数学七年级下册知识点总结之变量之间的关系
七年级数学下册 第3章 变量之间的关系 3.3 用图像表示的变量间关系课件 (新版)北师大版
例1 新成药业集团研究了一种新药,在试验药效时发现,如果儿童按规 定剂量服用,那么2时时血液中的含药量最高,接着逐步衰减,每毫升血液 中的含药量y(微克)随时间x(时)的变化情况如图3-3-1所示,当儿童按规 定剂量服药后:
图3-3-1
(1)何时血液中的含药量最高?是多少微克? (2)A点表示什么意义? (3)每毫升血液中含药量为2微克以上时治疗疾病有效,那么这个有效时 间多长?
解析 (1)2时时血液中的含药量最高,为4微克. (2)A点表示体内的含药量衰减到0微克. (3)服药后达到2微克的时间是1时,衰减到2微克的时间是6时,因此有效 时间是5时.
知识点二 行程问题 “路程与时间”图象和“速度与时间”图象 (1)在路程与时间关系的图象中,通常用横轴表示时间,用纵轴表示路程, “水平线”表示停止. (2)在速度与时间关系的图象中,通常用横轴表示时间,用纵轴表示速度, “水平线”表示匀速运动. (3)在行程问题中,“速度与时间”图象和“路程与时间”图象是从两 个不同的角度描述行程问题中变量之间的关系,它们既有区别又有联 系.现将“速度与时间”图象和“路程与时间”图象各部分所表示的意 义作如下对比:
易错警示 由于不理解函数的意义,特别是不理解函数图象中平行于x 轴的线段表示“一段时间内离家的距离保持不变”,只能根据图象的形 状来选择行走的路线.
从图象中获取信息的直观想象 素养解读 直观想象是指借助几何直观和空间想象感知事物的形态与 变化,利用空间形式特别是图形,理解和解决数学问题的素养.主要包括: 借助空间认识事物的位置关系、形态变化与运动规律;利用图形描述、 分析数学问题;建立形与数的联系,构建数学问题的直观模型,探索解决 问题的思路. 直观想象是发现和提出问题、分析和解决问题的重要手段,是探索和形 成论证思路、进行数学推理、构建抽象结构的思维基础. 在直观想象核心素养的形成过程中,学生能提升数形综合的能力,发展 几何直观和空间想象能力;增强运用几何直观和空间想象思考问题的意 识;形成数学直观,在具体的情境中感悟事物的本质.
北师大版七年级数学下册第3章变量之间的关系PPT课件
知3-练
4 某烤鸭店在确定烤鸭的烤制时间时,主要依据的是 下表的数据:
鸭的质量/kg 0.5 1 1.5 2 2.5 3 3.5 4 烤制时间/min 40 60 80 100 120 140 160 180
设烤鸭的质量为 x kg,烤制时间为 t min,估计当 x=3.2时,t 的值为( C ) A.140 B.138 C.148 D.160
总结
知2-讲
运用定义法来解答.区别自变量和因变量有以下 三种方法: (1)看变化的先后顺序,自变量是先发生变化的量,因
变量是后发生变化的量; (2)看变化的方式,自变量是一个主动变化的量,因变
量是一个被动变化的量; (3)看因果关系,自变量是起因,因变量是结果.
知2-练
1 王老师开车去加油站加油, 数量 2.45 (升)
知识点 3 用表格表示两个变量间的关系
议一议
我国从1949年到2009年的人口统计数据如下(精确到
0.01亿):
时间/年 1949 1959 1969 1979 1989 1999 2009
人口 /亿 5.42 6.72 8.07 9.75 11.07 12.59 13.35
(1)如果用x表示时间,y表示我国人口总数,那么随着x的
知3-讲
例2 声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)
之间的关系如下表,从表中可知音速y随气温x的升高而 __加__快__.在气温为20℃的一天举行运动会,某人看到发令
枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发
令地点__6_8_.6__米.
气温x/℃
0
5 10 15 20
(3)当底边长从 12 cm变化到 3 cm时,三角形的面积从 ______cm2变化到 ______cm2. y=3x表示了右图中三角形底边
北师大版七年级初一变量之间的关系
欢迎阅读变量之间的关系复习知识点总结:自变量变量的概念因变量变量之间的关系表格法关系式法变量的表达方法速度时间图象图象法路程时间图象单价元/升)这三个量中, 是常量, 是自变量, 是因变量.?5.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器6.一个圆柱的高h为10 cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中( )A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量.上表中___________是自变量, __________是因变量x为__________℃时,声速y达到346 m/s.?x(kg)间有下面的关系:(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你知道距离地面6 km的高空气温是多少吗?(2)水的温度是如何随着时间的变化而变化的?(3)时间每推移2 min,水的温度如何变化?(4)时间为8 min时,水的温度为多少?你能得出时间为9 min时水的温度吗?(5)根据表格,你认为时间为16 min和18 min时水的温度分别为多少?(6)为了节约能源,你认为应在什么时间停止烧水?13.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x(单位:min)之间有如下关系(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)当提出概念所用时间是10 min 时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用时间为多少时,学生的接受能力最强?12AE 时,3.如图,△ABC 的面积是2cm 2,直线l ∥BC ,顶点A 在l 上,当顶点C 沿BC 所在直线向点B 运动(不超过点B )时,要保持△ABC 的面积不变,则顶点A 应( )lCB AA.向直线l 的上方运动;B.向直线l 的下方运动;C.在直线l上运动;D.以上三种情形都可能发生.4.当一个圆锥的底面半径为原来的2倍,高变为原来的13时,它的体积变为原来的( )A.2B.2C.4D.49.设梯形的上底长为x cm,下底比上底多 2 c m,高与上底相等,面积为2cm2,则根据题意可列方程为_____.10.用一根长50cm的细绳围成一个矩形.设矩形的一边长为xcm,面积为y cm2.求y与x的函数关系式;11.南方A市欲将一批容易变质的水果运往B市销售,若有飞机、火车、汽车三种运输方式,现只选择其中一种,这三种运输方式的主要参考数据如下表所示:若这批水果在运输(包括装卸)过程中的损耗为200元/h,记A、B两市间的距离为x km(1)如果用W1、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求W1、W2、W3与x间的关系式;(2)当12y cm2.(1)(2)(3)(4)13.(1)(2)6(3)14所示:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)随着行驶时间的不断增加,油箱中剩余油量的变化趋势是怎样的?(3)请直接写出Q与t的关系式,并求出这辆汽车在连续行驶6h后,油箱中的剩余油量;(4)这辆车在中途不加油的情况下,最多能连续行驶的时间是多少?15.用一根长是20cm的细绳围成一个长方形(如图),这个长方形的一边的长为x cm,它的面积为y cm2.(1)写出y与x之间的关系式,在这个关系式中,哪个是自变量?它的取值应在什么范围内?(2)用表格表示当x从1变到9时(每次增加1),y的相应值;(3)从上面的表格中,你能看出什么规律?(4)猜想一下,怎样围法,得到的长方形的面积最大?最大是多少《用图象表示的变量间关系》习题6.一个苹果从180m的楼顶掉下,它距离地面的距离h(m)与下落时间t(s)之间关系如上图,下面的说法正确的是( )A.每相隔1s,苹果下落的路程是相同的;B.每秒钟下落的路程越来越大C.经过3s,苹果下落了一半的高度;D.最后2s,苹果下落了一半的高度7.一个三角形的面积始终保持不变,它的一边的长为x cm,这边上的高为y cm,y与x的关系如下图,从图像中可以看出:(1)当x越来越大时,y越来越________;(2)这个三角形的面积等于________cm2.(3)可以想像:当x非常大非常大时,y一定非常小非常小,这个三角形显得很“扁”,但无论x多么的大,y总是_______零(填“大于”、“小于”、“大于或等于”之一).8.某商店出售茶杯,茶杯的个数与钱数之间的关系,如图所示,由图可得每个茶杯_______元.9.甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示,根据图象回答:这是一次____米赛跑;先到达终点的是____;乙的速度是________.14.小明、爸爸、爷爷同时从家里出发到达同一目的地后立即返回,小明去时骑自行车,返回时步行;爷爷去时是步行,返回时骑自行车;爸爸往返都是步行.三人步行速度不等,小明和爷爷骑自行车的速度相等,每个人的行走路程与时间的关系用如图三个图象表示.根据图象回答下列问题:(1)三个图象中哪个对应小明、爸爸、爷爷?(2)家距离目的地多远?(3)小明与爷爷骑自行车的速度是多少?爸爸步行的速度是多少?15.如图表示玲玲骑自行车离家的距离与时间的关系.她9点离开家,15点回到家,请根据图象回答下列问题:(1)玲玲到达离家最远的地方是什么时间?她离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)第一次休息时,她离家多远?(4)11点~12点她骑车前进了多少千米?第三章变量之间的关系达标检测卷一、选择题(每题3分,共24分)与x的,车t的图( )8.A,B两地相距20 km,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(km)与时间t(h)之间的关系.下列说法:①乙晚出发1 h;②乙出发3 h后追上甲;③甲的速度是4 km/h;④乙先到达B地.其中正确的个数是( )A.1B.2C.3D.4二、填空题(每题5分,共30分)9.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的关系是y=x+32.如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是____________.10.小雨画了一个边长为3 cm的正方形,如果将正方形的边长增加x cm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为____________.?11.如图是甲、乙两名运动员在自行车比赛中所走路程与时间的关系图象,则甲的速度____________乙的速度(用“>”“=”或“<”填空).12.小明早晨从家骑车到学校,先上坡,后下坡,行驶情况如图所示,如果返回时上、下坡的速度与去学校时上、下坡的速度相同,那么小明从学校骑车回家用的时间是____________.13.某航空公司行李的托运费按行李的质量收取,30 kg以下免费,30 kg及以上按图中所示的关系来由变化到.?弹簧的长度是___________;?(2)如果所挂物体的质量为x kg,弹簧的长度为y cm,根据上表写出y与x的关系式;(3)当所挂物体的质量为5.5 kg时,请求出弹簧的长度;(4)如果弹簧的最大长度为20 cm,则该弹簧最多能挂质量为多重的物体?。
