S△ABD=4:5,则AB:AC=.
4.(2022秋•安陆市期中)如图△ABC中,∠ABC与∠ACB的平分线相交于H,过点H作EF∥BC交AB 于E,交AC于F,HD⊥AC于D,以下四个结论①∠BHC=90°+∠A;②EF﹣BE=CF;③点H到△ABC各点的距离相等;④若B,H,D三点共线时,△ABC一定为等腰三角形.其中正确结论的序号为.
5.(2022秋•武昌区校级期中)如图,在Rt△ABC中,∠C=90°,∠ABC和∠BAC的平分线相交于点O,OD⊥OA交AC于D,OE⊥OB交BC于E,BC=4,AC=3,AB=5,则△CDE的周长为.
6.(2022秋•长兴县月考)如图,在△ABC中,∠A=64°,OB和OC分别平分∠ABC和∠ACB,则∠BOC=°.
7.(2022•渠县二模)如图,AC、BD是四边形ABCD的对角线,BD平分∠ABC,2∠ACD=∠ABC+∠
BAC,已知∠CAD=43°,则∠BDC=.
三.解答题(共8小题)
8.(2023•惠城区校级开学)如图,在△ABC中,∠ABC=82°,∠C=58°,BD⊥AC于D,AE平分∠CAB,BD与AE交于点F,求∠AFB.
9.(2022秋•新乡期末)如图1,在△ABC中,∠ABC和∠ACB的平分线交于点O,过点O作EF∥BC,交AB于E,交AC于F.
(1)当BE=5,CF=3,则EF=;
(2)当BE>CF时,若CO是∠ACB的外角平分线,如图2,它仍然和∠ABC的角平分线相交于点O,过点O作EF∥BC,交AB于E,交AC于F,试判断EF,BE,CF之间的关系,并说明理由.
10.(2022秋•运城期末)一个三角形纸片ABC沿DE折叠,使点A落在点A′处.(点A′在△ABC的内部)
(1)如图1,若∠A=45°,则∠1+∠2=°.
(2)利用图1,探索∠1,∠2与∠A之间的数量关系,并说明理由.
(3)如图2,把△ABC折叠后,BA′平分∠ABC,CA′平分∠ACB,若∠1+∠2=108°,利用(2)中得出的结论求∠BA′C的度数.
11.(2023•鼓楼区校级一模)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC 于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.
(1)求证:AP平分∠CAB;
(2)若∠ACD=114°,求∠MAB的度数.
12.(2021春•金川区校级期末)如图所示,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.
13.(2022秋•东昌府区校级期末)如图1,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.
(1)猜想:EF与BE、CF之间有怎样的关系.
(2)如图2,若AB≠AC,其他条件不变,在第(1)问中EF与BE、CF间的关系还存在吗?并说明理由.
(3)如图3,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB 于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.
14.(2023•鼓楼区校级一模)在四边形ABCD中,AC平分∠DAB,∠ABC=α,∠ADC=180°﹣α.(1)若α=90°时,直接写出CD与CB的数量关系为;
(2)如图1,当α≠90°时,(1)中结论是否还成立,说明理由;
(3)如图2,O为AC中点,M为AB上一点,BM=AD,求的值.
15.(2021•商河县校级模拟)如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=54°,∠C=66°,求∠DAC、∠BOA的度数.