七年级下册数学变量知识点
七年级下册数学变量知识点
一、变量和常量的概念
数学中,常量指的是数值恒定不变的量,例如π和自然对数e;变量则指数值可以变化的量,例如代数中经常出现的x和y。
在数学中,变量可以用不同的字母或符号来表示,但常量一般使用特
定的符号或名称来表示。
二、代数式的构成
代数式是由数字、变量、常量和运算符号组成的式子。
每个代
数式都可以使用运算符号进行运算。
如 a + b 、a - b、a × b 和 a ÷ b,其中a和b分别是数字或变量。
三、解方程
解方程是数学中最基本的代数技巧之一。
在解方程时,我们将
一个未知数的值查找出来,以便得到解方程的结果。
例如: 2x -
10 = 6,我们可以从中得出x=8这个结果。
四、表达式
表达式是代数式的一种特殊形式。
与代数式不同,表达式不包含等号。
表达式可以是一个或多个数字、变量、常量和运算符的组合。
例如:2x+4、y-6。
五、系数、常数和项
表达式由项组成。
项由系数、变量和常数组成。
例如,在表达式3x+2y+5中,3和2是系数,x和y是变量,5是常数。
六、字母代数式
字母代数式是由一或多个字母、数字和常数构成的代数式。
例如,2x+5y-3是一个字母代数式。
七、计算
代数式的计算可以使用基本的数学运算法则,例如对数学式进
行加减乘除计算。
另一方面,通过使用代数式特有的功能,比如
展开和因式分解,可以得到更多有用信息,从而更好地理解代数。
七年级下册数学 用表格、关系式表示的变量间关系(知识点串讲)(解析版)
专题08 用表格、关系式表示的变量间关系知识网络重难突破知识点一用表格表示的变量间关系1、常量与变量在某个变化过程中,保持同一数值的量叫常量,可以取不同数值的量叫变量.2、自变量与因变量一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一的值与之对应,那么我们就说x是自变量,y是因变量.注意:区别:自变量是先发生变化或主动发生变化的量;因变量是后发生变化或随着自变量的变化而变化的量;联系:两者都是某一变化过程中的变量;两者因研究的侧重点或先后顺序不同可以相互转化.3、从表格中寻找变化规律(1)弄清表中所列的是哪两个量,即分清哪一个是自变量,哪一个是因变量;(2)结合现实情景理解两个变量之间的关系,是增加还是减少还是呈规律性的起伏变化.典例1(2018春•金牛区期末)小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是()A.金额B.数量C.单价D.金额和数量【解答】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:D.典例2(2018春•成华区期末)在弹性限度内,弹簧挂上物体后会伸长,测得弹簧的长度()y cm与所挂物体的质量()x kg之间有如下表关系:x kg01234⋯()y cm1010.51111.512⋯()下列说法不正确的是()A.y随x的增大而增大B.所挂物体质量每增加1kg弹簧长度增加0.5cmC.所挂物体为7kg时,弹簧长度为13.5cmD.不挂重物时弹簧的长度为0cm【解答】解:A、y随x的增大而增大,正确;B、所挂物体质量每增加1kg弹簧长度增加0.5cm,正确;C、所挂物体为7kg时,弹簧长度为13.5cm,正确;D、不挂重物时,弹簧的长度为10cm,错误;故选:D.知识点二用关系式表示变量间关系1、用关系式表示两个变量间的关系表示自变量与因变量之间关系的数学式子叫作关系式.关系式是表示变量之间关系的另一种方法.注意:(1)关系式一般是用含自变量的代数式表示因变量的等式;(2)实际问题中,有的变量之间的关系不一定能用关系式表示出来;(3)有些问题中,自变量是有范围的,列关系式时要注明自变量的取值范围.2、利用关系式求值根据关系式求值实际上就是求代数式的值.注意:已知自变量的值利用关系式求因变量的值实质是求代数式的值,已知因变量的值利用关系式求自变量的值实质是解方程.典例1(2019春•锦江区期末)有一辆汽车储油50升,从某地出发后,每行驶1千米耗油0.12升,如果设剩余油量为y(升),行驶的路程为x(千米),则y与x的关系式为.【解答】解:如果设剩余油量为y(升),行驶的路程为x(千米),则y与x的关系式为500.12=-,y x故答案为:500.12=-.y x典例2(2018秋•成都期中)已知y与x的部分对应关系如下表:则可得y与x的一个关系式.【解答】解:由题可得,y的值等于x的值的3-倍,∴=-,3y x故答案为:3y x=-.典例3(2019春•郫都区期中)观察图象,解答问题:(1)把这样的2个圆环扣在一起并拉紧(如图2),长度为多少?(2)若用x个这样的圆环相扣并拉紧,长度为y厘米,求y与x之间的关系式.【解答】解:(1)由图可知,把这样的2个圆环扣在一起并拉紧(如图2),长度为:8(812)8614+-⨯=+=(厘米),即把这样的2个圆环扣在一起并拉紧(如图2),长度为14厘米;(2)由题意可得,y x x=+-=+,86(1)62即y与x的函数关系式为62=+.y x巩固训练一、单选题(共5小题)1.(2019春•罗湖区期中)一本笔记本5元,买x本共付y元,则5和y分别是() A.常量,常量B.变量,变量C.常量,变量D.变量,常量【解答】解:一本笔记本5元,买x本共付y元,则5和y分别是常量,变量.故选:C.2.(2019春•通川区期末)弹簧挂上物体后会伸长,测得一弹簧的长度()x kg之y cm与所挂的物体的质量()间有下面的关系:/x kg012345/y cm1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm【解答】解:A 、y 随x 的增加而增加,x 是自变量,y 是因变量,故A 选项正确;B 、弹簧不挂重物时的长度为10cm ,故B 选项错误;C 、物体质量每增加1kg ,弹簧长度y 增加0.5cm ,故C 选项正确;D 、由C 知,100.5y x =+,则当7x =时,13.5y =,即所挂物体质量为7kg 时,弹簧长度为13.5cm ,故D选项正确; 故选:B .3.(2019春•太原期末)一种手持烟花,这种烟花每隔0.5秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同.皮皮小朋友发射出的第一发花弹的飞行高度h (米)随飞行时间t (秒)变化的规律如下表所示.下列这一变化的过程说法正确的是( )A .飞行时间t 每增加0.5秒,飞行高度h 就增加5.5米B .飞行时间t 每增加0.5秒,飞行高度h 就减少5.5米C .估计飞行时间t 为5秒时,飞行高度h 为11.8米 D .只要飞行时间t 超过1.5秒后该花弹爆炸,就视为合格【解答】解:从表格可以看到0秒到3秒的过程中,随着飞行时间的增加,飞行高度增加; 从3秒以后,随着飞行时间的增加,飞行高度减小; 因此,A 与B 选项不正确;从表格看到飞行高度在3秒左右是对称的,所以C 选项正确; 从已知中没有涉及合格的标准,所以D 不正确; 故选:C .4.声音在空气中传播的速度与气温的关系如下表,根据表格分析下列说法错误的是( )A .在这个变化过程中,气温是自变量,声速是因变量B .声速随气温的升高而增大C .声速v 与气温T 的关系式为330v T =+D .气温每升高10C ︒,声速增加6/m s【解答】解:A 、在这个变化过程中,气温是自变量,声速是因变量,正确,不合题意;B 、声速随气温的升高而增大,正确,不合题意;C 、声速v 与气温T 的关系式为33305v T =+,故此选项错误,符合题意;D 、气温每升高10C ︒,声速增加6/m s ,正确,不合题意.故选:C .5.(2017春•温江区期末)如表列出了一项实验的统计数据:它表示皮球从一定高度落下时,下落高度y 与弹跳高度x 的关系,能表示变量y 与x 之间的关系式为( ) A .210y x =-B .2y x =C .25y x =+D .5y x =+【解答】解:根据题意,设函数关系式为y kx b =+, 则30504580k b k b +=⎧⎨+=⎩ 解得:210k b =⎧⎨=-⎩,则210y x =-. 故选:A .二、填空题(共5小题)6.(2018春•成华区期末)某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中 是自变量, 是因变量.【解答】解:根据题意知,公司的销售收入随销售量的变化而变化, 所以销售量是自变量,收入数为因变量. 故答案为:销售量,销售收入.7.(2018春•太原期中)地表以下岩层的温度(C)y ︒随着所处深度()x km 的变化而变化,在某个地点y 与x 之间有如下关系:/x km1 2 3 4 /C y ︒5590125160根据表格,估计地表以下岩层的温度为230C ︒时,岩层所处的深度为 km . 【解答】解:设Y kx b =+, 则把(1,55),(2,90)代入得: 55290k b k b +=⎧⎨+=⎩, 解得:3520k b =⎧⎨=⎩,故3520Y k =+,则当230Y =时,2303520x =+, 解得:6x =, 故答案为:6. 故答案为:6y x =.8.(2018秋•新密市校级期中)米店买米,数量x (千克)与售价y (元)之间的关系如下表: /x 千克0.5 1 1.5 2⋯ /y 元 1.30.1+ 2.60.1+ 3.90.1+ 5.20.1+⋯则售价y 与数量x 之间的关系式是 .【解答】解:售价y 与数量x 之间的关系式是 2.60.1y x =+, 故答案为: 2.60.1y x =+.9.(2018春•和平区校级期中)如图所示,一边靠校园院墙,另外三边用50m 长的篱笆,围起一个长方形场地,设垂直墙的边长为()x m ,则长方形场地面积2()y m 与x 的关系式为 .【解答】解:由题意可得:(502)y x x =-, 即2250y x x =-+, 故答案为:2250y x x =-+.10.(2018春•铁西区校级期中)为了美化校园,学校计划修建6个完全相同的长方形花坛.如果每个花坛的一条边长为10米,另一条边长为x ,花坛总面积为S 平方米,那么S 与x 之间的关系式可表示为 . 【解答】解:由题意,得 10660S x x ==,所以S 与x 之间的关系式可表示为60S x =. 故答案为:60S x =.三、解答题(共3小题)11.(2019春•昌图县期末)为了解某品牌轿车以80/km h 匀速行驶的耗油情况,进行了试验:该轿车油箱加满后,以80/km h 的速度匀速行驶,数据记录如下表:(1)上表反映了哪两个变量之间的关系?自变量、因变量各是什么?(2)油箱剩余油量Q (升)与轿车行驶的路程s (千米)之间的关系式是什么?(3)若小明将油箱加满后,驾驶该轿车以80/km h 的速度匀速从A 地驶往B 地,到达B 地时油箱剩余油量为5升,求两地之间的距离.【解答】解:(1)上表反映了轿车行驶的路程s (千米)和油箱剩余油量Q (升)之间的关系,其中轿车行驶的路程s (千米)是自变量,油箱剩余油量Q (升)是因变量; (2)由题可得,950100Q s =-; (3)将5Q =代入得,9550100s =-, 解得500s =,即两地之间相隔500千米.12.(2019春•大邑县期中)大坪山合作社向外地运送一批李子,由铁路运输每千克需运费0.6元;由公路运输,每千克需运费0.25元,运完这批李子还需其他费用800元.(1)该合作社运输的这批李子为xkg ,选择铁路运输时,所需费用为1y 元,选择公路运输时,所需费用为2y 元.请分别写出1y ,2y 与x 之间的关系式.(2)若合作社只支出运费1500元,则选用哪种运输方式运送的李子重量多? 【解答】解:(1)由题意可得, 10.6y x =, 20.25800y x =+;(2)当1500y =时,15000.6x =,解得2500x =,即选择铁路运输时,运送的李子重量为2500千克; 15000.25800x =+,解得2800x =,即选择公路运输时,运送的李子重量为2800千克.所以选择公路运输运送的李子重量多.13.(2019春•济南期中)为了解某品牌轿车的耗油情况,将油箱加满后进行了耗油试验,得到如表数据:(1)该轿车油箱的容量为 L ,行驶150km 时,油箱剩余油量为 L ; (2)根据上表的数据,写出油箱剩余油量()Q L 与轿车行驶的路程()s km 之间的表达式;(3)某人将油箱加满后,驾驶该轿车从A 地前往B 地,到达B 地时邮箱剩余油量为26L ,求A ,B 两地之间的距离.【解答】解:(1)由表格中的数据可知,该轿车油箱的容量为50L ,行驶150km 时,油箱剩余油量为:15050838()100L -⨯=. 故答案是:50;38;(2)由表格可知,开始油箱中的油为50L ,每行驶100km ,油量减少8L ,据此可得Q 与s 的关系式为500.08Q s =-;故答案是:500.08Q s =-;(3)令26Q =,得300s =.答:A,B两地之间的距离为300km.。
七年级下变量关系知识点
七年级下变量关系知识点变量关系是初中数学的重要基础知识之一,包括正比例关系、反比例关系和其他变量之间的关系。
七年级下学期,在学习代数之前,我们需要掌握一些基本的变量关系知识点。
一、正比例关系正比例关系是指两个变量之间的关系呈现一定的比例关系,即其中一个变量的值是另一个变量的某个倍数。
例如,当小明每天学习1小时时,他每天进步10分;每天学习两小时时,他每天进步20分。
这里学习时间与进步分数的关系呈现出正比例关系,即每小时学习可以进步10分。
正比例关系可以用数学公式表示为y=kx,其中x和y分别表示两个变量,k表示比例常数。
在上述例子中,进步分数y就是学习时间x的10倍,即y=10x。
二、反比例关系反比例关系是指两个变量之间的关系呈现出等比例关系,即一个变量的增加导致另一个变量的减少,两者之间的乘积保持不变。
例如,当一辆车的速度增加时,它需要的时间减少;而当速度减慢时,所需时间增加。
这里速度与时间的关系呈现出反比例关系。
反比例关系可以用数学公式表示为y=k/x。
在上述例子中,所需时间y是车速度x的倒数,即y=k/x。
三、变量之间的其他关系除了正比例关系和反比例关系,变量之间还可能存在其他的复杂关系。
例如,小明每天自行车骑行一小时,他在一天能吃下3000卡路里;如果他骑行两个小时,他能吃下6000卡路里。
这里骑行时间与卡路里的摄入量之间呈现出无规律的关系。
在实际问题中,变量之间的关系并不一定呈现出简单的比例关系。
我们需要通过逐步探究与分析,寻找变量之间的规律关系,从而归纳总结出一定的函数关系。
总结七年级下一些基本的变量关系知识点包括正比例关系、反比例关系和其他变量之间的关系。
这些知识点是进一步学习函数的基础,也是实际问题中解决数量关系问题的基础。
通过多做例题,我们可以更加深入地理解变量关系,并应用于实际问题中。
北师大版七年级数学下册第三章 变量之间的关系1 用表格表示的变量间关系
时间发生了变化,木板的长度没变化.
归纳总结
变量
支撑物的高度 h t 随 h 的变 h 是自变量 小车下滑的时间 t 化而变化 t 是因变量
数值发生变化的量
常量
木板的长度
像这种在变化过程中数值始终不变的量叫做常量.
议一议
4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50 1.41 1.35
1.23 0.55 0.32 0.24 0.18 0.12 0.09 0.09 0.06
(2)如果用 h 表示支撑物高度,t 表示小车下滑时间, 随着 h 逐渐变大,t 的变化趋势是什么? 变小
(3)h 每增加 10 cm,t 的变化情况相同吗? 不同
是怎样变化的? 从1949年起,时间每向后推移10年,我国人口增加 1.5 亿左右,但最后10年的增加量大约只有0.76亿,
典例精析 例1 父亲告诉小明:“距离地面越远,温度越低”, 并且出示了下面的表格:
父亲给小明出了下面几个问题,请你和小明一起回答:
(1) 如果用 h 表示距离地面的高度,用 t 表示温度, 那么 随着 h 的变化,t 如何变化?
支撑物高度
/cm
10 20 30 40 50 60 70 80 90 100
小车下滑
时间/s
4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50 1.41 1.35
(4)估计当 h =110 cm 时,t 的值是多少. 你是怎样估 计的? 估计是 1.30 s,因为时间越来越少.
变量之间 的关系
新知一览
用表格表示的变 量间关系
七年级数学下册第四章变量之间的关系重点知识汇总
第四章变量之间的关系一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。
2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。
3、自变量与因变量的确定:(1)自变量是先发生变化的量;因变量是后发生变化的量。
(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。
(3)利用具体情境来体会两者的依存关系。
二、表格1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。
(1)首先要明确表格中所列的是哪两个量;(2)分清哪一个量为自变量,哪一个量为因变量;(3)结合实际情境理解它们之间的关系。
2、绘制表格表示两个变量之间关系(1)列表时首先要确定各行、各列的栏目;(2)一般有两行,第一行表示自变量,第二行表示因变量;(3)写出栏目名称,有时还根据问题内容写上单位;(4)在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值。
(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系。
三、关系式1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式。
2、关系式的写法不同于方程,必须将因变量单独写在等号的左边。
3、求两个变量之间关系式的途径:(1)将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并最终写成关系式的形式。
(2)根据表格中所列的数据写出变量之间的关系式;(3)根据实际问题中的基本数量关系写出变量之间的关系式;(4)根据图象写出与之对应的变量之间的关系式。
4、关系式的应用:(1)利用关系式能根据任何一个自变量的值求出相应的因变量的值;(2)同样也可以根据任何一个因变量的值求出相应的自变量的值;(3)根据关系式求值的实质就是解一元一次方程(求自变量的值)或求代数式的值(求因变量的值)。
七年级数学变量之间的关系
解: (1)V=20t
2 3 4 5 6 7 8 (2) 时间t(时) 水量V(米3) 40 60 80 100 120 140 160 (3)把V=1000米3代入关系式,得1000=20t, 解 得 t=50(时)。 (4)当t逐渐增加时,V也在逐渐增加,因为V 是t的正整数倍。
例2:蜡是非晶体,在加热过程中先要变
变量及其关系
变量之间关系的探索和表示 (表格、关系式、图像)
利用变量之间的关系 解决问题、进行预测
分析用表格、关系式、图像所 表示的变量之间的关系
例1: 某蓄水池开始蓄水,每时进水20米3,设蓄水量为V(米3), 蓄水时间为t(时) (1)V与t之间的关系式是什么? (2)用表格表示当t从2变化到8时(每次增加1),相应的V值? (3)若蓄水池最大蓄水量为1000米3,则需要多长时间能蓄满水? (4)当t逐渐增加时,V怎样变化?说说你的理由。
第六章变量之间的关系
1. 我们可以用什么方法表示变量之间 的关系?请举例说明。 2. 举出生活中一个变量随另一个变量 变化而变化的例子。 在某一变化过程中,可以取不同 数值的量叫做变量
函数关系的三种表示方法: (1)解析法;(2)列表法;(3)图象法.
本章框架图: 丰富的现实情境 自变量和因变量
(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个 是因变量? (2)当提出概念所用时间是10分钟时,学生的接受能力是多少? (3)根据表格中的数据,你认为提出概念几分钟时,学生的接受 能力最强? (4)从表格中可知,当时间x在什么范围内,学生的接受能力逐 步增强?当时间x在什么范围内,学生的接受能力逐步降低? (5) 根据表格大致估计当时间为23分钟时,学生对概念的接受能 力是多少。 解: (1)提出概念所用的时间x和对概念接受能力y两个变 量,其中x是自变量,y是因变量。
数学七年级下册第三章变量之间的关系
时间 (分)
0
2 4 6 8 10 12 14
…
温度 (℃)
30 44 58 72 86 100 100 100
…
(1)上表反映了哪两个量之间的关系?哪个是自变量? 哪个是因变量? (2)水的温度是如何随着时间的变化而变化的? (3)时间推移2分钟,水的温度如何变化? (4)时间为8分钟,水的温度为多少?你能得出时间为9 分钟时,水的温度吗?
(4)由表中数据可知,每月的乘车人数每增加500人,每 月的利润可增加1 000元, 当每月的乘车人数为2 000人时,每月利润为0元,则当 每月利润为5 000元时,每月乘车人数为4 500人. 答案:4 500
★★3.研究发现,地表以下岩层的温度与它所处的深 度有表中的关系:
岩层的深 度h/km
(5)根据表格,你认为时间为16分钟和18分钟时水的温 度分别为多少? (6)为了节约能源,你认为应在什么时间停止烧水?
【自主解答】(1)上表反映了水的温度与时间的关系, 时间是自变量,水的温度是因变量; (2)水的温度随着时间的增加而增加,到100 ℃时恒定; (3)时间推移2分钟,水的温度增加14 ℃,到10分钟时恒 定;
后,得到的新正方形的周长为y cm,y与x间的函数关系
式是 ( )
A.y=12-4x
B.y=4x-12
C.y=12-x
D.以上都不对
A
★2.如图,在△ABC中,∠C=90°,AC=8,BC=6,D点在AC 上运动,设AD长为x,△BCD的面积y,则y与x之间的函数 表达式为____________.
年龄 x/周 0 3 6 9 12 15 18 21 24 岁
身高 h/cm
48
100
130
第9讲 变量之间的关系七年级数学下册同步精品讲义
第9讲 变量之间的关系1.一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t ,速度60千米/时是常量,时间t 和里程s 为变量. t 是自变量,s 是因变量.2.表格可以清楚地列出一些自变量和因变量的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等.3.关系式能揭示出变量之间的内在联系,但较抽象,不是所有的变量之间都能列出关系式.4.图象法可以直观形象地反映变量的变化趋势,而且对于一些无法用关系式表达的变量,图象可以充当重要角色.知识点01.常量与变量(1)变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量. (2)方法:①常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化; ②常量和变量是相对于变化过程而言的.可以互相转化; ③不要认为字母就是变量,例如π是常量.【知识拓展1】(2021春•成华区期末)汽车以每小时100千米的速度匀速行驶,行驶的路程随时间的变化而变化,在这个变化过程中,自变量是( ) A .汽车B .路程C .速度D .时间【即学即练1】(2021秋•天长市月考)一本笔记本5元,买x 本共付y 元,则5和x 分别是( ) A .常量,变量B .变量,变量C .常量,常量D .变量,常量【即学即练2】(2021春•莱阳市期末)已知声音在空气中的传播速度与空气的温度有关,在一定范围内其关系如表所示: 温度℃ ﹣20 ﹣10 0 10 20 30 传播速度318324330336342348知识精讲目标导航(m/s)则下列说法错误的是()A.自变量是传播速度,因变量是温度B.温度越高,传播速度越快C.当温度为10℃时,声音10s可以传播3360mD.温度每升高10℃,传播速度增加6m/s知识点02.函数关系式用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:①函数解析式是等式.②函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.③函数的解析式在书写时有顺序性,例如,y=x+9时表示y是x的函数,若写成x=﹣y+9就表示x是y的函数.【知识拓展2】(2021秋•成都期末)现有一小树苗高100cm,以后平均每年长高50cm.x年后树苗的总高度y(cm)与年份x(年)的关系式是.【即学即练1】(2021秋•龙口市期末)如图,在平面直角坐标系xOy中,以O为圆心,适当长为半径画弧,交x轴于点A,交y轴于点B,再分别以点A,B为圆心,大于AB的长为半径画弧,两弧在第二象限交于点C,若点C的坐标为(x﹣2,2y),则y与x的函数关系式为.【即学即练2】(2021秋•三水区期末)一辆车的油箱有80升汽油,该车行驶时每1小时耗油4升,则油箱的剩余油量y(升)与该车行驶时间x(小时)(0≤x≤20)之间的函数关系式为.【即学即练3】(2021秋•香洲区期末)某种产品今年的年产量是20t,计划今后两年增加产量.如果每年的产量都比上一年增加x倍,两年后这种产品的产量y与x之间的函数表达式是.【即学即练4】(2021秋•杜尔伯特县期末)如图所示,梯形的上底长是5cm,下底长是13cm.当梯形的高由大变小时,梯形的面积也随之发生变化.(1)在这个变化过程中,自变量是,因变量是.(2)梯形的面积y(cm2)与高x(cm)之间的关系式为.(3)当梯形的高由10cm变化到1cm时,梯形的面积由cm2变化到cm2.【即学即练5】(2021秋•密云区期末)如图,一个矩形的长比宽多3cm,矩形的面积是Scm2.设矩形的宽为xcm,当x在一定范围内变化时,S随x的变化而变化,则S与x满足的函数关系是()A.S=4x+6B.S=4x﹣6C.S=x2+3x D.S=x2﹣3x【即学即练6】(2021秋•临漳县期末)某油箱容量为60升的汽车,加满汽油后行驶了100千米时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x千米,油箱中剩余油量为y升,则y与x之间的函数关系式是()A.y=0.12x B.y=60+0.12xC.y=﹣60+0.12x D.y=60﹣0.12x【即学即练7】(2021秋•滨海县期末)某商场为了增加销售额,推出“元月销售大酬宾”活动,其活动内容为:“凡元月份在该商场一次性购物超过100元以上者,超过100元的部分按9折优惠.”在大酬宾活动中,小王到该商场为单位购买单价为60元的办公用品x件(x>2),则应付货款y(元)与商品件数x 的函数关系式是.知识点03.函数的图象函数的图象定义对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.注意:①函数图形上的任意点(x,y)都满足其函数的解析式;②满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P(x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上..【知识拓展3】(2021秋•綦江区期末)小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h(米)与小强出发后的时间t(分钟)的函数关系如图所示,下列结论正确的是()A.爷爷比小强先出发20分钟B.小强爬山的速度是爷爷的2倍C.l1表示的是爷爷爬山的情况,l2表示的是小强爬山的情况D.山的高度是480米【即学即练1】(2021秋•长丰县期末)小明上午8:00从家里出发,跑步去他家附近的抗日纪念馆参加抗美援朝70周年纪念活动,然后从纪念馆原路返回家中,小明离家的路程y(米)和经过的时间x(分)之间的函数关系如图所示,下列说法不正确的是()A.从小明家到纪念馆的路程是1800米B.小明从家到纪念馆的平均速度为180米/分C.小明在纪念馆停留45分钟D.小明从纪念馆返回家中的平均速度为100米/分【即学即练2】(2021秋•大东区期末)疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种.甲地经过a天后接种人数达到30万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数y(万人)与各自接种时间x(天)之间的关系如图所示,当乙地完成接种任务时,甲地未接种疫苗的人数为万人.【即学即练3】(2021秋•南岸区期末)一司机驾驶汽车从甲地到乙地,他以60km/h的平均速度行驶4h到达目的地,并按照原路返回甲地.(1)返回过程中,汽车行驶的平均速度v与行驶的时间t有怎样的函数关系?(2)如果要在3h返回甲地,求该司机返程的平均速度;(3)如图,是返程行驶的路程s(km)与时间t(h)之间的函数图象,中途休息了30分钟,休息后以平均速度为85km/h的速度回到甲地.求该司机返程所用的总时间.【即学即练4】(2021秋•徐汇区校级期末)某空军加油飞机接到命令,立即给另一架正在飞行的运输机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油箱余油量为Q2吨,加油时间为t(分),Q1、Q2与t之间的函数图象如图所示,结合图象回答下列问题:(1)加油之前,加油飞机的加油油箱中装载了吨油;运输飞机的油箱有余油量吨油;(2)这些油全部加给运输飞机需分钟;(3)运输飞机的飞行油耗为每分钟吨油;(4)运输飞机加完油后,以原速继续飞行,如果每分钟油耗相同,最多能飞行小时.【即学即练5】(2021秋•沛县期末)小明爸爸开车从单位回家,沿途部分路段正在进行施工改造,小明爸爸回家途中距离家的路程ykm与行驶时间xmin之间的函数关系如图所示.结合图象,解决下列问题:(1)小明爸爸回家路上所花时间为min;(2)小明爸爸说:“回家路上,有一段路连续4分钟恰好行驶了2.4千米.”你认为该说法有无可能?若有,请求出这4分钟的起止时间;若没有,请说明理由.【即学即练6】(2021秋•龙凤区校级期末)如图是一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的图象,两地间的距离是80km,请你根据图象解决下面的问题.(1)谁出发较早?早多长时间?谁到达乙地较早?早到多长时间?(2)两人在途中行驶的速度分别是多少?(3)若用y表示自行车行驶过的路程,用x表示自行车行驶过的时间,写出y与x的关系.知识点04.动点问题的函数图象函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.【知识拓展4】((2021秋•东阳市期末)已知两个等腰直角三角形的斜边放置在同一直线l上,且点C与点B重合,如图①所示.△ABC固定不动,将△A′B′C′在直线l上自左向右平移.直到点B′移动到与点C重合时停止.设△A′B′C′移动的距离为x,两个三角形重叠部分的面积为y,y与x之间的函数关系如图②所示,则△ABC的直角边长是()A.4B.4C.3D.3【即学即练1】(2021秋•龙岩期末)如图,正方形ABCD的边长为2,点E和点F分别在BC和CD上运动,且保持∠EAF=45°.若设BE的长为x,EF的长为y,则y与x的函数图象是()A.B.C.D.【即学即练2】(2021秋•沛县期末)如图1,在矩形ABCD中,点P从点C出发,沿C→D→A→B方向运动至点B处停止.设点P运动的路程为x,△PBC的面积为y,已知y关于x的函数关系如图2所示,则长方形ABCD的面积为()A.15B.20C.25D.30【即学即练3】(2021秋•金湖县期末)如图(1),△ABC和△A'B'C'是两个腰长不相等的等腰直角三角形,其中,∠A=∠A'=90°.点B'、C'、B、C都在直线l上,△ABC固定不动,将△A'B'C'在直线l上自左向右平移,开始时,点C'与点B重合,当点B'移动到与点C重合时停止.设△A'B'C'移动的距离为x,两个三角形重叠部分的面积为y,y与x之间的函数关系如图(2)所示,则BC的长是.【即学即练4】(2021秋•龙华区期末)如图1,动点P从长方形ABCD的顶点A出发,沿A→C→D以1cm/s 的速度运动到点D停止.设点P的运动时间为x(s),△P AB的面积为y(cm2).表示y与x的函数关系的图象如图2所示,则长方形ABCD的面积为cm2.知识点05.函数的表示方法函数的三种表示方法:列表法、解析式法、图象法.其特点分别是:列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.注意:①它们分别从数和形的角度反映了函数的本质;②它们之间可以互相转化.【知识拓展5】(2021秋•紫金县期末)在实验课上,小亮利用同一块木板测得小车从不同高度(h)与下滑的时间(t)的关系如下表:支撑物高h(cm)1020304050…下滑时间t(s) 3.25 3.01 2.81 2.66 2.56…以下结论错误的是()A.当h=40时,t约2.66秒B.随高度增加,下滑时间越来越短C.估计当h=80cm时,t一定小于2.56秒D.高度每增加了10cm,时间就会减少0.24秒【即学即练1】(2021秋•肇源县期末)河北给武汉运送抗疫物资,某汽车油箱内剩余油量Q(升)与汽车行驶路程s(千米)有如下关系:行驶路程s(千米)050100150200…剩余油量Q(升)4035302520…则该汽车每行驶100千米的耗油量为升.【即学即练2】(2021春•富平县期末)在《科学》课上,老师讲到温度计的使用方法及液体的沸点时,好奇的王红同学准备测量食用油的沸点,已知食用油的沸点温度高于水的沸点温度(100℃),王红家只有刻度不超过100℃的温度计,她的方法是在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s测量一次锅中油温,测量得到的数据如下表:时间t/s010203040油温y/℃1030507090王红发现,烧了110s时,油沸腾了,则下列说法不正确的是()A.加热10s,油的温度是30℃B.在一定范围内,每加热10s,油的温度升高20℃C.估计这种食用油的沸点温度约是230℃D.加热50s,油的温度是100℃知识点06.分段函数(1)一次函数与常函数组合的分段函数.分段函数是在不同区间有不同对应方式的函数.(注意:在解决分段函数问题时,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.)(2)由文字图象信息确定分段函数.根据图象读取信息时,要把握住以下三个方面:①横、纵轴的意义,以及横、纵轴分别表示的量.②关于某个具体点,要求向横、纵轴作垂线来求得该点的坐标.③在实际问题中,要注意图象与x轴、y轴交点坐标代表的具体意义.【规律方法】用图象描述分段函数的实际问题需要注意的四点1.自变量变化而函数值不变化的图象用水平线段表示.2.当两个阶段的图象都是一次函数(或正比例函数)时,自变量变化量相同,而函数值变化越大的图象与x轴的夹角就越大.3.各个分段中,准确确定函数关系.4.确定函数图象的最低点和最高点.【知识拓展6】(2021春•滦南县期末)在国内投寄到外地质量为80g以内的普通信函应付邮资如下表:信件质量m/g0<m≤2020<m≤4040<m≤6060<m≤80邮资y/元 1.20 2.40 3.60 4.80某同学想寄一封质量为15g的信函给居住在外地的朋友,他应该付的邮资是()A.4.80B.3.60C.2.40D.1.20【即学即练1】((2021•永州)已知函数y =,若y=2,则x=.【即学即练2】((2021•锡山区校级模拟)某市地铁票价计费标准如表所示:乘车距离x,单位:公里.乘车距离x x≤66<x≤1212<x≤2222<x≤32x>32票价(元)3456每增加1元可乘20公里另外,使用市政交通一卡通,每个自然月每张卡片支出累计满100元后,超出部分打8折;满150元后,超出部分打5折;支出累计达400元后,不再打折.小红妈妈上班时,需要乘坐地铁15公里到达公司,每天上下班共乘坐两次,如果每次乘坐地铁都使用市政交通一卡通,那么每月第22次乘坐地铁上下班时,她刷卡支出的费用是元.能力拓展【考点1】:用表格表示变量间关系例题1.(2020·山东济南市·七年级期末)为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(h)0 1 2 3 …油箱剩余油量Q(L)100 94 88 82 …①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.【变式1】(2019·广东深圳市·七年级期末)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用-支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的);(1)在这个变化过程中,是自变量,是因变量;(填中文)(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达人.【变式2】(2020·辽宁丹东市·七年级期末)某路公交车每月有x人次乘坐,每月的收入为y元,每人次乘坐的票价相同,下面的表格是y与x的部分数据.x/人次500 1000 1500 2000 2500 3000 …y/元1000 2000 4000 6000 …(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)请将表格补充完整.(3)若该路公交车每月的支出费用为4000元,如果该路公交车每月的利润要达到10000元,则每月乘坐该路公交车要达到多少人次?(利润=收入-支出费用)【考点2】 :用关系式表示变量间关系例题2.(2020·甘肃酒泉市·七年级期末)如图,自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm .(1)观察图形,填写下表: 链条的节数/节 2 3 4链条的长度/cm(2)如果x 节链条的长度是y ,那么y 与x 之间的关系式是什么?(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?【变式1】(2020·江西九江市·七年级期末)在一次实验中,小明把一根弹簧的端固定,在其下端悬挂物体,下面是测得的弹簧的长度()y cm 与所挂物体的质量()x kg 的一组对应值:所挂物体的质量()x kg 012 3 4 5弹簧长度()y cm18 20 222426 28(1)在这个变化的过程中,自变量是 ;因变量是 ; (2)写出y 与x 之间的关系式,并求出当所挂重物为6kg 时,弹簧的长度为多少?【变式2】(2020·甘肃酒泉市·七年级期末)如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.(1)观察图形,填写下表:链条的节数/节234链条的长度/cm(2)如果x节链条的长度是y,那么y与x之间的关系式是什么?(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?【考点3】:用图象表示变量间关系例题3、(2020·四川达州市·七年级期末)巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?【变式1】(2020·四川达州市·七年级期末)巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?【变式2】(2020·贵州毕节市·七年级期末)如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系的一幅图.(1)下图反映了哪两个变量之间的关系?(2)爷爷从家里出发后20分钟到30分钟可能在做什么?(3)爷爷每天散步多长时间?(4)爷爷散步时最远离家多少米?(5)分别计算爷爷离开家后的20分钟内、30分钟内、45分钟内的平均速度.【变式3】(2021·山东聊城市·七年级期末)如图是2020年1月15日至2月2日全国(除湖北省)新冠肺炎新增确诊人数的变化曲线,则下列说法:①自变量为时间,确诊总人数是时间的函数;②1月23号,新增确诊人数约为150人;③1月25号和1月26号,新增确诊人数基本相同;④1月30号之后,预测新增确诊人数呈下降趋势,其中正确的是____________.(填上你认为正确的说法的序号)分层提分题组A 基础过关练一.选择题(共5小题)1.(2021秋•龙泉驿区期末)小亮放学回家走了一段,发现一家新开的店在搞活动,就好奇地围观了一会,然后意识到回家晚了妈妈会着急,急忙跑步回到家.若设小亮与家的距离为s(米),他离校的时间为t (分钟),则反映该情景的图象为()A .B .C.D.2.(2021秋•丰台区期末)如图所示,有一个容器水平放置,往此容器内注水,注满为止.若用h(单位:cm)表示容器底面到水面的高度,用V(单位:cm3)表示注入容器内的水量,则表示V与h的函数关系的图象大致是()A.B.C.D.3.(2021秋•毕节市期中)油箱中存油60升,油从油箱中均匀流出,流速为0.3升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是()A.Q=0.3t B.t=60﹣0.3Q C.t=0.3Q D.Q=60﹣0.3t4.(2021秋•济阳区期中)一水池的容积是90m3,现有蓄水10m3,用水管以5m3/h的速度向水池注水,直到注满为止.则水池蓄水量V(m3)与注水时间t(h)之间的函数关系式为()A.V=5t B.V=10t C.V=5t+10D.V=80﹣5t5.(2021秋•无棣县期中)已知关于x与y之间的关系如表所示:x1234…y5+0.610+1.215+1.820+2.4…下面用的式子中,正确的是()A.y=5x+0.6B.y=(5+0.6)x C.y=5+0.6x D.y=5+0.6+x二.填空题(共3小题)6.(2021秋•成都期末)现有一小树苗高100cm,以后平均每年长高50cm.x年后树苗的总高度y(cm)与年份x(年)的关系式是.7.(2021秋•福田区期末)元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒x(x>2)件,则应付款y(元)与商品数x(件)之间的关系式,化简后的结果是.8.(2021秋•李沧区期中)如图,甲、乙两地相距120km,现有一列火车从乙地出发,以80km/h的速度向丙地行驶.设x(h)表示火车行驶的时间,y(km)表示火车与甲地的距离,写出x,y之间的关系式.三.解答题(共4小题)9.(2021春•庄河市期末)如图,在平面直角坐标系中,点A坐标为(0,3),点C坐标为(6,0),AB∥x 轴,且OA=AB,动点P从点O出发以2个单位/秒的速度沿O→A→B→C的路线匀速运动,运动到点C 时终止.过点P作PQ⊥x轴,垂足为Q,设点P的运动时间为x(s),线段PQ的长为y.(1)求∠C的度数;(2)求y与x的函数关系式.10.(2021•罗庄区一模)经过实验获得两个变量x(x>0),y(y>0)的一组对应值如表.x123456y632 1.5 1.21(1)请画出相应函数的图象,并求出函数表达式.(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.11.(2021•寻乌县模拟)数学活动课上,老师提出问题:如图1,有一张长4dm,宽3dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大(已知长方体的体积=长×宽×高).下面是探究过程,请补充完整:(1)设小正方形的边长为xdm,体积为ydm3,y和x的关系式是;自变量x的取值范围是;(2)①列表:根据(1)中所求函数关系式计算并补全表格:x/dm…1…y/dm3… 1.3 2.2 2.73 2.8 2.5 1.50.9…②描点:根据表中的数值,继续描出2中剩余两个点(x,y);③在平面直角坐标系中用平滑的曲线画出该函数的图象.(3)结合画出的函数图象,解决问题:当图1中小正方形的边长约为dm时,盒子的体积最大,最大值约为dm3(结果精确到0.01).12.(2020•南山区校级开学)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如表所示(每位乘客的公交票价是固定不变的):x(人)50010001500200025003000…y(元)﹣3000﹣2000﹣1000010002000…(1)在这个变化过程中,是自变量,是因变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)由表格猜想y与x关系式,并估计当每月乘车人数为3500人时,每月利润为多少元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达人.题组B 能力提升练易错点一:常量、变量(自变量、因变量)基本概念认识1.(2020·山东济南市·七年级期末)骆驼被称为“沙漠之舟”,它的体温是随时间的变化而变化的,在这一问题中,因变量是( )A.沙漠B.体温C.时间D.骆驼2.(2020·贵州毕节市·七年级期末)甲以每小时20km的速度行驶时,他所走的路程S(km)与时间t(h)之间可用公式s=20t来表示,则下列说法正确的是()A.数20和s,t都是变量B.s是常量,数20和t是变量C.数20是常量,s和t是变量D.t是常量,数20和s是变量易错点二:列表法表示变量之间的关系1.(2020·山东青岛市·七年级期末)某品牌热水壶的成本为50元,销售商对其销量与定价的关系进行了调查,结果如下:现销售了105把水壶,则定价约为()A.115元B.105元C.95元D.85元2.(2020·山东济南市·七年级期末)为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.。
七年级数学 第三章 变量之间的关系 3.2 用关系式表示的变量间关系
第十页,共五十二页。
★★3.如图是我国古代某种铜钱的平面示意图,该图形是在
一个圆形的中间(zhōngjiān)挖去一个正方形得到的.若圆的半径
是3 cm,正方形的边长为x cm,设该图形的面积为y cm2.(注:π取 3)
第十一页,共五十二页。
(1)写出y与x之间的关系式. (2)当x=1时,求y的值.
2
(2)如下(rúxià)表:
x
10 11 12 13 14 15
y
100 104 108 112 116 120
第四十七页,共五十二页。
(3)由题可得,x每增加1时,y增加4; (4)当x=0时,y=60,此时(cǐ shí)图形是三角形.
第四十八页,共五十二页。
【母题变式】 多边形的内角和随着(suízhe)边数的变化而变化.设多边形的边 数为n,内角和为N,则变量N与n之间的关系可以表示为N=(n-
用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每
滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,
水龙头以测试的速度滴水,当小康离开x分钟后,水龙
头滴出y毫升的水,请写出y与x之间的函数关系式是
_________.
y=5x
第三十五页,共五十二页。
知识点四 用关系式求值(P67随堂练习T2拓展)
2)·180°.
第四十九页,共五十二页。
例如:如图四边形ABCD的内角和:
N=∠A+∠B+∠C+∠D=(4-2)×180°=360°
问:(1)利用这个(zhè ge)关系式计算五边形的内角和; (2)当一个多边形的内角和N=720°时,求其边数n.
2020春北师大版七年级数学下期末知识点复习 第3章 变量之间的关系
所挂质量 x(kg) 0 1 2 3 4 5 弹簧长度 y(cm) 18 20 22 24 26 28
(1)上述反映了哪两个变量之间的关系?哪个是自变量?哪个是 因变量? (2)写出y与x之间的关系式,并求出当所挂重物为6 kg时,弹簧的 长度为多少?
返回
数学
解:(1)y=8+(x-3)×1.6,即 y=1.6x+3.2(x≥3). (2)当 x=4 时,y=1.6x+3.2=1.6×4+3.2=9.6. 答:应付车费 9.6 元. (3)当 y=16 时,16=1.6x+3.2,解得 x=8. 答:出租车行驶了 8 km.
返回
数学 知识要点 3 用图象表示的变量间关系 【例 3】小王周末骑电单车从家出发去商场买东西,当他骑了 一段路时,想起要买一本书,于是原路返回到刚经过的新华书 店,买到书后继续前往商场,如图是他离家的距离与时间的关 系示意图.
返回
数学
解:(1)该车平均每千米的耗油量为(45-30)÷150=0.1(升/千米),
行驶路程x(千米)与剩余油量Q(升)的关系式为Q=45-0.1x.
(2)当x=280时,Q=45-0.1×280=17(L).
答:当x=280(千米)时,剩余油量Q的值为17 L.
(3)(45-3)÷0.1=420(千米),
返回
数学 变式练习 2.自行车每节链条的长度为 2.5 cm,交叉重叠部分的圆的直径 为 0.8 cm.
(1)观察图形,填写下表: 链条的节数/节
234…
链条的长度/cm
…
北师大数学七年级下册第四章-变量之间的关系
第01讲_变量之间的关系知识图谱变量之间的关系(北师版)知识精讲变量在一个变化过程中,我们称数值发生变化的量为变量常量在一个变化过程中,有些量的数值是始终不变的,我们称它们为常量关系一般地,在一个变化过程中,如果有两个变量x与y,并且y随着x的变化而变化,x是自变量,y是因变量二.变量关系的三种表示方法表格法;关系式法;图像法.步骤列表表中给出一些自变量的值及其对应的因变量的值描点在直角坐标系中,以自变量的值为横坐标,因变量为纵坐标,描出表格中数值对应的各点连线按照横坐标由小道大的顺序把所描出的各点用平滑曲线连接起来注意事项1.表示两个变量的对应关系的点有无数个.但是实际上我们只能描出其中有限个点,同时想象出其他点的位置2.用实心点表示在曲线的点,用空心圈表示不在曲线的点四.易错点1.确定自变量的取值范围时,不仅要考虑函数关系式有意义,而且还要注意问题的实际意义.2.解决图象有关的问题,一定要注意理解横、纵坐标所表示的实际含义,然后根据图象求出函数解析式来解题.3.不能认为式子中出现的字母都是变量,如π不是变量而是常量.三点剖析一.考点:1.用表格表示的变量间关系; 2.用关系式表示的变量间关系; 3.用图象表示的变量间关系.二.重难点:用图象表示的变量之间的关系三.易错点:1.确定自变量的取值范围时,不仅要考虑函数关系式有意义,而且还要注意问题的实际意义.2.解决图象有关的问题,一定要注意理解横、纵坐标所表示的实际含义,然后根据图象求出函数解析式来解题.用表格表示的变量间关系例题1、 弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的质量x (kg )间有下面的关系: 下列说法不正确的是( )A.x 与y 都是变量,且x 是自变量,y 是因变量B.所挂物体质量为4kg 时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg ,弹簧长度y 增加0.5cm 【答案】 C【解析】 根据给出的表格中数据分析,可以确定自变量和因变量以及弹簧伸长的长度,得到答案.例题2、 已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)当易拉罐底面半径为2.4cm 时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由. (4)粗略说一说易拉罐底面半径对所需铝质量的影响.【答案】 (1)易拉罐底面半径和用铝量的关系,易拉罐底面半径为自变量,用铝量为因变量; (2)当底面半径为2.4cm 时,易拉罐的用铝量为356.cm .(3)易拉罐底面半径为2.8cm 时比较合适,因为此时用铝较少,成本低.(4)当易拉罐底面半径在1.6~2.8cm 变化时,用铝量随半径的增大而减小,当易拉罐底面半径在2.8~4.0cm 间变化时,用铝量随半径的增大而增大.【解析】 本题考查函数的自变量与函数变量,根据表格理解:随底面半径的增大,用铝量的变化情况是关键. 例题3、 某校组织学生到距学校6km 的光明科技馆参观,准备乘出租车去科技馆,出租车的收费标准如表:则收费y (元)与出租车行驶里程数x (km )(x ≥3)之间的关系式为( )x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5底面 半径 1.6 2.0 2.4 2.8 3.2 3.6 4.0 用铝量 6.96.05.65.55.76.06.5里程数收费/元 3km 以下(含3km ) 8.00 3km 以上每增加1km1.80A.y=8xB.y=1.8xC.y=8+1.8xD.y=2.6+1.8x【答案】 D【解析】 由题意得,所付车费为:y=1.8(x ﹣3)+8=1.8x+2.6(x ≥3). 故选:D .随练1、 心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间有如下关系:(其中030x ≤≤)(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟后,学生的接受能力最强;(4)从表中可知,当时间x 在什么范围内,学生的接受能力逐步增强?当时间x 在什么范围内,学生的接受能力逐步降低?【答案】 见解析【解析】 (1)提出概念所用的时间x 和对概念接受能力y 两个变量; (2)当10x =时,59y =,所以时间是10分钟时,学生的接受能力是59;(3)当13x =时,y 的值最大是59.9,所以提出概念13分钟时,学生的接受能力最强; (4)由表中数据可知:当213x <<时,y 值逐渐增大,学生的接受能力逐步增强;当1320x <<时,y 值逐渐减下,学生的接受能力逐步降低.用关系式表示的变量间关系例题1、 写出下列各问题中的关系式,指出其中的常量、自变量、因变量及自变量取值范围. (1)直角三角形中一锐角的度数y 与另一锐角的度数x 之间的函数关系.(2)如果水的流速量是a m/min (一个定量),那么每分钟的进水量3Q()m 与所选择的水管直径D (m )之间的函数关系. 【答案】 (1)90y x =-,90是常量,x 是自变量,y 是因变量,自变量x 的取值范围是090x <<;(2)24aD Q π=,常量为4aπ,自变量为D ,Q 为因变量,自变量0D >【解析】 (1)直角三角形两锐角互余,所以90y x =-,其中90是常量,x 是自变量,y 是因变量,自变量x 的取值范围是090x <<;(2)由水管直径为D 可知,水管的截面积为24D π,所以24aD Q π=,其中常量为4aπ,自变量为D ,Q 为因变量,自变量0D >;例题2、 等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm ,则x 与y 之间的关系式为_________. 【答案】 y=8﹣12x (0<x <8) 【解析】 ∵等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm . ∴x+2y=16, ∴y=8﹣12x (0<x <8). 例题3、 等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm ,则x 与y 之间的关系式为 .【答案】 y=8﹣12x (0<x <8).【解析】 ∵等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm .提出概念所用时间(x ) 257101213141720对概念的接受能力(y )47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55∴x+2y=16,∴y=8﹣12x(0<x<8).故答案为:y=8﹣12x(0<x<8).随练1、等腰三角形的周长为30,则腰长y关于底边长x的函数关系式为__________,其中自变量x的取值范围是__________.【答案】1152y x=-+;015x<<【解析】230y x+=,整理得,1152y x=-+,根据三角形三边关系定理,02x y<<,∴102152x x⎛⎫<<-+⎪⎝⎭,∴015x<<.随练2、以直角三角形中的一个锐角的度数为自变量x,另一个锐角的度数y为因变量,则它们的关系式是.【答案】y=90°﹣x.【解析】根据题意得y=90°﹣x.故答案为y=90°﹣x.用图象表示的变量间关系例题1、小华同学利用假期时间乘坐一大巴去看望在外打工的妈妈,出发时,大巴的油箱装满了油,匀速行驶一段时间后,油箱内的汽油恰剩一半时又加满了油,接着按原速度行驶,到目的地时油箱中还剩有13箱汽油,设油箱中所剩汽油量为V升,时间为t(分钟),则V与t的大致图象是()A.AB.BC.CD.D【答案】D【解析】A、从图象可知最后纵坐标为0,即油箱是空的,与题意不符,故本选项错误;B、图象没有显示油箱内的汽油恰剩一半时又加满了油的过程,与题意不符,故本选项错误;C、图象显示油箱的油用完以后又加满,与题意不符,故本选项错误;D、当t为0时,大巴油箱是满的,然后匀速减少至一半,又加满,到目的地是油箱中还剩有13箱汽油,故本选项正确.故选D.例题2、如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相同D.在4到8秒内甲的速度都大于乙的速度【答案】C【解析】A、根据图象可得,乙前4秒的速度不变,为12米/秒,则行驶的路程为12×4=48米,故A正确;B、根据图象得:在0到8秒内甲的速度是一条过原点的直线,即甲的速度从0均匀增加到32米/秒,则每秒增加32 8=4米秒/,故B正确;C 、由于甲的图象是过原点的直线,斜率为4,所以可得v=4t (v 、t 分别表示速度、时间),将v=12m/s 代入v=4t 得t=3s ,则t=3s 前,甲的速度小于乙的速度,所以两车到第3秒时行驶的路程不相等,故C 错误;D 、在4至8秒内甲的速度图象一直在乙的上方,所以甲的速度都大于乙的速度,故D 正确.随练1、 一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示,关停进水管后,经过_____分钟,容器中的水恰好放完.【答案】 8【解析】 由04-分钟的函数图象可知进水管的速度,根据412-分钟的函数图象求出水管的速度,再求关停进水管后,出水经过的时间.进水管的速度为:2045÷=(升/分),出水管的速度为:()()53020124 3.75--÷-=(升/分),∴关停进水管后,出水经过的时间为:30 3.758÷=分钟.随练2、 上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y 与时间t 之间的函数关系的大致图象是( )A. B. C. D.【答案】 B【解析】 根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B 符合题意随练3、 在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度; ②出发后1小时,两人行程均为10km ; ③出发后1.5小时,甲的行程比乙多3km ; ④甲比乙先到达终点. 其中正确的有_______个.【答案】 1【解析】 在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误由图可得,两人在1小时时相遇,行程均为10km ,故②正确;甲的图象的解析式为y=10x ,乙AB 段图象的解析式为y=4x+6,因此出发1.5小时后,乙的路程为15千米,甲的路程为12千米,甲的行程比乙少3千米,故③错误;乙到达终点所用的时间较少,因此乙比甲先到达终点,故④错误.拓展1、 如图所示,某计算装置有一个数据输入口A 和一个运算结果输入口B ,下表给出的是小红输入的数字及所得的运算结果(1)若小红输入的数为x ,输出的结果为y ,你能用x 表示y 么?请写出来.(不需要写出x 的取值范围)(2)若输出结果为8,求小红输入的数字 【答案】 (1)1y x =-(2)81【解析】 (1)由表中数据可观察到,每个B 中数据都是在A 中数据开方后减一所得,101-=-,011=-,141=-,∴可得到函数1y x =-.(2)当8y =时,()211y x x y =-⇒=+,∴2981x ==.2、 弹簧挂上物体后会伸长,测得一弹簧的长度()y cm 与所挂的物体的质量()x kg 间有下面的关系:下列说法不正确的是( )A.x 与y 都是变量,且x 是自变量,y 是因变量B.所挂物体质量为4kg 时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg ,弹簧长度y 增加0.5cm 【答案】 C【解析】 弹簧不挂重物时的长度为10cm3、 在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:则m 与v 之间的关系最接近于下列各关系式中的( )A.22v m =-B.21v m =-C.33v m =-D.1v m =+【答案】 B【解析】 分别代入当4m =时,算出v 即可.4、 购买单价为每支1.2元的铅笔,总金额y (元)与铅笔数n (支)的关系式可表示为y =__________,其中,__________是常量,__________是变量. 【答案】 1.2n ,单价,铅笔数【解析】 总金额等于每支铅笔的价格乘以铅笔的支数,故 1.2y n =,铅笔的单价是常量,铅笔数是变量. 5、 乘坐某种出租汽车,当行驶路程小于或等于3千米时,乘车费用都是10元(即起步价10元),当行驶路程大于3千米时,超过3千米的部分每千米收费2元,若一次乘坐这种出租车行驶4千米,则应付车费__________元;若一次乘坐这种出租车付费20元,则乘车路程是__________千米. 【答案】 12,8【解析】 本题考查函数的应用。
(完整版)北师大版七年级下册数学第三章《变量间的关系》知识点梳理及典型例题
第三章变量之间的关系知识点梳理及典型例题知识回顾一一复习路程、速度、时间之间的关系: _________________ ,, ; 知识点一常量与变量在一个变化过程中,我们称数值发生变化的量为________ .数值始终不变的量在某一变化过程中,如果有两个变量x和y,当其中一个变量x在一定范围内取一个数值时,另一个变量y也有唯一一个数值与其对应,那么,通常把前一个变量x叫做_________ ,后一个变量y叫做自变量的 __________注意:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对知识点二用表格表示变量之间的关系表示两个变量之间的关系的表格,一般第一行表示自变量,第二行表示因变量;借助表格,可以表示因变量随自变量的变化而变化的情况。
注意:用表格可以表示两个变量之间的关系时,能准确地指出几组自变量和因变量的值,但不能全面地反映两个变量之间的关系,只能反映其中的一部分,从数轴(纵轴)上的点表示 ________ ,用坐标来表示每对自变量和因变量的对应值所在位置;【温馨提示】图象法能直观、形象地描述两个变量之间的关系,但只是反映两个变量之间的关系的一部分,而不是整体,且由图象确定的数值往往是近似的•【方法技巧】(1 )借助图象,过某点分别向横轴、纵轴作垂线可以知道自变量取某个值时,因变量取什么值•(2 )借助图象可判断因变量的变化趋势:图象自左向右是上升的,则说明因变量随着自变量的增大而增大,图象自左向右是上升下降的,则说明因变量随着自变量的增大而增大减小,图象自左向右是与横轴平行的,则说明因变量在自变量的增大的过程中保持不变知识点五变量之间的关系的表示方法比较表示变量之间的关系,可以用 _____________ 、___________ 和__________ ;其中表格法一目了然,使用方便,但列出的数值有限,不容易看出因变量与自变量的变化规律;关系式法简单明了,能准确反映出整个变化过程中因变量与自变量之间的相互关系,但是求对应值时,要经过比较复杂的计算,而且在实际问题中,有的变量之间的关系不一定能用关系式表示出来;图象法的特点是形象、直观,可以形象地反映出变量之间的变化趋势和某些性质,是研究变量性质的好工具,其不足是由图象法往往难以得到准确的对应值;据中获取两个变量关系的信息,找出变化规律是解题的关键知识点三用关系式表示两个变量之间的关系例如,正方形的边长为X,面积为y,则y= x2这个关系式就是表示两个变量之间的对应关系,其中x是_______________________ , y是 _______ ; 一般地,含有两个未知数(变量)的等式就是表示这两个变量的关系式;【温馨提示】(1)写关系式的关键是写出一个含有自变量和因变量的等式,将表示因变量的字母单独写在等号的左边,右边是用自变量表示因变量的代数式.(2)自变量的取值必须使式子有意义,实际问题还要有实际意义•(3)实际问题中,有的变量关系不一定能用关系式表示出来•【方法技巧】列关系式的关键是记住一些常见图形的相关公式和弄清两个变量间的量的关系•根据关系式求值实质上是求代数式的值或解方程知识点四用图象表示两个变量间的关系图象法就是用图象来表示两个变量之间的关系的方法;在用图象法表示变量之间的关系时,通常用水平方向的数轴(横轴)上的点表示,用竖直方向的数专题一能从表格中获取两个变量之间关系的信息(1)在这个注水过程中,反映的是两个变量与之间的关系, 其中变量是自变量,变量是因变量;(2)这个水箱原有水L;(3)min时水箱注满水;(4)由表中的数据可以看出,水箱的注水过程是均匀的,那么平均每分钟注水L.2 .一根合金棒在不同的温度下,其长度也不同,合金棒的长度和温度之间有如下关系:某个变化过程而言的是_________ ,s是—例如:s=60t,速度60千米/时是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学七年级下册知识点总结之变量之间的
关系
变量之间的关系知识点:
一理论理解
1、若Y随X的变化而变化,则X是自变量 Y是因变量。
自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。
2、能确定变量之间的关系式:相关公式①路程=速度时间②长方形周长=2(长+宽)③梯形面积=(上底+下底)高2 ④本息和=本金+利率本金时间。
⑤总价=单价总量。
⑥平均速度=总路程总时间
3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.
二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。
列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。
列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;
b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点
八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:
1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));
2. 随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).
注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.
九、估计(或者估算) 对事物的估计(或者估算)有三种:
1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;
2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;
3.利用关系式:首先求出关系式,然后直接代入求值即可.
拓展:数学学习技巧
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。
上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。
特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。
认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。
在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是必须的,熟悉掌握各种题型的解题思路。
刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。
对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
在平时要养成良好的解题习惯。
让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。
实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。
如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。
调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。
特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,在保证正确率的前提下提高解题速度。
对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
学好数学的方法其实跟读其他科目没太大差别,流程上可区分为六个步骤:1预习2专心听讲3课后练习4测验5侦错、补强6回想以下就每一个步骤提出应注意事项,提供给你参考。
1.预习: 在课前把老师即将教授的单元内容浏览一次,并留意不了解的部份。
其次,专心听讲:
(1)新的课程开始有很多新的名词定义或新的观念想法,老师的说明讲解绝对比同学们自己看书更清楚,务必用心听,切勿自作聪明而自误。
若老师讲到你早先预习时不了解的那部份,你就要特别注意。
有些同学听老师讲解的内容较简单,便以为他全会了,然后分心去做别的事,殊不知漏听了最精彩最重要的几句话,那几句话或许便是日后测验时答题的关键所在。
(2)上课时一面听讲就要一面把重点背下来。
定义、定理、公式等重点,上课时就要用心记忆,如此,当老师举例时才听得懂老师要阐述的要义。
待回家后只需花很短的时间,便能将今日所教的课程复习完毕。
事半而功倍。
只可惜大多数同学上课像看电影一般,轻松地欣赏老师表演,下了课什麼都不记得,白白浪费一节课,真可惜。
3. 课后练习 :
(1) 整理重点
有数学课的当天晚上,要把当天教的内容整理完毕,定义、定理、公式该背的一定要背熟,有些同学以为数学注重推理,不必死背,所以什麼都不背,这观念并不正确。
一般所谓不死背,指的是不死背解法,但是基本的定义、定理、公式是我们解题的工具,没有记住这些,解题时将不能活用他们,好比医师若不将所有的医学知识、用药知识熟记心中,如何在第一时间救人?
很多同学数学考不好,就是没有把定义认识清楚,也没有把一些重要定理、公式“完整地”背熟。
(2) 适当练习
重点整理完后,要适当练习。
先将老师上课时讲解过的例题做一次,然后做课本习题,学有余力,再做参考书或任课老师所发的补充试题。
遇有难题一时解不出,可先略过,以免浪费时间,待闲暇时再作挑战,若仍解不出再与同学或老师讨论。
(3) 练习时一定要亲自动手演算。
很多同学常会在考试时解题解到一半,就解不下去,分析其原因就是他做练习时是用看的,很多关键步骤忽略掉了。
4.测验 :
(1) 考前要把考试范围内的重点再整理一次,老师特别提示的重要题型一定要注意。
(2) 考试时,会做的题目一定要做对,常计算错误的同学,尽量把计算速度放慢,移项以及加减乘除都要小心处理,少使用“心算”。
(3) 考试时,我们的目的是要得高分,而不是作学术研究,所以遇到较难的题目不要硬干,可先跳过,等到试卷中会做的题目都做完后,再利用剩下的时间挑战难题,如此便能将实力完全表现出来,达到最完美的演出。
(4)考试时,容易紧张的同学,有两个可能的原因:
a.准备不够充分,以致缺乏信心。
这种人要加强试前的准备。
b.对得分预期太高,万一遇到几个难题解不出来,心思不能集中,造成分数更低。
这种人必须调整心态,不要预期太高。
5.侦错、补强 :
测验后,不论分数高低,要将做错的题目再订正一次,务必找出错误处,修正观念,如此才能将该单元学的更好。
6.回想:
一个单元学完后,同学们要从头到尾把整个章节的重点内容回想一遍,特别注意标题,一般而言,每个小节的标题就是该小节的主题,也是最重要的。
将主题重点回想一遍,才能完整了解我们在学些什麼东西。
“数学七年级下册知识点总结之变量之间的关系”。